This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort by
EPNet95.20 7794.56 8597.14 5792.80 32992.68 7697.85 7194.87 31596.64 192.46 16097.80 8786.23 12099.65 4993.72 11298.62 8999.10 75
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
NCCC97.30 1497.03 1898.11 1698.77 5395.06 2497.34 12998.04 7895.96 297.09 4397.88 7893.18 2399.71 3795.84 5799.17 6799.56 25
CS-MVS-test96.89 2897.04 1796.45 8298.29 8191.66 10499.03 497.85 10595.84 396.90 4797.97 7291.24 5598.75 16196.92 2299.33 5398.94 90
CNVR-MVS97.68 697.44 998.37 798.90 5095.86 697.27 13698.08 6395.81 497.87 2798.31 4694.26 1399.68 4597.02 2099.49 3699.57 22
HPM-MVS++copyleft97.34 1396.97 2098.47 599.08 3696.16 497.55 10897.97 9095.59 596.61 6097.89 7692.57 3299.84 2195.95 5299.51 3199.40 48
MSP-MVS97.59 897.54 697.73 3499.40 1193.77 5298.53 1598.29 2595.55 698.56 1497.81 8593.90 1599.65 4996.62 2899.21 6499.77 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
DeepPCF-MVS93.97 196.61 4297.09 1395.15 14998.09 9886.63 26296.00 23798.15 5195.43 797.95 2498.56 1893.40 2099.36 10196.77 2599.48 3799.45 41
CANet96.39 4796.02 5297.50 4397.62 12393.38 5997.02 15597.96 9195.42 894.86 11197.81 8587.38 10799.82 2696.88 2399.20 6599.29 56
save fliter98.91 4994.28 3497.02 15598.02 8395.35 9
SteuartSystems-ACMMP97.62 797.53 797.87 2298.39 7694.25 3698.43 2498.27 3095.34 1098.11 1998.56 1894.53 1299.71 3796.57 3199.62 1599.65 12
Skip Steuart: Steuart Systems R&D Blog.
CS-MVS96.86 3097.06 1496.26 9798.16 9591.16 13099.09 397.87 10095.30 1197.06 4498.03 6691.72 4398.71 16797.10 1899.17 6798.90 95
DELS-MVS96.61 4296.38 4797.30 4997.79 11393.19 6595.96 23998.18 4695.23 1295.87 8797.65 9791.45 5099.70 4295.87 5399.44 4399.00 85
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
h-mvs3394.15 10193.52 11096.04 10897.81 11290.22 15797.62 10097.58 13195.19 1396.74 5297.45 11083.67 15599.61 5795.85 5579.73 33898.29 143
hse-mvs293.45 13192.99 12794.81 17197.02 15188.59 20996.69 18496.47 24095.19 1396.74 5296.16 18383.67 15598.48 18795.85 5579.13 34297.35 185
DPE-MVScopyleft97.86 497.65 598.47 599.17 3295.78 797.21 14498.35 2095.16 1598.71 1298.80 1195.05 1099.89 396.70 2799.73 199.73 9
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_one_060199.32 2295.20 2098.25 3595.13 1698.48 1698.87 695.16 7
SED-MVS98.05 297.99 198.24 1099.42 795.30 1798.25 3698.27 3095.13 1699.19 198.89 495.54 599.85 1697.52 999.66 1099.56 25
test_241102_TWO98.27 3095.13 1698.93 698.89 494.99 1199.85 1697.52 999.65 1299.74 7
test_241102_ONE99.42 795.30 1798.27 3095.09 1999.19 198.81 1095.54 599.65 49
MTAPA97.08 1996.78 3097.97 2199.37 1694.42 3297.24 13898.08 6395.07 2096.11 7998.59 1790.88 6499.90 296.18 4599.50 3399.58 21
FOURS199.55 193.34 6299.29 198.35 2094.98 2198.49 15
DVP-MVScopyleft97.91 397.81 398.22 1299.45 395.36 1398.21 4397.85 10594.92 2298.73 1098.87 695.08 899.84 2197.52 999.67 699.48 39
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.45 395.36 1398.31 2998.29 2594.92 2298.99 498.92 295.08 8
XVS97.18 1696.96 2197.81 2699.38 1494.03 4698.59 1298.20 4294.85 2496.59 6298.29 4991.70 4599.80 2895.66 6199.40 4699.62 15
X-MVStestdata91.71 19889.67 25797.81 2699.38 1494.03 4698.59 1298.20 4294.85 2496.59 6232.69 37491.70 4599.80 2895.66 6199.40 4699.62 15
HQP_MVS93.78 12093.43 11694.82 16996.21 19589.99 16297.74 8097.51 13994.85 2491.34 18796.64 15281.32 20498.60 17693.02 12792.23 21195.86 224
plane_prior297.74 8094.85 24
SD-MVS97.41 1097.53 797.06 6098.57 6994.46 3097.92 6598.14 5394.82 2899.01 398.55 2094.18 1497.41 30396.94 2199.64 1399.32 55
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
UA-Net95.95 5895.53 5997.20 5697.67 11892.98 7097.65 9398.13 5494.81 2996.61 6098.35 3788.87 8399.51 8390.36 17497.35 12899.11 74
DeepC-MVS_fast93.89 296.93 2796.64 3597.78 2998.64 6494.30 3397.41 12098.04 7894.81 2996.59 6298.37 3691.24 5599.64 5695.16 7999.52 2899.42 47
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DVP-MVS++98.06 197.99 198.28 998.67 5895.39 1199.29 198.28 2794.78 3198.93 698.87 696.04 299.86 897.45 1399.58 2199.59 19
test_0728_THIRD94.78 3198.73 1098.87 695.87 499.84 2197.45 1399.72 299.77 1
APDe-MVS97.82 597.73 498.08 1799.15 3394.82 2698.81 798.30 2494.76 3398.30 1798.90 393.77 1799.68 4597.93 199.69 399.75 5
EI-MVSNet-Vis-set96.51 4496.47 4296.63 6798.24 8591.20 12596.89 16697.73 11494.74 3496.49 6698.49 2590.88 6499.58 6496.44 3498.32 10099.13 70
patch_mono-296.83 3397.44 995.01 15799.05 3985.39 28296.98 16098.77 594.70 3597.99 2398.66 1493.61 1999.91 197.67 599.50 3399.72 10
test_vis1_n_192094.17 10094.58 8492.91 25997.42 13182.02 31997.83 7397.85 10594.68 3698.10 2098.49 2570.15 31599.32 10497.91 298.82 8297.40 182
EI-MVSNet-UG-set96.34 4996.30 4896.47 7998.20 9090.93 13796.86 16797.72 11694.67 3796.16 7898.46 2990.43 6999.58 6496.23 3897.96 11198.90 95
MSLP-MVS++96.94 2697.06 1496.59 7098.72 5591.86 9997.67 9098.49 1394.66 3897.24 3798.41 3492.31 3798.94 14596.61 2999.46 3998.96 87
3Dnovator+91.43 495.40 6994.48 9098.16 1596.90 15695.34 1698.48 2197.87 10094.65 3988.53 26398.02 6883.69 15499.71 3793.18 12198.96 7899.44 43
ETV-MVS96.02 5595.89 5596.40 8597.16 13892.44 8297.47 11797.77 11094.55 4096.48 6794.51 25791.23 5798.92 14695.65 6498.19 10497.82 165
canonicalmvs96.02 5595.45 6297.75 3397.59 12695.15 2398.28 3297.60 12894.52 4196.27 7596.12 18487.65 10099.18 11796.20 4494.82 17998.91 94
plane_prior390.00 16094.46 4291.34 187
DROMVSNet96.42 4696.47 4296.26 9797.01 15291.52 11098.89 597.75 11194.42 4396.64 5997.68 9389.32 7798.60 17697.45 1399.11 7398.67 114
UGNet94.04 10993.28 12196.31 9296.85 15891.19 12697.88 6797.68 12194.40 4493.00 15296.18 18073.39 29799.61 5791.72 15098.46 9698.13 148
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
alignmvs95.87 6095.23 6997.78 2997.56 12995.19 2197.86 6897.17 17994.39 4596.47 6896.40 17185.89 12699.20 11496.21 4395.11 17598.95 89
CANet_DTU94.37 9593.65 10496.55 7196.46 18592.13 9296.21 22796.67 22894.38 4693.53 14097.03 13179.34 23799.71 3790.76 16898.45 9797.82 165
Vis-MVSNetpermissive95.23 7594.81 7796.51 7597.18 13791.58 10898.26 3598.12 5694.38 4694.90 11098.15 5882.28 18898.92 14691.45 15898.58 9199.01 82
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
MVS_111021_HR96.68 4196.58 3896.99 6198.46 7092.31 8696.20 22898.90 294.30 4895.86 8897.74 9092.33 3599.38 10096.04 4999.42 4499.28 58
mvsmamba93.83 11793.46 11394.93 16694.88 26590.85 14098.55 1495.49 28394.24 4991.29 19396.97 13383.04 16998.14 21595.56 7291.17 23395.78 233
TSAR-MVS + GP.96.69 3996.49 4197.27 5298.31 8093.39 5896.79 17396.72 22194.17 5097.44 3197.66 9692.76 2699.33 10296.86 2497.76 11799.08 76
3Dnovator91.36 595.19 7894.44 9297.44 4596.56 17793.36 6198.65 1198.36 1794.12 5189.25 24898.06 6382.20 19099.77 3093.41 11899.32 5499.18 65
plane_prior89.99 16297.24 13894.06 5292.16 215
casdiffmvspermissive95.64 6495.49 6096.08 10496.76 16890.45 15397.29 13597.44 15694.00 5395.46 10397.98 7187.52 10498.73 16395.64 6597.33 12999.08 76
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
casdiffmvs_mvgpermissive95.81 6195.57 5896.51 7596.87 15791.49 11197.50 11197.56 13593.99 5495.13 10897.92 7587.89 9698.78 15695.97 5197.33 12999.26 60
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MVS_111021_LR96.24 5296.19 5196.39 8798.23 8991.35 11796.24 22698.79 493.99 5495.80 9097.65 9789.92 7599.24 11195.87 5399.20 6598.58 116
dcpmvs_296.37 4897.05 1694.31 19698.96 4684.11 29997.56 10597.51 13993.92 5697.43 3398.52 2292.75 2799.32 10497.32 1799.50 3399.51 33
DeepC-MVS93.07 396.06 5395.66 5797.29 5097.96 10293.17 6697.30 13498.06 7193.92 5693.38 14498.66 1486.83 11399.73 3395.60 7099.22 6398.96 87
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
VNet95.89 5995.45 6297.21 5598.07 10092.94 7197.50 11198.15 5193.87 5897.52 2997.61 10385.29 13399.53 7895.81 5895.27 17199.16 66
Effi-MVS+-dtu93.08 14693.21 12392.68 26996.02 20883.25 30997.14 15096.72 22193.85 5991.20 19793.44 30483.08 16798.30 20291.69 15395.73 16396.50 206
PS-MVSNAJ95.37 7095.33 6795.49 13797.35 13290.66 14895.31 26597.48 14293.85 5996.51 6595.70 20888.65 8799.65 4994.80 9098.27 10196.17 214
SR-MVS97.01 2396.86 2397.47 4499.09 3493.27 6497.98 5798.07 6893.75 6197.45 3098.48 2891.43 5199.59 6196.22 3999.27 5799.54 29
TSAR-MVS + MP.97.42 997.33 1197.69 3899.25 2794.24 3798.07 5297.85 10593.72 6298.57 1398.35 3793.69 1899.40 9797.06 1999.46 3999.44 43
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
OPM-MVS93.28 13692.76 13794.82 16994.63 27990.77 14496.65 18897.18 17793.72 6291.68 17897.26 11879.33 23898.63 17392.13 14092.28 21095.07 273
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
xiu_mvs_v2_base95.32 7295.29 6895.40 14297.22 13490.50 15195.44 25997.44 15693.70 6496.46 6996.18 18088.59 9099.53 7894.79 9297.81 11496.17 214
baseline95.58 6695.42 6496.08 10496.78 16490.41 15597.16 14897.45 15293.69 6595.65 9797.85 8287.29 10898.68 16995.66 6197.25 13399.13 70
EIA-MVS95.53 6895.47 6195.71 12497.06 14789.63 17297.82 7497.87 10093.57 6693.92 13295.04 23490.61 6798.95 14494.62 9598.68 8798.54 118
HQP-NCC95.86 21096.65 18893.55 6790.14 210
ACMP_Plane95.86 21096.65 18893.55 6790.14 210
HQP-MVS93.19 14092.74 14094.54 18695.86 21089.33 18996.65 18897.39 16293.55 6790.14 21095.87 19480.95 20798.50 18492.13 14092.10 21695.78 233
MCST-MVS97.18 1696.84 2598.20 1399.30 2495.35 1597.12 15198.07 6893.54 7096.08 8097.69 9293.86 1699.71 3796.50 3299.39 4899.55 28
test111193.19 14092.82 13594.30 19797.58 12884.56 29498.21 4389.02 36293.53 7194.58 11698.21 5372.69 29899.05 13793.06 12598.48 9599.28 58
SR-MVS-dyc-post96.88 2996.80 2997.11 5999.02 4292.34 8497.98 5798.03 8093.52 7297.43 3398.51 2391.40 5299.56 7296.05 4799.26 5999.43 45
RE-MVS-def96.72 3299.02 4292.34 8497.98 5798.03 8093.52 7297.43 3398.51 2390.71 6696.05 4799.26 5999.43 45
MG-MVS95.61 6595.38 6596.31 9298.42 7390.53 15096.04 23497.48 14293.47 7495.67 9698.10 5989.17 7999.25 11091.27 16198.77 8499.13 70
RRT_MVS93.10 14592.83 13493.93 21894.76 27088.04 22898.47 2296.55 23693.44 7590.01 22297.04 13080.64 21497.93 25694.33 9990.21 25095.83 228
test250691.60 20290.78 21094.04 20797.66 12083.81 30298.27 3375.53 37793.43 7695.23 10598.21 5367.21 33099.07 13493.01 12998.49 9399.25 61
ECVR-MVScopyleft93.19 14092.73 14194.57 18597.66 12085.41 28098.21 4388.23 36393.43 7694.70 11498.21 5372.57 29999.07 13493.05 12698.49 9399.25 61
FC-MVSNet-test93.94 11293.57 10595.04 15495.48 22691.45 11598.12 4898.71 693.37 7890.23 20996.70 14687.66 9997.85 26391.49 15690.39 24895.83 228
MP-MVScopyleft96.77 3696.45 4597.72 3599.39 1393.80 4998.41 2598.06 7193.37 7895.54 10198.34 4090.59 6899.88 494.83 8799.54 2699.49 37
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
FIs94.09 10693.70 10295.27 14595.70 21792.03 9598.10 4998.68 893.36 8090.39 20696.70 14687.63 10197.94 25392.25 13690.50 24795.84 227
mPP-MVS96.86 3096.60 3697.64 4199.40 1193.44 5798.50 1998.09 6293.27 8195.95 8698.33 4391.04 6099.88 495.20 7899.57 2399.60 18
HFP-MVS97.14 1896.92 2297.83 2499.42 794.12 4298.52 1698.32 2293.21 8297.18 3898.29 4992.08 3999.83 2495.63 6699.59 1799.54 29
ACMMPR97.07 2096.84 2597.79 2899.44 693.88 4898.52 1698.31 2393.21 8297.15 3998.33 4391.35 5399.86 895.63 6699.59 1799.62 15
IS-MVSNet94.90 8694.52 8896.05 10797.67 11890.56 14998.44 2396.22 25193.21 8293.99 12997.74 9085.55 13198.45 18889.98 17897.86 11299.14 69
region2R97.07 2096.84 2597.77 3199.46 293.79 5098.52 1698.24 3793.19 8597.14 4098.34 4091.59 4999.87 795.46 7399.59 1799.64 13
EPNet_dtu91.71 19891.28 19292.99 25693.76 30683.71 30596.69 18495.28 29293.15 8687.02 29595.95 19183.37 16197.38 30579.46 32396.84 14097.88 160
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
UniMVSNet (Re)93.31 13592.55 14995.61 12995.39 22993.34 6297.39 12598.71 693.14 8790.10 21894.83 24487.71 9898.03 23891.67 15483.99 31595.46 251
APD-MVS_3200maxsize96.81 3496.71 3397.12 5899.01 4592.31 8697.98 5798.06 7193.11 8897.44 3198.55 2090.93 6299.55 7496.06 4699.25 6199.51 33
testdata195.26 27093.10 89
DU-MVS92.90 15692.04 16395.49 13794.95 25892.83 7297.16 14898.24 3793.02 9090.13 21495.71 20683.47 15897.85 26391.71 15183.93 31695.78 233
xiu_mvs_v1_base_debu95.01 8094.76 7895.75 11996.58 17491.71 10096.25 22397.35 16892.99 9196.70 5496.63 15882.67 17899.44 9396.22 3997.46 12196.11 219
xiu_mvs_v1_base95.01 8094.76 7895.75 11996.58 17491.71 10096.25 22397.35 16892.99 9196.70 5496.63 15882.67 17899.44 9396.22 3997.46 12196.11 219
xiu_mvs_v1_base_debi95.01 8094.76 7895.75 11996.58 17491.71 10096.25 22397.35 16892.99 9196.70 5496.63 15882.67 17899.44 9396.22 3997.46 12196.11 219
CP-MVS97.02 2296.81 2897.64 4199.33 2193.54 5598.80 898.28 2792.99 9196.45 7098.30 4891.90 4299.85 1695.61 6899.68 499.54 29
ACMMPcopyleft96.27 5195.93 5397.28 5199.24 2892.62 7798.25 3698.81 392.99 9194.56 11798.39 3588.96 8299.85 1694.57 9797.63 11899.36 53
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
iter_conf_final93.60 12493.11 12495.04 15497.13 14191.30 11897.92 6595.65 27692.98 9691.60 17996.64 15279.28 23998.13 21695.34 7691.49 22595.70 241
UniMVSNet_NR-MVSNet93.37 13392.67 14395.47 14095.34 23592.83 7297.17 14798.58 1192.98 9690.13 21495.80 19988.37 9297.85 26391.71 15183.93 31695.73 240
VPNet92.23 18491.31 19094.99 15895.56 22290.96 13597.22 14397.86 10492.96 9890.96 19896.62 16175.06 28698.20 20991.90 14483.65 32195.80 231
nrg03094.05 10893.31 12096.27 9695.22 24694.59 2898.34 2797.46 14792.93 9991.21 19696.64 15287.23 11098.22 20794.99 8485.80 28895.98 223
TranMVSNet+NR-MVSNet92.50 16791.63 17895.14 15094.76 27092.07 9397.53 10998.11 5992.90 10089.56 23696.12 18483.16 16497.60 28689.30 19683.20 32595.75 238
diffmvspermissive95.25 7495.13 7295.63 12796.43 18789.34 18895.99 23897.35 16892.83 10196.31 7397.37 11486.44 11898.67 17096.26 3697.19 13598.87 100
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
ACMMP_NAP97.20 1596.86 2398.23 1199.09 3495.16 2297.60 10198.19 4492.82 10297.93 2598.74 1391.60 4899.86 896.26 3699.52 2899.67 11
test_prior296.35 21592.80 10396.03 8197.59 10492.01 4095.01 8399.38 49
bld_raw_dy_0_6492.37 17491.69 17694.39 19194.28 29389.73 17197.71 8793.65 33592.78 10490.46 20496.67 15075.88 27997.97 24592.92 13190.89 24195.48 247
GST-MVS96.85 3296.52 4097.82 2599.36 1894.14 4198.29 3198.13 5492.72 10596.70 5498.06 6391.35 5399.86 894.83 8799.28 5699.47 40
CLD-MVS92.98 15192.53 15194.32 19596.12 20489.20 19595.28 26697.47 14592.66 10689.90 22495.62 21280.58 21598.40 19192.73 13292.40 20995.38 258
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
NR-MVSNet92.34 17691.27 19395.53 13494.95 25893.05 6897.39 12598.07 6892.65 10784.46 31795.71 20685.00 13797.77 27289.71 18583.52 32295.78 233
ZNCC-MVS96.96 2496.67 3497.85 2399.37 1694.12 4298.49 2098.18 4692.64 10896.39 7298.18 5691.61 4799.88 495.59 7199.55 2499.57 22
iter_conf0593.18 14392.63 14494.83 16896.64 17090.69 14697.60 10195.53 28292.52 10991.58 18096.64 15276.35 27798.13 21695.43 7491.42 22895.68 243
PS-MVSNAJss93.74 12193.51 11194.44 18893.91 30189.28 19397.75 7997.56 13592.50 11089.94 22396.54 16488.65 8798.18 21293.83 11190.90 24095.86 224
VDD-MVS93.82 11893.08 12596.02 10997.88 10989.96 16697.72 8595.85 26592.43 11195.86 8898.44 3168.42 32499.39 9896.31 3594.85 17798.71 111
LCM-MVSNet-Re92.50 16792.52 15292.44 27296.82 16381.89 32096.92 16493.71 33492.41 11284.30 31994.60 25585.08 13697.03 31691.51 15597.36 12798.40 136
SF-MVS97.39 1197.13 1298.17 1499.02 4295.28 1998.23 4098.27 3092.37 11398.27 1898.65 1693.33 2199.72 3696.49 3399.52 2899.51 33
VPA-MVSNet93.24 13792.48 15495.51 13595.70 21792.39 8397.86 6898.66 1092.30 11492.09 17395.37 22280.49 21798.40 19193.95 10585.86 28795.75 238
PGM-MVS96.81 3496.53 3997.65 3999.35 2093.53 5697.65 9398.98 192.22 11597.14 4098.44 3191.17 5899.85 1694.35 9899.46 3999.57 22
Vis-MVSNet (Re-imp)94.15 10193.88 9994.95 16397.61 12487.92 23298.10 4995.80 26792.22 11593.02 15197.45 11084.53 14397.91 26088.24 21597.97 11099.02 79
thres100view90092.43 17091.58 18094.98 16097.92 10689.37 18797.71 8794.66 31792.20 11793.31 14694.90 24078.06 26299.08 13181.40 30894.08 18896.48 207
baseline192.82 16191.90 16995.55 13397.20 13690.77 14497.19 14594.58 32092.20 11792.36 16496.34 17484.16 14998.21 20889.20 20283.90 31997.68 170
tfpn200view992.38 17391.52 18394.95 16397.85 11089.29 19197.41 12094.88 31292.19 11993.27 14894.46 26278.17 25899.08 13181.40 30894.08 18896.48 207
thres40092.42 17191.52 18395.12 15297.85 11089.29 19197.41 12094.88 31292.19 11993.27 14894.46 26278.17 25899.08 13181.40 30894.08 18896.98 192
thres600view792.49 16991.60 17995.18 14897.91 10789.47 18197.65 9394.66 31792.18 12193.33 14594.91 23978.06 26299.10 12681.61 30594.06 19196.98 192
Fast-Effi-MVS+-dtu92.29 18091.99 16693.21 25095.27 24285.52 27897.03 15396.63 23292.09 12289.11 25195.14 23180.33 22198.08 22787.54 23494.74 18296.03 222
thres20092.23 18491.39 18694.75 17897.61 12489.03 20096.60 19695.09 30292.08 12393.28 14794.00 28578.39 25699.04 14081.26 31294.18 18796.19 213
mvs_tets92.31 17891.76 17293.94 21693.41 31888.29 21897.63 9997.53 13792.04 12488.76 25896.45 16874.62 28898.09 22693.91 10791.48 22695.45 252
OMC-MVS95.09 7994.70 8196.25 10098.46 7091.28 11996.43 20497.57 13292.04 12494.77 11397.96 7387.01 11299.09 12991.31 16096.77 14298.36 140
jajsoiax92.42 17191.89 17094.03 20893.33 32188.50 21497.73 8297.53 13792.00 12688.85 25596.50 16675.62 28498.11 22293.88 10991.56 22495.48 247
XVG-OURS93.72 12293.35 11994.80 17497.07 14488.61 20894.79 27797.46 14791.97 12793.99 12997.86 8181.74 19998.88 15092.64 13392.67 20696.92 196
WR-MVS92.34 17691.53 18294.77 17695.13 25190.83 14196.40 21097.98 8991.88 12889.29 24595.54 21782.50 18397.80 26889.79 18485.27 29695.69 242
PAPM_NR95.01 8094.59 8396.26 9798.89 5190.68 14797.24 13897.73 11491.80 12992.93 15796.62 16189.13 8099.14 12289.21 20197.78 11598.97 86
testgi87.97 28887.21 28890.24 31892.86 32780.76 32896.67 18794.97 30791.74 13085.52 30895.83 19762.66 34894.47 35276.25 33888.36 26795.48 247
CP-MVSNet91.89 19491.24 19493.82 22295.05 25488.57 21097.82 7498.19 4491.70 13188.21 27195.76 20481.96 19497.52 29487.86 22084.65 30595.37 259
XVG-OURS-SEG-HR93.86 11693.55 10694.81 17197.06 14788.53 21395.28 26697.45 15291.68 13294.08 12897.68 9382.41 18698.90 14993.84 11092.47 20896.98 192
OurMVSNet-221017-090.51 25290.19 23791.44 29993.41 31881.25 32496.98 16096.28 24791.68 13286.55 30196.30 17574.20 29197.98 24288.96 20687.40 27695.09 272
ACMP89.59 1092.62 16692.14 16194.05 20696.40 18888.20 22397.36 12897.25 17691.52 13488.30 26796.64 15278.46 25498.72 16691.86 14791.48 22695.23 269
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
APD-MVScopyleft96.95 2596.60 3698.01 1899.03 4194.93 2597.72 8598.10 6191.50 13598.01 2298.32 4592.33 3599.58 6494.85 8699.51 3199.53 32
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
ITE_SJBPF92.43 27395.34 23585.37 28395.92 26091.47 13687.75 28196.39 17271.00 30897.96 25082.36 30289.86 25393.97 320
PS-CasMVS91.55 20790.84 20893.69 23094.96 25788.28 21997.84 7298.24 3791.46 13788.04 27595.80 19979.67 23397.48 29687.02 24584.54 31095.31 262
WR-MVS_H92.00 19191.35 18793.95 21495.09 25389.47 18198.04 5498.68 891.46 13788.34 26594.68 25185.86 12797.56 28885.77 26584.24 31394.82 290
MVSFormer95.37 7095.16 7195.99 11196.34 19191.21 12398.22 4197.57 13291.42 13996.22 7697.32 11586.20 12397.92 25794.07 10299.05 7498.85 101
test_djsdf93.07 14792.76 13794.00 20993.49 31588.70 20798.22 4197.57 13291.42 13990.08 22095.55 21682.85 17597.92 25794.07 10291.58 22395.40 256
ACMM89.79 892.96 15292.50 15394.35 19396.30 19388.71 20697.58 10397.36 16791.40 14190.53 20296.65 15179.77 23198.75 16191.24 16291.64 22195.59 245
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
PEN-MVS91.20 22690.44 22293.48 23994.49 28387.91 23497.76 7898.18 4691.29 14287.78 28095.74 20580.35 22097.33 30785.46 26982.96 32695.19 271
LPG-MVS_test92.94 15492.56 14894.10 20396.16 20088.26 22097.65 9397.46 14791.29 14290.12 21697.16 12379.05 24298.73 16392.25 13691.89 21995.31 262
LGP-MVS_train94.10 20396.16 20088.26 22097.46 14791.29 14290.12 21697.16 12379.05 24298.73 16392.25 13691.89 21995.31 262
9.1496.75 3198.93 4797.73 8298.23 4091.28 14597.88 2698.44 3193.00 2499.65 4995.76 5999.47 38
MVSTER93.20 13992.81 13694.37 19296.56 17789.59 17597.06 15297.12 18391.24 14691.30 19095.96 19082.02 19398.05 23493.48 11590.55 24595.47 250
test_yl94.78 9194.23 9496.43 8397.74 11591.22 12196.85 16897.10 18591.23 14795.71 9396.93 13484.30 14699.31 10693.10 12295.12 17398.75 106
DCV-MVSNet94.78 9194.23 9496.43 8397.74 11591.22 12196.85 16897.10 18591.23 14795.71 9396.93 13484.30 14699.31 10693.10 12295.12 17398.75 106
test_vis1_n92.37 17492.26 15992.72 26694.75 27282.64 31198.02 5596.80 21891.18 14997.77 2897.93 7458.02 35398.29 20397.63 698.21 10397.23 188
MVS_Test94.89 8794.62 8295.68 12596.83 16189.55 17796.70 18297.17 17991.17 15095.60 9896.11 18787.87 9798.76 16093.01 12997.17 13698.72 109
HPM-MVScopyleft96.69 3996.45 4597.40 4699.36 1893.11 6798.87 698.06 7191.17 15096.40 7197.99 7090.99 6199.58 6495.61 6899.61 1699.49 37
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
test-LLR91.42 21391.19 19792.12 28094.59 28080.66 32994.29 29592.98 34091.11 15290.76 20092.37 31879.02 24498.07 23188.81 20896.74 14397.63 171
test0.0.03 189.37 27388.70 27191.41 30092.47 33585.63 27695.22 27192.70 34391.11 15286.91 29893.65 29979.02 24493.19 36078.00 33089.18 25895.41 253
XVG-ACMP-BASELINE90.93 23990.21 23693.09 25394.31 29185.89 27395.33 26397.26 17491.06 15489.38 24195.44 22168.61 32298.60 17689.46 19291.05 23694.79 295
Effi-MVS+94.93 8594.45 9196.36 9096.61 17191.47 11396.41 20697.41 16191.02 15594.50 11895.92 19287.53 10398.78 15693.89 10896.81 14198.84 103
SCA91.84 19591.18 19893.83 22195.59 22084.95 29094.72 27895.58 27990.82 15692.25 16793.69 29575.80 28198.10 22386.20 25595.98 15698.45 130
SixPastTwentyTwo89.15 27488.54 27490.98 30693.49 31580.28 33796.70 18294.70 31690.78 15784.15 32295.57 21471.78 30397.71 27684.63 27985.07 30094.94 279
PC_three_145290.77 15898.89 898.28 5196.24 198.35 19895.76 5999.58 2199.59 19
DTE-MVSNet90.56 25089.75 25593.01 25593.95 29987.25 24497.64 9797.65 12490.74 15987.12 29195.68 20979.97 22897.00 32083.33 29281.66 33194.78 297
GA-MVS91.38 21590.31 22794.59 18094.65 27787.62 23994.34 29296.19 25490.73 16090.35 20793.83 28971.84 30297.96 25087.22 24093.61 19798.21 146
test_fmvs1_n92.73 16492.88 13292.29 27696.08 20781.05 32797.98 5797.08 18890.72 16196.79 5098.18 5663.07 34698.45 18897.62 798.42 9897.36 183
EPP-MVSNet95.22 7695.04 7495.76 11797.49 13089.56 17698.67 1097.00 19990.69 16294.24 12397.62 10289.79 7698.81 15493.39 11996.49 15098.92 93
test_fmvs193.21 13893.53 10892.25 27896.55 17981.20 32697.40 12496.96 20190.68 16396.80 4998.04 6569.25 31998.40 19197.58 898.50 9297.16 189
MP-MVS-pluss96.70 3896.27 4997.98 2099.23 3094.71 2796.96 16298.06 7190.67 16495.55 9998.78 1291.07 5999.86 896.58 3099.55 2499.38 51
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
IterMVS-LS92.29 18091.94 16893.34 24496.25 19486.97 25396.57 20097.05 19390.67 16489.50 23994.80 24686.59 11497.64 28189.91 18086.11 28695.40 256
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EI-MVSNet93.03 14992.88 13293.48 23995.77 21586.98 25296.44 20297.12 18390.66 16691.30 19097.64 10086.56 11598.05 23489.91 18090.55 24595.41 253
K. test v387.64 29286.75 29390.32 31793.02 32679.48 34496.61 19492.08 34990.66 16680.25 34594.09 28267.21 33096.65 32785.96 26380.83 33494.83 288
tttt051792.96 15292.33 15794.87 16797.11 14287.16 24997.97 6292.09 34890.63 16893.88 13397.01 13276.50 27399.06 13690.29 17695.45 16898.38 138
BH-RMVSNet92.72 16591.97 16794.97 16197.16 13887.99 23096.15 23095.60 27790.62 16991.87 17697.15 12578.41 25598.57 18083.16 29397.60 11998.36 140
IterMVS-SCA-FT90.31 25589.81 25191.82 28895.52 22484.20 29894.30 29496.15 25590.61 17087.39 28794.27 27375.80 28196.44 32887.34 23786.88 28294.82 290
WTY-MVS94.71 9394.02 9696.79 6397.71 11792.05 9496.59 19797.35 16890.61 17094.64 11596.93 13486.41 11999.39 9891.20 16394.71 18398.94 90
ET-MVSNet_ETH3D91.49 21090.11 23895.63 12796.40 18891.57 10995.34 26293.48 33790.60 17275.58 35595.49 21980.08 22596.79 32594.25 10089.76 25498.52 120
SMA-MVScopyleft97.35 1297.03 1898.30 899.06 3895.42 1097.94 6398.18 4690.57 17398.85 998.94 193.33 2199.83 2496.72 2699.68 499.63 14
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
LFMVS93.60 12492.63 14496.52 7298.13 9791.27 12097.94 6393.39 33890.57 17396.29 7498.31 4669.00 32099.16 11994.18 10195.87 15999.12 73
HPM-MVS_fast96.51 4496.27 4997.22 5499.32 2292.74 7498.74 998.06 7190.57 17396.77 5198.35 3790.21 7199.53 7894.80 9099.63 1499.38 51
DPM-MVS95.69 6294.92 7598.01 1898.08 9995.71 995.27 26897.62 12790.43 17695.55 9997.07 12891.72 4399.50 8689.62 18998.94 7998.82 104
IU-MVS99.42 795.39 1197.94 9390.40 17798.94 597.41 1699.66 1099.74 7
PVSNet_Blended_VisFu95.27 7394.91 7696.38 8898.20 9090.86 13997.27 13698.25 3590.21 17894.18 12597.27 11787.48 10599.73 3393.53 11397.77 11698.55 117
PVSNet_BlendedMVS94.06 10793.92 9894.47 18798.27 8289.46 18396.73 17898.36 1790.17 17994.36 12095.24 22888.02 9399.58 6493.44 11690.72 24394.36 310
thisisatest053093.03 14992.21 16095.49 13797.07 14489.11 19997.49 11692.19 34790.16 18094.09 12796.41 17076.43 27699.05 13790.38 17395.68 16598.31 142
CNLPA94.28 9793.53 10896.52 7298.38 7792.55 7996.59 19796.88 21290.13 18191.91 17597.24 11985.21 13499.09 12987.64 23197.83 11397.92 157
BH-untuned92.94 15492.62 14693.92 21997.22 13486.16 27196.40 21096.25 25090.06 18289.79 22896.17 18283.19 16398.35 19887.19 24197.27 13297.24 187
IterMVS90.15 26189.67 25791.61 29595.48 22683.72 30494.33 29396.12 25689.99 18387.31 29094.15 28175.78 28396.27 33186.97 24686.89 28194.83 288
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
AdaColmapbinary94.34 9693.68 10396.31 9298.59 6691.68 10396.59 19797.81 10989.87 18492.15 16997.06 12983.62 15799.54 7689.34 19598.07 10897.70 169
UnsupCasMVSNet_eth85.99 30684.45 31090.62 31389.97 35082.40 31693.62 31897.37 16589.86 18578.59 35192.37 31865.25 34295.35 34782.27 30370.75 35994.10 317
PHI-MVS96.77 3696.46 4497.71 3798.40 7494.07 4498.21 4398.45 1689.86 18597.11 4298.01 6992.52 3399.69 4396.03 5099.53 2799.36 53
mvs_anonymous93.82 11893.74 10194.06 20596.44 18685.41 28095.81 24597.05 19389.85 18790.09 21996.36 17387.44 10697.75 27393.97 10496.69 14699.02 79
test_fmvs289.77 26989.93 24689.31 32693.68 30976.37 35397.64 9795.90 26289.84 18891.49 18396.26 17858.77 35297.10 31394.65 9491.13 23494.46 306
ab-mvs93.57 12792.55 14996.64 6597.28 13391.96 9895.40 26097.45 15289.81 18993.22 15096.28 17679.62 23499.46 9090.74 16993.11 20098.50 123
FMVSNet391.78 19690.69 21595.03 15696.53 18092.27 8897.02 15596.93 20489.79 19089.35 24294.65 25377.01 27097.47 29786.12 25888.82 26095.35 260
AUN-MVS91.76 19790.75 21294.81 17197.00 15388.57 21096.65 18896.49 23989.63 19192.15 16996.12 18478.66 25198.50 18490.83 16679.18 34197.36 183
FA-MVS(test-final)93.52 12992.92 13095.31 14496.77 16588.54 21294.82 27696.21 25389.61 19294.20 12495.25 22783.24 16299.14 12290.01 17796.16 15498.25 144
tt080591.09 23090.07 24294.16 20195.61 21988.31 21797.56 10596.51 23889.56 19389.17 24995.64 21167.08 33498.38 19691.07 16488.44 26695.80 231
v2v48291.59 20390.85 20793.80 22393.87 30388.17 22596.94 16396.88 21289.54 19489.53 23794.90 24081.70 20098.02 23989.25 19985.04 30295.20 270
PatchmatchNetpermissive91.91 19391.35 18793.59 23495.38 23084.11 29993.15 32795.39 28589.54 19492.10 17293.68 29782.82 17698.13 21684.81 27695.32 17098.52 120
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
EPMVS90.70 24789.81 25193.37 24394.73 27484.21 29793.67 31688.02 36489.50 19692.38 16393.49 30277.82 26697.78 27086.03 26192.68 20598.11 152
GeoE93.89 11493.28 12195.72 12396.96 15589.75 17098.24 3996.92 20889.47 19792.12 17197.21 12184.42 14498.39 19587.71 22596.50 14999.01 82
v14890.99 23590.38 22492.81 26493.83 30485.80 27496.78 17596.68 22689.45 19888.75 25993.93 28882.96 17397.82 26787.83 22183.25 32394.80 293
anonymousdsp92.16 18691.55 18193.97 21292.58 33389.55 17797.51 11097.42 16089.42 19988.40 26494.84 24380.66 21397.88 26291.87 14691.28 23194.48 305
baseline291.63 20190.86 20593.94 21694.33 28986.32 26595.92 24191.64 35289.37 20086.94 29694.69 25081.62 20198.69 16888.64 21294.57 18496.81 199
IB-MVS87.33 1789.91 26488.28 27794.79 17595.26 24587.70 23895.12 27493.95 33289.35 20187.03 29492.49 31670.74 31099.19 11589.18 20381.37 33297.49 180
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
jason94.84 8994.39 9396.18 10295.52 22490.93 13796.09 23296.52 23789.28 20296.01 8497.32 11584.70 14098.77 15995.15 8098.91 8198.85 101
jason: jason.
TAMVS94.01 11093.46 11395.64 12696.16 20090.45 15396.71 18196.89 21189.27 20393.46 14296.92 13787.29 10897.94 25388.70 21195.74 16298.53 119
ZD-MVS99.05 3994.59 2898.08 6389.22 20497.03 4598.10 5992.52 3399.65 4994.58 9699.31 55
API-MVS94.84 8994.49 8995.90 11397.90 10892.00 9697.80 7697.48 14289.19 20594.81 11296.71 14488.84 8499.17 11888.91 20798.76 8596.53 204
XXY-MVS92.16 18691.23 19594.95 16394.75 27290.94 13697.47 11797.43 15989.14 20688.90 25296.43 16979.71 23298.24 20589.56 19087.68 27195.67 244
pm-mvs190.72 24689.65 25993.96 21394.29 29289.63 17297.79 7796.82 21789.07 20786.12 30595.48 22078.61 25297.78 27086.97 24681.67 33094.46 306
HY-MVS89.66 993.87 11592.95 12996.63 6797.10 14392.49 8195.64 25296.64 22989.05 20893.00 15295.79 20285.77 12999.45 9289.16 20494.35 18597.96 155
CSCG96.05 5495.91 5496.46 8199.24 2890.47 15298.30 3098.57 1289.01 20993.97 13197.57 10592.62 3199.76 3194.66 9399.27 5799.15 68
v891.29 22390.53 22193.57 23694.15 29488.12 22797.34 12997.06 19288.99 21088.32 26694.26 27583.08 16798.01 24087.62 23283.92 31894.57 304
PAPR94.18 9993.42 11896.48 7897.64 12291.42 11695.55 25497.71 12088.99 21092.34 16695.82 19889.19 7899.11 12586.14 25797.38 12698.90 95
CDS-MVSNet94.14 10493.54 10795.93 11296.18 19891.46 11496.33 21797.04 19588.97 21293.56 13796.51 16587.55 10297.89 26189.80 18395.95 15798.44 133
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
sss94.51 9493.80 10096.64 6597.07 14491.97 9796.32 21898.06 7188.94 21394.50 11896.78 14184.60 14199.27 10991.90 14496.02 15598.68 113
lupinMVS94.99 8494.56 8596.29 9596.34 19191.21 12395.83 24496.27 24888.93 21496.22 7696.88 13986.20 12398.85 15195.27 7799.05 7498.82 104
D2MVS91.30 22290.95 20292.35 27494.71 27585.52 27896.18 22998.21 4188.89 21586.60 30093.82 29179.92 22997.95 25289.29 19790.95 23993.56 324
v7n90.76 24389.86 24893.45 24193.54 31287.60 24097.70 8997.37 16588.85 21687.65 28294.08 28381.08 20698.10 22384.68 27883.79 32094.66 302
PVSNet_Blended94.87 8894.56 8595.81 11698.27 8289.46 18395.47 25898.36 1788.84 21794.36 12096.09 18888.02 9399.58 6493.44 11698.18 10598.40 136
ACMH+87.92 1490.20 25989.18 26693.25 24796.48 18486.45 26496.99 15996.68 22688.83 21884.79 31696.22 17970.16 31498.53 18284.42 28388.04 26894.77 298
GBi-Net91.35 21890.27 23094.59 18096.51 18191.18 12797.50 11196.93 20488.82 21989.35 24294.51 25773.87 29297.29 30986.12 25888.82 26095.31 262
test191.35 21890.27 23094.59 18096.51 18191.18 12797.50 11196.93 20488.82 21989.35 24294.51 25773.87 29297.29 30986.12 25888.82 26095.31 262
FMVSNet291.31 22190.08 23994.99 15896.51 18192.21 8997.41 12096.95 20288.82 21988.62 26094.75 24873.87 29297.42 30285.20 27388.55 26595.35 260
V4291.58 20590.87 20493.73 22694.05 29888.50 21497.32 13296.97 20088.80 22289.71 22994.33 26882.54 18298.05 23489.01 20585.07 30094.64 303
mvsany_test193.93 11393.98 9793.78 22594.94 26086.80 25594.62 28092.55 34588.77 22396.85 4898.49 2588.98 8198.08 22795.03 8295.62 16696.46 209
BH-w/o92.14 18891.75 17393.31 24596.99 15485.73 27595.67 24995.69 27288.73 22489.26 24794.82 24582.97 17298.07 23185.26 27296.32 15396.13 218
test20.0386.14 30585.40 30288.35 32890.12 34880.06 33995.90 24295.20 29788.59 22581.29 33893.62 30071.43 30592.65 36171.26 35681.17 33392.34 340
train_agg96.30 5095.83 5697.72 3598.70 5694.19 3896.41 20698.02 8388.58 22696.03 8197.56 10792.73 2999.59 6195.04 8199.37 5299.39 49
test_898.67 5894.06 4596.37 21498.01 8688.58 22695.98 8597.55 10992.73 2999.58 64
eth_miper_zixun_eth91.02 23490.59 21892.34 27595.33 23884.35 29594.10 30096.90 20988.56 22888.84 25694.33 26884.08 15097.60 28688.77 21084.37 31295.06 274
tpmrst91.44 21291.32 18991.79 29095.15 24979.20 34693.42 32295.37 28788.55 22993.49 14193.67 29882.49 18498.27 20490.41 17289.34 25797.90 158
ACMH87.59 1690.53 25189.42 26193.87 22096.21 19587.92 23297.24 13896.94 20388.45 23083.91 32796.27 17771.92 30198.62 17584.43 28289.43 25695.05 275
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Baseline_NR-MVSNet91.20 22690.62 21692.95 25893.83 30488.03 22997.01 15895.12 30188.42 23189.70 23095.13 23283.47 15897.44 30089.66 18883.24 32493.37 328
v114491.37 21790.60 21793.68 23193.89 30288.23 22296.84 17097.03 19788.37 23289.69 23194.39 26482.04 19297.98 24287.80 22285.37 29394.84 287
DP-MVS Recon95.68 6395.12 7397.37 4799.19 3194.19 3897.03 15398.08 6388.35 23395.09 10997.65 9789.97 7499.48 8892.08 14398.59 9098.44 133
tpm90.25 25789.74 25691.76 29393.92 30079.73 34293.98 30293.54 33688.28 23491.99 17493.25 30777.51 26897.44 30087.30 23987.94 26998.12 149
v1091.04 23390.23 23393.49 23894.12 29588.16 22697.32 13297.08 18888.26 23588.29 26894.22 27882.17 19197.97 24586.45 25284.12 31494.33 311
Fast-Effi-MVS+93.46 13092.75 13995.59 13096.77 16590.03 15996.81 17297.13 18288.19 23691.30 19094.27 27386.21 12298.63 17387.66 23096.46 15298.12 149
c3_l91.38 21590.89 20392.88 26195.58 22186.30 26694.68 27996.84 21688.17 23788.83 25794.23 27685.65 13097.47 29789.36 19484.63 30694.89 285
TEST998.70 5694.19 3896.41 20698.02 8388.17 23796.03 8197.56 10792.74 2899.59 61
MDTV_nov1_ep1390.76 21195.22 24680.33 33593.03 33095.28 29288.14 23992.84 15893.83 28981.34 20398.08 22782.86 29694.34 186
MAR-MVS94.22 9893.46 11396.51 7598.00 10192.19 9197.67 9097.47 14588.13 24093.00 15295.84 19684.86 13999.51 8387.99 21898.17 10697.83 164
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
UniMVSNet_ETH3D91.34 22090.22 23594.68 17994.86 26687.86 23597.23 14297.46 14787.99 24189.90 22496.92 13766.35 33698.23 20690.30 17590.99 23897.96 155
PatchMatch-RL92.90 15692.02 16595.56 13198.19 9290.80 14295.27 26897.18 17787.96 24291.86 17795.68 20980.44 21898.99 14284.01 28797.54 12096.89 197
thisisatest051592.29 18091.30 19195.25 14696.60 17288.90 20394.36 29192.32 34687.92 24393.43 14394.57 25677.28 26999.00 14189.42 19395.86 16097.86 161
PVSNet86.66 1892.24 18391.74 17593.73 22697.77 11483.69 30692.88 33196.72 22187.91 24493.00 15294.86 24278.51 25399.05 13786.53 24997.45 12598.47 128
LTVRE_ROB88.41 1390.99 23589.92 24794.19 19996.18 19889.55 17796.31 21997.09 18787.88 24585.67 30795.91 19378.79 25098.57 18081.50 30689.98 25194.44 308
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
cl____90.96 23890.32 22692.89 26095.37 23286.21 26994.46 28796.64 22987.82 24688.15 27394.18 27982.98 17197.54 29087.70 22685.59 28994.92 283
DIV-MVS_self_test90.97 23790.33 22592.88 26195.36 23386.19 27094.46 28796.63 23287.82 24688.18 27294.23 27682.99 17097.53 29287.72 22385.57 29094.93 281
cl2291.21 22590.56 22093.14 25296.09 20686.80 25594.41 28996.58 23587.80 24888.58 26293.99 28680.85 21297.62 28489.87 18286.93 27894.99 276
CPTT-MVS95.57 6795.19 7096.70 6499.27 2691.48 11298.33 2898.11 5987.79 24995.17 10798.03 6687.09 11199.61 5793.51 11499.42 4499.02 79
miper_ehance_all_eth91.59 20391.13 19992.97 25795.55 22386.57 26394.47 28596.88 21287.77 25088.88 25494.01 28486.22 12197.54 29089.49 19186.93 27894.79 295
v119291.07 23190.23 23393.58 23593.70 30787.82 23696.73 17897.07 19087.77 25089.58 23494.32 27080.90 21197.97 24586.52 25085.48 29194.95 277
F-COLMAP93.58 12692.98 12895.37 14398.40 7488.98 20197.18 14697.29 17387.75 25290.49 20397.10 12785.21 13499.50 8686.70 24896.72 14597.63 171
131492.81 16292.03 16495.14 15095.33 23889.52 18096.04 23497.44 15687.72 25386.25 30395.33 22383.84 15298.79 15589.26 19897.05 13897.11 190
test-mter90.19 26089.54 26092.12 28094.59 28080.66 32994.29 29592.98 34087.68 25490.76 20092.37 31867.67 32698.07 23188.81 20896.74 14397.63 171
TR-MVS91.48 21190.59 21894.16 20196.40 18887.33 24195.67 24995.34 29187.68 25491.46 18495.52 21876.77 27198.35 19882.85 29793.61 19796.79 200
LF4IMVS87.94 28987.25 28689.98 32092.38 33880.05 34094.38 29095.25 29587.59 25684.34 31894.74 24964.31 34397.66 28084.83 27587.45 27392.23 341
miper_lstm_enhance90.50 25390.06 24391.83 28795.33 23883.74 30393.86 30996.70 22587.56 25787.79 27993.81 29283.45 16096.92 32287.39 23684.62 30794.82 290
TransMVSNet (Re)88.94 27687.56 28393.08 25494.35 28888.45 21697.73 8295.23 29687.47 25884.26 32095.29 22479.86 23097.33 30779.44 32474.44 35393.45 327
v14419291.06 23290.28 22993.39 24293.66 31087.23 24696.83 17197.07 19087.43 25989.69 23194.28 27281.48 20298.00 24187.18 24284.92 30494.93 281
原ACMM196.38 8898.59 6691.09 13297.89 9687.41 26095.22 10697.68 9390.25 7099.54 7687.95 21999.12 7298.49 125
v192192090.85 24190.03 24493.29 24693.55 31186.96 25496.74 17797.04 19587.36 26189.52 23894.34 26780.23 22397.97 24586.27 25385.21 29794.94 279
USDC88.94 27687.83 28192.27 27794.66 27684.96 28993.86 30995.90 26287.34 26283.40 32995.56 21567.43 32898.19 21182.64 30189.67 25593.66 323
PLCcopyleft91.00 694.11 10593.43 11696.13 10398.58 6891.15 13196.69 18497.39 16287.29 26391.37 18696.71 14488.39 9199.52 8287.33 23897.13 13797.73 167
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
tfpnnormal89.70 27088.40 27593.60 23395.15 24990.10 15897.56 10598.16 5087.28 26486.16 30494.63 25477.57 26798.05 23474.48 34384.59 30892.65 336
TESTMET0.1,190.06 26289.42 26191.97 28394.41 28780.62 33194.29 29591.97 35087.28 26490.44 20592.47 31768.79 32197.67 27888.50 21496.60 14897.61 175
v124090.70 24789.85 24993.23 24893.51 31486.80 25596.61 19497.02 19887.16 26689.58 23494.31 27179.55 23597.98 24285.52 26885.44 29294.90 284
Patchmatch-RL test87.38 29386.24 29490.81 30988.74 35878.40 35088.12 36193.17 33987.11 26782.17 33689.29 34681.95 19595.60 34288.64 21277.02 34698.41 135
CDPH-MVS95.97 5795.38 6597.77 3198.93 4794.44 3196.35 21597.88 9886.98 26896.65 5897.89 7691.99 4199.47 8992.26 13499.46 3999.39 49
PM-MVS83.48 31881.86 32388.31 32987.83 36177.59 35193.43 32191.75 35186.91 26980.63 34189.91 34244.42 36495.84 33785.17 27476.73 34991.50 349
CR-MVSNet90.82 24289.77 25393.95 21494.45 28587.19 24790.23 35195.68 27486.89 27092.40 16192.36 32180.91 20997.05 31581.09 31393.95 19297.60 176
1112_ss93.37 13392.42 15596.21 10197.05 14990.99 13396.31 21996.72 22186.87 27189.83 22796.69 14886.51 11799.14 12288.12 21693.67 19498.50 123
miper_enhance_ethall91.54 20891.01 20193.15 25195.35 23487.07 25193.97 30396.90 20986.79 27289.17 24993.43 30686.55 11697.64 28189.97 17986.93 27894.74 299
CL-MVSNet_self_test86.31 30285.15 30489.80 32288.83 35781.74 32293.93 30696.22 25186.67 27385.03 31390.80 33578.09 26194.50 35074.92 34271.86 35893.15 329
FMVSNet189.88 26688.31 27694.59 18095.41 22891.18 12797.50 11196.93 20486.62 27487.41 28694.51 25765.94 34097.29 30983.04 29587.43 27495.31 262
CHOSEN 280x42093.12 14492.72 14294.34 19496.71 16987.27 24390.29 35097.72 11686.61 27591.34 18795.29 22484.29 14898.41 19093.25 12098.94 7997.35 185
test_fmvs383.21 31983.02 31683.78 34186.77 36368.34 36696.76 17694.91 31086.49 27684.14 32389.48 34536.04 36891.73 36391.86 14780.77 33591.26 352
MVS_030488.79 28087.57 28292.46 27194.65 27786.15 27296.40 21097.17 17986.44 27788.02 27691.71 33056.68 35697.03 31684.47 28192.58 20794.19 316
mvsany_test383.59 31782.44 32087.03 33583.80 36473.82 35893.70 31390.92 35886.42 27882.51 33490.26 33846.76 36395.71 33990.82 16776.76 34891.57 347
MIMVSNet88.50 28486.76 29293.72 22894.84 26787.77 23791.39 34194.05 32986.41 27987.99 27792.59 31563.27 34595.82 33877.44 33192.84 20397.57 178
FE-MVS92.05 19091.05 20095.08 15396.83 16187.93 23193.91 30895.70 27086.30 28094.15 12694.97 23576.59 27299.21 11384.10 28596.86 13998.09 153
tpmvs89.83 26889.15 26791.89 28594.92 26180.30 33693.11 32895.46 28486.28 28188.08 27492.65 31280.44 21898.52 18381.47 30789.92 25296.84 198
PAPM91.52 20990.30 22895.20 14795.30 24189.83 16893.38 32396.85 21586.26 28288.59 26195.80 19984.88 13898.15 21475.67 34195.93 15897.63 171
VDDNet93.05 14892.07 16296.02 10996.84 15990.39 15698.08 5195.85 26586.22 28395.79 9198.46 2967.59 32799.19 11594.92 8594.85 17798.47 128
MS-PatchMatch90.27 25689.77 25391.78 29194.33 28984.72 29395.55 25496.73 22086.17 28486.36 30295.28 22671.28 30697.80 26884.09 28698.14 10792.81 333
MVP-Stereo90.74 24590.08 23992.71 26793.19 32388.20 22395.86 24396.27 24886.07 28584.86 31594.76 24777.84 26597.75 27383.88 29098.01 10992.17 344
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
Anonymous20240521192.07 18990.83 20995.76 11798.19 9288.75 20597.58 10395.00 30586.00 28693.64 13697.45 11066.24 33899.53 7890.68 17192.71 20499.01 82
KD-MVS_self_test85.95 30784.95 30688.96 32789.55 35479.11 34795.13 27396.42 24285.91 28784.07 32590.48 33670.03 31694.82 34980.04 31772.94 35692.94 331
CVMVSNet91.23 22491.75 17389.67 32395.77 21574.69 35696.44 20294.88 31285.81 28892.18 16897.64 10079.07 24195.58 34388.06 21795.86 16098.74 108
our_test_388.78 28187.98 28091.20 30492.45 33682.53 31393.61 31995.69 27285.77 28984.88 31493.71 29479.99 22796.78 32679.47 32286.24 28394.28 314
MSDG91.42 21390.24 23294.96 16297.15 14088.91 20293.69 31596.32 24685.72 29086.93 29796.47 16780.24 22298.98 14380.57 31495.05 17696.98 192
CHOSEN 1792x268894.15 10193.51 11196.06 10698.27 8289.38 18695.18 27298.48 1585.60 29193.76 13597.11 12683.15 16599.61 5791.33 15998.72 8699.19 64
KD-MVS_2432*160084.81 31482.64 31891.31 30191.07 34485.34 28491.22 34395.75 26885.56 29283.09 33190.21 33967.21 33095.89 33477.18 33562.48 36792.69 334
miper_refine_blended84.81 31482.64 31891.31 30191.07 34485.34 28491.22 34395.75 26885.56 29283.09 33190.21 33967.21 33095.89 33477.18 33562.48 36792.69 334
AllTest90.23 25888.98 26893.98 21097.94 10486.64 25996.51 20195.54 28085.38 29485.49 30996.77 14270.28 31299.15 12080.02 31892.87 20196.15 216
TestCases93.98 21097.94 10486.64 25995.54 28085.38 29485.49 30996.77 14270.28 31299.15 12080.02 31892.87 20196.15 216
Test_1112_low_res92.84 16091.84 17195.85 11597.04 15089.97 16595.53 25696.64 22985.38 29489.65 23395.18 22985.86 12799.10 12687.70 22693.58 19998.49 125
test_vis1_rt86.16 30485.06 30589.46 32493.47 31780.46 33396.41 20686.61 36985.22 29779.15 34988.64 34752.41 36097.06 31493.08 12490.57 24490.87 353
EU-MVSNet88.72 28288.90 26988.20 33093.15 32474.21 35796.63 19394.22 32885.18 29887.32 28995.97 18976.16 27894.98 34885.27 27186.17 28495.41 253
LS3D93.57 12792.61 14796.47 7997.59 12691.61 10597.67 9097.72 11685.17 29990.29 20898.34 4084.60 14199.73 3383.85 29198.27 10198.06 154
dp88.90 27888.26 27890.81 30994.58 28276.62 35292.85 33294.93 30985.12 30090.07 22193.07 30875.81 28098.12 22180.53 31587.42 27597.71 168
HyFIR lowres test93.66 12392.92 13095.87 11498.24 8589.88 16794.58 28298.49 1385.06 30193.78 13495.78 20382.86 17498.67 17091.77 14995.71 16499.07 78
new-patchmatchnet83.18 32081.87 32287.11 33486.88 36275.99 35593.70 31395.18 29885.02 30277.30 35388.40 34965.99 33993.88 35674.19 34770.18 36091.47 350
TDRefinement86.53 29884.76 30991.85 28682.23 36884.25 29696.38 21395.35 28884.97 30384.09 32494.94 23765.76 34198.34 20184.60 28074.52 35292.97 330
OpenMVScopyleft89.19 1292.86 15891.68 17796.40 8595.34 23592.73 7598.27 3398.12 5684.86 30485.78 30697.75 8978.89 24999.74 3287.50 23598.65 8896.73 201
gm-plane-assit93.22 32278.89 34984.82 30593.52 30198.64 17287.72 223
PMMVS92.86 15892.34 15694.42 19094.92 26186.73 25894.53 28496.38 24484.78 30694.27 12295.12 23383.13 16698.40 19191.47 15796.49 15098.12 149
pmmvs490.93 23989.85 24994.17 20093.34 32090.79 14394.60 28196.02 25884.62 30787.45 28495.15 23081.88 19797.45 29987.70 22687.87 27094.27 315
MDA-MVSNet-bldmvs85.00 31282.95 31791.17 30593.13 32583.33 30894.56 28395.00 30584.57 30865.13 36492.65 31270.45 31195.85 33673.57 34877.49 34594.33 311
QAPM93.45 13192.27 15896.98 6296.77 16592.62 7798.39 2698.12 5684.50 30988.27 26997.77 8882.39 18799.81 2785.40 27098.81 8398.51 122
ppachtmachnet_test88.35 28687.29 28591.53 29692.45 33683.57 30793.75 31295.97 25984.28 31085.32 31294.18 27979.00 24896.93 32175.71 34084.99 30394.10 317
pmmvs589.86 26788.87 27092.82 26392.86 32786.23 26896.26 22295.39 28584.24 31187.12 29194.51 25774.27 29097.36 30687.61 23387.57 27294.86 286
CostFormer91.18 22990.70 21492.62 27094.84 26781.76 32194.09 30194.43 32284.15 31292.72 15993.77 29379.43 23698.20 20990.70 17092.18 21497.90 158
FMVSNet587.29 29485.79 29891.78 29194.80 26987.28 24295.49 25795.28 29284.09 31383.85 32891.82 32762.95 34794.17 35478.48 32785.34 29593.91 321
MIMVSNet184.93 31383.05 31590.56 31489.56 35384.84 29295.40 26095.35 28883.91 31480.38 34392.21 32557.23 35493.34 35970.69 35882.75 32993.50 325
RPSCF90.75 24490.86 20590.42 31696.84 15976.29 35495.61 25396.34 24583.89 31591.38 18597.87 7976.45 27498.78 15687.16 24392.23 21196.20 212
MDTV_nov1_ep13_2view70.35 36293.10 32983.88 31693.55 13882.47 18586.25 25498.38 138
无先验95.79 24697.87 10083.87 31799.65 4987.68 22998.89 98
PVSNet_082.17 1985.46 31183.64 31490.92 30795.27 24279.49 34390.55 34995.60 27783.76 31883.00 33389.95 34171.09 30797.97 24582.75 29960.79 36995.31 262
Anonymous2024052186.42 30085.44 30089.34 32590.33 34779.79 34196.73 17895.92 26083.71 31983.25 33091.36 33363.92 34496.01 33278.39 32985.36 29492.22 342
TinyColmap86.82 29785.35 30391.21 30394.91 26382.99 31093.94 30594.02 33183.58 32081.56 33794.68 25162.34 34998.13 21675.78 33987.35 27792.52 338
Anonymous2023120687.09 29586.14 29689.93 32191.22 34380.35 33496.11 23195.35 28883.57 32184.16 32193.02 30973.54 29695.61 34172.16 35286.14 28593.84 322
pmmvs-eth3d86.22 30384.45 31091.53 29688.34 35987.25 24494.47 28595.01 30483.47 32279.51 34889.61 34469.75 31895.71 33983.13 29476.73 34991.64 345
EG-PatchMatch MVS87.02 29685.44 30091.76 29392.67 33185.00 28896.08 23396.45 24183.41 32379.52 34793.49 30257.10 35597.72 27579.34 32590.87 24292.56 337
ADS-MVSNet289.45 27188.59 27392.03 28295.86 21082.26 31790.93 34694.32 32783.23 32491.28 19491.81 32879.01 24695.99 33379.52 32091.39 22997.84 162
ADS-MVSNet89.89 26588.68 27293.53 23795.86 21084.89 29190.93 34695.07 30383.23 32491.28 19491.81 32879.01 24697.85 26379.52 32091.39 22997.84 162
COLMAP_ROBcopyleft87.81 1590.40 25489.28 26493.79 22497.95 10387.13 25096.92 16495.89 26482.83 32686.88 29997.18 12273.77 29599.29 10878.44 32893.62 19694.95 277
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
testdata95.46 14198.18 9488.90 20397.66 12282.73 32797.03 4598.07 6290.06 7298.85 15189.67 18798.98 7798.64 115
DP-MVS92.76 16391.51 18596.52 7298.77 5390.99 13397.38 12796.08 25782.38 32889.29 24597.87 7983.77 15399.69 4381.37 31196.69 14698.89 98
MDA-MVSNet_test_wron85.87 30884.23 31290.80 31192.38 33882.57 31293.17 32595.15 29982.15 32967.65 36092.33 32478.20 25795.51 34477.33 33279.74 33794.31 313
YYNet185.87 30884.23 31290.78 31292.38 33882.46 31593.17 32595.14 30082.12 33067.69 35992.36 32178.16 26095.50 34577.31 33379.73 33894.39 309
PatchT88.87 27987.42 28493.22 24994.08 29785.10 28789.51 35594.64 31981.92 33192.36 16488.15 35280.05 22697.01 31972.43 35193.65 19597.54 179
TAPA-MVS90.10 792.30 17991.22 19695.56 13198.33 7989.60 17496.79 17397.65 12481.83 33291.52 18297.23 12087.94 9598.91 14871.31 35598.37 9998.17 147
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
旧先验295.94 24081.66 33397.34 3698.82 15392.26 134
新几何197.32 4898.60 6593.59 5497.75 11181.58 33495.75 9297.85 8290.04 7399.67 4786.50 25199.13 7198.69 112
Patchmatch-test89.42 27287.99 27993.70 22995.27 24285.11 28688.98 35794.37 32581.11 33587.10 29393.69 29582.28 18897.50 29574.37 34594.76 18098.48 127
test_040286.46 29984.79 30891.45 29895.02 25585.55 27796.29 22194.89 31180.90 33682.21 33593.97 28768.21 32597.29 30962.98 36488.68 26491.51 348
gg-mvs-nofinetune87.82 29085.61 29994.44 18894.46 28489.27 19491.21 34584.61 37280.88 33789.89 22674.98 36571.50 30497.53 29285.75 26697.21 13496.51 205
JIA-IIPM88.26 28787.04 29191.91 28493.52 31381.42 32389.38 35694.38 32480.84 33890.93 19980.74 36379.22 24097.92 25782.76 29891.62 22296.38 210
Patchmtry88.64 28387.25 28692.78 26594.09 29686.64 25989.82 35495.68 27480.81 33987.63 28392.36 32180.91 20997.03 31678.86 32685.12 29994.67 301
test_f80.57 32479.62 32683.41 34283.38 36667.80 36893.57 32093.72 33380.80 34077.91 35287.63 35533.40 36992.08 36287.14 24479.04 34390.34 356
tpm289.96 26389.21 26592.23 27994.91 26381.25 32493.78 31194.42 32380.62 34191.56 18193.44 30476.44 27597.94 25385.60 26792.08 21897.49 180
pmmvs687.81 29186.19 29592.69 26891.32 34286.30 26697.34 12996.41 24380.59 34284.05 32694.37 26667.37 32997.67 27884.75 27779.51 34094.09 319
Anonymous2023121190.63 24989.42 26194.27 19898.24 8589.19 19798.05 5397.89 9679.95 34388.25 27094.96 23672.56 30098.13 21689.70 18685.14 29895.49 246
cascas91.20 22690.08 23994.58 18494.97 25689.16 19893.65 31797.59 13079.90 34489.40 24092.92 31075.36 28598.36 19792.14 13994.75 18196.23 211
Anonymous2024052991.98 19290.73 21395.73 12298.14 9689.40 18597.99 5697.72 11679.63 34593.54 13997.41 11369.94 31799.56 7291.04 16591.11 23598.22 145
PCF-MVS89.48 1191.56 20689.95 24596.36 9096.60 17292.52 8092.51 33697.26 17479.41 34688.90 25296.56 16384.04 15199.55 7477.01 33797.30 13197.01 191
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
test22298.24 8592.21 8995.33 26397.60 12879.22 34795.25 10497.84 8488.80 8599.15 6998.72 109
UnsupCasMVSNet_bld82.13 32379.46 32790.14 31988.00 36082.47 31490.89 34896.62 23478.94 34875.61 35484.40 36156.63 35796.31 33077.30 33466.77 36591.63 346
N_pmnet78.73 32778.71 32878.79 34692.80 32946.50 37994.14 29943.71 38278.61 34980.83 33991.66 33174.94 28796.36 32967.24 36184.45 31193.50 325
ANet_high63.94 33759.58 34077.02 34761.24 38066.06 36985.66 36487.93 36578.53 35042.94 37271.04 36925.42 37580.71 37252.60 37030.83 37384.28 361
114514_t93.95 11193.06 12696.63 6799.07 3791.61 10597.46 11997.96 9177.99 35193.00 15297.57 10586.14 12599.33 10289.22 20099.15 6998.94 90
DSMNet-mixed86.34 30186.12 29787.00 33689.88 35170.43 36194.93 27590.08 36077.97 35285.42 31192.78 31174.44 28993.96 35574.43 34495.14 17296.62 203
RPMNet88.98 27587.05 29094.77 17694.45 28587.19 24790.23 35198.03 8077.87 35392.40 16187.55 35680.17 22499.51 8368.84 36093.95 19297.60 176
test_vis3_rt72.73 32870.55 33179.27 34580.02 36968.13 36793.92 30774.30 37976.90 35458.99 36873.58 36820.29 37795.37 34684.16 28472.80 35774.31 367
new_pmnet82.89 32181.12 32588.18 33189.63 35280.18 33891.77 34092.57 34476.79 35575.56 35688.23 35161.22 35094.48 35171.43 35482.92 32789.87 357
tpm cat188.36 28587.21 28891.81 28995.13 25180.55 33292.58 33595.70 27074.97 35687.45 28491.96 32678.01 26498.17 21380.39 31688.74 26396.72 202
CMPMVSbinary62.92 2185.62 31084.92 30787.74 33289.14 35573.12 36094.17 29896.80 21873.98 35773.65 35894.93 23866.36 33597.61 28583.95 28991.28 23192.48 339
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
OpenMVS_ROBcopyleft81.14 2084.42 31682.28 32190.83 30890.06 34984.05 30195.73 24894.04 33073.89 35880.17 34691.53 33259.15 35197.64 28166.92 36289.05 25990.80 354
MVS91.71 19890.44 22295.51 13595.20 24891.59 10796.04 23497.45 15273.44 35987.36 28895.60 21385.42 13299.10 12685.97 26297.46 12195.83 228
pmmvs379.97 32577.50 33087.39 33382.80 36779.38 34592.70 33490.75 35970.69 36078.66 35087.47 35751.34 36193.40 35873.39 34969.65 36189.38 358
APD_test179.31 32677.70 32984.14 34089.11 35669.07 36592.36 33991.50 35369.07 36173.87 35792.63 31439.93 36694.32 35370.54 35980.25 33689.02 359
MVS-HIRNet82.47 32281.21 32486.26 33895.38 23069.21 36488.96 35889.49 36166.28 36280.79 34074.08 36768.48 32397.39 30471.93 35395.47 16792.18 343
DeepMVS_CXcopyleft74.68 35290.84 34664.34 37281.61 37565.34 36367.47 36188.01 35448.60 36280.13 37362.33 36573.68 35579.58 364
PMMVS270.19 33166.92 33480.01 34476.35 37265.67 37086.22 36287.58 36664.83 36462.38 36580.29 36426.78 37488.49 36863.79 36354.07 37085.88 360
FPMVS71.27 33069.85 33275.50 35074.64 37359.03 37591.30 34291.50 35358.80 36557.92 36988.28 35029.98 37285.53 37053.43 36982.84 32881.95 363
testf169.31 33266.76 33576.94 34878.61 37061.93 37388.27 35986.11 37055.62 36659.69 36685.31 35920.19 37889.32 36557.62 36669.44 36279.58 364
APD_test269.31 33266.76 33576.94 34878.61 37061.93 37388.27 35986.11 37055.62 36659.69 36685.31 35920.19 37889.32 36557.62 36669.44 36279.58 364
LCM-MVSNet72.55 32969.39 33382.03 34370.81 37865.42 37190.12 35394.36 32655.02 36865.88 36281.72 36224.16 37689.96 36474.32 34668.10 36490.71 355
Gipumacopyleft67.86 33565.41 33775.18 35192.66 33273.45 35966.50 37094.52 32153.33 36957.80 37066.07 37030.81 37089.20 36748.15 37178.88 34462.90 370
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMVScopyleft53.92 2258.58 33855.40 34168.12 35451.00 38148.64 37778.86 36787.10 36846.77 37035.84 37674.28 3668.76 38086.34 36942.07 37273.91 35469.38 368
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
E-PMN53.28 33952.56 34355.43 35674.43 37447.13 37883.63 36676.30 37642.23 37142.59 37362.22 37228.57 37374.40 37431.53 37431.51 37244.78 371
EMVS52.08 34151.31 34454.39 35772.62 37645.39 38083.84 36575.51 37841.13 37240.77 37459.65 37330.08 37173.60 37528.31 37529.90 37444.18 372
MVEpermissive50.73 2353.25 34048.81 34566.58 35565.34 37957.50 37672.49 36970.94 38040.15 37339.28 37563.51 3716.89 38273.48 37638.29 37342.38 37168.76 369
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_method66.11 33664.89 33869.79 35372.62 37635.23 38365.19 37192.83 34220.35 37465.20 36388.08 35343.14 36582.70 37173.12 35063.46 36691.45 351
tmp_tt51.94 34253.82 34246.29 35833.73 38245.30 38178.32 36867.24 38118.02 37550.93 37187.05 35852.99 35953.11 37770.76 35725.29 37540.46 373
wuyk23d25.11 34324.57 34726.74 35973.98 37539.89 38257.88 3729.80 38312.27 37610.39 3776.97 3797.03 38136.44 37825.43 37617.39 3763.89 376
testmvs13.36 34516.33 3484.48 3615.04 3832.26 38593.18 3243.28 3842.70 3778.24 37821.66 3752.29 3842.19 3797.58 3772.96 3779.00 375
test12313.04 34615.66 3495.18 3604.51 3843.45 38492.50 3371.81 3852.50 3787.58 37920.15 3763.67 3832.18 3807.13 3781.07 3789.90 374
EGC-MVSNET68.77 33463.01 33986.07 33992.49 33482.24 31893.96 30490.96 3570.71 3792.62 38090.89 33453.66 35893.46 35757.25 36884.55 30982.51 362
test_blank0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
uanet_test0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
DCPMVS0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
cdsmvs_eth3d_5k23.24 34430.99 3460.00 3620.00 3850.00 3860.00 37397.63 1260.00 3800.00 38196.88 13984.38 1450.00 3810.00 3790.00 3790.00 377
pcd_1.5k_mvsjas7.39 3489.85 3510.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 38088.65 870.00 3810.00 3790.00 3790.00 377
sosnet-low-res0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
sosnet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
uncertanet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
Regformer0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
ab-mvs-re8.06 34710.74 3500.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 38196.69 1480.00 3850.00 3810.00 3790.00 3790.00 377
uanet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
MSC_two_6792asdad98.86 198.67 5896.94 197.93 9499.86 897.68 399.67 699.77 1
No_MVS98.86 198.67 5896.94 197.93 9499.86 897.68 399.67 699.77 1
eth-test20.00 385
eth-test0.00 385
OPU-MVS98.55 398.82 5296.86 398.25 3698.26 5296.04 299.24 11195.36 7599.59 1799.56 25
test_0728_SECOND98.51 499.45 395.93 598.21 4398.28 2799.86 897.52 999.67 699.75 5
GSMVS98.45 130
test_part299.28 2595.74 898.10 20
sam_mvs182.76 17798.45 130
sam_mvs81.94 196
ambc86.56 33783.60 36570.00 36385.69 36394.97 30780.60 34288.45 34837.42 36796.84 32482.69 30075.44 35192.86 332
MTGPAbinary98.08 63
test_post192.81 33316.58 37880.53 21697.68 27786.20 255
test_post17.58 37781.76 19898.08 227
patchmatchnet-post90.45 33782.65 18198.10 223
GG-mvs-BLEND93.62 23293.69 30889.20 19592.39 33883.33 37387.98 27889.84 34371.00 30896.87 32382.08 30495.40 16994.80 293
MTMP97.86 6882.03 374
test9_res94.81 8999.38 4999.45 41
agg_prior293.94 10699.38 4999.50 36
agg_prior98.67 5893.79 5098.00 8795.68 9599.57 71
test_prior493.66 5396.42 205
test_prior97.23 5398.67 5892.99 6998.00 8799.41 9699.29 56
新几何295.79 246
旧先验198.38 7793.38 5997.75 11198.09 6192.30 3899.01 7699.16 66
原ACMM295.67 249
testdata299.67 4785.96 263
segment_acmp92.89 25
test1297.65 3998.46 7094.26 3597.66 12295.52 10290.89 6399.46 9099.25 6199.22 63
plane_prior796.21 19589.98 164
plane_prior696.10 20590.00 16081.32 204
plane_prior597.51 13998.60 17693.02 12792.23 21195.86 224
plane_prior496.64 152
plane_prior196.14 203
n20.00 386
nn0.00 386
door-mid91.06 356
lessismore_v090.45 31591.96 34179.09 34887.19 36780.32 34494.39 26466.31 33797.55 28984.00 28876.84 34794.70 300
test1197.88 98
door91.13 355
HQP5-MVS89.33 189
BP-MVS92.13 140
HQP4-MVS90.14 21098.50 18495.78 233
HQP3-MVS97.39 16292.10 216
HQP2-MVS80.95 207
NP-MVS95.99 20989.81 16995.87 194
ACMMP++_ref90.30 249
ACMMP++91.02 237
Test By Simon88.73 86