This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
MSC_two_6792asdad98.86 198.67 5896.94 197.93 10599.86 897.68 1699.67 699.77 2
No_MVS98.86 198.67 5896.94 197.93 10599.86 897.68 1699.67 699.77 2
OPU-MVS98.55 398.82 5296.86 398.25 3798.26 6696.04 299.24 12495.36 9199.59 1899.56 29
test_0728_SECOND98.51 499.45 395.93 598.21 4498.28 3699.86 897.52 2299.67 699.75 6
DPE-MVScopyleft97.86 497.65 898.47 599.17 3295.78 797.21 16098.35 2795.16 2298.71 2098.80 2295.05 1099.89 396.70 4199.73 199.73 10
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
HPM-MVS++copyleft97.34 1796.97 2798.47 599.08 3696.16 497.55 12397.97 10195.59 1196.61 7297.89 9092.57 3499.84 2395.95 6899.51 3299.40 54
CNVR-MVS97.68 697.44 1398.37 798.90 5095.86 697.27 15298.08 7495.81 997.87 3698.31 6094.26 1399.68 5497.02 3399.49 3799.57 26
SMA-MVScopyleft97.35 1697.03 2498.30 899.06 3895.42 1097.94 7398.18 5790.57 19698.85 1598.94 993.33 2399.83 2696.72 4099.68 499.63 17
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DVP-MVS++98.06 197.99 198.28 998.67 5895.39 1199.29 198.28 3694.78 4198.93 998.87 1596.04 299.86 897.45 2699.58 2299.59 22
SED-MVS98.05 297.99 198.24 1099.42 795.30 1798.25 3798.27 3995.13 2399.19 498.89 1395.54 599.85 1897.52 2299.66 1099.56 29
MM97.29 1996.98 2698.23 1198.01 10795.03 2698.07 5495.76 28397.78 197.52 4098.80 2288.09 10299.86 899.44 199.37 5799.80 1
ACMMP_NAP97.20 2096.86 3198.23 1199.09 3495.16 2297.60 11698.19 5592.82 11997.93 3498.74 2691.60 5199.86 896.26 5099.52 2999.67 13
DVP-MVScopyleft97.91 397.81 498.22 1399.45 395.36 1398.21 4497.85 11694.92 3298.73 1898.87 1595.08 899.84 2397.52 2299.67 699.48 44
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
MCST-MVS97.18 2196.84 3398.20 1499.30 2495.35 1597.12 16798.07 7993.54 8596.08 9797.69 10693.86 1699.71 4696.50 4699.39 5399.55 32
SF-MVS97.39 1597.13 1698.17 1599.02 4295.28 1998.23 4198.27 3992.37 13198.27 2798.65 2993.33 2399.72 4596.49 4799.52 2999.51 37
3Dnovator+91.43 495.40 8494.48 10698.16 1696.90 16995.34 1698.48 2197.87 11194.65 4988.53 28898.02 8283.69 16999.71 4693.18 13998.96 8999.44 49
NCCC97.30 1897.03 2498.11 1798.77 5395.06 2597.34 14598.04 8995.96 697.09 5597.88 9293.18 2599.71 4695.84 7399.17 7499.56 29
APDe-MVScopyleft97.82 597.73 798.08 1899.15 3394.82 2898.81 798.30 3294.76 4398.30 2698.90 1293.77 1799.68 5497.93 1499.69 399.75 6
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
DPM-MVS95.69 7794.92 9098.01 1998.08 10495.71 995.27 29397.62 14190.43 19995.55 11697.07 14491.72 4699.50 9989.62 20998.94 9098.82 113
APD-MVScopyleft96.95 3296.60 4798.01 1999.03 4194.93 2797.72 10098.10 7291.50 15598.01 3198.32 5992.33 3899.58 7794.85 10399.51 3299.53 36
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
MP-MVS-pluss96.70 4796.27 6197.98 2199.23 3094.71 2996.96 17998.06 8290.67 18795.55 11698.78 2591.07 6399.86 896.58 4499.55 2599.38 58
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MTAPA97.08 2596.78 3997.97 2299.37 1694.42 3597.24 15498.08 7495.07 2796.11 9598.59 3090.88 6899.90 296.18 6199.50 3499.58 25
MVS_030497.04 2896.73 4297.96 2397.60 13494.36 3698.01 5994.09 34997.33 296.29 8698.79 2489.73 8299.86 899.36 299.42 4799.67 13
SteuartSystems-ACMMP97.62 997.53 1197.87 2498.39 7794.25 4098.43 2498.27 3995.34 1798.11 2898.56 3194.53 1299.71 4696.57 4599.62 1599.65 15
Skip Steuart: Steuart Systems R&D Blog.
ZNCC-MVS96.96 3196.67 4597.85 2599.37 1694.12 4698.49 2098.18 5792.64 12596.39 8498.18 7091.61 5099.88 495.59 8799.55 2599.57 26
HFP-MVS97.14 2396.92 3097.83 2699.42 794.12 4698.52 1698.32 3093.21 9897.18 5098.29 6392.08 4299.83 2695.63 8299.59 1899.54 33
GST-MVS96.85 3996.52 5197.82 2799.36 1894.14 4598.29 3198.13 6592.72 12296.70 6698.06 7791.35 5799.86 894.83 10499.28 6299.47 46
XVS97.18 2196.96 2897.81 2899.38 1494.03 5098.59 1298.20 5294.85 3496.59 7498.29 6391.70 4899.80 3095.66 7799.40 5199.62 18
X-MVStestdata91.71 21789.67 27897.81 2899.38 1494.03 5098.59 1298.20 5294.85 3496.59 7432.69 40591.70 4899.80 3095.66 7799.40 5199.62 18
ACMMPR97.07 2696.84 3397.79 3099.44 693.88 5298.52 1698.31 3193.21 9897.15 5198.33 5791.35 5799.86 895.63 8299.59 1899.62 18
alignmvs95.87 7595.23 8497.78 3197.56 14095.19 2197.86 8197.17 19594.39 5996.47 8096.40 18785.89 14099.20 12796.21 5795.11 19198.95 96
DeepC-MVS_fast93.89 296.93 3496.64 4697.78 3198.64 6494.30 3797.41 13598.04 8994.81 3996.59 7498.37 4991.24 5999.64 6695.16 9499.52 2999.42 53
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
region2R97.07 2696.84 3397.77 3399.46 293.79 5498.52 1698.24 4793.19 10197.14 5298.34 5491.59 5299.87 795.46 8999.59 1899.64 16
CDPH-MVS95.97 7195.38 8097.77 3398.93 4794.44 3496.35 23297.88 10986.98 29896.65 7097.89 9091.99 4499.47 10292.26 15199.46 4099.39 56
sasdasda96.02 6895.45 7597.75 3597.59 13595.15 2398.28 3297.60 14294.52 5296.27 8896.12 20187.65 11199.18 13096.20 5894.82 19598.91 101
canonicalmvs96.02 6895.45 7597.75 3597.59 13595.15 2398.28 3297.60 14294.52 5296.27 8896.12 20187.65 11199.18 13096.20 5894.82 19598.91 101
MSP-MVS97.59 1097.54 1097.73 3799.40 1193.77 5698.53 1598.29 3495.55 1398.56 2297.81 9993.90 1599.65 5896.62 4299.21 7099.77 2
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
train_agg96.30 6295.83 6997.72 3898.70 5694.19 4296.41 22498.02 9488.58 25396.03 9897.56 12192.73 3199.59 7495.04 9699.37 5799.39 56
MP-MVScopyleft96.77 4496.45 5797.72 3899.39 1393.80 5398.41 2598.06 8293.37 9395.54 11898.34 5490.59 7299.88 494.83 10499.54 2799.49 42
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PHI-MVS96.77 4496.46 5697.71 4098.40 7594.07 4898.21 4498.45 2289.86 20997.11 5498.01 8392.52 3599.69 5296.03 6699.53 2899.36 60
TSAR-MVS + MP.97.42 1397.33 1597.69 4199.25 2794.24 4198.07 5497.85 11693.72 7798.57 2198.35 5193.69 1899.40 11097.06 3299.46 4099.44 49
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
PGM-MVS96.81 4296.53 5097.65 4299.35 2093.53 6097.65 10798.98 292.22 13397.14 5298.44 4491.17 6299.85 1894.35 11699.46 4099.57 26
test1297.65 4298.46 7094.26 3997.66 13495.52 11990.89 6799.46 10399.25 6799.22 70
mPP-MVS96.86 3796.60 4797.64 4499.40 1193.44 6198.50 1998.09 7393.27 9795.95 10398.33 5791.04 6499.88 495.20 9399.57 2499.60 21
CP-MVS97.02 2996.81 3797.64 4499.33 2193.54 5998.80 898.28 3692.99 10996.45 8298.30 6291.90 4599.85 1895.61 8499.68 499.54 33
MGCFI-Net95.94 7395.40 7997.56 4697.59 13594.62 3098.21 4497.57 14794.41 5796.17 9296.16 19987.54 11599.17 13296.19 6094.73 20098.91 101
CANet96.39 5996.02 6497.50 4797.62 13193.38 6397.02 17297.96 10295.42 1594.86 12897.81 9987.38 12199.82 2896.88 3699.20 7299.29 63
SR-MVS97.01 3096.86 3197.47 4899.09 3493.27 6897.98 6398.07 7993.75 7697.45 4298.48 4191.43 5599.59 7496.22 5399.27 6399.54 33
3Dnovator91.36 595.19 9394.44 10897.44 4996.56 19493.36 6598.65 1198.36 2494.12 6589.25 27398.06 7782.20 20599.77 3793.41 13699.32 6099.18 72
HPM-MVScopyleft96.69 4996.45 5797.40 5099.36 1893.11 7198.87 698.06 8291.17 17096.40 8397.99 8490.99 6599.58 7795.61 8499.61 1699.49 42
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
DP-MVS Recon95.68 7895.12 8897.37 5199.19 3194.19 4297.03 17098.08 7488.35 26295.09 12697.65 11189.97 7999.48 10192.08 16098.59 10398.44 142
fmvsm_l_conf0.5_n97.65 797.75 697.34 5298.21 9292.75 7897.83 8698.73 995.04 2899.30 198.84 2093.34 2299.78 3599.32 399.13 7899.50 40
新几何197.32 5398.60 6593.59 5897.75 12381.58 36595.75 10997.85 9690.04 7799.67 5686.50 27299.13 7898.69 121
DELS-MVS96.61 5296.38 5997.30 5497.79 12093.19 6995.96 25698.18 5795.23 1995.87 10497.65 11191.45 5399.70 5195.87 6999.44 4699.00 92
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
test_fmvsmconf_n97.49 1297.56 997.29 5597.44 14292.37 9097.91 7698.88 495.83 898.92 1299.05 591.45 5399.80 3099.12 699.46 4099.69 12
DeepC-MVS93.07 396.06 6695.66 7097.29 5597.96 10993.17 7097.30 15098.06 8293.92 7193.38 16198.66 2786.83 12799.73 4295.60 8699.22 6998.96 94
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ACMMPcopyleft96.27 6395.93 6597.28 5799.24 2892.62 8298.25 3798.81 592.99 10994.56 13498.39 4888.96 8999.85 1894.57 11597.63 13399.36 60
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
TSAR-MVS + GP.96.69 4996.49 5297.27 5898.31 8193.39 6296.79 19196.72 23694.17 6497.44 4397.66 11092.76 2899.33 11596.86 3797.76 13299.08 83
fmvsm_l_conf0.5_n_a97.63 897.76 597.26 5998.25 8692.59 8497.81 9098.68 1394.93 3099.24 398.87 1593.52 2099.79 3399.32 399.21 7099.40 54
test_prior97.23 6098.67 5892.99 7398.00 9899.41 10999.29 63
HPM-MVS_fast96.51 5596.27 6197.22 6199.32 2292.74 7998.74 998.06 8290.57 19696.77 6398.35 5190.21 7599.53 9194.80 10799.63 1499.38 58
VNet95.89 7495.45 7597.21 6298.07 10592.94 7597.50 12698.15 6293.87 7397.52 4097.61 11785.29 14799.53 9195.81 7495.27 18799.16 73
UA-Net95.95 7295.53 7297.20 6397.67 12592.98 7497.65 10798.13 6594.81 3996.61 7298.35 5188.87 9099.51 9690.36 19397.35 14399.11 81
test_fmvsmconf0.1_n97.09 2497.06 1997.19 6495.67 24292.21 9697.95 7298.27 3995.78 1098.40 2599.00 689.99 7899.78 3599.06 799.41 5099.59 22
EPNet95.20 9294.56 10097.14 6592.80 35692.68 8197.85 8494.87 33196.64 392.46 17897.80 10186.23 13499.65 5893.72 13098.62 10199.10 82
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
APD-MVS_3200maxsize96.81 4296.71 4497.12 6699.01 4592.31 9397.98 6398.06 8293.11 10697.44 4398.55 3390.93 6699.55 8796.06 6299.25 6799.51 37
SR-MVS-dyc-post96.88 3696.80 3897.11 6799.02 4292.34 9197.98 6398.03 9193.52 8797.43 4598.51 3691.40 5699.56 8596.05 6399.26 6599.43 51
SD-MVS97.41 1497.53 1197.06 6898.57 6994.46 3397.92 7598.14 6494.82 3899.01 698.55 3394.18 1497.41 32796.94 3499.64 1399.32 62
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
test_fmvsmconf0.01_n96.15 6595.85 6897.03 6992.66 35991.83 10897.97 6997.84 12095.57 1297.53 3999.00 684.20 16399.76 3898.82 1199.08 8299.48 44
MVS_111021_HR96.68 5196.58 4996.99 7098.46 7092.31 9396.20 24598.90 394.30 6295.86 10597.74 10492.33 3899.38 11396.04 6599.42 4799.28 65
QAPM93.45 14892.27 17696.98 7196.77 18092.62 8298.39 2698.12 6784.50 33888.27 29597.77 10282.39 20299.81 2985.40 29198.81 9498.51 131
WTY-MVS94.71 10894.02 11296.79 7297.71 12492.05 10296.59 21597.35 18490.61 19394.64 13296.93 15086.41 13399.39 11191.20 18094.71 20198.94 97
CPTT-MVS95.57 8295.19 8596.70 7399.27 2691.48 12398.33 2898.11 7087.79 27995.17 12498.03 8087.09 12599.61 6993.51 13299.42 4799.02 86
sss94.51 10993.80 11696.64 7497.07 15591.97 10596.32 23598.06 8288.94 24094.50 13596.78 15884.60 15599.27 12291.90 16196.02 17098.68 122
ab-mvs93.57 14492.55 16696.64 7497.28 14591.96 10695.40 28597.45 16889.81 21393.22 16796.28 19279.62 25099.46 10390.74 18793.11 22798.50 132
EI-MVSNet-Vis-set96.51 5596.47 5396.63 7698.24 8791.20 13696.89 18397.73 12694.74 4496.49 7898.49 3890.88 6899.58 7796.44 4898.32 11499.13 77
114514_t93.95 12893.06 14296.63 7699.07 3791.61 11697.46 13497.96 10277.99 38293.00 16997.57 11986.14 13999.33 11589.22 22099.15 7698.94 97
HY-MVS89.66 993.87 13292.95 14696.63 7697.10 15492.49 8795.64 27596.64 24489.05 23593.00 16995.79 22085.77 14399.45 10589.16 22494.35 20397.96 175
MSLP-MVS++96.94 3397.06 1996.59 7998.72 5591.86 10797.67 10498.49 1994.66 4897.24 4998.41 4792.31 4098.94 16396.61 4399.46 4098.96 94
CANet_DTU94.37 11193.65 12096.55 8096.46 20692.13 10096.21 24496.67 24394.38 6093.53 15797.03 14779.34 25399.71 4690.76 18698.45 11097.82 185
test_fmvsm_n_192097.55 1197.89 396.53 8198.41 7491.73 10998.01 5999.02 196.37 499.30 198.92 1092.39 3799.79 3399.16 599.46 4098.08 171
LFMVS93.60 14292.63 16196.52 8298.13 10091.27 13197.94 7393.39 36390.57 19696.29 8698.31 6069.00 34599.16 13494.18 11995.87 17499.12 80
DP-MVS92.76 18291.51 20396.52 8298.77 5390.99 14497.38 14296.08 27282.38 35889.29 27097.87 9383.77 16899.69 5281.37 33496.69 16198.89 107
CNLPA94.28 11393.53 12596.52 8298.38 7892.55 8596.59 21596.88 22790.13 20591.91 19597.24 13585.21 14899.09 14487.64 25297.83 12897.92 177
casdiffmvs_mvgpermissive95.81 7695.57 7196.51 8596.87 17091.49 12297.50 12697.56 15193.99 6995.13 12597.92 8987.89 10798.78 17895.97 6797.33 14499.26 67
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Vis-MVSNetpermissive95.23 9094.81 9296.51 8597.18 14991.58 11998.26 3698.12 6794.38 6094.90 12798.15 7282.28 20398.92 16591.45 17598.58 10499.01 89
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
MAR-MVS94.22 11493.46 13096.51 8598.00 10892.19 9997.67 10497.47 16188.13 26993.00 16995.84 21484.86 15399.51 9687.99 23998.17 12197.83 184
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PAPR94.18 11593.42 13596.48 8897.64 12991.42 12795.55 27897.71 13288.99 23792.34 18595.82 21689.19 8599.11 14086.14 27897.38 14198.90 104
EI-MVSNet-UG-set96.34 6196.30 6096.47 8998.20 9390.93 14896.86 18597.72 12894.67 4796.16 9498.46 4290.43 7399.58 7796.23 5297.96 12698.90 104
LS3D93.57 14492.61 16496.47 8997.59 13591.61 11697.67 10497.72 12885.17 32890.29 23398.34 5484.60 15599.73 4283.85 31298.27 11698.06 172
CSCG96.05 6795.91 6696.46 9199.24 2890.47 16598.30 3098.57 1889.01 23693.97 14897.57 11992.62 3399.76 3894.66 11099.27 6399.15 75
CS-MVS-test96.89 3597.04 2396.45 9298.29 8291.66 11599.03 497.85 11695.84 796.90 5997.97 8691.24 5998.75 18396.92 3599.33 5998.94 97
test_yl94.78 10694.23 11096.43 9397.74 12291.22 13296.85 18697.10 20091.23 16795.71 11096.93 15084.30 16099.31 11993.10 14095.12 18998.75 115
DCV-MVSNet94.78 10694.23 11096.43 9397.74 12291.22 13296.85 18697.10 20091.23 16795.71 11096.93 15084.30 16099.31 11993.10 14095.12 18998.75 115
ETV-MVS96.02 6895.89 6796.40 9597.16 15092.44 8897.47 13297.77 12294.55 5096.48 7994.51 27791.23 6198.92 16595.65 8098.19 11997.82 185
OpenMVScopyleft89.19 1292.86 17691.68 19596.40 9595.34 26192.73 8098.27 3498.12 6784.86 33385.78 33497.75 10378.89 26599.74 4187.50 25698.65 9996.73 227
MVS_111021_LR96.24 6496.19 6396.39 9798.23 9191.35 12996.24 24398.79 693.99 6995.80 10797.65 11189.92 8099.24 12495.87 6999.20 7298.58 125
原ACMM196.38 9898.59 6691.09 14397.89 10787.41 29095.22 12397.68 10790.25 7499.54 8987.95 24099.12 8098.49 134
PVSNet_Blended_VisFu95.27 8894.91 9196.38 9898.20 9390.86 15097.27 15298.25 4590.21 20194.18 14297.27 13387.48 11899.73 4293.53 13197.77 13198.55 126
Effi-MVS+94.93 10094.45 10796.36 10096.61 18891.47 12496.41 22497.41 17791.02 17694.50 13595.92 21087.53 11698.78 17893.89 12696.81 15698.84 112
PCF-MVS89.48 1191.56 22789.95 26696.36 10096.60 18992.52 8692.51 36797.26 19079.41 37788.90 27796.56 17884.04 16699.55 8777.01 36197.30 14697.01 217
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
test_fmvsmvis_n_192096.70 4796.84 3396.31 10296.62 18791.73 10997.98 6398.30 3296.19 596.10 9698.95 889.42 8399.76 3898.90 1099.08 8297.43 203
UGNet94.04 12693.28 13896.31 10296.85 17191.19 13797.88 7997.68 13394.40 5893.00 16996.18 19673.39 31999.61 6991.72 16798.46 10998.13 165
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
MG-MVS95.61 8095.38 8096.31 10298.42 7390.53 16396.04 25197.48 15893.47 8995.67 11398.10 7389.17 8699.25 12391.27 17898.77 9599.13 77
AdaColmapbinary94.34 11293.68 11996.31 10298.59 6691.68 11496.59 21597.81 12189.87 20892.15 18997.06 14583.62 17299.54 8989.34 21598.07 12397.70 190
lupinMVS94.99 9994.56 10096.29 10696.34 21291.21 13495.83 26396.27 26388.93 24196.22 9096.88 15586.20 13798.85 17295.27 9299.05 8498.82 113
nrg03094.05 12593.31 13796.27 10795.22 27294.59 3198.34 2797.46 16392.93 11691.21 22196.64 16887.23 12498.22 23094.99 10185.80 31695.98 250
CS-MVS96.86 3797.06 1996.26 10898.16 9891.16 14199.09 397.87 11195.30 1897.06 5698.03 8091.72 4698.71 18997.10 3199.17 7498.90 104
EC-MVSNet96.42 5796.47 5396.26 10897.01 16591.52 12198.89 597.75 12394.42 5696.64 7197.68 10789.32 8498.60 19997.45 2699.11 8198.67 123
PAPM_NR95.01 9594.59 9896.26 10898.89 5190.68 16097.24 15497.73 12691.80 14792.93 17496.62 17689.13 8799.14 13789.21 22197.78 13098.97 93
OMC-MVS95.09 9494.70 9696.25 11198.46 7091.28 13096.43 22297.57 14792.04 14294.77 13097.96 8787.01 12699.09 14491.31 17796.77 15798.36 149
1112_ss93.37 15092.42 17396.21 11297.05 16090.99 14496.31 23696.72 23686.87 30189.83 25296.69 16586.51 13199.14 13788.12 23793.67 22198.50 132
fmvsm_s_conf0.5_n_a96.75 4696.93 2996.20 11397.64 12990.72 15798.00 6198.73 994.55 5098.91 1399.08 388.22 10199.63 6798.91 998.37 11298.25 153
jason94.84 10494.39 10996.18 11495.52 24890.93 14896.09 24996.52 25289.28 22796.01 10197.32 12984.70 15498.77 18195.15 9598.91 9298.85 110
jason: jason.
fmvsm_s_conf0.1_n_a96.40 5896.47 5396.16 11595.48 25090.69 15897.91 7698.33 2994.07 6698.93 999.14 187.44 11999.61 6998.63 1398.32 11498.18 160
PLCcopyleft91.00 694.11 12293.43 13396.13 11698.58 6891.15 14296.69 20297.39 17887.29 29391.37 21096.71 16188.39 9999.52 9587.33 25997.13 15297.73 188
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
casdiffmvspermissive95.64 7995.49 7396.08 11796.76 18390.45 16697.29 15197.44 17294.00 6895.46 12097.98 8587.52 11798.73 18595.64 8197.33 14499.08 83
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline95.58 8195.42 7896.08 11796.78 17890.41 16897.16 16497.45 16893.69 8095.65 11497.85 9687.29 12298.68 19195.66 7797.25 14899.13 77
CHOSEN 1792x268894.15 11893.51 12896.06 11998.27 8389.38 20295.18 29798.48 2185.60 32093.76 15297.11 14283.15 18099.61 6991.33 17698.72 9799.19 71
IS-MVSNet94.90 10194.52 10496.05 12097.67 12590.56 16298.44 2396.22 26693.21 9893.99 14697.74 10485.55 14598.45 21189.98 19897.86 12799.14 76
fmvsm_s_conf0.5_n96.85 3997.13 1696.04 12198.07 10590.28 17097.97 6998.76 894.93 3098.84 1699.06 488.80 9299.65 5899.06 798.63 10098.18 160
h-mvs3394.15 11893.52 12796.04 12197.81 11990.22 17297.62 11597.58 14695.19 2096.74 6497.45 12483.67 17099.61 6995.85 7179.73 36798.29 152
VDD-MVS93.82 13593.08 14196.02 12397.88 11689.96 18297.72 10095.85 28092.43 12995.86 10598.44 4468.42 35299.39 11196.31 4994.85 19398.71 120
VDDNet93.05 16692.07 18096.02 12396.84 17290.39 16998.08 5395.85 28086.22 31295.79 10898.46 4267.59 35599.19 12894.92 10294.85 19398.47 137
fmvsm_s_conf0.1_n96.58 5496.77 4096.01 12596.67 18590.25 17197.91 7698.38 2394.48 5498.84 1699.14 188.06 10399.62 6898.82 1198.60 10298.15 164
MVSFormer95.37 8595.16 8695.99 12696.34 21291.21 13498.22 4297.57 14791.42 15996.22 9097.32 12986.20 13797.92 28194.07 12099.05 8498.85 110
CDS-MVSNet94.14 12193.54 12495.93 12796.18 21991.46 12596.33 23497.04 21088.97 23993.56 15496.51 18087.55 11497.89 28589.80 20395.95 17298.44 142
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
API-MVS94.84 10494.49 10595.90 12897.90 11592.00 10497.80 9197.48 15889.19 23094.81 12996.71 16188.84 9199.17 13288.91 22898.76 9696.53 230
HyFIR lowres test93.66 14192.92 14795.87 12998.24 8789.88 18394.58 31098.49 1985.06 33093.78 15195.78 22182.86 18998.67 19291.77 16695.71 17999.07 85
SDMVSNet94.17 11693.61 12195.86 13098.09 10191.37 12897.35 14498.20 5293.18 10291.79 19997.28 13179.13 25698.93 16494.61 11392.84 23097.28 211
Test_1112_low_res92.84 17991.84 19095.85 13197.04 16189.97 18195.53 28096.64 24485.38 32389.65 25895.18 24785.86 14199.10 14187.70 24793.58 22698.49 134
iter_conf05_1193.70 14092.99 14395.84 13297.02 16290.22 17295.57 27794.66 33492.81 12096.17 9296.51 18069.56 34299.07 15095.03 9799.60 1798.23 155
PVSNet_Blended94.87 10394.56 10095.81 13398.27 8389.46 19995.47 28398.36 2488.84 24494.36 13796.09 20688.02 10499.58 7793.44 13498.18 12098.40 145
Anonymous20240521192.07 20790.83 22895.76 13498.19 9588.75 22297.58 11895.00 32186.00 31593.64 15397.45 12466.24 36699.53 9190.68 18992.71 23399.01 89
EPP-MVSNet95.22 9195.04 8995.76 13497.49 14189.56 19298.67 1097.00 21490.69 18594.24 14097.62 11689.79 8198.81 17693.39 13796.49 16598.92 100
xiu_mvs_v1_base_debu95.01 9594.76 9395.75 13696.58 19191.71 11196.25 24097.35 18492.99 10996.70 6696.63 17382.67 19399.44 10696.22 5397.46 13696.11 246
xiu_mvs_v1_base95.01 9594.76 9395.75 13696.58 19191.71 11196.25 24097.35 18492.99 10996.70 6696.63 17382.67 19399.44 10696.22 5397.46 13696.11 246
xiu_mvs_v1_base_debi95.01 9594.76 9395.75 13696.58 19191.71 11196.25 24097.35 18492.99 10996.70 6696.63 17382.67 19399.44 10696.22 5397.46 13696.11 246
Anonymous2024052991.98 21090.73 23395.73 13998.14 9989.40 20197.99 6297.72 12879.63 37693.54 15697.41 12769.94 33999.56 8591.04 18391.11 26398.22 157
GeoE93.89 13193.28 13895.72 14096.96 16889.75 18798.24 4096.92 22389.47 22292.12 19197.21 13784.42 15898.39 21887.71 24696.50 16499.01 89
EIA-MVS95.53 8395.47 7495.71 14197.06 15889.63 18897.82 8897.87 11193.57 8193.92 14995.04 25290.61 7198.95 16294.62 11298.68 9898.54 127
bld_raw_dy_0_6492.85 17891.91 18795.69 14297.02 16289.81 18597.88 7993.96 35492.57 12692.59 17796.79 15769.53 34399.02 15895.03 9791.78 24998.23 155
MVS_Test94.89 10294.62 9795.68 14396.83 17489.55 19396.70 20097.17 19591.17 17095.60 11596.11 20587.87 10898.76 18293.01 14797.17 15198.72 118
TAMVS94.01 12793.46 13095.64 14496.16 22190.45 16696.71 19996.89 22689.27 22893.46 15996.92 15387.29 12297.94 27788.70 23295.74 17798.53 128
ET-MVSNet_ETH3D91.49 23190.11 25995.63 14596.40 20991.57 12095.34 28793.48 36290.60 19575.58 38495.49 23780.08 24096.79 34994.25 11889.76 28198.52 129
diffmvspermissive95.25 8995.13 8795.63 14596.43 20889.34 20495.99 25597.35 18492.83 11896.31 8597.37 12886.44 13298.67 19296.26 5097.19 15098.87 109
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
UniMVSNet (Re)93.31 15292.55 16695.61 14795.39 25593.34 6697.39 14098.71 1193.14 10590.10 24394.83 26287.71 10998.03 26091.67 17183.99 34395.46 276
Fast-Effi-MVS+93.46 14792.75 15695.59 14896.77 18090.03 17596.81 19097.13 19788.19 26591.30 21494.27 29386.21 13698.63 19687.66 25196.46 16798.12 166
PatchMatch-RL92.90 17492.02 18395.56 14998.19 9590.80 15395.27 29397.18 19387.96 27191.86 19895.68 22780.44 23398.99 16084.01 30797.54 13596.89 223
TAPA-MVS90.10 792.30 19791.22 21495.56 14998.33 8089.60 19096.79 19197.65 13681.83 36291.52 20697.23 13687.94 10698.91 16771.31 38398.37 11298.17 163
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
baseline192.82 18091.90 18895.55 15197.20 14890.77 15597.19 16194.58 33892.20 13592.36 18296.34 19084.16 16498.21 23189.20 22283.90 34797.68 191
NR-MVSNet92.34 19491.27 21195.53 15294.95 28693.05 7297.39 14098.07 7992.65 12484.46 34595.71 22485.00 15197.77 29689.71 20583.52 35095.78 260
MVS91.71 21790.44 24395.51 15395.20 27491.59 11896.04 25197.45 16873.44 39087.36 31495.60 23185.42 14699.10 14185.97 28397.46 13695.83 255
VPA-MVSNet93.24 15492.48 17195.51 15395.70 24092.39 8997.86 8198.66 1692.30 13292.09 19395.37 24080.49 23298.40 21493.95 12385.86 31595.75 265
thisisatest053093.03 16792.21 17895.49 15597.07 15589.11 21697.49 13192.19 37490.16 20394.09 14496.41 18676.43 29399.05 15490.38 19295.68 18098.31 151
PS-MVSNAJ95.37 8595.33 8295.49 15597.35 14490.66 16195.31 29097.48 15893.85 7496.51 7795.70 22688.65 9599.65 5894.80 10798.27 11696.17 241
DU-MVS92.90 17492.04 18195.49 15594.95 28692.83 7697.16 16498.24 4793.02 10890.13 23995.71 22483.47 17397.85 28791.71 16883.93 34495.78 260
UniMVSNet_NR-MVSNet93.37 15092.67 16095.47 15895.34 26192.83 7697.17 16398.58 1792.98 11490.13 23995.80 21788.37 10097.85 28791.71 16883.93 34495.73 267
testdata95.46 15998.18 9788.90 22097.66 13482.73 35697.03 5798.07 7690.06 7698.85 17289.67 20798.98 8898.64 124
xiu_mvs_v2_base95.32 8795.29 8395.40 16097.22 14690.50 16495.44 28497.44 17293.70 7996.46 8196.18 19688.59 9899.53 9194.79 10997.81 12996.17 241
F-COLMAP93.58 14392.98 14595.37 16198.40 7588.98 21897.18 16297.29 18987.75 28290.49 22997.10 14385.21 14899.50 9986.70 26996.72 16097.63 192
FA-MVS(test-final)93.52 14692.92 14795.31 16296.77 18088.54 22994.82 30496.21 26889.61 21794.20 14195.25 24583.24 17799.14 13790.01 19796.16 16998.25 153
FIs94.09 12393.70 11895.27 16395.70 24092.03 10398.10 5198.68 1393.36 9590.39 23196.70 16387.63 11397.94 27792.25 15390.50 27495.84 254
thisisatest051592.29 19891.30 20995.25 16496.60 18988.90 22094.36 32092.32 37387.92 27293.43 16094.57 27477.28 28599.00 15989.42 21395.86 17597.86 181
PAPM91.52 23090.30 24995.20 16595.30 26789.83 18493.38 35396.85 23086.26 31188.59 28695.80 21784.88 15298.15 23775.67 36695.93 17397.63 192
thres600view792.49 18891.60 19795.18 16697.91 11489.47 19797.65 10794.66 33492.18 13993.33 16294.91 25778.06 27899.10 14181.61 32894.06 21696.98 218
DeepPCF-MVS93.97 196.61 5297.09 1895.15 16798.09 10186.63 28196.00 25498.15 6295.43 1497.95 3398.56 3193.40 2199.36 11496.77 3899.48 3899.45 47
131492.81 18192.03 18295.14 16895.33 26489.52 19696.04 25197.44 17287.72 28386.25 33195.33 24183.84 16798.79 17789.26 21897.05 15397.11 216
TranMVSNet+NR-MVSNet92.50 18691.63 19695.14 16894.76 29892.07 10197.53 12498.11 7092.90 11789.56 26196.12 20183.16 17997.60 31089.30 21683.20 35395.75 265
thres40092.42 19091.52 20195.12 17097.85 11789.29 20797.41 13594.88 32892.19 13793.27 16594.46 28278.17 27499.08 14681.40 33194.08 21296.98 218
FE-MVS92.05 20891.05 21895.08 17196.83 17487.93 24893.91 33895.70 28686.30 30994.15 14394.97 25376.59 28999.21 12684.10 30596.86 15498.09 170
sd_testset93.10 16292.45 17295.05 17298.09 10189.21 21196.89 18397.64 13893.18 10291.79 19997.28 13175.35 30398.65 19488.99 22692.84 23097.28 211
FC-MVSNet-test93.94 12993.57 12295.04 17395.48 25091.45 12698.12 5098.71 1193.37 9390.23 23496.70 16387.66 11097.85 28791.49 17390.39 27595.83 255
FMVSNet391.78 21590.69 23695.03 17496.53 19992.27 9597.02 17296.93 21989.79 21489.35 26794.65 27177.01 28697.47 32186.12 27988.82 28895.35 285
patch_mono-296.83 4197.44 1395.01 17599.05 3985.39 30496.98 17798.77 794.70 4597.99 3298.66 2793.61 1999.91 197.67 1899.50 3499.72 11
VPNet92.23 20291.31 20894.99 17695.56 24690.96 14697.22 15997.86 11592.96 11590.96 22396.62 17675.06 30498.20 23291.90 16183.65 34995.80 258
FMVSNet291.31 24290.08 26094.99 17696.51 20192.21 9697.41 13596.95 21788.82 24688.62 28594.75 26673.87 31397.42 32685.20 29488.55 29395.35 285
thres100view90092.43 18991.58 19894.98 17897.92 11389.37 20397.71 10294.66 33492.20 13593.31 16394.90 25878.06 27899.08 14681.40 33194.08 21296.48 233
BH-RMVSNet92.72 18491.97 18594.97 17997.16 15087.99 24796.15 24795.60 29390.62 19291.87 19797.15 14178.41 27198.57 20383.16 31497.60 13498.36 149
MSDG91.42 23490.24 25394.96 18097.15 15288.91 21993.69 34596.32 26185.72 31986.93 32596.47 18380.24 23798.98 16180.57 33895.05 19296.98 218
tfpn200view992.38 19291.52 20194.95 18197.85 11789.29 20797.41 13594.88 32892.19 13793.27 16594.46 28278.17 27499.08 14681.40 33194.08 21296.48 233
XXY-MVS92.16 20491.23 21394.95 18194.75 30090.94 14797.47 13297.43 17589.14 23188.90 27796.43 18579.71 24798.24 22889.56 21087.68 29995.67 270
Vis-MVSNet (Re-imp)94.15 11893.88 11594.95 18197.61 13287.92 24998.10 5195.80 28292.22 13393.02 16897.45 12484.53 15797.91 28488.24 23697.97 12599.02 86
mvsmamba93.83 13493.46 13094.93 18494.88 29390.85 15198.55 1495.49 29994.24 6391.29 21796.97 14983.04 18498.14 23895.56 8891.17 26195.78 260
tttt051792.96 17092.33 17594.87 18597.11 15387.16 26897.97 6992.09 37590.63 19193.88 15097.01 14876.50 29099.06 15390.29 19595.45 18498.38 147
iter_conf0593.18 16092.63 16194.83 18696.64 18690.69 15897.60 11695.53 29892.52 12791.58 20496.64 16876.35 29498.13 23995.43 9091.42 25695.68 269
OPM-MVS93.28 15392.76 15494.82 18794.63 30690.77 15596.65 20697.18 19393.72 7791.68 20397.26 13479.33 25498.63 19692.13 15792.28 23895.07 301
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
HQP_MVS93.78 13793.43 13394.82 18796.21 21689.99 17897.74 9597.51 15594.85 3491.34 21196.64 16881.32 21998.60 19993.02 14592.23 23995.86 251
hse-mvs293.45 14892.99 14394.81 18997.02 16288.59 22696.69 20296.47 25595.19 2096.74 6496.16 19983.67 17098.48 21095.85 7179.13 37197.35 208
AUN-MVS91.76 21690.75 23194.81 18997.00 16688.57 22796.65 20696.49 25489.63 21692.15 18996.12 20178.66 26798.50 20790.83 18479.18 37097.36 206
XVG-OURS-SEG-HR93.86 13393.55 12394.81 18997.06 15888.53 23095.28 29197.45 16891.68 15194.08 14597.68 10782.41 20198.90 16893.84 12892.47 23696.98 218
XVG-OURS93.72 13993.35 13694.80 19297.07 15588.61 22594.79 30597.46 16391.97 14593.99 14697.86 9581.74 21498.88 16992.64 15092.67 23596.92 222
IB-MVS87.33 1789.91 28888.28 30394.79 19395.26 27187.70 25695.12 29993.95 35589.35 22687.03 32092.49 34270.74 33299.19 12889.18 22381.37 36197.49 201
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
WR-MVS92.34 19491.53 20094.77 19495.13 27990.83 15296.40 22897.98 10091.88 14689.29 27095.54 23582.50 19897.80 29289.79 20485.27 32495.69 268
RPMNet88.98 30187.05 31594.77 19494.45 31387.19 26690.23 38298.03 9177.87 38492.40 17987.55 38780.17 23999.51 9668.84 38893.95 21797.60 197
thres20092.23 20291.39 20494.75 19697.61 13289.03 21796.60 21495.09 31892.08 14193.28 16494.00 30678.39 27299.04 15781.26 33694.18 20896.19 240
UniMVSNet_ETH3D91.34 24190.22 25694.68 19794.86 29487.86 25297.23 15897.46 16387.99 27089.90 24996.92 15366.35 36498.23 22990.30 19490.99 26697.96 175
ETVMVS90.52 27389.14 29294.67 19896.81 17787.85 25395.91 25993.97 35389.71 21592.34 18592.48 34365.41 37097.96 27281.37 33494.27 20698.21 158
GA-MVS91.38 23690.31 24894.59 19994.65 30587.62 25794.34 32196.19 26990.73 18390.35 23293.83 31071.84 32497.96 27287.22 26193.61 22498.21 158
GBi-Net91.35 23990.27 25194.59 19996.51 20191.18 13897.50 12696.93 21988.82 24689.35 26794.51 27773.87 31397.29 33386.12 27988.82 28895.31 288
test191.35 23990.27 25194.59 19996.51 20191.18 13897.50 12696.93 21988.82 24689.35 26794.51 27773.87 31397.29 33386.12 27988.82 28895.31 288
FMVSNet189.88 29188.31 30294.59 19995.41 25491.18 13897.50 12696.93 21986.62 30487.41 31294.51 27765.94 36897.29 33383.04 31687.43 30295.31 288
cascas91.20 24790.08 26094.58 20394.97 28489.16 21593.65 34797.59 14579.90 37589.40 26592.92 33675.36 30298.36 22092.14 15694.75 19896.23 237
ECVR-MVScopyleft93.19 15792.73 15894.57 20497.66 12785.41 30298.21 4488.23 39393.43 9194.70 13198.21 6772.57 32199.07 15093.05 14498.49 10699.25 68
HQP-MVS93.19 15792.74 15794.54 20595.86 23389.33 20596.65 20697.39 17893.55 8290.14 23595.87 21280.95 22298.50 20792.13 15792.10 24495.78 260
testing9191.90 21291.02 21994.53 20696.54 19786.55 28495.86 26195.64 29291.77 14891.89 19693.47 32769.94 33998.86 17090.23 19693.86 21998.18 160
testing1191.68 22090.75 23194.47 20796.53 19986.56 28395.76 26894.51 34091.10 17491.24 22093.59 32268.59 34998.86 17091.10 18194.29 20598.00 174
PVSNet_BlendedMVS94.06 12493.92 11494.47 20798.27 8389.46 19996.73 19698.36 2490.17 20294.36 13795.24 24688.02 10499.58 7793.44 13490.72 27094.36 338
gg-mvs-nofinetune87.82 31585.61 32794.44 20994.46 31289.27 21091.21 37684.61 40280.88 36889.89 25174.98 39671.50 32697.53 31685.75 28797.21 14996.51 231
PS-MVSNAJss93.74 13893.51 12894.44 20993.91 32889.28 20997.75 9497.56 15192.50 12889.94 24896.54 17988.65 9598.18 23593.83 12990.90 26895.86 251
PMMVS92.86 17692.34 17494.42 21194.92 28986.73 27794.53 31296.38 25984.78 33594.27 13995.12 25183.13 18198.40 21491.47 17496.49 16598.12 166
MVSTER93.20 15692.81 15394.37 21296.56 19489.59 19197.06 16997.12 19891.24 16691.30 21495.96 20882.02 20898.05 25693.48 13390.55 27295.47 275
testing22290.31 27788.96 29494.35 21396.54 19787.29 26095.50 28193.84 35890.97 17791.75 20192.96 33562.18 37998.00 26382.86 31794.08 21297.76 187
ACMM89.79 892.96 17092.50 17094.35 21396.30 21488.71 22397.58 11897.36 18391.40 16190.53 22896.65 16779.77 24698.75 18391.24 17991.64 25095.59 271
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CHOSEN 280x42093.12 16192.72 15994.34 21596.71 18487.27 26290.29 38197.72 12886.61 30591.34 21195.29 24284.29 16298.41 21393.25 13898.94 9097.35 208
testing9991.62 22290.72 23494.32 21696.48 20486.11 29495.81 26494.76 33291.55 15391.75 20193.44 32868.55 35098.82 17490.43 19093.69 22098.04 173
CLD-MVS92.98 16992.53 16894.32 21696.12 22689.20 21295.28 29197.47 16192.66 12389.90 24995.62 23080.58 23098.40 21492.73 14992.40 23795.38 283
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
dcpmvs_296.37 6097.05 2294.31 21898.96 4684.11 32297.56 12097.51 15593.92 7197.43 4598.52 3592.75 2999.32 11797.32 3099.50 3499.51 37
test111193.19 15792.82 15294.30 21997.58 13984.56 31798.21 4489.02 39193.53 8694.58 13398.21 6772.69 32099.05 15493.06 14398.48 10899.28 65
test_cas_vis1_n_192094.48 11094.55 10394.28 22096.78 17886.45 28597.63 11397.64 13893.32 9697.68 3898.36 5073.75 31799.08 14696.73 3999.05 8497.31 210
Anonymous2023121190.63 27089.42 28594.27 22198.24 8789.19 21498.05 5697.89 10779.95 37488.25 29694.96 25472.56 32298.13 23989.70 20685.14 32695.49 272
LTVRE_ROB88.41 1390.99 25689.92 26894.19 22296.18 21989.55 19396.31 23697.09 20287.88 27485.67 33595.91 21178.79 26698.57 20381.50 32989.98 27894.44 336
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
pmmvs490.93 26089.85 27094.17 22393.34 34790.79 15494.60 30996.02 27384.62 33687.45 31095.15 24881.88 21297.45 32387.70 24787.87 29894.27 343
tt080591.09 25190.07 26394.16 22495.61 24388.31 23497.56 12096.51 25389.56 21889.17 27495.64 22967.08 36298.38 21991.07 18288.44 29495.80 258
TR-MVS91.48 23290.59 23994.16 22496.40 20987.33 25995.67 27195.34 30787.68 28491.46 20895.52 23676.77 28898.35 22182.85 31993.61 22496.79 226
LPG-MVS_test92.94 17292.56 16594.10 22696.16 22188.26 23797.65 10797.46 16391.29 16290.12 24197.16 13979.05 25898.73 18592.25 15391.89 24795.31 288
LGP-MVS_train94.10 22696.16 22188.26 23797.46 16391.29 16290.12 24197.16 13979.05 25898.73 18592.25 15391.89 24795.31 288
mvs_anonymous93.82 13593.74 11794.06 22896.44 20785.41 30295.81 26497.05 20889.85 21190.09 24496.36 18987.44 11997.75 29793.97 12296.69 16199.02 86
ACMP89.59 1092.62 18592.14 17994.05 22996.40 20988.20 24097.36 14397.25 19291.52 15488.30 29396.64 16878.46 27098.72 18891.86 16491.48 25495.23 295
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
test250691.60 22390.78 22994.04 23097.66 12783.81 32598.27 3475.53 40893.43 9195.23 12298.21 6767.21 35899.07 15093.01 14798.49 10699.25 68
jajsoiax92.42 19091.89 18994.03 23193.33 34888.50 23197.73 9797.53 15392.00 14488.85 28096.50 18275.62 30198.11 24493.88 12791.56 25395.48 273
test_djsdf93.07 16592.76 15494.00 23293.49 34288.70 22498.22 4297.57 14791.42 15990.08 24595.55 23482.85 19097.92 28194.07 12091.58 25295.40 281
AllTest90.23 28188.98 29393.98 23397.94 11186.64 27896.51 21995.54 29685.38 32385.49 33796.77 15970.28 33499.15 13580.02 34292.87 22896.15 243
TestCases93.98 23397.94 11186.64 27895.54 29685.38 32385.49 33796.77 15970.28 33499.15 13580.02 34292.87 22896.15 243
anonymousdsp92.16 20491.55 19993.97 23592.58 36189.55 19397.51 12597.42 17689.42 22488.40 29094.84 26180.66 22897.88 28691.87 16391.28 25994.48 333
pm-mvs190.72 26789.65 28093.96 23694.29 32089.63 18897.79 9296.82 23289.07 23386.12 33395.48 23878.61 26897.78 29486.97 26781.67 35994.46 334
WR-MVS_H92.00 20991.35 20593.95 23795.09 28189.47 19798.04 5798.68 1391.46 15788.34 29194.68 26985.86 14197.56 31285.77 28684.24 34194.82 318
CR-MVSNet90.82 26389.77 27493.95 23794.45 31387.19 26690.23 38295.68 29086.89 30092.40 17992.36 34880.91 22497.05 33981.09 33793.95 21797.60 197
mvs_tets92.31 19691.76 19193.94 23993.41 34588.29 23597.63 11397.53 15392.04 14288.76 28396.45 18474.62 30998.09 24893.91 12591.48 25495.45 277
baseline291.63 22190.86 22493.94 23994.33 31786.32 28795.92 25891.64 37989.37 22586.94 32494.69 26881.62 21698.69 19088.64 23394.57 20296.81 225
RRT_MVS93.10 16292.83 15193.93 24194.76 29888.04 24598.47 2296.55 25193.44 9090.01 24797.04 14680.64 22997.93 28094.33 11790.21 27795.83 255
BH-untuned92.94 17292.62 16393.92 24297.22 14686.16 29396.40 22896.25 26590.06 20689.79 25396.17 19883.19 17898.35 22187.19 26297.27 14797.24 213
ACMH87.59 1690.53 27289.42 28593.87 24396.21 21687.92 24997.24 15496.94 21888.45 25983.91 35596.27 19371.92 32398.62 19884.43 30289.43 28495.05 303
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
SCA91.84 21491.18 21693.83 24495.59 24484.95 31394.72 30695.58 29590.82 17992.25 18793.69 31675.80 29898.10 24586.20 27695.98 17198.45 139
CP-MVSNet91.89 21391.24 21293.82 24595.05 28288.57 22797.82 8898.19 5591.70 15088.21 29795.76 22281.96 20997.52 31887.86 24184.65 33395.37 284
v2v48291.59 22490.85 22693.80 24693.87 33088.17 24296.94 18096.88 22789.54 21989.53 26294.90 25881.70 21598.02 26189.25 21985.04 33095.20 296
COLMAP_ROBcopyleft87.81 1590.40 27689.28 28893.79 24797.95 11087.13 26996.92 18195.89 27982.83 35586.88 32797.18 13873.77 31699.29 12178.44 35293.62 22394.95 305
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
mvsany_test193.93 13093.98 11393.78 24894.94 28886.80 27494.62 30892.55 37288.77 25096.85 6098.49 3888.98 8898.08 24995.03 9795.62 18196.46 235
V4291.58 22690.87 22393.73 24994.05 32588.50 23197.32 14896.97 21588.80 24989.71 25494.33 28882.54 19798.05 25689.01 22585.07 32894.64 331
PVSNet86.66 1892.24 20191.74 19493.73 24997.77 12183.69 32992.88 36296.72 23687.91 27393.00 16994.86 26078.51 26999.05 15486.53 27097.45 14098.47 137
MIMVSNet88.50 30986.76 31993.72 25194.84 29587.77 25591.39 37294.05 35086.41 30887.99 30292.59 34163.27 37495.82 36277.44 35592.84 23097.57 199
Patchmatch-test89.42 29887.99 30593.70 25295.27 26885.11 30988.98 38894.37 34481.11 36687.10 31993.69 31682.28 20397.50 31974.37 37294.76 19798.48 136
PS-CasMVS91.55 22890.84 22793.69 25394.96 28588.28 23697.84 8598.24 4791.46 15788.04 30195.80 21779.67 24897.48 32087.02 26684.54 33895.31 288
v114491.37 23890.60 23893.68 25493.89 32988.23 23996.84 18897.03 21288.37 26189.69 25694.39 28482.04 20797.98 26587.80 24385.37 32194.84 315
GG-mvs-BLEND93.62 25593.69 33589.20 21292.39 36983.33 40487.98 30389.84 37271.00 33096.87 34782.08 32795.40 18594.80 321
tfpnnormal89.70 29688.40 30193.60 25695.15 27790.10 17497.56 12098.16 6187.28 29486.16 33294.63 27277.57 28398.05 25674.48 37084.59 33692.65 364
PatchmatchNetpermissive91.91 21191.35 20593.59 25795.38 25684.11 32293.15 35795.39 30189.54 21992.10 19293.68 31882.82 19198.13 23984.81 29795.32 18698.52 129
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
v119291.07 25290.23 25493.58 25893.70 33487.82 25496.73 19697.07 20587.77 28089.58 25994.32 29080.90 22697.97 26886.52 27185.48 31994.95 305
v891.29 24490.53 24293.57 25994.15 32188.12 24497.34 14597.06 20788.99 23788.32 29294.26 29583.08 18298.01 26287.62 25383.92 34694.57 332
ADS-MVSNet89.89 29088.68 29893.53 26095.86 23384.89 31490.93 37795.07 31983.23 35391.28 21891.81 35779.01 26297.85 28779.52 34491.39 25797.84 182
v1091.04 25490.23 25493.49 26194.12 32288.16 24397.32 14897.08 20388.26 26488.29 29494.22 29882.17 20697.97 26886.45 27384.12 34294.33 339
EI-MVSNet93.03 16792.88 14993.48 26295.77 23886.98 27196.44 22097.12 19890.66 18991.30 21497.64 11486.56 12998.05 25689.91 20090.55 27295.41 278
PEN-MVS91.20 24790.44 24393.48 26294.49 31187.91 25197.76 9398.18 5791.29 16287.78 30595.74 22380.35 23597.33 33185.46 29082.96 35495.19 299
v7n90.76 26489.86 26993.45 26493.54 33987.60 25897.70 10397.37 18188.85 24387.65 30794.08 30481.08 22198.10 24584.68 29983.79 34894.66 330
v14419291.06 25390.28 25093.39 26593.66 33787.23 26596.83 18997.07 20587.43 28989.69 25694.28 29281.48 21798.00 26387.18 26384.92 33294.93 309
EPMVS90.70 26889.81 27293.37 26694.73 30284.21 32093.67 34688.02 39489.50 22192.38 18193.49 32577.82 28297.78 29486.03 28292.68 23498.11 169
IterMVS-LS92.29 19891.94 18693.34 26796.25 21586.97 27296.57 21897.05 20890.67 18789.50 26494.80 26486.59 12897.64 30589.91 20086.11 31495.40 281
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
BH-w/o92.14 20691.75 19293.31 26896.99 16785.73 29795.67 27195.69 28888.73 25189.26 27294.82 26382.97 18798.07 25385.26 29396.32 16896.13 245
v192192090.85 26290.03 26593.29 26993.55 33886.96 27396.74 19597.04 21087.36 29189.52 26394.34 28780.23 23897.97 26886.27 27485.21 32594.94 307
ACMH+87.92 1490.20 28389.18 29093.25 27096.48 20486.45 28596.99 17696.68 24188.83 24584.79 34496.22 19570.16 33698.53 20584.42 30388.04 29694.77 326
v124090.70 26889.85 27093.23 27193.51 34186.80 27496.61 21297.02 21387.16 29689.58 25994.31 29179.55 25197.98 26585.52 28985.44 32094.90 312
PatchT88.87 30587.42 30993.22 27294.08 32485.10 31089.51 38694.64 33781.92 36192.36 18288.15 38380.05 24197.01 34272.43 37993.65 22297.54 200
Fast-Effi-MVS+-dtu92.29 19891.99 18493.21 27395.27 26885.52 30097.03 17096.63 24792.09 14089.11 27695.14 24980.33 23698.08 24987.54 25594.74 19996.03 249
miper_enhance_ethall91.54 22991.01 22093.15 27495.35 26087.07 27093.97 33396.90 22486.79 30289.17 27493.43 33186.55 13097.64 30589.97 19986.93 30694.74 327
cl2291.21 24690.56 24193.14 27596.09 22886.80 27494.41 31896.58 25087.80 27888.58 28793.99 30780.85 22797.62 30889.87 20286.93 30694.99 304
XVG-ACMP-BASELINE90.93 26090.21 25793.09 27694.31 31985.89 29595.33 28897.26 19091.06 17589.38 26695.44 23968.61 34898.60 19989.46 21291.05 26494.79 323
TransMVSNet (Re)88.94 30287.56 30893.08 27794.35 31688.45 23397.73 9795.23 31287.47 28884.26 34895.29 24279.86 24597.33 33179.44 34874.44 38293.45 354
DTE-MVSNet90.56 27189.75 27693.01 27893.95 32687.25 26397.64 11197.65 13690.74 18287.12 31795.68 22779.97 24397.00 34383.33 31381.66 36094.78 325
EPNet_dtu91.71 21791.28 21092.99 27993.76 33383.71 32896.69 20295.28 30893.15 10487.02 32195.95 20983.37 17697.38 32979.46 34796.84 15597.88 180
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
miper_ehance_all_eth91.59 22491.13 21792.97 28095.55 24786.57 28294.47 31496.88 22787.77 28088.88 27994.01 30586.22 13597.54 31489.49 21186.93 30694.79 323
Baseline_NR-MVSNet91.20 24790.62 23792.95 28193.83 33188.03 24697.01 17595.12 31788.42 26089.70 25595.13 25083.47 17397.44 32489.66 20883.24 35293.37 355
test_vis1_n_192094.17 11694.58 9992.91 28297.42 14382.02 34397.83 8697.85 11694.68 4698.10 2998.49 3870.15 33799.32 11797.91 1598.82 9397.40 205
cl____90.96 25990.32 24792.89 28395.37 25886.21 29194.46 31696.64 24487.82 27688.15 29994.18 29982.98 18697.54 31487.70 24785.59 31794.92 311
DIV-MVS_self_test90.97 25890.33 24692.88 28495.36 25986.19 29294.46 31696.63 24787.82 27688.18 29894.23 29682.99 18597.53 31687.72 24485.57 31894.93 309
c3_l91.38 23690.89 22292.88 28495.58 24586.30 28894.68 30796.84 23188.17 26688.83 28294.23 29685.65 14497.47 32189.36 21484.63 33494.89 313
pmmvs589.86 29388.87 29692.82 28692.86 35486.23 29096.26 23995.39 30184.24 34087.12 31794.51 27774.27 31197.36 33087.61 25487.57 30094.86 314
v14890.99 25690.38 24592.81 28793.83 33185.80 29696.78 19396.68 24189.45 22388.75 28493.93 30982.96 18897.82 29187.83 24283.25 35194.80 321
Patchmtry88.64 30887.25 31192.78 28894.09 32386.64 27889.82 38595.68 29080.81 37087.63 30892.36 34880.91 22497.03 34078.86 35085.12 32794.67 329
test_vis1_n92.37 19392.26 17792.72 28994.75 30082.64 33598.02 5896.80 23391.18 16997.77 3797.93 8858.02 38398.29 22697.63 1998.21 11897.23 214
MVP-Stereo90.74 26690.08 26092.71 29093.19 35088.20 24095.86 26196.27 26386.07 31484.86 34394.76 26577.84 28197.75 29783.88 31198.01 12492.17 373
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
pmmvs687.81 31686.19 32392.69 29191.32 37186.30 28897.34 14596.41 25880.59 37384.05 35494.37 28667.37 35797.67 30284.75 29879.51 36994.09 346
Effi-MVS+-dtu93.08 16493.21 14092.68 29296.02 23083.25 33297.14 16696.72 23693.85 7491.20 22293.44 32883.08 18298.30 22591.69 17095.73 17896.50 232
CostFormer91.18 25090.70 23592.62 29394.84 29581.76 34594.09 33194.43 34184.15 34192.72 17693.77 31479.43 25298.20 23290.70 18892.18 24297.90 178
LCM-MVSNet-Re92.50 18692.52 16992.44 29496.82 17681.89 34496.92 18193.71 36092.41 13084.30 34794.60 27385.08 15097.03 34091.51 17297.36 14298.40 145
ITE_SJBPF92.43 29595.34 26185.37 30595.92 27591.47 15687.75 30696.39 18871.00 33097.96 27282.36 32589.86 28093.97 347
dmvs_re90.21 28289.50 28392.35 29695.47 25385.15 30895.70 27094.37 34490.94 17888.42 28993.57 32374.63 30895.67 36582.80 32089.57 28396.22 238
D2MVS91.30 24390.95 22192.35 29694.71 30385.52 30096.18 24698.21 5188.89 24286.60 32893.82 31279.92 24497.95 27689.29 21790.95 26793.56 351
eth_miper_zixun_eth91.02 25590.59 23992.34 29895.33 26484.35 31894.10 33096.90 22488.56 25588.84 28194.33 28884.08 16597.60 31088.77 23184.37 34095.06 302
test_fmvs1_n92.73 18392.88 14992.29 29996.08 22981.05 35197.98 6397.08 20390.72 18496.79 6298.18 7063.07 37598.45 21197.62 2098.42 11197.36 206
USDC88.94 30287.83 30792.27 30094.66 30484.96 31293.86 33995.90 27787.34 29283.40 35795.56 23367.43 35698.19 23482.64 32489.67 28293.66 350
test_fmvs193.21 15593.53 12592.25 30196.55 19681.20 35097.40 13996.96 21690.68 18696.80 6198.04 7969.25 34498.40 21497.58 2198.50 10597.16 215
tpm289.96 28789.21 28992.23 30294.91 29181.25 34893.78 34194.42 34280.62 37291.56 20593.44 32876.44 29297.94 27785.60 28892.08 24697.49 201
test-LLR91.42 23491.19 21592.12 30394.59 30780.66 35494.29 32592.98 36591.11 17290.76 22692.37 34579.02 26098.07 25388.81 22996.74 15897.63 192
test-mter90.19 28489.54 28292.12 30394.59 30780.66 35494.29 32592.98 36587.68 28490.76 22692.37 34567.67 35498.07 25388.81 22996.74 15897.63 192
ADS-MVSNet289.45 29788.59 29992.03 30595.86 23382.26 34190.93 37794.32 34783.23 35391.28 21891.81 35779.01 26295.99 35779.52 34491.39 25797.84 182
TESTMET0.1,190.06 28689.42 28591.97 30694.41 31580.62 35694.29 32591.97 37787.28 29490.44 23092.47 34468.79 34697.67 30288.50 23596.60 16397.61 196
JIA-IIPM88.26 31287.04 31691.91 30793.52 34081.42 34789.38 38794.38 34380.84 36990.93 22480.74 39479.22 25597.92 28182.76 32191.62 25196.38 236
tpmvs89.83 29489.15 29191.89 30894.92 28980.30 36193.11 35895.46 30086.28 31088.08 30092.65 33880.44 23398.52 20681.47 33089.92 27996.84 224
TDRefinement86.53 32684.76 33791.85 30982.23 39984.25 31996.38 23095.35 30484.97 33284.09 35294.94 25565.76 36998.34 22484.60 30174.52 38192.97 358
miper_lstm_enhance90.50 27590.06 26491.83 31095.33 26483.74 32693.86 33996.70 24087.56 28787.79 30493.81 31383.45 17596.92 34587.39 25784.62 33594.82 318
IterMVS-SCA-FT90.31 27789.81 27291.82 31195.52 24884.20 32194.30 32496.15 27090.61 19387.39 31394.27 29375.80 29896.44 35287.34 25886.88 31094.82 318
tpm cat188.36 31087.21 31391.81 31295.13 27980.55 35792.58 36695.70 28674.97 38787.45 31091.96 35578.01 28098.17 23680.39 34088.74 29196.72 228
tpmrst91.44 23391.32 20791.79 31395.15 27779.20 37393.42 35295.37 30388.55 25693.49 15893.67 31982.49 19998.27 22790.41 19189.34 28597.90 178
MS-PatchMatch90.27 27989.77 27491.78 31494.33 31784.72 31695.55 27896.73 23586.17 31386.36 33095.28 24471.28 32897.80 29284.09 30698.14 12292.81 361
FMVSNet587.29 32085.79 32691.78 31494.80 29787.28 26195.49 28295.28 30884.09 34283.85 35691.82 35662.95 37694.17 37978.48 35185.34 32393.91 348
EG-PatchMatch MVS87.02 32485.44 32891.76 31692.67 35885.00 31196.08 25096.45 25683.41 35279.52 37593.49 32557.10 38597.72 29979.34 34990.87 26992.56 365
tpm90.25 28089.74 27791.76 31693.92 32779.73 36793.98 33293.54 36188.28 26391.99 19493.25 33277.51 28497.44 32487.30 26087.94 29798.12 166
IterMVS90.15 28589.67 27891.61 31895.48 25083.72 32794.33 32296.12 27189.99 20787.31 31694.15 30175.78 30096.27 35586.97 26786.89 30994.83 316
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
ppachtmachnet_test88.35 31187.29 31091.53 31992.45 36483.57 33093.75 34295.97 27484.28 33985.32 34094.18 29979.00 26496.93 34475.71 36584.99 33194.10 344
pmmvs-eth3d86.22 33184.45 33891.53 31988.34 38887.25 26394.47 31495.01 32083.47 35179.51 37689.61 37369.75 34195.71 36383.13 31576.73 37891.64 374
test_040286.46 32784.79 33691.45 32195.02 28385.55 29996.29 23894.89 32780.90 36782.21 36393.97 30868.21 35397.29 33362.98 39288.68 29291.51 377
OurMVSNet-221017-090.51 27490.19 25891.44 32293.41 34581.25 34896.98 17796.28 26291.68 15186.55 32996.30 19174.20 31297.98 26588.96 22787.40 30495.09 300
test0.0.03 189.37 29988.70 29791.41 32392.47 36385.63 29895.22 29692.70 37091.11 17286.91 32693.65 32079.02 26093.19 38878.00 35489.18 28695.41 278
KD-MVS_2432*160084.81 34282.64 34691.31 32491.07 37385.34 30691.22 37495.75 28485.56 32183.09 35990.21 36867.21 35895.89 35877.18 35962.48 39892.69 362
miper_refine_blended84.81 34282.64 34691.31 32491.07 37385.34 30691.22 37495.75 28485.56 32183.09 35990.21 36867.21 35895.89 35877.18 35962.48 39892.69 362
UWE-MVS89.91 28889.48 28491.21 32695.88 23278.23 37894.91 30390.26 38789.11 23292.35 18494.52 27668.76 34797.96 27283.95 30995.59 18297.42 204
TinyColmap86.82 32585.35 33191.21 32694.91 29182.99 33493.94 33594.02 35283.58 34981.56 36594.68 26962.34 37898.13 23975.78 36487.35 30592.52 367
our_test_388.78 30687.98 30691.20 32892.45 36482.53 33793.61 34995.69 28885.77 31884.88 34293.71 31579.99 24296.78 35079.47 34686.24 31194.28 342
MDA-MVSNet-bldmvs85.00 34082.95 34591.17 32993.13 35283.33 33194.56 31195.00 32184.57 33765.13 39592.65 33870.45 33395.85 36073.57 37677.49 37494.33 339
SixPastTwentyTwo89.15 30088.54 30090.98 33093.49 34280.28 36296.70 20094.70 33390.78 18084.15 35095.57 23271.78 32597.71 30084.63 30085.07 32894.94 307
PVSNet_082.17 1985.46 33983.64 34290.92 33195.27 26879.49 37090.55 38095.60 29383.76 34783.00 36189.95 37071.09 32997.97 26882.75 32260.79 40095.31 288
OpenMVS_ROBcopyleft81.14 2084.42 34482.28 35090.83 33290.06 37884.05 32495.73 26994.04 35173.89 38980.17 37491.53 36059.15 38197.64 30566.92 39089.05 28790.80 383
WB-MVSnew89.88 29189.56 28190.82 33394.57 31083.06 33395.65 27492.85 36787.86 27590.83 22594.10 30279.66 24996.88 34676.34 36294.19 20792.54 366
Patchmatch-RL test87.38 31986.24 32290.81 33488.74 38778.40 37788.12 39293.17 36487.11 29782.17 36489.29 37581.95 21095.60 36788.64 23377.02 37598.41 144
dp88.90 30488.26 30490.81 33494.58 30976.62 38092.85 36394.93 32585.12 32990.07 24693.07 33375.81 29798.12 24380.53 33987.42 30397.71 189
MDA-MVSNet_test_wron85.87 33684.23 34090.80 33692.38 36682.57 33693.17 35595.15 31582.15 35967.65 39192.33 35178.20 27395.51 36977.33 35679.74 36694.31 341
YYNet185.87 33684.23 34090.78 33792.38 36682.46 33993.17 35595.14 31682.12 36067.69 39092.36 34878.16 27695.50 37077.31 35779.73 36794.39 337
UnsupCasMVSNet_eth85.99 33484.45 33890.62 33889.97 37982.40 34093.62 34897.37 18189.86 20978.59 37992.37 34565.25 37195.35 37282.27 32670.75 38894.10 344
MIMVSNet184.93 34183.05 34390.56 33989.56 38284.84 31595.40 28595.35 30483.91 34380.38 37192.21 35257.23 38493.34 38770.69 38682.75 35793.50 352
lessismore_v090.45 34091.96 36979.09 37587.19 39780.32 37294.39 28466.31 36597.55 31384.00 30876.84 37694.70 328
RPSCF90.75 26590.86 22490.42 34196.84 17276.29 38295.61 27696.34 26083.89 34491.38 20997.87 9376.45 29198.78 17887.16 26492.23 23996.20 239
K. test v387.64 31886.75 32090.32 34293.02 35379.48 37196.61 21292.08 37690.66 18980.25 37394.09 30367.21 35896.65 35185.96 28480.83 36394.83 316
testgi87.97 31387.21 31390.24 34392.86 35480.76 35296.67 20594.97 32391.74 14985.52 33695.83 21562.66 37794.47 37776.25 36388.36 29595.48 273
UnsupCasMVSNet_bld82.13 35179.46 35690.14 34488.00 38982.47 33890.89 37996.62 24978.94 37975.61 38384.40 39256.63 38696.31 35477.30 35866.77 39591.63 375
testing387.67 31786.88 31890.05 34596.14 22480.71 35397.10 16892.85 36790.15 20487.54 30994.55 27555.70 38894.10 38073.77 37594.10 21195.35 285
LF4IMVS87.94 31487.25 31189.98 34692.38 36680.05 36594.38 31995.25 31187.59 28684.34 34694.74 26764.31 37297.66 30484.83 29687.45 30192.23 370
Anonymous2023120687.09 32386.14 32489.93 34791.22 37280.35 35996.11 24895.35 30483.57 35084.16 34993.02 33473.54 31895.61 36672.16 38086.14 31393.84 349
CL-MVSNet_self_test86.31 33085.15 33289.80 34888.83 38681.74 34693.93 33696.22 26686.67 30385.03 34190.80 36478.09 27794.50 37574.92 36971.86 38793.15 357
CVMVSNet91.23 24591.75 19289.67 34995.77 23874.69 38496.44 22094.88 32885.81 31792.18 18897.64 11479.07 25795.58 36888.06 23895.86 17598.74 117
myMVS_eth3d87.18 32186.38 32189.58 35095.16 27579.53 36895.00 30093.93 35688.55 25686.96 32291.99 35356.23 38794.00 38175.47 36894.11 20995.20 296
test_vis1_rt86.16 33285.06 33389.46 35193.47 34480.46 35896.41 22486.61 39985.22 32679.15 37788.64 37852.41 39197.06 33893.08 14290.57 27190.87 382
Anonymous2024052186.42 32885.44 32889.34 35290.33 37679.79 36696.73 19695.92 27583.71 34883.25 35891.36 36163.92 37396.01 35678.39 35385.36 32292.22 371
test_fmvs289.77 29589.93 26789.31 35393.68 33676.37 38197.64 11195.90 27789.84 21291.49 20796.26 19458.77 38297.10 33794.65 11191.13 26294.46 334
KD-MVS_self_test85.95 33584.95 33488.96 35489.55 38379.11 37495.13 29896.42 25785.91 31684.07 35390.48 36570.03 33894.82 37480.04 34172.94 38592.94 359
test20.0386.14 33385.40 33088.35 35590.12 37780.06 36495.90 26095.20 31388.59 25281.29 36693.62 32171.43 32792.65 38971.26 38481.17 36292.34 369
PM-MVS83.48 34681.86 35288.31 35687.83 39077.59 37993.43 35191.75 37886.91 29980.63 36989.91 37144.42 39595.84 36185.17 29576.73 37891.50 378
EU-MVSNet88.72 30788.90 29588.20 35793.15 35174.21 38596.63 21194.22 34885.18 32787.32 31595.97 20776.16 29594.98 37385.27 29286.17 31295.41 278
new_pmnet82.89 34981.12 35488.18 35889.63 38180.18 36391.77 37192.57 37176.79 38675.56 38588.23 38261.22 38094.48 37671.43 38282.92 35589.87 386
CMPMVSbinary62.92 2185.62 33884.92 33587.74 35989.14 38473.12 38994.17 32896.80 23373.98 38873.65 38794.93 25666.36 36397.61 30983.95 30991.28 25992.48 368
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
Syy-MVS87.13 32287.02 31787.47 36095.16 27573.21 38895.00 30093.93 35688.55 25686.96 32291.99 35375.90 29694.00 38161.59 39494.11 20995.20 296
pmmvs379.97 35477.50 35987.39 36182.80 39879.38 37292.70 36590.75 38670.69 39178.66 37887.47 38851.34 39293.40 38673.39 37769.65 39089.38 387
new-patchmatchnet83.18 34881.87 35187.11 36286.88 39175.99 38393.70 34395.18 31485.02 33177.30 38288.40 38065.99 36793.88 38474.19 37470.18 38991.47 379
mvsany_test383.59 34582.44 34987.03 36383.80 39573.82 38693.70 34390.92 38586.42 30782.51 36290.26 36746.76 39495.71 36390.82 18576.76 37791.57 376
DSMNet-mixed86.34 32986.12 32587.00 36489.88 38070.43 39094.93 30290.08 38877.97 38385.42 33992.78 33774.44 31093.96 38374.43 37195.14 18896.62 229
ambc86.56 36583.60 39670.00 39285.69 39494.97 32380.60 37088.45 37937.42 39896.84 34882.69 32375.44 38092.86 360
MVS-HIRNet82.47 35081.21 35386.26 36695.38 25669.21 39388.96 38989.49 38966.28 39380.79 36874.08 39868.48 35197.39 32871.93 38195.47 18392.18 372
EGC-MVSNET68.77 36563.01 37086.07 36792.49 36282.24 34293.96 33490.96 3840.71 4102.62 41190.89 36353.66 38993.46 38557.25 39784.55 33782.51 393
APD_test179.31 35577.70 35884.14 36889.11 38569.07 39492.36 37091.50 38069.07 39273.87 38692.63 34039.93 39794.32 37870.54 38780.25 36589.02 388
test_fmvs383.21 34783.02 34483.78 36986.77 39268.34 39596.76 19494.91 32686.49 30684.14 35189.48 37436.04 39991.73 39191.86 16480.77 36491.26 381
test_f80.57 35379.62 35583.41 37083.38 39767.80 39793.57 35093.72 35980.80 37177.91 38187.63 38633.40 40092.08 39087.14 26579.04 37290.34 385
LCM-MVSNet72.55 36069.39 36482.03 37170.81 40965.42 40090.12 38494.36 34655.02 39965.88 39381.72 39324.16 40789.96 39274.32 37368.10 39390.71 384
PMMVS270.19 36266.92 36580.01 37276.35 40365.67 39986.22 39387.58 39664.83 39562.38 39680.29 39526.78 40588.49 39963.79 39154.07 40185.88 389
test_vis3_rt72.73 35970.55 36279.27 37380.02 40068.13 39693.92 33774.30 41076.90 38558.99 39973.58 39920.29 40895.37 37184.16 30472.80 38674.31 398
N_pmnet78.73 35678.71 35778.79 37492.80 35646.50 41194.14 32943.71 41378.61 38080.83 36791.66 35974.94 30696.36 35367.24 38984.45 33993.50 352
dmvs_testset81.38 35282.60 34877.73 37591.74 37051.49 40893.03 36084.21 40389.07 23378.28 38091.25 36276.97 28788.53 39856.57 39882.24 35893.16 356
WB-MVS76.77 35776.63 36077.18 37685.32 39356.82 40694.53 31289.39 39082.66 35771.35 38889.18 37675.03 30588.88 39635.42 40466.79 39485.84 390
ANet_high63.94 36859.58 37177.02 37761.24 41166.06 39885.66 39587.93 39578.53 38142.94 40371.04 40025.42 40680.71 40352.60 40030.83 40484.28 392
testf169.31 36366.76 36676.94 37878.61 40161.93 40288.27 39086.11 40055.62 39759.69 39785.31 39020.19 40989.32 39357.62 39569.44 39179.58 395
APD_test269.31 36366.76 36676.94 37878.61 40161.93 40288.27 39086.11 40055.62 39759.69 39785.31 39020.19 40989.32 39357.62 39569.44 39179.58 395
SSC-MVS76.05 35875.83 36176.72 38084.77 39456.22 40794.32 32388.96 39281.82 36370.52 38988.91 37774.79 30788.71 39733.69 40564.71 39685.23 391
FPMVS71.27 36169.85 36375.50 38174.64 40459.03 40491.30 37391.50 38058.80 39657.92 40088.28 38129.98 40385.53 40153.43 39982.84 35681.95 394
Gipumacopyleft67.86 36665.41 36875.18 38292.66 35973.45 38766.50 40194.52 33953.33 40057.80 40166.07 40130.81 40189.20 39548.15 40178.88 37362.90 401
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
DeepMVS_CXcopyleft74.68 38390.84 37564.34 40181.61 40665.34 39467.47 39288.01 38548.60 39380.13 40462.33 39373.68 38479.58 395
test_method66.11 36764.89 36969.79 38472.62 40735.23 41565.19 40292.83 36920.35 40565.20 39488.08 38443.14 39682.70 40273.12 37863.46 39791.45 380
PMVScopyleft53.92 2258.58 36955.40 37268.12 38551.00 41248.64 40978.86 39887.10 39846.77 40135.84 40774.28 3978.76 41186.34 40042.07 40273.91 38369.38 399
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive50.73 2353.25 37148.81 37666.58 38665.34 41057.50 40572.49 40070.94 41140.15 40439.28 40663.51 4026.89 41373.48 40738.29 40342.38 40268.76 400
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN53.28 37052.56 37455.43 38774.43 40547.13 41083.63 39776.30 40742.23 40242.59 40462.22 40328.57 40474.40 40531.53 40631.51 40344.78 402
EMVS52.08 37251.31 37554.39 38872.62 40745.39 41283.84 39675.51 40941.13 40340.77 40559.65 40430.08 40273.60 40628.31 40729.90 40544.18 403
tmp_tt51.94 37353.82 37346.29 38933.73 41345.30 41378.32 39967.24 41218.02 40650.93 40287.05 38952.99 39053.11 40870.76 38525.29 40640.46 404
wuyk23d25.11 37424.57 37826.74 39073.98 40639.89 41457.88 4039.80 41412.27 40710.39 4086.97 4107.03 41236.44 40925.43 40817.39 4073.89 407
test12313.04 37715.66 3805.18 3914.51 4153.45 41692.50 3681.81 4162.50 4097.58 41020.15 4073.67 4142.18 4117.13 4101.07 4099.90 405
testmvs13.36 37616.33 3794.48 3925.04 4142.26 41793.18 3543.28 4152.70 4088.24 40921.66 4062.29 4152.19 4107.58 4092.96 4089.00 406
test_blank0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
uanet_test0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
DCPMVS0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
cdsmvs_eth3d_5k23.24 37530.99 3770.00 3930.00 4160.00 4180.00 40497.63 1400.00 4110.00 41296.88 15584.38 1590.00 4120.00 4110.00 4100.00 408
pcd_1.5k_mvsjas7.39 3799.85 3820.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 41188.65 950.00 4120.00 4110.00 4100.00 408
sosnet-low-res0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
sosnet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
uncertanet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
Regformer0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
ab-mvs-re8.06 37810.74 3810.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 41296.69 1650.00 4160.00 4120.00 4110.00 4100.00 408
uanet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
WAC-MVS79.53 36875.56 367
FOURS199.55 193.34 6699.29 198.35 2794.98 2998.49 23
PC_three_145290.77 18198.89 1498.28 6596.24 198.35 22195.76 7599.58 2299.59 22
test_one_060199.32 2295.20 2098.25 4595.13 2398.48 2498.87 1595.16 7
eth-test20.00 416
eth-test0.00 416
ZD-MVS99.05 3994.59 3198.08 7489.22 22997.03 5798.10 7392.52 3599.65 5894.58 11499.31 61
RE-MVS-def96.72 4399.02 4292.34 9197.98 6398.03 9193.52 8797.43 4598.51 3690.71 7096.05 6399.26 6599.43 51
IU-MVS99.42 795.39 1197.94 10490.40 20098.94 897.41 2999.66 1099.74 8
test_241102_TWO98.27 3995.13 2398.93 998.89 1394.99 1199.85 1897.52 2299.65 1299.74 8
test_241102_ONE99.42 795.30 1798.27 3995.09 2699.19 498.81 2195.54 599.65 58
9.1496.75 4198.93 4797.73 9798.23 5091.28 16597.88 3598.44 4493.00 2699.65 5895.76 7599.47 39
save fliter98.91 4994.28 3897.02 17298.02 9495.35 16
test_0728_THIRD94.78 4198.73 1898.87 1595.87 499.84 2397.45 2699.72 299.77 2
test072699.45 395.36 1398.31 2998.29 3494.92 3298.99 798.92 1095.08 8
GSMVS98.45 139
test_part299.28 2595.74 898.10 29
sam_mvs182.76 19298.45 139
sam_mvs81.94 211
MTGPAbinary98.08 74
test_post192.81 36416.58 40980.53 23197.68 30186.20 276
test_post17.58 40881.76 21398.08 249
patchmatchnet-post90.45 36682.65 19698.10 245
MTMP97.86 8182.03 405
gm-plane-assit93.22 34978.89 37684.82 33493.52 32498.64 19587.72 244
test9_res94.81 10699.38 5499.45 47
TEST998.70 5694.19 4296.41 22498.02 9488.17 26696.03 9897.56 12192.74 3099.59 74
test_898.67 5894.06 4996.37 23198.01 9788.58 25395.98 10297.55 12392.73 3199.58 77
agg_prior293.94 12499.38 5499.50 40
agg_prior98.67 5893.79 5498.00 9895.68 11299.57 84
test_prior493.66 5796.42 223
test_prior296.35 23292.80 12196.03 9897.59 11892.01 4395.01 10099.38 54
旧先验295.94 25781.66 36497.34 4898.82 17492.26 151
新几何295.79 266
旧先验198.38 7893.38 6397.75 12398.09 7592.30 4199.01 8799.16 73
无先验95.79 26697.87 11183.87 34699.65 5887.68 25098.89 107
原ACMM295.67 271
test22298.24 8792.21 9695.33 28897.60 14279.22 37895.25 12197.84 9888.80 9299.15 7698.72 118
testdata299.67 5685.96 284
segment_acmp92.89 27
testdata195.26 29593.10 107
plane_prior796.21 21689.98 180
plane_prior696.10 22790.00 17681.32 219
plane_prior597.51 15598.60 19993.02 14592.23 23995.86 251
plane_prior496.64 168
plane_prior390.00 17694.46 5591.34 211
plane_prior297.74 9594.85 34
plane_prior196.14 224
plane_prior89.99 17897.24 15494.06 6792.16 243
n20.00 417
nn0.00 417
door-mid91.06 383
test1197.88 109
door91.13 382
HQP5-MVS89.33 205
HQP-NCC95.86 23396.65 20693.55 8290.14 235
ACMP_Plane95.86 23396.65 20693.55 8290.14 235
BP-MVS92.13 157
HQP4-MVS90.14 23598.50 20795.78 260
HQP3-MVS97.39 17892.10 244
HQP2-MVS80.95 222
NP-MVS95.99 23189.81 18595.87 212
MDTV_nov1_ep13_2view70.35 39193.10 35983.88 34593.55 15582.47 20086.25 27598.38 147
MDTV_nov1_ep1390.76 23095.22 27280.33 36093.03 36095.28 30888.14 26892.84 17593.83 31081.34 21898.08 24982.86 31794.34 204
ACMMP++_ref90.30 276
ACMMP++91.02 265
Test By Simon88.73 94