| MSC_two_6792asdad | | | | | 98.86 1 | 98.67 58 | 96.94 1 | | 97.93 105 | | | | | 99.86 8 | 97.68 16 | 99.67 6 | 99.77 2 |
|
| No_MVS | | | | | 98.86 1 | 98.67 58 | 96.94 1 | | 97.93 105 | | | | | 99.86 8 | 97.68 16 | 99.67 6 | 99.77 2 |
|
| OPU-MVS | | | | | 98.55 3 | 98.82 52 | 96.86 3 | 98.25 37 | | | | 98.26 66 | 96.04 2 | 99.24 124 | 95.36 91 | 99.59 18 | 99.56 29 |
|
| test_0728_SECOND | | | | | 98.51 4 | 99.45 3 | 95.93 5 | 98.21 44 | 98.28 36 | | | | | 99.86 8 | 97.52 22 | 99.67 6 | 99.75 6 |
|
| DPE-MVS |  | | 97.86 4 | 97.65 8 | 98.47 5 | 99.17 32 | 95.78 7 | 97.21 160 | 98.35 27 | 95.16 22 | 98.71 20 | 98.80 22 | 95.05 10 | 99.89 3 | 96.70 41 | 99.73 1 | 99.73 10 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| HPM-MVS++ |  | | 97.34 17 | 96.97 27 | 98.47 5 | 99.08 36 | 96.16 4 | 97.55 123 | 97.97 101 | 95.59 11 | 96.61 72 | 97.89 90 | 92.57 34 | 99.84 23 | 95.95 68 | 99.51 32 | 99.40 54 |
|
| CNVR-MVS | | | 97.68 6 | 97.44 13 | 98.37 7 | 98.90 50 | 95.86 6 | 97.27 152 | 98.08 74 | 95.81 9 | 97.87 36 | 98.31 60 | 94.26 13 | 99.68 54 | 97.02 33 | 99.49 37 | 99.57 26 |
|
| SMA-MVS |  | | 97.35 16 | 97.03 24 | 98.30 8 | 99.06 38 | 95.42 10 | 97.94 73 | 98.18 57 | 90.57 196 | 98.85 15 | 98.94 9 | 93.33 23 | 99.83 26 | 96.72 40 | 99.68 4 | 99.63 17 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| DVP-MVS++ | | | 98.06 1 | 97.99 1 | 98.28 9 | 98.67 58 | 95.39 11 | 99.29 1 | 98.28 36 | 94.78 41 | 98.93 9 | 98.87 15 | 96.04 2 | 99.86 8 | 97.45 26 | 99.58 22 | 99.59 22 |
|
| SED-MVS | | | 98.05 2 | 97.99 1 | 98.24 10 | 99.42 7 | 95.30 17 | 98.25 37 | 98.27 39 | 95.13 23 | 99.19 4 | 98.89 13 | 95.54 5 | 99.85 18 | 97.52 22 | 99.66 10 | 99.56 29 |
|
| MM | | | 97.29 19 | 96.98 26 | 98.23 11 | 98.01 107 | 95.03 26 | 98.07 54 | 95.76 283 | 97.78 1 | 97.52 40 | 98.80 22 | 88.09 102 | 99.86 8 | 99.44 1 | 99.37 57 | 99.80 1 |
|
| ACMMP_NAP | | | 97.20 20 | 96.86 31 | 98.23 11 | 99.09 34 | 95.16 22 | 97.60 116 | 98.19 55 | 92.82 119 | 97.93 34 | 98.74 26 | 91.60 51 | 99.86 8 | 96.26 50 | 99.52 29 | 99.67 13 |
|
| DVP-MVS |  | | 97.91 3 | 97.81 4 | 98.22 13 | 99.45 3 | 95.36 13 | 98.21 44 | 97.85 116 | 94.92 32 | 98.73 18 | 98.87 15 | 95.08 8 | 99.84 23 | 97.52 22 | 99.67 6 | 99.48 44 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| MCST-MVS | | | 97.18 21 | 96.84 33 | 98.20 14 | 99.30 24 | 95.35 15 | 97.12 167 | 98.07 79 | 93.54 85 | 96.08 97 | 97.69 106 | 93.86 16 | 99.71 46 | 96.50 46 | 99.39 53 | 99.55 32 |
|
| SF-MVS | | | 97.39 15 | 97.13 16 | 98.17 15 | 99.02 42 | 95.28 19 | 98.23 41 | 98.27 39 | 92.37 131 | 98.27 27 | 98.65 29 | 93.33 23 | 99.72 45 | 96.49 47 | 99.52 29 | 99.51 37 |
|
| 3Dnovator+ | | 91.43 4 | 95.40 84 | 94.48 106 | 98.16 16 | 96.90 169 | 95.34 16 | 98.48 21 | 97.87 111 | 94.65 49 | 88.53 288 | 98.02 82 | 83.69 169 | 99.71 46 | 93.18 139 | 98.96 89 | 99.44 49 |
|
| NCCC | | | 97.30 18 | 97.03 24 | 98.11 17 | 98.77 53 | 95.06 25 | 97.34 145 | 98.04 89 | 95.96 6 | 97.09 55 | 97.88 92 | 93.18 25 | 99.71 46 | 95.84 73 | 99.17 74 | 99.56 29 |
|
| APDe-MVS |  | | 97.82 5 | 97.73 7 | 98.08 18 | 99.15 33 | 94.82 28 | 98.81 7 | 98.30 32 | 94.76 43 | 98.30 26 | 98.90 12 | 93.77 17 | 99.68 54 | 97.93 14 | 99.69 3 | 99.75 6 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| DPM-MVS | | | 95.69 77 | 94.92 90 | 98.01 19 | 98.08 104 | 95.71 9 | 95.27 293 | 97.62 141 | 90.43 199 | 95.55 116 | 97.07 144 | 91.72 46 | 99.50 99 | 89.62 209 | 98.94 90 | 98.82 113 |
|
| APD-MVS |  | | 96.95 32 | 96.60 47 | 98.01 19 | 99.03 41 | 94.93 27 | 97.72 100 | 98.10 72 | 91.50 155 | 98.01 31 | 98.32 59 | 92.33 38 | 99.58 77 | 94.85 103 | 99.51 32 | 99.53 36 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| MP-MVS-pluss | | | 96.70 47 | 96.27 61 | 97.98 21 | 99.23 30 | 94.71 29 | 96.96 179 | 98.06 82 | 90.67 187 | 95.55 116 | 98.78 25 | 91.07 63 | 99.86 8 | 96.58 44 | 99.55 25 | 99.38 58 |
| MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
| MTAPA | | | 97.08 25 | 96.78 39 | 97.97 22 | 99.37 16 | 94.42 35 | 97.24 154 | 98.08 74 | 95.07 27 | 96.11 95 | 98.59 30 | 90.88 68 | 99.90 2 | 96.18 61 | 99.50 34 | 99.58 25 |
|
| MVS_0304 | | | 97.04 28 | 96.73 42 | 97.96 23 | 97.60 134 | 94.36 36 | 98.01 59 | 94.09 349 | 97.33 2 | 96.29 86 | 98.79 24 | 89.73 82 | 99.86 8 | 99.36 2 | 99.42 47 | 99.67 13 |
|
| SteuartSystems-ACMMP | | | 97.62 9 | 97.53 11 | 97.87 24 | 98.39 77 | 94.25 40 | 98.43 24 | 98.27 39 | 95.34 17 | 98.11 28 | 98.56 31 | 94.53 12 | 99.71 46 | 96.57 45 | 99.62 15 | 99.65 15 |
| Skip Steuart: Steuart Systems R&D Blog. |
| ZNCC-MVS | | | 96.96 31 | 96.67 45 | 97.85 25 | 99.37 16 | 94.12 46 | 98.49 20 | 98.18 57 | 92.64 125 | 96.39 84 | 98.18 70 | 91.61 50 | 99.88 4 | 95.59 87 | 99.55 25 | 99.57 26 |
|
| HFP-MVS | | | 97.14 23 | 96.92 30 | 97.83 26 | 99.42 7 | 94.12 46 | 98.52 16 | 98.32 30 | 93.21 98 | 97.18 50 | 98.29 63 | 92.08 42 | 99.83 26 | 95.63 82 | 99.59 18 | 99.54 33 |
|
| GST-MVS | | | 96.85 39 | 96.52 51 | 97.82 27 | 99.36 18 | 94.14 45 | 98.29 31 | 98.13 65 | 92.72 122 | 96.70 66 | 98.06 77 | 91.35 57 | 99.86 8 | 94.83 104 | 99.28 62 | 99.47 46 |
|
| XVS | | | 97.18 21 | 96.96 28 | 97.81 28 | 99.38 14 | 94.03 50 | 98.59 12 | 98.20 52 | 94.85 34 | 96.59 74 | 98.29 63 | 91.70 48 | 99.80 30 | 95.66 77 | 99.40 51 | 99.62 18 |
|
| X-MVStestdata | | | 91.71 217 | 89.67 278 | 97.81 28 | 99.38 14 | 94.03 50 | 98.59 12 | 98.20 52 | 94.85 34 | 96.59 74 | 32.69 405 | 91.70 48 | 99.80 30 | 95.66 77 | 99.40 51 | 99.62 18 |
|
| ACMMPR | | | 97.07 26 | 96.84 33 | 97.79 30 | 99.44 6 | 93.88 52 | 98.52 16 | 98.31 31 | 93.21 98 | 97.15 51 | 98.33 57 | 91.35 57 | 99.86 8 | 95.63 82 | 99.59 18 | 99.62 18 |
|
| alignmvs | | | 95.87 75 | 95.23 84 | 97.78 31 | 97.56 140 | 95.19 21 | 97.86 81 | 97.17 195 | 94.39 59 | 96.47 80 | 96.40 187 | 85.89 140 | 99.20 127 | 96.21 57 | 95.11 191 | 98.95 96 |
|
| DeepC-MVS_fast | | 93.89 2 | 96.93 34 | 96.64 46 | 97.78 31 | 98.64 64 | 94.30 37 | 97.41 135 | 98.04 89 | 94.81 39 | 96.59 74 | 98.37 49 | 91.24 59 | 99.64 66 | 95.16 94 | 99.52 29 | 99.42 53 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| region2R | | | 97.07 26 | 96.84 33 | 97.77 33 | 99.46 2 | 93.79 54 | 98.52 16 | 98.24 47 | 93.19 101 | 97.14 52 | 98.34 54 | 91.59 52 | 99.87 7 | 95.46 89 | 99.59 18 | 99.64 16 |
|
| CDPH-MVS | | | 95.97 71 | 95.38 80 | 97.77 33 | 98.93 47 | 94.44 34 | 96.35 232 | 97.88 109 | 86.98 298 | 96.65 70 | 97.89 90 | 91.99 44 | 99.47 102 | 92.26 151 | 99.46 40 | 99.39 56 |
|
| sasdasda | | | 96.02 68 | 95.45 75 | 97.75 35 | 97.59 135 | 95.15 23 | 98.28 32 | 97.60 142 | 94.52 52 | 96.27 88 | 96.12 201 | 87.65 111 | 99.18 130 | 96.20 58 | 94.82 195 | 98.91 101 |
|
| canonicalmvs | | | 96.02 68 | 95.45 75 | 97.75 35 | 97.59 135 | 95.15 23 | 98.28 32 | 97.60 142 | 94.52 52 | 96.27 88 | 96.12 201 | 87.65 111 | 99.18 130 | 96.20 58 | 94.82 195 | 98.91 101 |
|
| MSP-MVS | | | 97.59 10 | 97.54 10 | 97.73 37 | 99.40 11 | 93.77 56 | 98.53 15 | 98.29 34 | 95.55 13 | 98.56 22 | 97.81 99 | 93.90 15 | 99.65 58 | 96.62 42 | 99.21 70 | 99.77 2 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| train_agg | | | 96.30 62 | 95.83 69 | 97.72 38 | 98.70 56 | 94.19 42 | 96.41 224 | 98.02 94 | 88.58 253 | 96.03 98 | 97.56 121 | 92.73 31 | 99.59 74 | 95.04 96 | 99.37 57 | 99.39 56 |
|
| MP-MVS |  | | 96.77 44 | 96.45 57 | 97.72 38 | 99.39 13 | 93.80 53 | 98.41 25 | 98.06 82 | 93.37 93 | 95.54 118 | 98.34 54 | 90.59 72 | 99.88 4 | 94.83 104 | 99.54 27 | 99.49 42 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| PHI-MVS | | | 96.77 44 | 96.46 56 | 97.71 40 | 98.40 75 | 94.07 48 | 98.21 44 | 98.45 22 | 89.86 209 | 97.11 54 | 98.01 83 | 92.52 35 | 99.69 52 | 96.03 66 | 99.53 28 | 99.36 60 |
|
| TSAR-MVS + MP. | | | 97.42 13 | 97.33 15 | 97.69 41 | 99.25 27 | 94.24 41 | 98.07 54 | 97.85 116 | 93.72 77 | 98.57 21 | 98.35 51 | 93.69 18 | 99.40 110 | 97.06 32 | 99.46 40 | 99.44 49 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| PGM-MVS | | | 96.81 42 | 96.53 50 | 97.65 42 | 99.35 20 | 93.53 60 | 97.65 107 | 98.98 2 | 92.22 133 | 97.14 52 | 98.44 44 | 91.17 62 | 99.85 18 | 94.35 116 | 99.46 40 | 99.57 26 |
|
| test12 | | | | | 97.65 42 | 98.46 70 | 94.26 39 | | 97.66 134 | | 95.52 119 | | 90.89 67 | 99.46 103 | | 99.25 67 | 99.22 70 |
|
| mPP-MVS | | | 96.86 37 | 96.60 47 | 97.64 44 | 99.40 11 | 93.44 61 | 98.50 19 | 98.09 73 | 93.27 97 | 95.95 103 | 98.33 57 | 91.04 64 | 99.88 4 | 95.20 93 | 99.57 24 | 99.60 21 |
|
| CP-MVS | | | 97.02 29 | 96.81 37 | 97.64 44 | 99.33 21 | 93.54 59 | 98.80 8 | 98.28 36 | 92.99 109 | 96.45 82 | 98.30 62 | 91.90 45 | 99.85 18 | 95.61 84 | 99.68 4 | 99.54 33 |
|
| MGCFI-Net | | | 95.94 73 | 95.40 79 | 97.56 46 | 97.59 135 | 94.62 30 | 98.21 44 | 97.57 147 | 94.41 57 | 96.17 92 | 96.16 199 | 87.54 115 | 99.17 132 | 96.19 60 | 94.73 200 | 98.91 101 |
|
| CANet | | | 96.39 59 | 96.02 64 | 97.50 47 | 97.62 131 | 93.38 63 | 97.02 172 | 97.96 102 | 95.42 15 | 94.86 128 | 97.81 99 | 87.38 121 | 99.82 28 | 96.88 36 | 99.20 72 | 99.29 63 |
|
| SR-MVS | | | 97.01 30 | 96.86 31 | 97.47 48 | 99.09 34 | 93.27 68 | 97.98 63 | 98.07 79 | 93.75 76 | 97.45 42 | 98.48 41 | 91.43 55 | 99.59 74 | 96.22 53 | 99.27 63 | 99.54 33 |
|
| 3Dnovator | | 91.36 5 | 95.19 93 | 94.44 108 | 97.44 49 | 96.56 194 | 93.36 65 | 98.65 11 | 98.36 24 | 94.12 65 | 89.25 273 | 98.06 77 | 82.20 205 | 99.77 37 | 93.41 136 | 99.32 60 | 99.18 72 |
|
| HPM-MVS |  | | 96.69 49 | 96.45 57 | 97.40 50 | 99.36 18 | 93.11 71 | 98.87 6 | 98.06 82 | 91.17 170 | 96.40 83 | 97.99 84 | 90.99 65 | 99.58 77 | 95.61 84 | 99.61 16 | 99.49 42 |
| Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
| DP-MVS Recon | | | 95.68 78 | 95.12 88 | 97.37 51 | 99.19 31 | 94.19 42 | 97.03 170 | 98.08 74 | 88.35 262 | 95.09 126 | 97.65 111 | 89.97 79 | 99.48 101 | 92.08 160 | 98.59 103 | 98.44 142 |
|
| fmvsm_l_conf0.5_n | | | 97.65 7 | 97.75 6 | 97.34 52 | 98.21 92 | 92.75 78 | 97.83 86 | 98.73 9 | 95.04 28 | 99.30 1 | 98.84 20 | 93.34 22 | 99.78 35 | 99.32 3 | 99.13 78 | 99.50 40 |
|
| æ–°å‡ ä½•1 | | | | | 97.32 53 | 98.60 65 | 93.59 58 | | 97.75 123 | 81.58 365 | 95.75 109 | 97.85 96 | 90.04 77 | 99.67 56 | 86.50 272 | 99.13 78 | 98.69 121 |
|
| DELS-MVS | | | 96.61 52 | 96.38 59 | 97.30 54 | 97.79 120 | 93.19 69 | 95.96 256 | 98.18 57 | 95.23 19 | 95.87 104 | 97.65 111 | 91.45 53 | 99.70 51 | 95.87 69 | 99.44 46 | 99.00 92 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| test_fmvsmconf_n | | | 97.49 12 | 97.56 9 | 97.29 55 | 97.44 142 | 92.37 90 | 97.91 76 | 98.88 4 | 95.83 8 | 98.92 12 | 99.05 5 | 91.45 53 | 99.80 30 | 99.12 6 | 99.46 40 | 99.69 12 |
|
| DeepC-MVS | | 93.07 3 | 96.06 66 | 95.66 70 | 97.29 55 | 97.96 109 | 93.17 70 | 97.30 150 | 98.06 82 | 93.92 71 | 93.38 161 | 98.66 27 | 86.83 127 | 99.73 42 | 95.60 86 | 99.22 69 | 98.96 94 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| ACMMP |  | | 96.27 63 | 95.93 65 | 97.28 57 | 99.24 28 | 92.62 82 | 98.25 37 | 98.81 5 | 92.99 109 | 94.56 134 | 98.39 48 | 88.96 89 | 99.85 18 | 94.57 115 | 97.63 133 | 99.36 60 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| TSAR-MVS + GP. | | | 96.69 49 | 96.49 52 | 97.27 58 | 98.31 81 | 93.39 62 | 96.79 191 | 96.72 236 | 94.17 64 | 97.44 43 | 97.66 110 | 92.76 28 | 99.33 115 | 96.86 37 | 97.76 132 | 99.08 83 |
|
| fmvsm_l_conf0.5_n_a | | | 97.63 8 | 97.76 5 | 97.26 59 | 98.25 86 | 92.59 84 | 97.81 90 | 98.68 13 | 94.93 30 | 99.24 3 | 98.87 15 | 93.52 20 | 99.79 33 | 99.32 3 | 99.21 70 | 99.40 54 |
|
| test_prior | | | | | 97.23 60 | 98.67 58 | 92.99 73 | | 98.00 98 | | | | | 99.41 109 | | | 99.29 63 |
|
| HPM-MVS_fast | | | 96.51 55 | 96.27 61 | 97.22 61 | 99.32 22 | 92.74 79 | 98.74 9 | 98.06 82 | 90.57 196 | 96.77 63 | 98.35 51 | 90.21 75 | 99.53 91 | 94.80 107 | 99.63 14 | 99.38 58 |
|
| VNet | | | 95.89 74 | 95.45 75 | 97.21 62 | 98.07 105 | 92.94 75 | 97.50 126 | 98.15 62 | 93.87 73 | 97.52 40 | 97.61 117 | 85.29 147 | 99.53 91 | 95.81 74 | 95.27 187 | 99.16 73 |
|
| UA-Net | | | 95.95 72 | 95.53 72 | 97.20 63 | 97.67 125 | 92.98 74 | 97.65 107 | 98.13 65 | 94.81 39 | 96.61 72 | 98.35 51 | 88.87 90 | 99.51 96 | 90.36 193 | 97.35 143 | 99.11 81 |
|
| test_fmvsmconf0.1_n | | | 97.09 24 | 97.06 19 | 97.19 64 | 95.67 242 | 92.21 96 | 97.95 72 | 98.27 39 | 95.78 10 | 98.40 25 | 99.00 6 | 89.99 78 | 99.78 35 | 99.06 7 | 99.41 50 | 99.59 22 |
|
| EPNet | | | 95.20 92 | 94.56 100 | 97.14 65 | 92.80 356 | 92.68 81 | 97.85 84 | 94.87 331 | 96.64 3 | 92.46 178 | 97.80 101 | 86.23 134 | 99.65 58 | 93.72 130 | 98.62 101 | 99.10 82 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| APD-MVS_3200maxsize | | | 96.81 42 | 96.71 44 | 97.12 66 | 99.01 45 | 92.31 93 | 97.98 63 | 98.06 82 | 93.11 106 | 97.44 43 | 98.55 33 | 90.93 66 | 99.55 87 | 96.06 62 | 99.25 67 | 99.51 37 |
|
| SR-MVS-dyc-post | | | 96.88 36 | 96.80 38 | 97.11 67 | 99.02 42 | 92.34 91 | 97.98 63 | 98.03 91 | 93.52 87 | 97.43 45 | 98.51 36 | 91.40 56 | 99.56 85 | 96.05 63 | 99.26 65 | 99.43 51 |
|
| SD-MVS | | | 97.41 14 | 97.53 11 | 97.06 68 | 98.57 69 | 94.46 33 | 97.92 75 | 98.14 64 | 94.82 38 | 99.01 6 | 98.55 33 | 94.18 14 | 97.41 327 | 96.94 34 | 99.64 13 | 99.32 62 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| test_fmvsmconf0.01_n | | | 96.15 65 | 95.85 68 | 97.03 69 | 92.66 359 | 91.83 108 | 97.97 69 | 97.84 120 | 95.57 12 | 97.53 39 | 99.00 6 | 84.20 163 | 99.76 38 | 98.82 11 | 99.08 82 | 99.48 44 |
|
| MVS_111021_HR | | | 96.68 51 | 96.58 49 | 96.99 70 | 98.46 70 | 92.31 93 | 96.20 245 | 98.90 3 | 94.30 62 | 95.86 105 | 97.74 104 | 92.33 38 | 99.38 113 | 96.04 65 | 99.42 47 | 99.28 65 |
|
| QAPM | | | 93.45 148 | 92.27 176 | 96.98 71 | 96.77 180 | 92.62 82 | 98.39 26 | 98.12 67 | 84.50 338 | 88.27 295 | 97.77 102 | 82.39 202 | 99.81 29 | 85.40 291 | 98.81 94 | 98.51 131 |
|
| WTY-MVS | | | 94.71 108 | 94.02 112 | 96.79 72 | 97.71 124 | 92.05 102 | 96.59 215 | 97.35 184 | 90.61 193 | 94.64 132 | 96.93 150 | 86.41 133 | 99.39 111 | 91.20 180 | 94.71 201 | 98.94 97 |
|
| CPTT-MVS | | | 95.57 82 | 95.19 85 | 96.70 73 | 99.27 26 | 91.48 123 | 98.33 28 | 98.11 70 | 87.79 279 | 95.17 124 | 98.03 80 | 87.09 125 | 99.61 69 | 93.51 132 | 99.42 47 | 99.02 86 |
|
| sss | | | 94.51 109 | 93.80 116 | 96.64 74 | 97.07 155 | 91.97 105 | 96.32 235 | 98.06 82 | 88.94 240 | 94.50 135 | 96.78 158 | 84.60 155 | 99.27 122 | 91.90 161 | 96.02 170 | 98.68 122 |
|
| ab-mvs | | | 93.57 144 | 92.55 166 | 96.64 74 | 97.28 145 | 91.96 106 | 95.40 285 | 97.45 168 | 89.81 213 | 93.22 167 | 96.28 192 | 79.62 250 | 99.46 103 | 90.74 187 | 93.11 227 | 98.50 132 |
|
| EI-MVSNet-Vis-set | | | 96.51 55 | 96.47 53 | 96.63 76 | 98.24 87 | 91.20 136 | 96.89 183 | 97.73 126 | 94.74 44 | 96.49 78 | 98.49 38 | 90.88 68 | 99.58 77 | 96.44 48 | 98.32 114 | 99.13 77 |
|
| 114514_t | | | 93.95 128 | 93.06 142 | 96.63 76 | 99.07 37 | 91.61 116 | 97.46 134 | 97.96 102 | 77.99 382 | 93.00 169 | 97.57 119 | 86.14 139 | 99.33 115 | 89.22 220 | 99.15 76 | 98.94 97 |
|
| HY-MVS | | 89.66 9 | 93.87 132 | 92.95 146 | 96.63 76 | 97.10 154 | 92.49 87 | 95.64 275 | 96.64 244 | 89.05 235 | 93.00 169 | 95.79 220 | 85.77 143 | 99.45 105 | 89.16 224 | 94.35 203 | 97.96 175 |
|
| MSLP-MVS++ | | | 96.94 33 | 97.06 19 | 96.59 79 | 98.72 55 | 91.86 107 | 97.67 104 | 98.49 19 | 94.66 48 | 97.24 49 | 98.41 47 | 92.31 40 | 98.94 163 | 96.61 43 | 99.46 40 | 98.96 94 |
|
| CANet_DTU | | | 94.37 111 | 93.65 120 | 96.55 80 | 96.46 206 | 92.13 100 | 96.21 244 | 96.67 243 | 94.38 60 | 93.53 157 | 97.03 147 | 79.34 253 | 99.71 46 | 90.76 186 | 98.45 110 | 97.82 185 |
|
| test_fmvsm_n_1920 | | | 97.55 11 | 97.89 3 | 96.53 81 | 98.41 74 | 91.73 109 | 98.01 59 | 99.02 1 | 96.37 4 | 99.30 1 | 98.92 10 | 92.39 37 | 99.79 33 | 99.16 5 | 99.46 40 | 98.08 171 |
|
| LFMVS | | | 93.60 142 | 92.63 161 | 96.52 82 | 98.13 100 | 91.27 131 | 97.94 73 | 93.39 363 | 90.57 196 | 96.29 86 | 98.31 60 | 69.00 345 | 99.16 134 | 94.18 119 | 95.87 174 | 99.12 80 |
|
| DP-MVS | | | 92.76 182 | 91.51 203 | 96.52 82 | 98.77 53 | 90.99 144 | 97.38 142 | 96.08 272 | 82.38 358 | 89.29 270 | 97.87 93 | 83.77 168 | 99.69 52 | 81.37 334 | 96.69 161 | 98.89 107 |
|
| CNLPA | | | 94.28 113 | 93.53 125 | 96.52 82 | 98.38 78 | 92.55 85 | 96.59 215 | 96.88 227 | 90.13 205 | 91.91 195 | 97.24 135 | 85.21 148 | 99.09 144 | 87.64 252 | 97.83 128 | 97.92 177 |
|
| casdiffmvs_mvg |  | | 95.81 76 | 95.57 71 | 96.51 85 | 96.87 170 | 91.49 122 | 97.50 126 | 97.56 151 | 93.99 69 | 95.13 125 | 97.92 89 | 87.89 107 | 98.78 178 | 95.97 67 | 97.33 144 | 99.26 67 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| Vis-MVSNet |  | | 95.23 90 | 94.81 92 | 96.51 85 | 97.18 149 | 91.58 119 | 98.26 36 | 98.12 67 | 94.38 60 | 94.90 127 | 98.15 72 | 82.28 203 | 98.92 165 | 91.45 175 | 98.58 104 | 99.01 89 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| MAR-MVS | | | 94.22 114 | 93.46 130 | 96.51 85 | 98.00 108 | 92.19 99 | 97.67 104 | 97.47 161 | 88.13 269 | 93.00 169 | 95.84 214 | 84.86 153 | 99.51 96 | 87.99 239 | 98.17 121 | 97.83 184 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| PAPR | | | 94.18 115 | 93.42 135 | 96.48 88 | 97.64 129 | 91.42 127 | 95.55 278 | 97.71 132 | 88.99 237 | 92.34 185 | 95.82 216 | 89.19 85 | 99.11 140 | 86.14 278 | 97.38 141 | 98.90 104 |
|
| EI-MVSNet-UG-set | | | 96.34 61 | 96.30 60 | 96.47 89 | 98.20 93 | 90.93 148 | 96.86 185 | 97.72 128 | 94.67 47 | 96.16 94 | 98.46 42 | 90.43 73 | 99.58 77 | 96.23 52 | 97.96 126 | 98.90 104 |
|
| LS3D | | | 93.57 144 | 92.61 164 | 96.47 89 | 97.59 135 | 91.61 116 | 97.67 104 | 97.72 128 | 85.17 328 | 90.29 233 | 98.34 54 | 84.60 155 | 99.73 42 | 83.85 312 | 98.27 116 | 98.06 172 |
|
| CSCG | | | 96.05 67 | 95.91 66 | 96.46 91 | 99.24 28 | 90.47 165 | 98.30 30 | 98.57 18 | 89.01 236 | 93.97 148 | 97.57 119 | 92.62 33 | 99.76 38 | 94.66 110 | 99.27 63 | 99.15 75 |
|
| CS-MVS-test | | | 96.89 35 | 97.04 23 | 96.45 92 | 98.29 82 | 91.66 115 | 99.03 4 | 97.85 116 | 95.84 7 | 96.90 59 | 97.97 86 | 91.24 59 | 98.75 183 | 96.92 35 | 99.33 59 | 98.94 97 |
|
| test_yl | | | 94.78 106 | 94.23 110 | 96.43 93 | 97.74 122 | 91.22 132 | 96.85 186 | 97.10 200 | 91.23 167 | 95.71 110 | 96.93 150 | 84.30 160 | 99.31 119 | 93.10 140 | 95.12 189 | 98.75 115 |
|
| DCV-MVSNet | | | 94.78 106 | 94.23 110 | 96.43 93 | 97.74 122 | 91.22 132 | 96.85 186 | 97.10 200 | 91.23 167 | 95.71 110 | 96.93 150 | 84.30 160 | 99.31 119 | 93.10 140 | 95.12 189 | 98.75 115 |
|
| ETV-MVS | | | 96.02 68 | 95.89 67 | 96.40 95 | 97.16 150 | 92.44 88 | 97.47 132 | 97.77 122 | 94.55 50 | 96.48 79 | 94.51 277 | 91.23 61 | 98.92 165 | 95.65 80 | 98.19 119 | 97.82 185 |
|
| OpenMVS |  | 89.19 12 | 92.86 176 | 91.68 195 | 96.40 95 | 95.34 261 | 92.73 80 | 98.27 34 | 98.12 67 | 84.86 333 | 85.78 334 | 97.75 103 | 78.89 265 | 99.74 41 | 87.50 256 | 98.65 99 | 96.73 227 |
|
| MVS_111021_LR | | | 96.24 64 | 96.19 63 | 96.39 97 | 98.23 91 | 91.35 129 | 96.24 243 | 98.79 6 | 93.99 69 | 95.80 107 | 97.65 111 | 89.92 80 | 99.24 124 | 95.87 69 | 99.20 72 | 98.58 125 |
|
| 原ACMM1 | | | | | 96.38 98 | 98.59 66 | 91.09 143 | | 97.89 107 | 87.41 290 | 95.22 123 | 97.68 107 | 90.25 74 | 99.54 89 | 87.95 240 | 99.12 80 | 98.49 134 |
|
| PVSNet_Blended_VisFu | | | 95.27 88 | 94.91 91 | 96.38 98 | 98.20 93 | 90.86 150 | 97.27 152 | 98.25 45 | 90.21 201 | 94.18 142 | 97.27 133 | 87.48 118 | 99.73 42 | 93.53 131 | 97.77 131 | 98.55 126 |
|
| Effi-MVS+ | | | 94.93 100 | 94.45 107 | 96.36 100 | 96.61 188 | 91.47 124 | 96.41 224 | 97.41 177 | 91.02 176 | 94.50 135 | 95.92 210 | 87.53 116 | 98.78 178 | 93.89 126 | 96.81 156 | 98.84 112 |
|
| PCF-MVS | | 89.48 11 | 91.56 227 | 89.95 266 | 96.36 100 | 96.60 189 | 92.52 86 | 92.51 367 | 97.26 190 | 79.41 377 | 88.90 277 | 96.56 178 | 84.04 166 | 99.55 87 | 77.01 361 | 97.30 146 | 97.01 217 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| test_fmvsmvis_n_1920 | | | 96.70 47 | 96.84 33 | 96.31 102 | 96.62 187 | 91.73 109 | 97.98 63 | 98.30 32 | 96.19 5 | 96.10 96 | 98.95 8 | 89.42 83 | 99.76 38 | 98.90 10 | 99.08 82 | 97.43 203 |
|
| UGNet | | | 94.04 126 | 93.28 138 | 96.31 102 | 96.85 171 | 91.19 137 | 97.88 79 | 97.68 133 | 94.40 58 | 93.00 169 | 96.18 196 | 73.39 319 | 99.61 69 | 91.72 167 | 98.46 109 | 98.13 165 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| MG-MVS | | | 95.61 80 | 95.38 80 | 96.31 102 | 98.42 73 | 90.53 163 | 96.04 251 | 97.48 158 | 93.47 89 | 95.67 113 | 98.10 73 | 89.17 86 | 99.25 123 | 91.27 178 | 98.77 95 | 99.13 77 |
|
| AdaColmap |  | | 94.34 112 | 93.68 119 | 96.31 102 | 98.59 66 | 91.68 114 | 96.59 215 | 97.81 121 | 89.87 208 | 92.15 189 | 97.06 145 | 83.62 172 | 99.54 89 | 89.34 215 | 98.07 123 | 97.70 190 |
|
| lupinMVS | | | 94.99 99 | 94.56 100 | 96.29 106 | 96.34 212 | 91.21 134 | 95.83 263 | 96.27 263 | 88.93 241 | 96.22 90 | 96.88 155 | 86.20 137 | 98.85 172 | 95.27 92 | 99.05 84 | 98.82 113 |
|
| nrg030 | | | 94.05 125 | 93.31 137 | 96.27 107 | 95.22 272 | 94.59 31 | 98.34 27 | 97.46 163 | 92.93 116 | 91.21 221 | 96.64 168 | 87.23 124 | 98.22 230 | 94.99 101 | 85.80 316 | 95.98 250 |
|
| CS-MVS | | | 96.86 37 | 97.06 19 | 96.26 108 | 98.16 98 | 91.16 141 | 99.09 3 | 97.87 111 | 95.30 18 | 97.06 56 | 98.03 80 | 91.72 46 | 98.71 189 | 97.10 31 | 99.17 74 | 98.90 104 |
|
| EC-MVSNet | | | 96.42 57 | 96.47 53 | 96.26 108 | 97.01 165 | 91.52 121 | 98.89 5 | 97.75 123 | 94.42 56 | 96.64 71 | 97.68 107 | 89.32 84 | 98.60 199 | 97.45 26 | 99.11 81 | 98.67 123 |
|
| PAPM_NR | | | 95.01 95 | 94.59 98 | 96.26 108 | 98.89 51 | 90.68 160 | 97.24 154 | 97.73 126 | 91.80 147 | 92.93 174 | 96.62 176 | 89.13 87 | 99.14 137 | 89.21 221 | 97.78 130 | 98.97 93 |
|
| OMC-MVS | | | 95.09 94 | 94.70 96 | 96.25 111 | 98.46 70 | 91.28 130 | 96.43 222 | 97.57 147 | 92.04 142 | 94.77 130 | 97.96 87 | 87.01 126 | 99.09 144 | 91.31 177 | 96.77 157 | 98.36 149 |
|
| 1112_ss | | | 93.37 150 | 92.42 173 | 96.21 112 | 97.05 160 | 90.99 144 | 96.31 236 | 96.72 236 | 86.87 301 | 89.83 252 | 96.69 165 | 86.51 131 | 99.14 137 | 88.12 237 | 93.67 221 | 98.50 132 |
|
| fmvsm_s_conf0.5_n_a | | | 96.75 46 | 96.93 29 | 96.20 113 | 97.64 129 | 90.72 157 | 98.00 61 | 98.73 9 | 94.55 50 | 98.91 13 | 99.08 3 | 88.22 101 | 99.63 67 | 98.91 9 | 98.37 112 | 98.25 153 |
|
| jason | | | 94.84 104 | 94.39 109 | 96.18 114 | 95.52 248 | 90.93 148 | 96.09 249 | 96.52 252 | 89.28 227 | 96.01 101 | 97.32 129 | 84.70 154 | 98.77 181 | 95.15 95 | 98.91 92 | 98.85 110 |
| jason: jason. |
| fmvsm_s_conf0.1_n_a | | | 96.40 58 | 96.47 53 | 96.16 115 | 95.48 250 | 90.69 158 | 97.91 76 | 98.33 29 | 94.07 66 | 98.93 9 | 99.14 1 | 87.44 119 | 99.61 69 | 98.63 13 | 98.32 114 | 98.18 160 |
|
| PLC |  | 91.00 6 | 94.11 122 | 93.43 133 | 96.13 116 | 98.58 68 | 91.15 142 | 96.69 202 | 97.39 178 | 87.29 293 | 91.37 210 | 96.71 161 | 88.39 99 | 99.52 95 | 87.33 259 | 97.13 152 | 97.73 188 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| casdiffmvs |  | | 95.64 79 | 95.49 73 | 96.08 117 | 96.76 183 | 90.45 166 | 97.29 151 | 97.44 172 | 94.00 68 | 95.46 120 | 97.98 85 | 87.52 117 | 98.73 185 | 95.64 81 | 97.33 144 | 99.08 83 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| baseline | | | 95.58 81 | 95.42 78 | 96.08 117 | 96.78 178 | 90.41 168 | 97.16 164 | 97.45 168 | 93.69 80 | 95.65 114 | 97.85 96 | 87.29 122 | 98.68 191 | 95.66 77 | 97.25 148 | 99.13 77 |
|
| CHOSEN 1792x2688 | | | 94.15 118 | 93.51 128 | 96.06 119 | 98.27 83 | 89.38 202 | 95.18 297 | 98.48 21 | 85.60 320 | 93.76 152 | 97.11 142 | 83.15 180 | 99.61 69 | 91.33 176 | 98.72 97 | 99.19 71 |
|
| IS-MVSNet | | | 94.90 101 | 94.52 104 | 96.05 120 | 97.67 125 | 90.56 162 | 98.44 23 | 96.22 266 | 93.21 98 | 93.99 146 | 97.74 104 | 85.55 145 | 98.45 211 | 89.98 198 | 97.86 127 | 99.14 76 |
|
| fmvsm_s_conf0.5_n | | | 96.85 39 | 97.13 16 | 96.04 121 | 98.07 105 | 90.28 170 | 97.97 69 | 98.76 8 | 94.93 30 | 98.84 16 | 99.06 4 | 88.80 92 | 99.65 58 | 99.06 7 | 98.63 100 | 98.18 160 |
|
| h-mvs33 | | | 94.15 118 | 93.52 127 | 96.04 121 | 97.81 119 | 90.22 172 | 97.62 115 | 97.58 146 | 95.19 20 | 96.74 64 | 97.45 124 | 83.67 170 | 99.61 69 | 95.85 71 | 79.73 367 | 98.29 152 |
|
| VDD-MVS | | | 93.82 135 | 93.08 141 | 96.02 123 | 97.88 116 | 89.96 182 | 97.72 100 | 95.85 280 | 92.43 129 | 95.86 105 | 98.44 44 | 68.42 352 | 99.39 111 | 96.31 49 | 94.85 193 | 98.71 120 |
|
| VDDNet | | | 93.05 166 | 92.07 180 | 96.02 123 | 96.84 172 | 90.39 169 | 98.08 53 | 95.85 280 | 86.22 312 | 95.79 108 | 98.46 42 | 67.59 355 | 99.19 128 | 94.92 102 | 94.85 193 | 98.47 137 |
|
| fmvsm_s_conf0.1_n | | | 96.58 54 | 96.77 40 | 96.01 125 | 96.67 185 | 90.25 171 | 97.91 76 | 98.38 23 | 94.48 54 | 98.84 16 | 99.14 1 | 88.06 103 | 99.62 68 | 98.82 11 | 98.60 102 | 98.15 164 |
|
| MVSFormer | | | 95.37 85 | 95.16 86 | 95.99 126 | 96.34 212 | 91.21 134 | 98.22 42 | 97.57 147 | 91.42 159 | 96.22 90 | 97.32 129 | 86.20 137 | 97.92 281 | 94.07 120 | 99.05 84 | 98.85 110 |
|
| CDS-MVSNet | | | 94.14 121 | 93.54 124 | 95.93 127 | 96.18 219 | 91.46 125 | 96.33 234 | 97.04 210 | 88.97 239 | 93.56 154 | 96.51 180 | 87.55 114 | 97.89 285 | 89.80 203 | 95.95 172 | 98.44 142 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| API-MVS | | | 94.84 104 | 94.49 105 | 95.90 128 | 97.90 115 | 92.00 104 | 97.80 91 | 97.48 158 | 89.19 230 | 94.81 129 | 96.71 161 | 88.84 91 | 99.17 132 | 88.91 228 | 98.76 96 | 96.53 230 |
|
| HyFIR lowres test | | | 93.66 141 | 92.92 147 | 95.87 129 | 98.24 87 | 89.88 183 | 94.58 310 | 98.49 19 | 85.06 330 | 93.78 151 | 95.78 221 | 82.86 189 | 98.67 192 | 91.77 166 | 95.71 179 | 99.07 85 |
|
| SDMVSNet | | | 94.17 116 | 93.61 121 | 95.86 130 | 98.09 101 | 91.37 128 | 97.35 144 | 98.20 52 | 93.18 102 | 91.79 199 | 97.28 131 | 79.13 256 | 98.93 164 | 94.61 113 | 92.84 230 | 97.28 211 |
|
| Test_1112_low_res | | | 92.84 179 | 91.84 190 | 95.85 131 | 97.04 161 | 89.97 181 | 95.53 280 | 96.64 244 | 85.38 323 | 89.65 258 | 95.18 247 | 85.86 141 | 99.10 141 | 87.70 247 | 93.58 226 | 98.49 134 |
|
| iter_conf05_11 | | | 93.70 140 | 92.99 143 | 95.84 132 | 97.02 162 | 90.22 172 | 95.57 277 | 94.66 334 | 92.81 120 | 96.17 92 | 96.51 180 | 69.56 342 | 99.07 150 | 95.03 97 | 99.60 17 | 98.23 155 |
|
| PVSNet_Blended | | | 94.87 103 | 94.56 100 | 95.81 133 | 98.27 83 | 89.46 199 | 95.47 283 | 98.36 24 | 88.84 244 | 94.36 137 | 96.09 206 | 88.02 104 | 99.58 77 | 93.44 134 | 98.18 120 | 98.40 145 |
|
| Anonymous202405211 | | | 92.07 207 | 90.83 228 | 95.76 134 | 98.19 95 | 88.75 222 | 97.58 118 | 95.00 321 | 86.00 315 | 93.64 153 | 97.45 124 | 66.24 366 | 99.53 91 | 90.68 189 | 92.71 233 | 99.01 89 |
|
| EPP-MVSNet | | | 95.22 91 | 95.04 89 | 95.76 134 | 97.49 141 | 89.56 192 | 98.67 10 | 97.00 214 | 90.69 185 | 94.24 140 | 97.62 116 | 89.79 81 | 98.81 176 | 93.39 137 | 96.49 165 | 98.92 100 |
|
| xiu_mvs_v1_base_debu | | | 95.01 95 | 94.76 93 | 95.75 136 | 96.58 191 | 91.71 111 | 96.25 240 | 97.35 184 | 92.99 109 | 96.70 66 | 96.63 173 | 82.67 193 | 99.44 106 | 96.22 53 | 97.46 136 | 96.11 246 |
|
| xiu_mvs_v1_base | | | 95.01 95 | 94.76 93 | 95.75 136 | 96.58 191 | 91.71 111 | 96.25 240 | 97.35 184 | 92.99 109 | 96.70 66 | 96.63 173 | 82.67 193 | 99.44 106 | 96.22 53 | 97.46 136 | 96.11 246 |
|
| xiu_mvs_v1_base_debi | | | 95.01 95 | 94.76 93 | 95.75 136 | 96.58 191 | 91.71 111 | 96.25 240 | 97.35 184 | 92.99 109 | 96.70 66 | 96.63 173 | 82.67 193 | 99.44 106 | 96.22 53 | 97.46 136 | 96.11 246 |
|
| Anonymous20240529 | | | 91.98 210 | 90.73 233 | 95.73 139 | 98.14 99 | 89.40 201 | 97.99 62 | 97.72 128 | 79.63 376 | 93.54 156 | 97.41 127 | 69.94 339 | 99.56 85 | 91.04 183 | 91.11 263 | 98.22 157 |
|
| GeoE | | | 93.89 131 | 93.28 138 | 95.72 140 | 96.96 168 | 89.75 187 | 98.24 40 | 96.92 223 | 89.47 222 | 92.12 191 | 97.21 137 | 84.42 158 | 98.39 218 | 87.71 246 | 96.50 164 | 99.01 89 |
|
| EIA-MVS | | | 95.53 83 | 95.47 74 | 95.71 141 | 97.06 158 | 89.63 188 | 97.82 88 | 97.87 111 | 93.57 81 | 93.92 149 | 95.04 252 | 90.61 71 | 98.95 162 | 94.62 112 | 98.68 98 | 98.54 127 |
|
| bld_raw_dy_0_64 | | | 92.85 178 | 91.91 187 | 95.69 142 | 97.02 162 | 89.81 185 | 97.88 79 | 93.96 354 | 92.57 126 | 92.59 177 | 96.79 157 | 69.53 343 | 99.02 158 | 95.03 97 | 91.78 249 | 98.23 155 |
|
| MVS_Test | | | 94.89 102 | 94.62 97 | 95.68 143 | 96.83 174 | 89.55 193 | 96.70 200 | 97.17 195 | 91.17 170 | 95.60 115 | 96.11 205 | 87.87 108 | 98.76 182 | 93.01 147 | 97.17 151 | 98.72 118 |
|
| TAMVS | | | 94.01 127 | 93.46 130 | 95.64 144 | 96.16 221 | 90.45 166 | 96.71 199 | 96.89 226 | 89.27 228 | 93.46 159 | 96.92 153 | 87.29 122 | 97.94 277 | 88.70 232 | 95.74 177 | 98.53 128 |
|
| ET-MVSNet_ETH3D | | | 91.49 231 | 90.11 259 | 95.63 145 | 96.40 209 | 91.57 120 | 95.34 287 | 93.48 362 | 90.60 195 | 75.58 384 | 95.49 237 | 80.08 240 | 96.79 349 | 94.25 118 | 89.76 281 | 98.52 129 |
|
| diffmvs |  | | 95.25 89 | 95.13 87 | 95.63 145 | 96.43 208 | 89.34 204 | 95.99 255 | 97.35 184 | 92.83 118 | 96.31 85 | 97.37 128 | 86.44 132 | 98.67 192 | 96.26 50 | 97.19 150 | 98.87 109 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| UniMVSNet (Re) | | | 93.31 152 | 92.55 166 | 95.61 147 | 95.39 255 | 93.34 66 | 97.39 140 | 98.71 11 | 93.14 105 | 90.10 243 | 94.83 262 | 87.71 109 | 98.03 260 | 91.67 171 | 83.99 343 | 95.46 276 |
|
| Fast-Effi-MVS+ | | | 93.46 147 | 92.75 156 | 95.59 148 | 96.77 180 | 90.03 175 | 96.81 190 | 97.13 197 | 88.19 265 | 91.30 214 | 94.27 293 | 86.21 136 | 98.63 196 | 87.66 251 | 96.46 167 | 98.12 166 |
|
| PatchMatch-RL | | | 92.90 174 | 92.02 183 | 95.56 149 | 98.19 95 | 90.80 153 | 95.27 293 | 97.18 193 | 87.96 271 | 91.86 198 | 95.68 227 | 80.44 233 | 98.99 160 | 84.01 307 | 97.54 135 | 96.89 223 |
|
| TAPA-MVS | | 90.10 7 | 92.30 197 | 91.22 214 | 95.56 149 | 98.33 80 | 89.60 190 | 96.79 191 | 97.65 136 | 81.83 362 | 91.52 206 | 97.23 136 | 87.94 106 | 98.91 167 | 71.31 383 | 98.37 112 | 98.17 163 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| baseline1 | | | 92.82 180 | 91.90 188 | 95.55 151 | 97.20 148 | 90.77 155 | 97.19 161 | 94.58 338 | 92.20 135 | 92.36 182 | 96.34 190 | 84.16 164 | 98.21 231 | 89.20 222 | 83.90 347 | 97.68 191 |
|
| NR-MVSNet | | | 92.34 194 | 91.27 211 | 95.53 152 | 94.95 286 | 93.05 72 | 97.39 140 | 98.07 79 | 92.65 124 | 84.46 345 | 95.71 224 | 85.00 151 | 97.77 296 | 89.71 205 | 83.52 350 | 95.78 260 |
|
| MVS | | | 91.71 217 | 90.44 243 | 95.51 153 | 95.20 274 | 91.59 118 | 96.04 251 | 97.45 168 | 73.44 390 | 87.36 314 | 95.60 231 | 85.42 146 | 99.10 141 | 85.97 283 | 97.46 136 | 95.83 255 |
|
| VPA-MVSNet | | | 93.24 154 | 92.48 171 | 95.51 153 | 95.70 240 | 92.39 89 | 97.86 81 | 98.66 16 | 92.30 132 | 92.09 193 | 95.37 240 | 80.49 232 | 98.40 214 | 93.95 123 | 85.86 315 | 95.75 265 |
|
| thisisatest0530 | | | 93.03 167 | 92.21 178 | 95.49 155 | 97.07 155 | 89.11 216 | 97.49 131 | 92.19 374 | 90.16 203 | 94.09 144 | 96.41 186 | 76.43 293 | 99.05 154 | 90.38 192 | 95.68 180 | 98.31 151 |
|
| PS-MVSNAJ | | | 95.37 85 | 95.33 82 | 95.49 155 | 97.35 144 | 90.66 161 | 95.31 290 | 97.48 158 | 93.85 74 | 96.51 77 | 95.70 226 | 88.65 95 | 99.65 58 | 94.80 107 | 98.27 116 | 96.17 241 |
|
| DU-MVS | | | 92.90 174 | 92.04 181 | 95.49 155 | 94.95 286 | 92.83 76 | 97.16 164 | 98.24 47 | 93.02 108 | 90.13 239 | 95.71 224 | 83.47 173 | 97.85 287 | 91.71 168 | 83.93 344 | 95.78 260 |
|
| UniMVSNet_NR-MVSNet | | | 93.37 150 | 92.67 160 | 95.47 158 | 95.34 261 | 92.83 76 | 97.17 163 | 98.58 17 | 92.98 114 | 90.13 239 | 95.80 217 | 88.37 100 | 97.85 287 | 91.71 168 | 83.93 344 | 95.73 267 |
|
| testdata | | | | | 95.46 159 | 98.18 97 | 88.90 220 | | 97.66 134 | 82.73 356 | 97.03 57 | 98.07 76 | 90.06 76 | 98.85 172 | 89.67 207 | 98.98 88 | 98.64 124 |
|
| xiu_mvs_v2_base | | | 95.32 87 | 95.29 83 | 95.40 160 | 97.22 146 | 90.50 164 | 95.44 284 | 97.44 172 | 93.70 79 | 96.46 81 | 96.18 196 | 88.59 98 | 99.53 91 | 94.79 109 | 97.81 129 | 96.17 241 |
|
| F-COLMAP | | | 93.58 143 | 92.98 145 | 95.37 161 | 98.40 75 | 88.98 218 | 97.18 162 | 97.29 189 | 87.75 282 | 90.49 229 | 97.10 143 | 85.21 148 | 99.50 99 | 86.70 269 | 96.72 160 | 97.63 192 |
|
| FA-MVS(test-final) | | | 93.52 146 | 92.92 147 | 95.31 162 | 96.77 180 | 88.54 229 | 94.82 304 | 96.21 268 | 89.61 217 | 94.20 141 | 95.25 245 | 83.24 177 | 99.14 137 | 90.01 197 | 96.16 169 | 98.25 153 |
|
| FIs | | | 94.09 123 | 93.70 118 | 95.27 163 | 95.70 240 | 92.03 103 | 98.10 51 | 98.68 13 | 93.36 95 | 90.39 231 | 96.70 163 | 87.63 113 | 97.94 277 | 92.25 153 | 90.50 274 | 95.84 254 |
|
| thisisatest0515 | | | 92.29 198 | 91.30 209 | 95.25 164 | 96.60 189 | 88.90 220 | 94.36 320 | 92.32 373 | 87.92 272 | 93.43 160 | 94.57 274 | 77.28 285 | 99.00 159 | 89.42 213 | 95.86 175 | 97.86 181 |
|
| PAPM | | | 91.52 230 | 90.30 249 | 95.20 165 | 95.30 267 | 89.83 184 | 93.38 353 | 96.85 230 | 86.26 311 | 88.59 286 | 95.80 217 | 84.88 152 | 98.15 237 | 75.67 366 | 95.93 173 | 97.63 192 |
|
| thres600view7 | | | 92.49 188 | 91.60 197 | 95.18 166 | 97.91 114 | 89.47 197 | 97.65 107 | 94.66 334 | 92.18 139 | 93.33 162 | 94.91 257 | 78.06 278 | 99.10 141 | 81.61 328 | 94.06 216 | 96.98 218 |
|
| DeepPCF-MVS | | 93.97 1 | 96.61 52 | 97.09 18 | 95.15 167 | 98.09 101 | 86.63 281 | 96.00 254 | 98.15 62 | 95.43 14 | 97.95 33 | 98.56 31 | 93.40 21 | 99.36 114 | 96.77 38 | 99.48 38 | 99.45 47 |
|
| 1314 | | | 92.81 181 | 92.03 182 | 95.14 168 | 95.33 264 | 89.52 196 | 96.04 251 | 97.44 172 | 87.72 283 | 86.25 331 | 95.33 241 | 83.84 167 | 98.79 177 | 89.26 218 | 97.05 153 | 97.11 216 |
|
| TranMVSNet+NR-MVSNet | | | 92.50 186 | 91.63 196 | 95.14 168 | 94.76 298 | 92.07 101 | 97.53 124 | 98.11 70 | 92.90 117 | 89.56 261 | 96.12 201 | 83.16 179 | 97.60 310 | 89.30 216 | 83.20 353 | 95.75 265 |
|
| thres400 | | | 92.42 190 | 91.52 201 | 95.12 170 | 97.85 117 | 89.29 207 | 97.41 135 | 94.88 328 | 92.19 137 | 93.27 165 | 94.46 282 | 78.17 274 | 99.08 146 | 81.40 331 | 94.08 212 | 96.98 218 |
|
| FE-MVS | | | 92.05 208 | 91.05 218 | 95.08 171 | 96.83 174 | 87.93 248 | 93.91 338 | 95.70 286 | 86.30 309 | 94.15 143 | 94.97 253 | 76.59 289 | 99.21 126 | 84.10 305 | 96.86 154 | 98.09 170 |
|
| sd_testset | | | 93.10 162 | 92.45 172 | 95.05 172 | 98.09 101 | 89.21 211 | 96.89 183 | 97.64 138 | 93.18 102 | 91.79 199 | 97.28 131 | 75.35 303 | 98.65 194 | 88.99 226 | 92.84 230 | 97.28 211 |
|
| FC-MVSNet-test | | | 93.94 129 | 93.57 122 | 95.04 173 | 95.48 250 | 91.45 126 | 98.12 50 | 98.71 11 | 93.37 93 | 90.23 234 | 96.70 163 | 87.66 110 | 97.85 287 | 91.49 173 | 90.39 275 | 95.83 255 |
|
| FMVSNet3 | | | 91.78 215 | 90.69 236 | 95.03 174 | 96.53 199 | 92.27 95 | 97.02 172 | 96.93 219 | 89.79 214 | 89.35 267 | 94.65 271 | 77.01 286 | 97.47 321 | 86.12 279 | 88.82 288 | 95.35 285 |
|
| patch_mono-2 | | | 96.83 41 | 97.44 13 | 95.01 175 | 99.05 39 | 85.39 304 | 96.98 177 | 98.77 7 | 94.70 45 | 97.99 32 | 98.66 27 | 93.61 19 | 99.91 1 | 97.67 18 | 99.50 34 | 99.72 11 |
|
| VPNet | | | 92.23 202 | 91.31 208 | 94.99 176 | 95.56 246 | 90.96 146 | 97.22 159 | 97.86 115 | 92.96 115 | 90.96 223 | 96.62 176 | 75.06 304 | 98.20 232 | 91.90 161 | 83.65 349 | 95.80 258 |
|
| FMVSNet2 | | | 91.31 242 | 90.08 260 | 94.99 176 | 96.51 201 | 92.21 96 | 97.41 135 | 96.95 217 | 88.82 246 | 88.62 285 | 94.75 266 | 73.87 313 | 97.42 326 | 85.20 294 | 88.55 293 | 95.35 285 |
|
| thres100view900 | | | 92.43 189 | 91.58 198 | 94.98 178 | 97.92 113 | 89.37 203 | 97.71 102 | 94.66 334 | 92.20 135 | 93.31 163 | 94.90 258 | 78.06 278 | 99.08 146 | 81.40 331 | 94.08 212 | 96.48 233 |
|
| BH-RMVSNet | | | 92.72 184 | 91.97 185 | 94.97 179 | 97.16 150 | 87.99 247 | 96.15 247 | 95.60 293 | 90.62 192 | 91.87 197 | 97.15 141 | 78.41 271 | 98.57 203 | 83.16 314 | 97.60 134 | 98.36 149 |
|
| MSDG | | | 91.42 234 | 90.24 253 | 94.96 180 | 97.15 152 | 88.91 219 | 93.69 345 | 96.32 261 | 85.72 319 | 86.93 325 | 96.47 183 | 80.24 237 | 98.98 161 | 80.57 338 | 95.05 192 | 96.98 218 |
|
| tfpn200view9 | | | 92.38 192 | 91.52 201 | 94.95 181 | 97.85 117 | 89.29 207 | 97.41 135 | 94.88 328 | 92.19 137 | 93.27 165 | 94.46 282 | 78.17 274 | 99.08 146 | 81.40 331 | 94.08 212 | 96.48 233 |
|
| XXY-MVS | | | 92.16 204 | 91.23 213 | 94.95 181 | 94.75 300 | 90.94 147 | 97.47 132 | 97.43 175 | 89.14 231 | 88.90 277 | 96.43 185 | 79.71 247 | 98.24 228 | 89.56 210 | 87.68 299 | 95.67 270 |
|
| Vis-MVSNet (Re-imp) | | | 94.15 118 | 93.88 115 | 94.95 181 | 97.61 132 | 87.92 249 | 98.10 51 | 95.80 282 | 92.22 133 | 93.02 168 | 97.45 124 | 84.53 157 | 97.91 284 | 88.24 236 | 97.97 125 | 99.02 86 |
|
| mvsmamba | | | 93.83 134 | 93.46 130 | 94.93 184 | 94.88 293 | 90.85 151 | 98.55 14 | 95.49 299 | 94.24 63 | 91.29 217 | 96.97 149 | 83.04 184 | 98.14 238 | 95.56 88 | 91.17 261 | 95.78 260 |
|
| tttt0517 | | | 92.96 170 | 92.33 175 | 94.87 185 | 97.11 153 | 87.16 268 | 97.97 69 | 92.09 375 | 90.63 191 | 93.88 150 | 97.01 148 | 76.50 290 | 99.06 153 | 90.29 195 | 95.45 184 | 98.38 147 |
|
| iter_conf05 | | | 93.18 160 | 92.63 161 | 94.83 186 | 96.64 186 | 90.69 158 | 97.60 116 | 95.53 298 | 92.52 127 | 91.58 204 | 96.64 168 | 76.35 294 | 98.13 239 | 95.43 90 | 91.42 256 | 95.68 269 |
|
| OPM-MVS | | | 93.28 153 | 92.76 154 | 94.82 187 | 94.63 306 | 90.77 155 | 96.65 206 | 97.18 193 | 93.72 77 | 91.68 203 | 97.26 134 | 79.33 254 | 98.63 196 | 92.13 157 | 92.28 238 | 95.07 301 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| HQP_MVS | | | 93.78 137 | 93.43 133 | 94.82 187 | 96.21 216 | 89.99 178 | 97.74 95 | 97.51 155 | 94.85 34 | 91.34 211 | 96.64 168 | 81.32 219 | 98.60 199 | 93.02 145 | 92.23 239 | 95.86 251 |
|
| hse-mvs2 | | | 93.45 148 | 92.99 143 | 94.81 189 | 97.02 162 | 88.59 226 | 96.69 202 | 96.47 255 | 95.19 20 | 96.74 64 | 96.16 199 | 83.67 170 | 98.48 210 | 95.85 71 | 79.13 371 | 97.35 208 |
|
| AUN-MVS | | | 91.76 216 | 90.75 231 | 94.81 189 | 97.00 166 | 88.57 227 | 96.65 206 | 96.49 254 | 89.63 216 | 92.15 189 | 96.12 201 | 78.66 267 | 98.50 207 | 90.83 184 | 79.18 370 | 97.36 206 |
|
| XVG-OURS-SEG-HR | | | 93.86 133 | 93.55 123 | 94.81 189 | 97.06 158 | 88.53 230 | 95.28 291 | 97.45 168 | 91.68 151 | 94.08 145 | 97.68 107 | 82.41 201 | 98.90 168 | 93.84 128 | 92.47 236 | 96.98 218 |
|
| XVG-OURS | | | 93.72 139 | 93.35 136 | 94.80 192 | 97.07 155 | 88.61 225 | 94.79 305 | 97.46 163 | 91.97 145 | 93.99 146 | 97.86 95 | 81.74 214 | 98.88 169 | 92.64 150 | 92.67 235 | 96.92 222 |
|
| IB-MVS | | 87.33 17 | 89.91 288 | 88.28 303 | 94.79 193 | 95.26 271 | 87.70 256 | 95.12 299 | 93.95 355 | 89.35 226 | 87.03 320 | 92.49 342 | 70.74 332 | 99.19 128 | 89.18 223 | 81.37 361 | 97.49 201 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| WR-MVS | | | 92.34 194 | 91.53 200 | 94.77 194 | 95.13 279 | 90.83 152 | 96.40 228 | 97.98 100 | 91.88 146 | 89.29 270 | 95.54 235 | 82.50 198 | 97.80 292 | 89.79 204 | 85.27 324 | 95.69 268 |
|
| RPMNet | | | 88.98 301 | 87.05 315 | 94.77 194 | 94.45 313 | 87.19 266 | 90.23 382 | 98.03 91 | 77.87 384 | 92.40 179 | 87.55 387 | 80.17 239 | 99.51 96 | 68.84 388 | 93.95 217 | 97.60 197 |
|
| thres200 | | | 92.23 202 | 91.39 204 | 94.75 196 | 97.61 132 | 89.03 217 | 96.60 214 | 95.09 318 | 92.08 141 | 93.28 164 | 94.00 306 | 78.39 272 | 99.04 157 | 81.26 336 | 94.18 208 | 96.19 240 |
|
| UniMVSNet_ETH3D | | | 91.34 241 | 90.22 256 | 94.68 197 | 94.86 294 | 87.86 252 | 97.23 158 | 97.46 163 | 87.99 270 | 89.90 249 | 96.92 153 | 66.35 364 | 98.23 229 | 90.30 194 | 90.99 266 | 97.96 175 |
|
| ETVMVS | | | 90.52 273 | 89.14 292 | 94.67 198 | 96.81 177 | 87.85 253 | 95.91 259 | 93.97 353 | 89.71 215 | 92.34 185 | 92.48 343 | 65.41 370 | 97.96 272 | 81.37 334 | 94.27 206 | 98.21 158 |
|
| GA-MVS | | | 91.38 236 | 90.31 248 | 94.59 199 | 94.65 305 | 87.62 257 | 94.34 321 | 96.19 269 | 90.73 183 | 90.35 232 | 93.83 310 | 71.84 324 | 97.96 272 | 87.22 261 | 93.61 224 | 98.21 158 |
|
| GBi-Net | | | 91.35 239 | 90.27 251 | 94.59 199 | 96.51 201 | 91.18 138 | 97.50 126 | 96.93 219 | 88.82 246 | 89.35 267 | 94.51 277 | 73.87 313 | 97.29 333 | 86.12 279 | 88.82 288 | 95.31 288 |
|
| test1 | | | 91.35 239 | 90.27 251 | 94.59 199 | 96.51 201 | 91.18 138 | 97.50 126 | 96.93 219 | 88.82 246 | 89.35 267 | 94.51 277 | 73.87 313 | 97.29 333 | 86.12 279 | 88.82 288 | 95.31 288 |
|
| FMVSNet1 | | | 89.88 291 | 88.31 302 | 94.59 199 | 95.41 254 | 91.18 138 | 97.50 126 | 96.93 219 | 86.62 304 | 87.41 312 | 94.51 277 | 65.94 368 | 97.29 333 | 83.04 316 | 87.43 302 | 95.31 288 |
|
| cascas | | | 91.20 247 | 90.08 260 | 94.58 203 | 94.97 284 | 89.16 215 | 93.65 347 | 97.59 145 | 79.90 375 | 89.40 265 | 92.92 336 | 75.36 302 | 98.36 220 | 92.14 156 | 94.75 198 | 96.23 237 |
|
| ECVR-MVS |  | | 93.19 157 | 92.73 158 | 94.57 204 | 97.66 127 | 85.41 302 | 98.21 44 | 88.23 393 | 93.43 91 | 94.70 131 | 98.21 67 | 72.57 321 | 99.07 150 | 93.05 144 | 98.49 106 | 99.25 68 |
|
| HQP-MVS | | | 93.19 157 | 92.74 157 | 94.54 205 | 95.86 233 | 89.33 205 | 96.65 206 | 97.39 178 | 93.55 82 | 90.14 235 | 95.87 212 | 80.95 222 | 98.50 207 | 92.13 157 | 92.10 244 | 95.78 260 |
|
| testing91 | | | 91.90 212 | 91.02 219 | 94.53 206 | 96.54 197 | 86.55 284 | 95.86 261 | 95.64 292 | 91.77 148 | 91.89 196 | 93.47 327 | 69.94 339 | 98.86 170 | 90.23 196 | 93.86 219 | 98.18 160 |
|
| testing11 | | | 91.68 220 | 90.75 231 | 94.47 207 | 96.53 199 | 86.56 283 | 95.76 268 | 94.51 340 | 91.10 174 | 91.24 220 | 93.59 322 | 68.59 349 | 98.86 170 | 91.10 181 | 94.29 205 | 98.00 174 |
|
| PVSNet_BlendedMVS | | | 94.06 124 | 93.92 114 | 94.47 207 | 98.27 83 | 89.46 199 | 96.73 196 | 98.36 24 | 90.17 202 | 94.36 137 | 95.24 246 | 88.02 104 | 99.58 77 | 93.44 134 | 90.72 270 | 94.36 338 |
|
| gg-mvs-nofinetune | | | 87.82 315 | 85.61 327 | 94.44 209 | 94.46 312 | 89.27 210 | 91.21 376 | 84.61 402 | 80.88 368 | 89.89 251 | 74.98 396 | 71.50 326 | 97.53 316 | 85.75 287 | 97.21 149 | 96.51 231 |
|
| PS-MVSNAJss | | | 93.74 138 | 93.51 128 | 94.44 209 | 93.91 328 | 89.28 209 | 97.75 94 | 97.56 151 | 92.50 128 | 89.94 248 | 96.54 179 | 88.65 95 | 98.18 235 | 93.83 129 | 90.90 268 | 95.86 251 |
|
| PMMVS | | | 92.86 176 | 92.34 174 | 94.42 211 | 94.92 289 | 86.73 277 | 94.53 312 | 96.38 259 | 84.78 335 | 94.27 139 | 95.12 251 | 83.13 181 | 98.40 214 | 91.47 174 | 96.49 165 | 98.12 166 |
|
| MVSTER | | | 93.20 156 | 92.81 153 | 94.37 212 | 96.56 194 | 89.59 191 | 97.06 169 | 97.12 198 | 91.24 166 | 91.30 214 | 95.96 208 | 82.02 208 | 98.05 256 | 93.48 133 | 90.55 272 | 95.47 275 |
|
| testing222 | | | 90.31 277 | 88.96 294 | 94.35 213 | 96.54 197 | 87.29 260 | 95.50 281 | 93.84 358 | 90.97 177 | 91.75 201 | 92.96 335 | 62.18 379 | 98.00 263 | 82.86 317 | 94.08 212 | 97.76 187 |
|
| ACMM | | 89.79 8 | 92.96 170 | 92.50 170 | 94.35 213 | 96.30 214 | 88.71 223 | 97.58 118 | 97.36 183 | 91.40 161 | 90.53 228 | 96.65 167 | 79.77 246 | 98.75 183 | 91.24 179 | 91.64 250 | 95.59 271 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| CHOSEN 280x420 | | | 93.12 161 | 92.72 159 | 94.34 215 | 96.71 184 | 87.27 262 | 90.29 381 | 97.72 128 | 86.61 305 | 91.34 211 | 95.29 242 | 84.29 162 | 98.41 213 | 93.25 138 | 98.94 90 | 97.35 208 |
|
| testing99 | | | 91.62 222 | 90.72 234 | 94.32 216 | 96.48 204 | 86.11 294 | 95.81 264 | 94.76 332 | 91.55 153 | 91.75 201 | 93.44 328 | 68.55 350 | 98.82 174 | 90.43 190 | 93.69 220 | 98.04 173 |
|
| CLD-MVS | | | 92.98 169 | 92.53 168 | 94.32 216 | 96.12 226 | 89.20 212 | 95.28 291 | 97.47 161 | 92.66 123 | 89.90 249 | 95.62 230 | 80.58 230 | 98.40 214 | 92.73 149 | 92.40 237 | 95.38 283 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| dcpmvs_2 | | | 96.37 60 | 97.05 22 | 94.31 218 | 98.96 46 | 84.11 322 | 97.56 120 | 97.51 155 | 93.92 71 | 97.43 45 | 98.52 35 | 92.75 29 | 99.32 117 | 97.32 30 | 99.50 34 | 99.51 37 |
|
| test1111 | | | 93.19 157 | 92.82 152 | 94.30 219 | 97.58 139 | 84.56 317 | 98.21 44 | 89.02 391 | 93.53 86 | 94.58 133 | 98.21 67 | 72.69 320 | 99.05 154 | 93.06 143 | 98.48 108 | 99.28 65 |
|
| test_cas_vis1_n_1920 | | | 94.48 110 | 94.55 103 | 94.28 220 | 96.78 178 | 86.45 285 | 97.63 113 | 97.64 138 | 93.32 96 | 97.68 38 | 98.36 50 | 73.75 317 | 99.08 146 | 96.73 39 | 99.05 84 | 97.31 210 |
|
| Anonymous20231211 | | | 90.63 270 | 89.42 285 | 94.27 221 | 98.24 87 | 89.19 214 | 98.05 56 | 97.89 107 | 79.95 374 | 88.25 296 | 94.96 254 | 72.56 322 | 98.13 239 | 89.70 206 | 85.14 326 | 95.49 272 |
|
| LTVRE_ROB | | 88.41 13 | 90.99 256 | 89.92 268 | 94.19 222 | 96.18 219 | 89.55 193 | 96.31 236 | 97.09 202 | 87.88 274 | 85.67 335 | 95.91 211 | 78.79 266 | 98.57 203 | 81.50 329 | 89.98 278 | 94.44 336 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| pmmvs4 | | | 90.93 260 | 89.85 270 | 94.17 223 | 93.34 347 | 90.79 154 | 94.60 309 | 96.02 273 | 84.62 336 | 87.45 310 | 95.15 248 | 81.88 212 | 97.45 323 | 87.70 247 | 87.87 298 | 94.27 343 |
|
| tt0805 | | | 91.09 251 | 90.07 263 | 94.16 224 | 95.61 243 | 88.31 234 | 97.56 120 | 96.51 253 | 89.56 218 | 89.17 274 | 95.64 229 | 67.08 362 | 98.38 219 | 91.07 182 | 88.44 294 | 95.80 258 |
|
| TR-MVS | | | 91.48 232 | 90.59 239 | 94.16 224 | 96.40 209 | 87.33 259 | 95.67 271 | 95.34 307 | 87.68 284 | 91.46 208 | 95.52 236 | 76.77 288 | 98.35 221 | 82.85 319 | 93.61 224 | 96.79 226 |
|
| LPG-MVS_test | | | 92.94 172 | 92.56 165 | 94.10 226 | 96.16 221 | 88.26 237 | 97.65 107 | 97.46 163 | 91.29 162 | 90.12 241 | 97.16 139 | 79.05 258 | 98.73 185 | 92.25 153 | 91.89 247 | 95.31 288 |
|
| LGP-MVS_train | | | | | 94.10 226 | 96.16 221 | 88.26 237 | | 97.46 163 | 91.29 162 | 90.12 241 | 97.16 139 | 79.05 258 | 98.73 185 | 92.25 153 | 91.89 247 | 95.31 288 |
|
| mvs_anonymous | | | 93.82 135 | 93.74 117 | 94.06 228 | 96.44 207 | 85.41 302 | 95.81 264 | 97.05 208 | 89.85 211 | 90.09 244 | 96.36 189 | 87.44 119 | 97.75 297 | 93.97 122 | 96.69 161 | 99.02 86 |
|
| ACMP | | 89.59 10 | 92.62 185 | 92.14 179 | 94.05 229 | 96.40 209 | 88.20 240 | 97.36 143 | 97.25 192 | 91.52 154 | 88.30 293 | 96.64 168 | 78.46 270 | 98.72 188 | 91.86 164 | 91.48 254 | 95.23 295 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| test2506 | | | 91.60 223 | 90.78 229 | 94.04 230 | 97.66 127 | 83.81 325 | 98.27 34 | 75.53 408 | 93.43 91 | 95.23 122 | 98.21 67 | 67.21 358 | 99.07 150 | 93.01 147 | 98.49 106 | 99.25 68 |
|
| jajsoiax | | | 92.42 190 | 91.89 189 | 94.03 231 | 93.33 348 | 88.50 231 | 97.73 97 | 97.53 153 | 92.00 144 | 88.85 280 | 96.50 182 | 75.62 301 | 98.11 244 | 93.88 127 | 91.56 253 | 95.48 273 |
|
| test_djsdf | | | 93.07 165 | 92.76 154 | 94.00 232 | 93.49 342 | 88.70 224 | 98.22 42 | 97.57 147 | 91.42 159 | 90.08 245 | 95.55 234 | 82.85 190 | 97.92 281 | 94.07 120 | 91.58 252 | 95.40 281 |
|
| AllTest | | | 90.23 281 | 88.98 293 | 93.98 233 | 97.94 111 | 86.64 278 | 96.51 219 | 95.54 296 | 85.38 323 | 85.49 337 | 96.77 159 | 70.28 334 | 99.15 135 | 80.02 342 | 92.87 228 | 96.15 243 |
|
| TestCases | | | | | 93.98 233 | 97.94 111 | 86.64 278 | | 95.54 296 | 85.38 323 | 85.49 337 | 96.77 159 | 70.28 334 | 99.15 135 | 80.02 342 | 92.87 228 | 96.15 243 |
|
| anonymousdsp | | | 92.16 204 | 91.55 199 | 93.97 235 | 92.58 361 | 89.55 193 | 97.51 125 | 97.42 176 | 89.42 224 | 88.40 290 | 94.84 261 | 80.66 228 | 97.88 286 | 91.87 163 | 91.28 259 | 94.48 333 |
|
| pm-mvs1 | | | 90.72 267 | 89.65 280 | 93.96 236 | 94.29 320 | 89.63 188 | 97.79 92 | 96.82 232 | 89.07 233 | 86.12 333 | 95.48 238 | 78.61 268 | 97.78 294 | 86.97 267 | 81.67 359 | 94.46 334 |
|
| WR-MVS_H | | | 92.00 209 | 91.35 205 | 93.95 237 | 95.09 281 | 89.47 197 | 98.04 57 | 98.68 13 | 91.46 157 | 88.34 291 | 94.68 269 | 85.86 141 | 97.56 312 | 85.77 286 | 84.24 341 | 94.82 318 |
|
| CR-MVSNet | | | 90.82 263 | 89.77 274 | 93.95 237 | 94.45 313 | 87.19 266 | 90.23 382 | 95.68 290 | 86.89 300 | 92.40 179 | 92.36 348 | 80.91 224 | 97.05 339 | 81.09 337 | 93.95 217 | 97.60 197 |
|
| mvs_tets | | | 92.31 196 | 91.76 191 | 93.94 239 | 93.41 345 | 88.29 235 | 97.63 113 | 97.53 153 | 92.04 142 | 88.76 283 | 96.45 184 | 74.62 309 | 98.09 248 | 93.91 125 | 91.48 254 | 95.45 277 |
|
| baseline2 | | | 91.63 221 | 90.86 224 | 93.94 239 | 94.33 317 | 86.32 287 | 95.92 258 | 91.64 379 | 89.37 225 | 86.94 324 | 94.69 268 | 81.62 216 | 98.69 190 | 88.64 233 | 94.57 202 | 96.81 225 |
|
| RRT_MVS | | | 93.10 162 | 92.83 151 | 93.93 241 | 94.76 298 | 88.04 245 | 98.47 22 | 96.55 251 | 93.44 90 | 90.01 247 | 97.04 146 | 80.64 229 | 97.93 280 | 94.33 117 | 90.21 277 | 95.83 255 |
|
| BH-untuned | | | 92.94 172 | 92.62 163 | 93.92 242 | 97.22 146 | 86.16 293 | 96.40 228 | 96.25 265 | 90.06 206 | 89.79 253 | 96.17 198 | 83.19 178 | 98.35 221 | 87.19 262 | 97.27 147 | 97.24 213 |
|
| ACMH | | 87.59 16 | 90.53 272 | 89.42 285 | 93.87 243 | 96.21 216 | 87.92 249 | 97.24 154 | 96.94 218 | 88.45 259 | 83.91 355 | 96.27 193 | 71.92 323 | 98.62 198 | 84.43 302 | 89.43 284 | 95.05 303 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| SCA | | | 91.84 214 | 91.18 216 | 93.83 244 | 95.59 244 | 84.95 313 | 94.72 306 | 95.58 295 | 90.82 179 | 92.25 187 | 93.69 316 | 75.80 298 | 98.10 245 | 86.20 276 | 95.98 171 | 98.45 139 |
|
| CP-MVSNet | | | 91.89 213 | 91.24 212 | 93.82 245 | 95.05 282 | 88.57 227 | 97.82 88 | 98.19 55 | 91.70 150 | 88.21 297 | 95.76 222 | 81.96 209 | 97.52 318 | 87.86 241 | 84.65 333 | 95.37 284 |
|
| v2v482 | | | 91.59 224 | 90.85 226 | 93.80 246 | 93.87 330 | 88.17 242 | 96.94 180 | 96.88 227 | 89.54 219 | 89.53 262 | 94.90 258 | 81.70 215 | 98.02 261 | 89.25 219 | 85.04 330 | 95.20 296 |
|
| COLMAP_ROB |  | 87.81 15 | 90.40 276 | 89.28 288 | 93.79 247 | 97.95 110 | 87.13 269 | 96.92 181 | 95.89 279 | 82.83 355 | 86.88 327 | 97.18 138 | 73.77 316 | 99.29 121 | 78.44 352 | 93.62 223 | 94.95 305 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| mvsany_test1 | | | 93.93 130 | 93.98 113 | 93.78 248 | 94.94 288 | 86.80 274 | 94.62 308 | 92.55 372 | 88.77 250 | 96.85 60 | 98.49 38 | 88.98 88 | 98.08 249 | 95.03 97 | 95.62 181 | 96.46 235 |
|
| V42 | | | 91.58 226 | 90.87 223 | 93.73 249 | 94.05 325 | 88.50 231 | 97.32 148 | 96.97 215 | 88.80 249 | 89.71 254 | 94.33 288 | 82.54 197 | 98.05 256 | 89.01 225 | 85.07 328 | 94.64 331 |
|
| PVSNet | | 86.66 18 | 92.24 201 | 91.74 194 | 93.73 249 | 97.77 121 | 83.69 329 | 92.88 362 | 96.72 236 | 87.91 273 | 93.00 169 | 94.86 260 | 78.51 269 | 99.05 154 | 86.53 270 | 97.45 140 | 98.47 137 |
|
| MIMVSNet | | | 88.50 309 | 86.76 319 | 93.72 251 | 94.84 295 | 87.77 255 | 91.39 372 | 94.05 350 | 86.41 308 | 87.99 302 | 92.59 341 | 63.27 374 | 95.82 362 | 77.44 355 | 92.84 230 | 97.57 199 |
|
| Patchmatch-test | | | 89.42 298 | 87.99 305 | 93.70 252 | 95.27 268 | 85.11 309 | 88.98 388 | 94.37 344 | 81.11 366 | 87.10 319 | 93.69 316 | 82.28 203 | 97.50 319 | 74.37 372 | 94.76 197 | 98.48 136 |
|
| PS-CasMVS | | | 91.55 228 | 90.84 227 | 93.69 253 | 94.96 285 | 88.28 236 | 97.84 85 | 98.24 47 | 91.46 157 | 88.04 301 | 95.80 217 | 79.67 248 | 97.48 320 | 87.02 266 | 84.54 338 | 95.31 288 |
|
| v1144 | | | 91.37 238 | 90.60 238 | 93.68 254 | 93.89 329 | 88.23 239 | 96.84 188 | 97.03 212 | 88.37 261 | 89.69 256 | 94.39 284 | 82.04 207 | 97.98 265 | 87.80 243 | 85.37 321 | 94.84 315 |
|
| GG-mvs-BLEND | | | | | 93.62 255 | 93.69 335 | 89.20 212 | 92.39 369 | 83.33 404 | | 87.98 303 | 89.84 372 | 71.00 330 | 96.87 347 | 82.08 327 | 95.40 185 | 94.80 321 |
|
| tfpnnormal | | | 89.70 296 | 88.40 301 | 93.60 256 | 95.15 277 | 90.10 174 | 97.56 120 | 98.16 61 | 87.28 294 | 86.16 332 | 94.63 272 | 77.57 283 | 98.05 256 | 74.48 370 | 84.59 336 | 92.65 364 |
|
| PatchmatchNet |  | | 91.91 211 | 91.35 205 | 93.59 257 | 95.38 256 | 84.11 322 | 93.15 357 | 95.39 301 | 89.54 219 | 92.10 192 | 93.68 318 | 82.82 191 | 98.13 239 | 84.81 297 | 95.32 186 | 98.52 129 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| v1192 | | | 91.07 252 | 90.23 254 | 93.58 258 | 93.70 334 | 87.82 254 | 96.73 196 | 97.07 205 | 87.77 280 | 89.58 259 | 94.32 290 | 80.90 226 | 97.97 268 | 86.52 271 | 85.48 319 | 94.95 305 |
|
| v8 | | | 91.29 244 | 90.53 242 | 93.57 259 | 94.15 321 | 88.12 244 | 97.34 145 | 97.06 207 | 88.99 237 | 88.32 292 | 94.26 295 | 83.08 182 | 98.01 262 | 87.62 253 | 83.92 346 | 94.57 332 |
|
| ADS-MVSNet | | | 89.89 290 | 88.68 298 | 93.53 260 | 95.86 233 | 84.89 314 | 90.93 377 | 95.07 319 | 83.23 353 | 91.28 218 | 91.81 357 | 79.01 262 | 97.85 287 | 79.52 344 | 91.39 257 | 97.84 182 |
|
| v10 | | | 91.04 254 | 90.23 254 | 93.49 261 | 94.12 322 | 88.16 243 | 97.32 148 | 97.08 203 | 88.26 264 | 88.29 294 | 94.22 298 | 82.17 206 | 97.97 268 | 86.45 273 | 84.12 342 | 94.33 339 |
|
| EI-MVSNet | | | 93.03 167 | 92.88 149 | 93.48 262 | 95.77 238 | 86.98 271 | 96.44 220 | 97.12 198 | 90.66 189 | 91.30 214 | 97.64 114 | 86.56 129 | 98.05 256 | 89.91 200 | 90.55 272 | 95.41 278 |
|
| PEN-MVS | | | 91.20 247 | 90.44 243 | 93.48 262 | 94.49 311 | 87.91 251 | 97.76 93 | 98.18 57 | 91.29 162 | 87.78 305 | 95.74 223 | 80.35 235 | 97.33 331 | 85.46 290 | 82.96 354 | 95.19 299 |
|
| v7n | | | 90.76 264 | 89.86 269 | 93.45 264 | 93.54 339 | 87.60 258 | 97.70 103 | 97.37 181 | 88.85 243 | 87.65 307 | 94.08 304 | 81.08 221 | 98.10 245 | 84.68 299 | 83.79 348 | 94.66 330 |
|
| v144192 | | | 91.06 253 | 90.28 250 | 93.39 265 | 93.66 337 | 87.23 265 | 96.83 189 | 97.07 205 | 87.43 289 | 89.69 256 | 94.28 292 | 81.48 217 | 98.00 263 | 87.18 263 | 84.92 332 | 94.93 309 |
|
| EPMVS | | | 90.70 268 | 89.81 272 | 93.37 266 | 94.73 302 | 84.21 320 | 93.67 346 | 88.02 394 | 89.50 221 | 92.38 181 | 93.49 325 | 77.82 282 | 97.78 294 | 86.03 282 | 92.68 234 | 98.11 169 |
|
| IterMVS-LS | | | 92.29 198 | 91.94 186 | 93.34 267 | 96.25 215 | 86.97 272 | 96.57 218 | 97.05 208 | 90.67 187 | 89.50 264 | 94.80 264 | 86.59 128 | 97.64 305 | 89.91 200 | 86.11 314 | 95.40 281 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| BH-w/o | | | 92.14 206 | 91.75 192 | 93.31 268 | 96.99 167 | 85.73 297 | 95.67 271 | 95.69 288 | 88.73 251 | 89.26 272 | 94.82 263 | 82.97 187 | 98.07 253 | 85.26 293 | 96.32 168 | 96.13 245 |
|
| v1921920 | | | 90.85 262 | 90.03 265 | 93.29 269 | 93.55 338 | 86.96 273 | 96.74 195 | 97.04 210 | 87.36 291 | 89.52 263 | 94.34 287 | 80.23 238 | 97.97 268 | 86.27 274 | 85.21 325 | 94.94 307 |
|
| ACMH+ | | 87.92 14 | 90.20 283 | 89.18 290 | 93.25 270 | 96.48 204 | 86.45 285 | 96.99 176 | 96.68 241 | 88.83 245 | 84.79 344 | 96.22 195 | 70.16 336 | 98.53 205 | 84.42 303 | 88.04 296 | 94.77 326 |
|
| v1240 | | | 90.70 268 | 89.85 270 | 93.23 271 | 93.51 341 | 86.80 274 | 96.61 212 | 97.02 213 | 87.16 296 | 89.58 259 | 94.31 291 | 79.55 251 | 97.98 265 | 85.52 289 | 85.44 320 | 94.90 312 |
|
| PatchT | | | 88.87 305 | 87.42 309 | 93.22 272 | 94.08 324 | 85.10 310 | 89.51 386 | 94.64 337 | 81.92 361 | 92.36 182 | 88.15 383 | 80.05 241 | 97.01 342 | 72.43 379 | 93.65 222 | 97.54 200 |
|
| Fast-Effi-MVS+-dtu | | | 92.29 198 | 91.99 184 | 93.21 273 | 95.27 268 | 85.52 300 | 97.03 170 | 96.63 247 | 92.09 140 | 89.11 276 | 95.14 249 | 80.33 236 | 98.08 249 | 87.54 255 | 94.74 199 | 96.03 249 |
|
| miper_enhance_ethall | | | 91.54 229 | 91.01 220 | 93.15 274 | 95.35 260 | 87.07 270 | 93.97 333 | 96.90 224 | 86.79 302 | 89.17 274 | 93.43 331 | 86.55 130 | 97.64 305 | 89.97 199 | 86.93 306 | 94.74 327 |
|
| cl22 | | | 91.21 246 | 90.56 241 | 93.14 275 | 96.09 228 | 86.80 274 | 94.41 318 | 96.58 250 | 87.80 278 | 88.58 287 | 93.99 307 | 80.85 227 | 97.62 308 | 89.87 202 | 86.93 306 | 94.99 304 |
|
| XVG-ACMP-BASELINE | | | 90.93 260 | 90.21 257 | 93.09 276 | 94.31 319 | 85.89 295 | 95.33 288 | 97.26 190 | 91.06 175 | 89.38 266 | 95.44 239 | 68.61 348 | 98.60 199 | 89.46 212 | 91.05 264 | 94.79 323 |
|
| TransMVSNet (Re) | | | 88.94 302 | 87.56 308 | 93.08 277 | 94.35 316 | 88.45 233 | 97.73 97 | 95.23 312 | 87.47 288 | 84.26 348 | 95.29 242 | 79.86 245 | 97.33 331 | 79.44 348 | 74.44 382 | 93.45 354 |
|
| DTE-MVSNet | | | 90.56 271 | 89.75 276 | 93.01 278 | 93.95 326 | 87.25 263 | 97.64 111 | 97.65 136 | 90.74 182 | 87.12 317 | 95.68 227 | 79.97 243 | 97.00 343 | 83.33 313 | 81.66 360 | 94.78 325 |
|
| EPNet_dtu | | | 91.71 217 | 91.28 210 | 92.99 279 | 93.76 333 | 83.71 328 | 96.69 202 | 95.28 308 | 93.15 104 | 87.02 321 | 95.95 209 | 83.37 176 | 97.38 329 | 79.46 347 | 96.84 155 | 97.88 180 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| miper_ehance_all_eth | | | 91.59 224 | 91.13 217 | 92.97 280 | 95.55 247 | 86.57 282 | 94.47 314 | 96.88 227 | 87.77 280 | 88.88 279 | 94.01 305 | 86.22 135 | 97.54 314 | 89.49 211 | 86.93 306 | 94.79 323 |
|
| Baseline_NR-MVSNet | | | 91.20 247 | 90.62 237 | 92.95 281 | 93.83 331 | 88.03 246 | 97.01 175 | 95.12 317 | 88.42 260 | 89.70 255 | 95.13 250 | 83.47 173 | 97.44 324 | 89.66 208 | 83.24 352 | 93.37 355 |
|
| test_vis1_n_1920 | | | 94.17 116 | 94.58 99 | 92.91 282 | 97.42 143 | 82.02 343 | 97.83 86 | 97.85 116 | 94.68 46 | 98.10 29 | 98.49 38 | 70.15 337 | 99.32 117 | 97.91 15 | 98.82 93 | 97.40 205 |
|
| cl____ | | | 90.96 259 | 90.32 247 | 92.89 283 | 95.37 258 | 86.21 291 | 94.46 316 | 96.64 244 | 87.82 276 | 88.15 299 | 94.18 299 | 82.98 186 | 97.54 314 | 87.70 247 | 85.59 317 | 94.92 311 |
|
| DIV-MVS_self_test | | | 90.97 258 | 90.33 246 | 92.88 284 | 95.36 259 | 86.19 292 | 94.46 316 | 96.63 247 | 87.82 276 | 88.18 298 | 94.23 296 | 82.99 185 | 97.53 316 | 87.72 244 | 85.57 318 | 94.93 309 |
|
| c3_l | | | 91.38 236 | 90.89 222 | 92.88 284 | 95.58 245 | 86.30 288 | 94.68 307 | 96.84 231 | 88.17 266 | 88.83 282 | 94.23 296 | 85.65 144 | 97.47 321 | 89.36 214 | 84.63 334 | 94.89 313 |
|
| pmmvs5 | | | 89.86 293 | 88.87 296 | 92.82 286 | 92.86 354 | 86.23 290 | 96.26 239 | 95.39 301 | 84.24 340 | 87.12 317 | 94.51 277 | 74.27 311 | 97.36 330 | 87.61 254 | 87.57 300 | 94.86 314 |
|
| v148 | | | 90.99 256 | 90.38 245 | 92.81 287 | 93.83 331 | 85.80 296 | 96.78 193 | 96.68 241 | 89.45 223 | 88.75 284 | 93.93 309 | 82.96 188 | 97.82 291 | 87.83 242 | 83.25 351 | 94.80 321 |
|
| Patchmtry | | | 88.64 308 | 87.25 311 | 92.78 288 | 94.09 323 | 86.64 278 | 89.82 385 | 95.68 290 | 80.81 370 | 87.63 308 | 92.36 348 | 80.91 224 | 97.03 340 | 78.86 350 | 85.12 327 | 94.67 329 |
|
| test_vis1_n | | | 92.37 193 | 92.26 177 | 92.72 289 | 94.75 300 | 82.64 335 | 98.02 58 | 96.80 233 | 91.18 169 | 97.77 37 | 97.93 88 | 58.02 383 | 98.29 226 | 97.63 19 | 98.21 118 | 97.23 214 |
|
| MVP-Stereo | | | 90.74 266 | 90.08 260 | 92.71 290 | 93.19 350 | 88.20 240 | 95.86 261 | 96.27 263 | 86.07 314 | 84.86 343 | 94.76 265 | 77.84 281 | 97.75 297 | 83.88 311 | 98.01 124 | 92.17 373 |
| Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
| pmmvs6 | | | 87.81 316 | 86.19 323 | 92.69 291 | 91.32 371 | 86.30 288 | 97.34 145 | 96.41 258 | 80.59 373 | 84.05 354 | 94.37 286 | 67.37 357 | 97.67 302 | 84.75 298 | 79.51 369 | 94.09 346 |
|
| Effi-MVS+-dtu | | | 93.08 164 | 93.21 140 | 92.68 292 | 96.02 230 | 83.25 332 | 97.14 166 | 96.72 236 | 93.85 74 | 91.20 222 | 93.44 328 | 83.08 182 | 98.30 225 | 91.69 170 | 95.73 178 | 96.50 232 |
|
| CostFormer | | | 91.18 250 | 90.70 235 | 92.62 293 | 94.84 295 | 81.76 345 | 94.09 331 | 94.43 341 | 84.15 341 | 92.72 176 | 93.77 314 | 79.43 252 | 98.20 232 | 90.70 188 | 92.18 242 | 97.90 178 |
|
| LCM-MVSNet-Re | | | 92.50 186 | 92.52 169 | 92.44 294 | 96.82 176 | 81.89 344 | 96.92 181 | 93.71 360 | 92.41 130 | 84.30 347 | 94.60 273 | 85.08 150 | 97.03 340 | 91.51 172 | 97.36 142 | 98.40 145 |
|
| ITE_SJBPF | | | | | 92.43 295 | 95.34 261 | 85.37 305 | | 95.92 275 | 91.47 156 | 87.75 306 | 96.39 188 | 71.00 330 | 97.96 272 | 82.36 325 | 89.86 280 | 93.97 347 |
|
| dmvs_re | | | 90.21 282 | 89.50 283 | 92.35 296 | 95.47 253 | 85.15 308 | 95.70 270 | 94.37 344 | 90.94 178 | 88.42 289 | 93.57 323 | 74.63 308 | 95.67 365 | 82.80 320 | 89.57 283 | 96.22 238 |
|
| D2MVS | | | 91.30 243 | 90.95 221 | 92.35 296 | 94.71 303 | 85.52 300 | 96.18 246 | 98.21 51 | 88.89 242 | 86.60 328 | 93.82 312 | 79.92 244 | 97.95 276 | 89.29 217 | 90.95 267 | 93.56 351 |
|
| eth_miper_zixun_eth | | | 91.02 255 | 90.59 239 | 92.34 298 | 95.33 264 | 84.35 318 | 94.10 330 | 96.90 224 | 88.56 255 | 88.84 281 | 94.33 288 | 84.08 165 | 97.60 310 | 88.77 231 | 84.37 340 | 95.06 302 |
|
| test_fmvs1_n | | | 92.73 183 | 92.88 149 | 92.29 299 | 96.08 229 | 81.05 351 | 97.98 63 | 97.08 203 | 90.72 184 | 96.79 62 | 98.18 70 | 63.07 375 | 98.45 211 | 97.62 20 | 98.42 111 | 97.36 206 |
|
| USDC | | | 88.94 302 | 87.83 307 | 92.27 300 | 94.66 304 | 84.96 312 | 93.86 339 | 95.90 277 | 87.34 292 | 83.40 357 | 95.56 233 | 67.43 356 | 98.19 234 | 82.64 324 | 89.67 282 | 93.66 350 |
|
| test_fmvs1 | | | 93.21 155 | 93.53 125 | 92.25 301 | 96.55 196 | 81.20 350 | 97.40 139 | 96.96 216 | 90.68 186 | 96.80 61 | 98.04 79 | 69.25 344 | 98.40 214 | 97.58 21 | 98.50 105 | 97.16 215 |
|
| tpm2 | | | 89.96 287 | 89.21 289 | 92.23 302 | 94.91 291 | 81.25 348 | 93.78 341 | 94.42 342 | 80.62 372 | 91.56 205 | 93.44 328 | 76.44 292 | 97.94 277 | 85.60 288 | 92.08 246 | 97.49 201 |
|
| test-LLR | | | 91.42 234 | 91.19 215 | 92.12 303 | 94.59 307 | 80.66 354 | 94.29 325 | 92.98 365 | 91.11 172 | 90.76 226 | 92.37 345 | 79.02 260 | 98.07 253 | 88.81 229 | 96.74 158 | 97.63 192 |
|
| test-mter | | | 90.19 284 | 89.54 282 | 92.12 303 | 94.59 307 | 80.66 354 | 94.29 325 | 92.98 365 | 87.68 284 | 90.76 226 | 92.37 345 | 67.67 354 | 98.07 253 | 88.81 229 | 96.74 158 | 97.63 192 |
|
| ADS-MVSNet2 | | | 89.45 297 | 88.59 299 | 92.03 305 | 95.86 233 | 82.26 341 | 90.93 377 | 94.32 347 | 83.23 353 | 91.28 218 | 91.81 357 | 79.01 262 | 95.99 357 | 79.52 344 | 91.39 257 | 97.84 182 |
|
| TESTMET0.1,1 | | | 90.06 286 | 89.42 285 | 91.97 306 | 94.41 315 | 80.62 356 | 94.29 325 | 91.97 377 | 87.28 294 | 90.44 230 | 92.47 344 | 68.79 346 | 97.67 302 | 88.50 235 | 96.60 163 | 97.61 196 |
|
| JIA-IIPM | | | 88.26 312 | 87.04 316 | 91.91 307 | 93.52 340 | 81.42 347 | 89.38 387 | 94.38 343 | 80.84 369 | 90.93 224 | 80.74 394 | 79.22 255 | 97.92 281 | 82.76 321 | 91.62 251 | 96.38 236 |
|
| tpmvs | | | 89.83 294 | 89.15 291 | 91.89 308 | 94.92 289 | 80.30 361 | 93.11 358 | 95.46 300 | 86.28 310 | 88.08 300 | 92.65 338 | 80.44 233 | 98.52 206 | 81.47 330 | 89.92 279 | 96.84 224 |
|
| TDRefinement | | | 86.53 326 | 84.76 337 | 91.85 309 | 82.23 399 | 84.25 319 | 96.38 230 | 95.35 304 | 84.97 332 | 84.09 352 | 94.94 255 | 65.76 369 | 98.34 224 | 84.60 301 | 74.52 381 | 92.97 358 |
|
| miper_lstm_enhance | | | 90.50 275 | 90.06 264 | 91.83 310 | 95.33 264 | 83.74 326 | 93.86 339 | 96.70 240 | 87.56 287 | 87.79 304 | 93.81 313 | 83.45 175 | 96.92 345 | 87.39 257 | 84.62 335 | 94.82 318 |
|
| IterMVS-SCA-FT | | | 90.31 277 | 89.81 272 | 91.82 311 | 95.52 248 | 84.20 321 | 94.30 324 | 96.15 270 | 90.61 193 | 87.39 313 | 94.27 293 | 75.80 298 | 96.44 352 | 87.34 258 | 86.88 310 | 94.82 318 |
|
| tpm cat1 | | | 88.36 310 | 87.21 313 | 91.81 312 | 95.13 279 | 80.55 357 | 92.58 366 | 95.70 286 | 74.97 387 | 87.45 310 | 91.96 355 | 78.01 280 | 98.17 236 | 80.39 340 | 88.74 291 | 96.72 228 |
|
| tpmrst | | | 91.44 233 | 91.32 207 | 91.79 313 | 95.15 277 | 79.20 373 | 93.42 352 | 95.37 303 | 88.55 256 | 93.49 158 | 93.67 319 | 82.49 199 | 98.27 227 | 90.41 191 | 89.34 285 | 97.90 178 |
|
| MS-PatchMatch | | | 90.27 279 | 89.77 274 | 91.78 314 | 94.33 317 | 84.72 316 | 95.55 278 | 96.73 235 | 86.17 313 | 86.36 330 | 95.28 244 | 71.28 328 | 97.80 292 | 84.09 306 | 98.14 122 | 92.81 361 |
|
| FMVSNet5 | | | 87.29 320 | 85.79 326 | 91.78 314 | 94.80 297 | 87.28 261 | 95.49 282 | 95.28 308 | 84.09 342 | 83.85 356 | 91.82 356 | 62.95 376 | 94.17 379 | 78.48 351 | 85.34 323 | 93.91 348 |
|
| EG-PatchMatch MVS | | | 87.02 324 | 85.44 328 | 91.76 316 | 92.67 358 | 85.00 311 | 96.08 250 | 96.45 256 | 83.41 352 | 79.52 375 | 93.49 325 | 57.10 385 | 97.72 299 | 79.34 349 | 90.87 269 | 92.56 365 |
|
| tpm | | | 90.25 280 | 89.74 277 | 91.76 316 | 93.92 327 | 79.73 367 | 93.98 332 | 93.54 361 | 88.28 263 | 91.99 194 | 93.25 332 | 77.51 284 | 97.44 324 | 87.30 260 | 87.94 297 | 98.12 166 |
|
| IterMVS | | | 90.15 285 | 89.67 278 | 91.61 318 | 95.48 250 | 83.72 327 | 94.33 322 | 96.12 271 | 89.99 207 | 87.31 316 | 94.15 301 | 75.78 300 | 96.27 355 | 86.97 267 | 86.89 309 | 94.83 316 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| ppachtmachnet_test | | | 88.35 311 | 87.29 310 | 91.53 319 | 92.45 364 | 83.57 330 | 93.75 342 | 95.97 274 | 84.28 339 | 85.32 340 | 94.18 299 | 79.00 264 | 96.93 344 | 75.71 365 | 84.99 331 | 94.10 344 |
|
| pmmvs-eth3d | | | 86.22 331 | 84.45 338 | 91.53 319 | 88.34 388 | 87.25 263 | 94.47 314 | 95.01 320 | 83.47 351 | 79.51 376 | 89.61 373 | 69.75 341 | 95.71 363 | 83.13 315 | 76.73 378 | 91.64 374 |
|
| test_0402 | | | 86.46 327 | 84.79 336 | 91.45 321 | 95.02 283 | 85.55 299 | 96.29 238 | 94.89 327 | 80.90 367 | 82.21 363 | 93.97 308 | 68.21 353 | 97.29 333 | 62.98 392 | 88.68 292 | 91.51 377 |
|
| OurMVSNet-221017-0 | | | 90.51 274 | 90.19 258 | 91.44 322 | 93.41 345 | 81.25 348 | 96.98 177 | 96.28 262 | 91.68 151 | 86.55 329 | 96.30 191 | 74.20 312 | 97.98 265 | 88.96 227 | 87.40 304 | 95.09 300 |
|
| test0.0.03 1 | | | 89.37 299 | 88.70 297 | 91.41 323 | 92.47 363 | 85.63 298 | 95.22 296 | 92.70 370 | 91.11 172 | 86.91 326 | 93.65 320 | 79.02 260 | 93.19 388 | 78.00 354 | 89.18 286 | 95.41 278 |
|
| KD-MVS_2432*1600 | | | 84.81 342 | 82.64 346 | 91.31 324 | 91.07 373 | 85.34 306 | 91.22 374 | 95.75 284 | 85.56 321 | 83.09 359 | 90.21 368 | 67.21 358 | 95.89 358 | 77.18 359 | 62.48 398 | 92.69 362 |
|
| miper_refine_blended | | | 84.81 342 | 82.64 346 | 91.31 324 | 91.07 373 | 85.34 306 | 91.22 374 | 95.75 284 | 85.56 321 | 83.09 359 | 90.21 368 | 67.21 358 | 95.89 358 | 77.18 359 | 62.48 398 | 92.69 362 |
|
| UWE-MVS | | | 89.91 288 | 89.48 284 | 91.21 326 | 95.88 232 | 78.23 378 | 94.91 303 | 90.26 387 | 89.11 232 | 92.35 184 | 94.52 276 | 68.76 347 | 97.96 272 | 83.95 309 | 95.59 182 | 97.42 204 |
|
| TinyColmap | | | 86.82 325 | 85.35 331 | 91.21 326 | 94.91 291 | 82.99 334 | 93.94 335 | 94.02 352 | 83.58 349 | 81.56 365 | 94.68 269 | 62.34 378 | 98.13 239 | 75.78 364 | 87.35 305 | 92.52 367 |
|
| our_test_3 | | | 88.78 306 | 87.98 306 | 91.20 328 | 92.45 364 | 82.53 337 | 93.61 349 | 95.69 288 | 85.77 318 | 84.88 342 | 93.71 315 | 79.99 242 | 96.78 350 | 79.47 346 | 86.24 311 | 94.28 342 |
|
| MDA-MVSNet-bldmvs | | | 85.00 340 | 82.95 345 | 91.17 329 | 93.13 352 | 83.33 331 | 94.56 311 | 95.00 321 | 84.57 337 | 65.13 395 | 92.65 338 | 70.45 333 | 95.85 360 | 73.57 376 | 77.49 374 | 94.33 339 |
|
| SixPastTwentyTwo | | | 89.15 300 | 88.54 300 | 90.98 330 | 93.49 342 | 80.28 362 | 96.70 200 | 94.70 333 | 90.78 180 | 84.15 350 | 95.57 232 | 71.78 325 | 97.71 300 | 84.63 300 | 85.07 328 | 94.94 307 |
|
| PVSNet_0 | | 82.17 19 | 85.46 339 | 83.64 342 | 90.92 331 | 95.27 268 | 79.49 370 | 90.55 380 | 95.60 293 | 83.76 347 | 83.00 361 | 89.95 370 | 71.09 329 | 97.97 268 | 82.75 322 | 60.79 400 | 95.31 288 |
|
| OpenMVS_ROB |  | 81.14 20 | 84.42 344 | 82.28 350 | 90.83 332 | 90.06 378 | 84.05 324 | 95.73 269 | 94.04 351 | 73.89 389 | 80.17 374 | 91.53 360 | 59.15 381 | 97.64 305 | 66.92 390 | 89.05 287 | 90.80 383 |
|
| WB-MVSnew | | | 89.88 291 | 89.56 281 | 90.82 333 | 94.57 310 | 83.06 333 | 95.65 274 | 92.85 367 | 87.86 275 | 90.83 225 | 94.10 302 | 79.66 249 | 96.88 346 | 76.34 362 | 94.19 207 | 92.54 366 |
|
| Patchmatch-RL test | | | 87.38 319 | 86.24 322 | 90.81 334 | 88.74 387 | 78.40 377 | 88.12 392 | 93.17 364 | 87.11 297 | 82.17 364 | 89.29 375 | 81.95 210 | 95.60 367 | 88.64 233 | 77.02 375 | 98.41 144 |
|
| dp | | | 88.90 304 | 88.26 304 | 90.81 334 | 94.58 309 | 76.62 380 | 92.85 363 | 94.93 325 | 85.12 329 | 90.07 246 | 93.07 333 | 75.81 297 | 98.12 243 | 80.53 339 | 87.42 303 | 97.71 189 |
|
| MDA-MVSNet_test_wron | | | 85.87 336 | 84.23 340 | 90.80 336 | 92.38 366 | 82.57 336 | 93.17 355 | 95.15 315 | 82.15 359 | 67.65 391 | 92.33 351 | 78.20 273 | 95.51 369 | 77.33 356 | 79.74 366 | 94.31 341 |
|
| YYNet1 | | | 85.87 336 | 84.23 340 | 90.78 337 | 92.38 366 | 82.46 339 | 93.17 355 | 95.14 316 | 82.12 360 | 67.69 390 | 92.36 348 | 78.16 276 | 95.50 370 | 77.31 357 | 79.73 367 | 94.39 337 |
|
| UnsupCasMVSNet_eth | | | 85.99 334 | 84.45 338 | 90.62 338 | 89.97 379 | 82.40 340 | 93.62 348 | 97.37 181 | 89.86 209 | 78.59 379 | 92.37 345 | 65.25 371 | 95.35 372 | 82.27 326 | 70.75 388 | 94.10 344 |
|
| MIMVSNet1 | | | 84.93 341 | 83.05 343 | 90.56 339 | 89.56 382 | 84.84 315 | 95.40 285 | 95.35 304 | 83.91 343 | 80.38 371 | 92.21 352 | 57.23 384 | 93.34 387 | 70.69 386 | 82.75 357 | 93.50 352 |
|
| lessismore_v0 | | | | | 90.45 340 | 91.96 369 | 79.09 375 | | 87.19 397 | | 80.32 372 | 94.39 284 | 66.31 365 | 97.55 313 | 84.00 308 | 76.84 376 | 94.70 328 |
|
| RPSCF | | | 90.75 265 | 90.86 224 | 90.42 341 | 96.84 172 | 76.29 382 | 95.61 276 | 96.34 260 | 83.89 344 | 91.38 209 | 97.87 93 | 76.45 291 | 98.78 178 | 87.16 264 | 92.23 239 | 96.20 239 |
|
| K. test v3 | | | 87.64 318 | 86.75 320 | 90.32 342 | 93.02 353 | 79.48 371 | 96.61 212 | 92.08 376 | 90.66 189 | 80.25 373 | 94.09 303 | 67.21 358 | 96.65 351 | 85.96 284 | 80.83 363 | 94.83 316 |
|
| testgi | | | 87.97 313 | 87.21 313 | 90.24 343 | 92.86 354 | 80.76 352 | 96.67 205 | 94.97 323 | 91.74 149 | 85.52 336 | 95.83 215 | 62.66 377 | 94.47 377 | 76.25 363 | 88.36 295 | 95.48 273 |
|
| UnsupCasMVSNet_bld | | | 82.13 351 | 79.46 356 | 90.14 344 | 88.00 389 | 82.47 338 | 90.89 379 | 96.62 249 | 78.94 379 | 75.61 383 | 84.40 392 | 56.63 386 | 96.31 354 | 77.30 358 | 66.77 395 | 91.63 375 |
|
| testing3 | | | 87.67 317 | 86.88 318 | 90.05 345 | 96.14 224 | 80.71 353 | 97.10 168 | 92.85 367 | 90.15 204 | 87.54 309 | 94.55 275 | 55.70 388 | 94.10 380 | 73.77 375 | 94.10 211 | 95.35 285 |
|
| LF4IMVS | | | 87.94 314 | 87.25 311 | 89.98 346 | 92.38 366 | 80.05 365 | 94.38 319 | 95.25 311 | 87.59 286 | 84.34 346 | 94.74 267 | 64.31 372 | 97.66 304 | 84.83 296 | 87.45 301 | 92.23 370 |
|
| Anonymous20231206 | | | 87.09 323 | 86.14 324 | 89.93 347 | 91.22 372 | 80.35 359 | 96.11 248 | 95.35 304 | 83.57 350 | 84.16 349 | 93.02 334 | 73.54 318 | 95.61 366 | 72.16 380 | 86.14 313 | 93.84 349 |
|
| CL-MVSNet_self_test | | | 86.31 330 | 85.15 332 | 89.80 348 | 88.83 386 | 81.74 346 | 93.93 336 | 96.22 266 | 86.67 303 | 85.03 341 | 90.80 364 | 78.09 277 | 94.50 375 | 74.92 369 | 71.86 387 | 93.15 357 |
|
| CVMVSNet | | | 91.23 245 | 91.75 192 | 89.67 349 | 95.77 238 | 74.69 384 | 96.44 220 | 94.88 328 | 85.81 317 | 92.18 188 | 97.64 114 | 79.07 257 | 95.58 368 | 88.06 238 | 95.86 175 | 98.74 117 |
|
| myMVS_eth3d | | | 87.18 321 | 86.38 321 | 89.58 350 | 95.16 275 | 79.53 368 | 95.00 300 | 93.93 356 | 88.55 256 | 86.96 322 | 91.99 353 | 56.23 387 | 94.00 381 | 75.47 368 | 94.11 209 | 95.20 296 |
|
| test_vis1_rt | | | 86.16 332 | 85.06 333 | 89.46 351 | 93.47 344 | 80.46 358 | 96.41 224 | 86.61 399 | 85.22 326 | 79.15 377 | 88.64 378 | 52.41 391 | 97.06 338 | 93.08 142 | 90.57 271 | 90.87 382 |
|
| Anonymous20240521 | | | 86.42 328 | 85.44 328 | 89.34 352 | 90.33 376 | 79.79 366 | 96.73 196 | 95.92 275 | 83.71 348 | 83.25 358 | 91.36 361 | 63.92 373 | 96.01 356 | 78.39 353 | 85.36 322 | 92.22 371 |
|
| test_fmvs2 | | | 89.77 295 | 89.93 267 | 89.31 353 | 93.68 336 | 76.37 381 | 97.64 111 | 95.90 277 | 89.84 212 | 91.49 207 | 96.26 194 | 58.77 382 | 97.10 337 | 94.65 111 | 91.13 262 | 94.46 334 |
|
| KD-MVS_self_test | | | 85.95 335 | 84.95 334 | 88.96 354 | 89.55 383 | 79.11 374 | 95.13 298 | 96.42 257 | 85.91 316 | 84.07 353 | 90.48 365 | 70.03 338 | 94.82 374 | 80.04 341 | 72.94 385 | 92.94 359 |
|
| test20.03 | | | 86.14 333 | 85.40 330 | 88.35 355 | 90.12 377 | 80.06 364 | 95.90 260 | 95.20 313 | 88.59 252 | 81.29 366 | 93.62 321 | 71.43 327 | 92.65 389 | 71.26 384 | 81.17 362 | 92.34 369 |
|
| PM-MVS | | | 83.48 346 | 81.86 352 | 88.31 356 | 87.83 390 | 77.59 379 | 93.43 351 | 91.75 378 | 86.91 299 | 80.63 369 | 89.91 371 | 44.42 395 | 95.84 361 | 85.17 295 | 76.73 378 | 91.50 378 |
|
| EU-MVSNet | | | 88.72 307 | 88.90 295 | 88.20 357 | 93.15 351 | 74.21 385 | 96.63 211 | 94.22 348 | 85.18 327 | 87.32 315 | 95.97 207 | 76.16 295 | 94.98 373 | 85.27 292 | 86.17 312 | 95.41 278 |
|
| new_pmnet | | | 82.89 349 | 81.12 354 | 88.18 358 | 89.63 381 | 80.18 363 | 91.77 371 | 92.57 371 | 76.79 386 | 75.56 385 | 88.23 382 | 61.22 380 | 94.48 376 | 71.43 382 | 82.92 355 | 89.87 386 |
|
| CMPMVS |  | 62.92 21 | 85.62 338 | 84.92 335 | 87.74 359 | 89.14 384 | 73.12 389 | 94.17 328 | 96.80 233 | 73.98 388 | 73.65 387 | 94.93 256 | 66.36 363 | 97.61 309 | 83.95 309 | 91.28 259 | 92.48 368 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| Syy-MVS | | | 87.13 322 | 87.02 317 | 87.47 360 | 95.16 275 | 73.21 388 | 95.00 300 | 93.93 356 | 88.55 256 | 86.96 322 | 91.99 353 | 75.90 296 | 94.00 381 | 61.59 394 | 94.11 209 | 95.20 296 |
|
| pmmvs3 | | | 79.97 354 | 77.50 359 | 87.39 361 | 82.80 398 | 79.38 372 | 92.70 365 | 90.75 386 | 70.69 391 | 78.66 378 | 87.47 388 | 51.34 392 | 93.40 386 | 73.39 377 | 69.65 390 | 89.38 387 |
|
| new-patchmatchnet | | | 83.18 348 | 81.87 351 | 87.11 362 | 86.88 391 | 75.99 383 | 93.70 343 | 95.18 314 | 85.02 331 | 77.30 382 | 88.40 380 | 65.99 367 | 93.88 384 | 74.19 374 | 70.18 389 | 91.47 379 |
|
| mvsany_test3 | | | 83.59 345 | 82.44 349 | 87.03 363 | 83.80 395 | 73.82 386 | 93.70 343 | 90.92 385 | 86.42 307 | 82.51 362 | 90.26 367 | 46.76 394 | 95.71 363 | 90.82 185 | 76.76 377 | 91.57 376 |
|
| DSMNet-mixed | | | 86.34 329 | 86.12 325 | 87.00 364 | 89.88 380 | 70.43 390 | 94.93 302 | 90.08 388 | 77.97 383 | 85.42 339 | 92.78 337 | 74.44 310 | 93.96 383 | 74.43 371 | 95.14 188 | 96.62 229 |
|
| ambc | | | | | 86.56 365 | 83.60 396 | 70.00 392 | 85.69 394 | 94.97 323 | | 80.60 370 | 88.45 379 | 37.42 398 | 96.84 348 | 82.69 323 | 75.44 380 | 92.86 360 |
|
| MVS-HIRNet | | | 82.47 350 | 81.21 353 | 86.26 366 | 95.38 256 | 69.21 393 | 88.96 389 | 89.49 389 | 66.28 393 | 80.79 368 | 74.08 398 | 68.48 351 | 97.39 328 | 71.93 381 | 95.47 183 | 92.18 372 |
|
| EGC-MVSNET | | | 68.77 365 | 63.01 370 | 86.07 367 | 92.49 362 | 82.24 342 | 93.96 334 | 90.96 384 | 0.71 410 | 2.62 411 | 90.89 363 | 53.66 389 | 93.46 385 | 57.25 397 | 84.55 337 | 82.51 393 |
|
| APD_test1 | | | 79.31 355 | 77.70 358 | 84.14 368 | 89.11 385 | 69.07 394 | 92.36 370 | 91.50 380 | 69.07 392 | 73.87 386 | 92.63 340 | 39.93 397 | 94.32 378 | 70.54 387 | 80.25 365 | 89.02 388 |
|
| test_fmvs3 | | | 83.21 347 | 83.02 344 | 83.78 369 | 86.77 392 | 68.34 395 | 96.76 194 | 94.91 326 | 86.49 306 | 84.14 351 | 89.48 374 | 36.04 399 | 91.73 391 | 91.86 164 | 80.77 364 | 91.26 381 |
|
| test_f | | | 80.57 353 | 79.62 355 | 83.41 370 | 83.38 397 | 67.80 397 | 93.57 350 | 93.72 359 | 80.80 371 | 77.91 381 | 87.63 386 | 33.40 400 | 92.08 390 | 87.14 265 | 79.04 372 | 90.34 385 |
|
| LCM-MVSNet | | | 72.55 360 | 69.39 364 | 82.03 371 | 70.81 409 | 65.42 400 | 90.12 384 | 94.36 346 | 55.02 399 | 65.88 393 | 81.72 393 | 24.16 407 | 89.96 392 | 74.32 373 | 68.10 393 | 90.71 384 |
|
| PMMVS2 | | | 70.19 362 | 66.92 365 | 80.01 372 | 76.35 403 | 65.67 399 | 86.22 393 | 87.58 396 | 64.83 395 | 62.38 396 | 80.29 395 | 26.78 405 | 88.49 399 | 63.79 391 | 54.07 401 | 85.88 389 |
|
| test_vis3_rt | | | 72.73 359 | 70.55 362 | 79.27 373 | 80.02 400 | 68.13 396 | 93.92 337 | 74.30 410 | 76.90 385 | 58.99 399 | 73.58 399 | 20.29 408 | 95.37 371 | 84.16 304 | 72.80 386 | 74.31 398 |
|
| N_pmnet | | | 78.73 356 | 78.71 357 | 78.79 374 | 92.80 356 | 46.50 411 | 94.14 329 | 43.71 413 | 78.61 380 | 80.83 367 | 91.66 359 | 74.94 306 | 96.36 353 | 67.24 389 | 84.45 339 | 93.50 352 |
|
| dmvs_testset | | | 81.38 352 | 82.60 348 | 77.73 375 | 91.74 370 | 51.49 408 | 93.03 360 | 84.21 403 | 89.07 233 | 78.28 380 | 91.25 362 | 76.97 287 | 88.53 398 | 56.57 398 | 82.24 358 | 93.16 356 |
|
| WB-MVS | | | 76.77 357 | 76.63 360 | 77.18 376 | 85.32 393 | 56.82 406 | 94.53 312 | 89.39 390 | 82.66 357 | 71.35 388 | 89.18 376 | 75.03 305 | 88.88 396 | 35.42 404 | 66.79 394 | 85.84 390 |
|
| ANet_high | | | 63.94 368 | 59.58 371 | 77.02 377 | 61.24 411 | 66.06 398 | 85.66 395 | 87.93 395 | 78.53 381 | 42.94 403 | 71.04 400 | 25.42 406 | 80.71 403 | 52.60 400 | 30.83 404 | 84.28 392 |
|
| testf1 | | | 69.31 363 | 66.76 366 | 76.94 378 | 78.61 401 | 61.93 402 | 88.27 390 | 86.11 400 | 55.62 397 | 59.69 397 | 85.31 390 | 20.19 409 | 89.32 393 | 57.62 395 | 69.44 391 | 79.58 395 |
|
| APD_test2 | | | 69.31 363 | 66.76 366 | 76.94 378 | 78.61 401 | 61.93 402 | 88.27 390 | 86.11 400 | 55.62 397 | 59.69 397 | 85.31 390 | 20.19 409 | 89.32 393 | 57.62 395 | 69.44 391 | 79.58 395 |
|
| SSC-MVS | | | 76.05 358 | 75.83 361 | 76.72 380 | 84.77 394 | 56.22 407 | 94.32 323 | 88.96 392 | 81.82 363 | 70.52 389 | 88.91 377 | 74.79 307 | 88.71 397 | 33.69 405 | 64.71 396 | 85.23 391 |
|
| FPMVS | | | 71.27 361 | 69.85 363 | 75.50 381 | 74.64 404 | 59.03 404 | 91.30 373 | 91.50 380 | 58.80 396 | 57.92 400 | 88.28 381 | 29.98 403 | 85.53 401 | 53.43 399 | 82.84 356 | 81.95 394 |
|
| Gipuma |  | | 67.86 366 | 65.41 368 | 75.18 382 | 92.66 359 | 73.45 387 | 66.50 401 | 94.52 339 | 53.33 400 | 57.80 401 | 66.07 401 | 30.81 401 | 89.20 395 | 48.15 401 | 78.88 373 | 62.90 401 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| DeepMVS_CX |  | | | | 74.68 383 | 90.84 375 | 64.34 401 | | 81.61 406 | 65.34 394 | 67.47 392 | 88.01 385 | 48.60 393 | 80.13 404 | 62.33 393 | 73.68 384 | 79.58 395 |
|
| test_method | | | 66.11 367 | 64.89 369 | 69.79 384 | 72.62 407 | 35.23 415 | 65.19 402 | 92.83 369 | 20.35 405 | 65.20 394 | 88.08 384 | 43.14 396 | 82.70 402 | 73.12 378 | 63.46 397 | 91.45 380 |
|
| PMVS |  | 53.92 22 | 58.58 369 | 55.40 372 | 68.12 385 | 51.00 412 | 48.64 409 | 78.86 398 | 87.10 398 | 46.77 401 | 35.84 407 | 74.28 397 | 8.76 411 | 86.34 400 | 42.07 402 | 73.91 383 | 69.38 399 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| MVE |  | 50.73 23 | 53.25 371 | 48.81 376 | 66.58 386 | 65.34 410 | 57.50 405 | 72.49 400 | 70.94 411 | 40.15 404 | 39.28 406 | 63.51 402 | 6.89 413 | 73.48 407 | 38.29 403 | 42.38 402 | 68.76 400 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| E-PMN | | | 53.28 370 | 52.56 374 | 55.43 387 | 74.43 405 | 47.13 410 | 83.63 397 | 76.30 407 | 42.23 402 | 42.59 404 | 62.22 403 | 28.57 404 | 74.40 405 | 31.53 406 | 31.51 403 | 44.78 402 |
|
| EMVS | | | 52.08 372 | 51.31 375 | 54.39 388 | 72.62 407 | 45.39 412 | 83.84 396 | 75.51 409 | 41.13 403 | 40.77 405 | 59.65 404 | 30.08 402 | 73.60 406 | 28.31 407 | 29.90 405 | 44.18 403 |
|
| tmp_tt | | | 51.94 373 | 53.82 373 | 46.29 389 | 33.73 413 | 45.30 413 | 78.32 399 | 67.24 412 | 18.02 406 | 50.93 402 | 87.05 389 | 52.99 390 | 53.11 408 | 70.76 385 | 25.29 406 | 40.46 404 |
|
| wuyk23d | | | 25.11 374 | 24.57 378 | 26.74 390 | 73.98 406 | 39.89 414 | 57.88 403 | 9.80 414 | 12.27 407 | 10.39 408 | 6.97 410 | 7.03 412 | 36.44 409 | 25.43 408 | 17.39 407 | 3.89 407 |
|
| test123 | | | 13.04 377 | 15.66 380 | 5.18 391 | 4.51 415 | 3.45 416 | 92.50 368 | 1.81 416 | 2.50 409 | 7.58 410 | 20.15 407 | 3.67 414 | 2.18 411 | 7.13 410 | 1.07 409 | 9.90 405 |
|
| testmvs | | | 13.36 376 | 16.33 379 | 4.48 392 | 5.04 414 | 2.26 417 | 93.18 354 | 3.28 415 | 2.70 408 | 8.24 409 | 21.66 406 | 2.29 415 | 2.19 410 | 7.58 409 | 2.96 408 | 9.00 406 |
|
| test_blank | | | 0.00 380 | 0.00 383 | 0.00 393 | 0.00 416 | 0.00 418 | 0.00 404 | 0.00 417 | 0.00 411 | 0.00 412 | 0.00 411 | 0.00 416 | 0.00 412 | 0.00 411 | 0.00 410 | 0.00 408 |
|
| uanet_test | | | 0.00 380 | 0.00 383 | 0.00 393 | 0.00 416 | 0.00 418 | 0.00 404 | 0.00 417 | 0.00 411 | 0.00 412 | 0.00 411 | 0.00 416 | 0.00 412 | 0.00 411 | 0.00 410 | 0.00 408 |
|
| DCPMVS | | | 0.00 380 | 0.00 383 | 0.00 393 | 0.00 416 | 0.00 418 | 0.00 404 | 0.00 417 | 0.00 411 | 0.00 412 | 0.00 411 | 0.00 416 | 0.00 412 | 0.00 411 | 0.00 410 | 0.00 408 |
|
| cdsmvs_eth3d_5k | | | 23.24 375 | 30.99 377 | 0.00 393 | 0.00 416 | 0.00 418 | 0.00 404 | 97.63 140 | 0.00 411 | 0.00 412 | 96.88 155 | 84.38 159 | 0.00 412 | 0.00 411 | 0.00 410 | 0.00 408 |
|
| pcd_1.5k_mvsjas | | | 7.39 379 | 9.85 382 | 0.00 393 | 0.00 416 | 0.00 418 | 0.00 404 | 0.00 417 | 0.00 411 | 0.00 412 | 0.00 411 | 88.65 95 | 0.00 412 | 0.00 411 | 0.00 410 | 0.00 408 |
|
| sosnet-low-res | | | 0.00 380 | 0.00 383 | 0.00 393 | 0.00 416 | 0.00 418 | 0.00 404 | 0.00 417 | 0.00 411 | 0.00 412 | 0.00 411 | 0.00 416 | 0.00 412 | 0.00 411 | 0.00 410 | 0.00 408 |
|
| sosnet | | | 0.00 380 | 0.00 383 | 0.00 393 | 0.00 416 | 0.00 418 | 0.00 404 | 0.00 417 | 0.00 411 | 0.00 412 | 0.00 411 | 0.00 416 | 0.00 412 | 0.00 411 | 0.00 410 | 0.00 408 |
|
| uncertanet | | | 0.00 380 | 0.00 383 | 0.00 393 | 0.00 416 | 0.00 418 | 0.00 404 | 0.00 417 | 0.00 411 | 0.00 412 | 0.00 411 | 0.00 416 | 0.00 412 | 0.00 411 | 0.00 410 | 0.00 408 |
|
| Regformer | | | 0.00 380 | 0.00 383 | 0.00 393 | 0.00 416 | 0.00 418 | 0.00 404 | 0.00 417 | 0.00 411 | 0.00 412 | 0.00 411 | 0.00 416 | 0.00 412 | 0.00 411 | 0.00 410 | 0.00 408 |
|
| ab-mvs-re | | | 8.06 378 | 10.74 381 | 0.00 393 | 0.00 416 | 0.00 418 | 0.00 404 | 0.00 417 | 0.00 411 | 0.00 412 | 96.69 165 | 0.00 416 | 0.00 412 | 0.00 411 | 0.00 410 | 0.00 408 |
|
| uanet | | | 0.00 380 | 0.00 383 | 0.00 393 | 0.00 416 | 0.00 418 | 0.00 404 | 0.00 417 | 0.00 411 | 0.00 412 | 0.00 411 | 0.00 416 | 0.00 412 | 0.00 411 | 0.00 410 | 0.00 408 |
|
| WAC-MVS | | | | | | | 79.53 368 | | | | | | | | 75.56 367 | | |
|
| FOURS1 | | | | | | 99.55 1 | 93.34 66 | 99.29 1 | 98.35 27 | 94.98 29 | 98.49 23 | | | | | | |
|
| PC_three_1452 | | | | | | | | | | 90.77 181 | 98.89 14 | 98.28 65 | 96.24 1 | 98.35 221 | 95.76 75 | 99.58 22 | 99.59 22 |
|
| test_one_0601 | | | | | | 99.32 22 | 95.20 20 | | 98.25 45 | 95.13 23 | 98.48 24 | 98.87 15 | 95.16 7 | | | | |
|
| eth-test2 | | | | | | 0.00 416 | | | | | | | | | | | |
|
| eth-test | | | | | | 0.00 416 | | | | | | | | | | | |
|
| ZD-MVS | | | | | | 99.05 39 | 94.59 31 | | 98.08 74 | 89.22 229 | 97.03 57 | 98.10 73 | 92.52 35 | 99.65 58 | 94.58 114 | 99.31 61 | |
|
| RE-MVS-def | | | | 96.72 43 | | 99.02 42 | 92.34 91 | 97.98 63 | 98.03 91 | 93.52 87 | 97.43 45 | 98.51 36 | 90.71 70 | | 96.05 63 | 99.26 65 | 99.43 51 |
|
| IU-MVS | | | | | | 99.42 7 | 95.39 11 | | 97.94 104 | 90.40 200 | 98.94 8 | | | | 97.41 29 | 99.66 10 | 99.74 8 |
|
| test_241102_TWO | | | | | | | | | 98.27 39 | 95.13 23 | 98.93 9 | 98.89 13 | 94.99 11 | 99.85 18 | 97.52 22 | 99.65 12 | 99.74 8 |
|
| test_241102_ONE | | | | | | 99.42 7 | 95.30 17 | | 98.27 39 | 95.09 26 | 99.19 4 | 98.81 21 | 95.54 5 | 99.65 58 | | | |
|
| 9.14 | | | | 96.75 41 | | 98.93 47 | | 97.73 97 | 98.23 50 | 91.28 165 | 97.88 35 | 98.44 44 | 93.00 26 | 99.65 58 | 95.76 75 | 99.47 39 | |
|
| save fliter | | | | | | 98.91 49 | 94.28 38 | 97.02 172 | 98.02 94 | 95.35 16 | | | | | | | |
|
| test_0728_THIRD | | | | | | | | | | 94.78 41 | 98.73 18 | 98.87 15 | 95.87 4 | 99.84 23 | 97.45 26 | 99.72 2 | 99.77 2 |
|
| test0726 | | | | | | 99.45 3 | 95.36 13 | 98.31 29 | 98.29 34 | 94.92 32 | 98.99 7 | 98.92 10 | 95.08 8 | | | | |
|
| GSMVS | | | | | | | | | | | | | | | | | 98.45 139 |
|
| test_part2 | | | | | | 99.28 25 | 95.74 8 | | | | 98.10 29 | | | | | | |
|
| sam_mvs1 | | | | | | | | | | | | | 82.76 192 | | | | 98.45 139 |
|
| sam_mvs | | | | | | | | | | | | | 81.94 211 | | | | |
|
| MTGPA |  | | | | | | | | 98.08 74 | | | | | | | | |
|
| test_post1 | | | | | | | | 92.81 364 | | | | 16.58 409 | 80.53 231 | 97.68 301 | 86.20 276 | | |
|
| test_post | | | | | | | | | | | | 17.58 408 | 81.76 213 | 98.08 249 | | | |
|
| patchmatchnet-post | | | | | | | | | | | | 90.45 366 | 82.65 196 | 98.10 245 | | | |
|
| MTMP | | | | | | | | 97.86 81 | 82.03 405 | | | | | | | | |
|
| gm-plane-assit | | | | | | 93.22 349 | 78.89 376 | | | 84.82 334 | | 93.52 324 | | 98.64 195 | 87.72 244 | | |
|
| test9_res | | | | | | | | | | | | | | | 94.81 106 | 99.38 54 | 99.45 47 |
|
| TEST9 | | | | | | 98.70 56 | 94.19 42 | 96.41 224 | 98.02 94 | 88.17 266 | 96.03 98 | 97.56 121 | 92.74 30 | 99.59 74 | | | |
|
| test_8 | | | | | | 98.67 58 | 94.06 49 | 96.37 231 | 98.01 97 | 88.58 253 | 95.98 102 | 97.55 123 | 92.73 31 | 99.58 77 | | | |
|
| agg_prior2 | | | | | | | | | | | | | | | 93.94 124 | 99.38 54 | 99.50 40 |
|
| agg_prior | | | | | | 98.67 58 | 93.79 54 | | 98.00 98 | | 95.68 112 | | | 99.57 84 | | | |
|
| test_prior4 | | | | | | | 93.66 57 | 96.42 223 | | | | | | | | | |
|
| test_prior2 | | | | | | | | 96.35 232 | | 92.80 121 | 96.03 98 | 97.59 118 | 92.01 43 | | 95.01 100 | 99.38 54 | |
|
| 旧先验2 | | | | | | | | 95.94 257 | | 81.66 364 | 97.34 48 | | | 98.82 174 | 92.26 151 | | |
|
| æ–°å‡ ä½•2 | | | | | | | | 95.79 266 | | | | | | | | | |
|
| 旧先验1 | | | | | | 98.38 78 | 93.38 63 | | 97.75 123 | | | 98.09 75 | 92.30 41 | | | 99.01 87 | 99.16 73 |
|
| æ— å…ˆéªŒ | | | | | | | | 95.79 266 | 97.87 111 | 83.87 346 | | | | 99.65 58 | 87.68 250 | | 98.89 107 |
|
| 原ACMM2 | | | | | | | | 95.67 271 | | | | | | | | | |
|
| test222 | | | | | | 98.24 87 | 92.21 96 | 95.33 288 | 97.60 142 | 79.22 378 | 95.25 121 | 97.84 98 | 88.80 92 | | | 99.15 76 | 98.72 118 |
|
| testdata2 | | | | | | | | | | | | | | 99.67 56 | 85.96 284 | | |
|
| segment_acmp | | | | | | | | | | | | | 92.89 27 | | | | |
|
| testdata1 | | | | | | | | 95.26 295 | | 93.10 107 | | | | | | | |
|
| plane_prior7 | | | | | | 96.21 216 | 89.98 180 | | | | | | | | | | |
|
| plane_prior6 | | | | | | 96.10 227 | 90.00 176 | | | | | | 81.32 219 | | | | |
|
| plane_prior5 | | | | | | | | | 97.51 155 | | | | | 98.60 199 | 93.02 145 | 92.23 239 | 95.86 251 |
|
| plane_prior4 | | | | | | | | | | | | 96.64 168 | | | | | |
|
| plane_prior3 | | | | | | | 90.00 176 | | | 94.46 55 | 91.34 211 | | | | | | |
|
| plane_prior2 | | | | | | | | 97.74 95 | | 94.85 34 | | | | | | | |
|
| plane_prior1 | | | | | | 96.14 224 | | | | | | | | | | | |
|
| plane_prior | | | | | | | 89.99 178 | 97.24 154 | | 94.06 67 | | | | | | 92.16 243 | |
|
| n2 | | | | | | | | | 0.00 417 | | | | | | | | |
|
| nn | | | | | | | | | 0.00 417 | | | | | | | | |
|
| door-mid | | | | | | | | | 91.06 383 | | | | | | | | |
|
| test11 | | | | | | | | | 97.88 109 | | | | | | | | |
|
| door | | | | | | | | | 91.13 382 | | | | | | | | |
|
| HQP5-MVS | | | | | | | 89.33 205 | | | | | | | | | | |
|
| HQP-NCC | | | | | | 95.86 233 | | 96.65 206 | | 93.55 82 | 90.14 235 | | | | | | |
|
| ACMP_Plane | | | | | | 95.86 233 | | 96.65 206 | | 93.55 82 | 90.14 235 | | | | | | |
|
| BP-MVS | | | | | | | | | | | | | | | 92.13 157 | | |
|
| HQP4-MVS | | | | | | | | | | | 90.14 235 | | | 98.50 207 | | | 95.78 260 |
|
| HQP3-MVS | | | | | | | | | 97.39 178 | | | | | | | 92.10 244 | |
|
| HQP2-MVS | | | | | | | | | | | | | 80.95 222 | | | | |
|
| NP-MVS | | | | | | 95.99 231 | 89.81 185 | | | | | 95.87 212 | | | | | |
|
| MDTV_nov1_ep13_2view | | | | | | | 70.35 391 | 93.10 359 | | 83.88 345 | 93.55 155 | | 82.47 200 | | 86.25 275 | | 98.38 147 |
|
| MDTV_nov1_ep13 | | | | 90.76 230 | | 95.22 272 | 80.33 360 | 93.03 360 | 95.28 308 | 88.14 268 | 92.84 175 | 93.83 310 | 81.34 218 | 98.08 249 | 82.86 317 | 94.34 204 | |
|
| ACMMP++_ref | | | | | | | | | | | | | | | | 90.30 276 | |
|
| ACMMP++ | | | | | | | | | | | | | | | | 91.02 265 | |
|
| Test By Simon | | | | | | | | | | | | | 88.73 94 | | | | |
|