This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort by
MM97.29 2296.98 2998.23 1198.01 11195.03 2698.07 5595.76 29497.78 197.52 4498.80 2588.09 10799.86 999.44 199.37 6199.80 1
EPNet95.20 9994.56 10897.14 6892.80 36692.68 8697.85 8494.87 34296.64 292.46 18797.80 10686.23 14099.65 6193.72 13798.62 10799.10 85
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MVS_030496.74 5096.31 6498.02 1996.87 17494.65 3097.58 12194.39 35496.47 397.16 5698.39 5087.53 12199.87 798.97 899.41 5399.55 34
test_fmvsm_n_192097.55 1197.89 396.53 8898.41 7791.73 11698.01 6099.02 196.37 499.30 198.92 1392.39 4199.79 3699.16 499.46 4198.08 179
test_fmvsmvis_n_192096.70 5196.84 3796.31 10996.62 19491.73 11697.98 6398.30 3296.19 596.10 10298.95 1189.42 8899.76 4198.90 1099.08 8797.43 213
NCCC97.30 2197.03 2798.11 1798.77 5695.06 2597.34 15198.04 9295.96 697.09 6197.88 9593.18 2599.71 4995.84 8299.17 7899.56 31
SPE-MVS-test96.89 3797.04 2696.45 9998.29 8591.66 12299.03 497.85 11995.84 796.90 6597.97 8991.24 6498.75 19296.92 4299.33 6398.94 101
test_fmvsmconf_n97.49 1597.56 997.29 5897.44 14792.37 9597.91 7698.88 495.83 898.92 1299.05 591.45 5799.80 3399.12 599.46 4199.69 12
CNVR-MVS97.68 697.44 1698.37 798.90 5395.86 697.27 15898.08 7795.81 997.87 4098.31 6394.26 1399.68 5797.02 4099.49 3899.57 28
reproduce-ours97.53 1297.51 1397.60 4698.97 4793.31 6897.71 10498.20 5395.80 1097.88 3798.98 992.91 2799.81 3097.68 2099.43 4899.67 13
our_new_method97.53 1297.51 1397.60 4698.97 4793.31 6897.71 10498.20 5395.80 1097.88 3798.98 992.91 2799.81 3097.68 2099.43 4899.67 13
test_fmvsmconf0.1_n97.09 2797.06 2297.19 6795.67 25392.21 10297.95 7298.27 3995.78 1298.40 2599.00 789.99 8499.78 3899.06 699.41 5399.59 24
reproduce_model97.51 1497.51 1397.50 4998.99 4693.01 7797.79 9398.21 5195.73 1397.99 3399.03 692.63 3699.82 2897.80 1899.42 5099.67 13
HPM-MVS++copyleft97.34 2096.97 3098.47 599.08 3696.16 497.55 12897.97 10495.59 1496.61 7997.89 9392.57 3899.84 2395.95 7799.51 3399.40 57
test_fmvsmconf0.01_n96.15 7095.85 7497.03 7492.66 36991.83 11597.97 6997.84 12395.57 1597.53 4399.00 784.20 16999.76 4198.82 1199.08 8799.48 47
MSP-MVS97.59 1097.54 1097.73 3799.40 1193.77 5698.53 1498.29 3495.55 1698.56 2297.81 10493.90 1599.65 6196.62 5099.21 7499.77 2
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
DeepPCF-MVS93.97 196.61 5697.09 2195.15 17398.09 10486.63 28496.00 26398.15 6595.43 1797.95 3598.56 3393.40 2199.36 11796.77 4599.48 3999.45 50
CANet96.39 6496.02 7097.50 4997.62 13793.38 6397.02 17997.96 10595.42 1894.86 13597.81 10487.38 12799.82 2896.88 4399.20 7699.29 66
save fliter98.91 5294.28 3897.02 17998.02 9795.35 19
SteuartSystems-ACMMP97.62 997.53 1197.87 2498.39 8094.25 4098.43 2298.27 3995.34 2098.11 2998.56 3394.53 1299.71 4996.57 5399.62 1799.65 17
Skip Steuart: Steuart Systems R&D Blog.
CS-MVS96.86 3997.06 2296.26 11598.16 10191.16 14899.09 397.87 11495.30 2197.06 6298.03 8391.72 5098.71 19997.10 3899.17 7898.90 108
DELS-MVS96.61 5696.38 6397.30 5797.79 12593.19 7395.96 26598.18 6095.23 2295.87 11097.65 11691.45 5799.70 5495.87 7899.44 4799.00 96
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
h-mvs3394.15 12893.52 13796.04 12897.81 12490.22 17797.62 11997.58 15395.19 2396.74 7197.45 13083.67 17799.61 7295.85 8079.73 37698.29 162
hse-mvs293.45 15692.99 15294.81 19497.02 16888.59 23096.69 21196.47 26395.19 2396.74 7196.16 20483.67 17798.48 22095.85 8079.13 38097.35 218
DPE-MVScopyleft97.86 497.65 898.47 599.17 3295.78 797.21 16698.35 2795.16 2598.71 2098.80 2595.05 1099.89 396.70 4999.73 199.73 10
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_one_060199.32 2295.20 2098.25 4595.13 2698.48 2498.87 1895.16 7
SED-MVS98.05 297.99 198.24 1099.42 795.30 1798.25 3598.27 3995.13 2699.19 498.89 1695.54 599.85 1897.52 2899.66 1099.56 31
test_241102_TWO98.27 3995.13 2698.93 998.89 1694.99 1199.85 1897.52 2899.65 1399.74 8
test_241102_ONE99.42 795.30 1798.27 3995.09 2999.19 498.81 2495.54 599.65 61
MTAPA97.08 2896.78 4397.97 2399.37 1694.42 3697.24 16098.08 7795.07 3096.11 10198.59 3290.88 7499.90 296.18 7099.50 3599.58 27
fmvsm_l_conf0.5_n97.65 797.75 697.34 5598.21 9592.75 8397.83 8798.73 995.04 3199.30 198.84 2393.34 2299.78 3899.32 299.13 8399.50 43
FOURS199.55 193.34 6699.29 198.35 2794.98 3298.49 23
fmvsm_l_conf0.5_n_a97.63 897.76 597.26 6298.25 8992.59 8997.81 9198.68 1394.93 3399.24 398.87 1893.52 2099.79 3699.32 299.21 7499.40 57
fmvsm_s_conf0.5_n96.85 4197.13 1996.04 12898.07 10890.28 17597.97 6998.76 894.93 3398.84 1699.06 488.80 9799.65 6199.06 698.63 10698.18 168
DVP-MVScopyleft97.91 397.81 498.22 1399.45 395.36 1398.21 4297.85 11994.92 3598.73 1898.87 1895.08 899.84 2397.52 2899.67 699.48 47
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.45 395.36 1398.31 2798.29 3494.92 3598.99 798.92 1395.08 8
XVS97.18 2496.96 3197.81 2899.38 1494.03 5098.59 1298.20 5394.85 3796.59 8198.29 6691.70 5299.80 3395.66 8699.40 5599.62 20
X-MVStestdata91.71 22389.67 28797.81 2899.38 1494.03 5098.59 1298.20 5394.85 3796.59 8132.69 42091.70 5299.80 3395.66 8699.40 5599.62 20
HQP_MVS93.78 14693.43 14294.82 19296.21 22689.99 18297.74 9797.51 16294.85 3791.34 22096.64 17581.32 22698.60 20993.02 15292.23 24995.86 261
plane_prior297.74 9794.85 37
SD-MVS97.41 1797.53 1197.06 7398.57 7294.46 3497.92 7598.14 6794.82 4199.01 698.55 3594.18 1497.41 33796.94 4199.64 1499.32 65
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
UA-Net95.95 7795.53 7897.20 6697.67 13092.98 7997.65 11198.13 6894.81 4296.61 7998.35 5488.87 9599.51 9990.36 20197.35 15199.11 84
DeepC-MVS_fast93.89 296.93 3696.64 4997.78 3198.64 6794.30 3797.41 14198.04 9294.81 4296.59 8198.37 5291.24 6499.64 6995.16 10299.52 3099.42 56
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DVP-MVS++98.06 197.99 198.28 998.67 6195.39 1199.29 198.28 3694.78 4498.93 998.87 1896.04 299.86 997.45 3299.58 2399.59 24
test_0728_THIRD94.78 4498.73 1898.87 1895.87 499.84 2397.45 3299.72 299.77 2
APDe-MVScopyleft97.82 597.73 798.08 1899.15 3394.82 2898.81 798.30 3294.76 4698.30 2698.90 1593.77 1799.68 5797.93 1699.69 399.75 6
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
EI-MVSNet-Vis-set96.51 5996.47 5796.63 8298.24 9091.20 14396.89 19197.73 13394.74 4796.49 8598.49 4090.88 7499.58 8096.44 5698.32 12099.13 80
patch_mono-296.83 4497.44 1695.01 18199.05 3985.39 30896.98 18598.77 794.70 4897.99 3398.66 2993.61 1999.91 197.67 2499.50 3599.72 11
test_vis1_n_192094.17 12694.58 10792.91 28797.42 14882.02 35497.83 8797.85 11994.68 4998.10 3098.49 4070.15 34899.32 12097.91 1798.82 9897.40 215
EI-MVSNet-UG-set96.34 6696.30 6596.47 9698.20 9690.93 15596.86 19397.72 13594.67 5096.16 10098.46 4490.43 7999.58 8096.23 6097.96 13398.90 108
MSLP-MVS++96.94 3597.06 2296.59 8598.72 5891.86 11497.67 10898.49 1994.66 5197.24 5498.41 4992.31 4498.94 17196.61 5199.46 4198.96 98
3Dnovator+91.43 495.40 9194.48 11498.16 1696.90 17395.34 1698.48 2097.87 11494.65 5288.53 29798.02 8583.69 17699.71 4993.18 14698.96 9499.44 52
reproduce_monomvs91.30 25091.10 22491.92 31496.82 18182.48 34897.01 18297.49 16594.64 5388.35 30095.27 25070.53 34398.10 25395.20 10084.60 34495.19 307
BP-MVS195.89 7995.49 7997.08 7296.67 19293.20 7298.08 5396.32 26994.56 5496.32 9297.84 10184.07 17299.15 14296.75 4698.78 10098.90 108
fmvsm_s_conf0.5_n_a96.75 4996.93 3296.20 12097.64 13490.72 16398.00 6198.73 994.55 5598.91 1399.08 388.22 10699.63 7098.91 998.37 11898.25 163
ETV-MVS96.02 7395.89 7396.40 10297.16 15592.44 9397.47 13797.77 12994.55 5596.48 8694.51 28591.23 6698.92 17395.65 8998.19 12597.82 194
sasdasda96.02 7395.45 8297.75 3597.59 14095.15 2398.28 3097.60 14994.52 5796.27 9596.12 20687.65 11699.18 13696.20 6694.82 20598.91 105
canonicalmvs96.02 7395.45 8297.75 3597.59 14095.15 2398.28 3097.60 14994.52 5796.27 9596.12 20687.65 11699.18 13696.20 6694.82 20598.91 105
fmvsm_s_conf0.1_n96.58 5896.77 4496.01 13296.67 19290.25 17697.91 7698.38 2394.48 5998.84 1699.14 188.06 10899.62 7198.82 1198.60 10898.15 172
plane_prior390.00 18094.46 6091.34 220
balanced_conf0396.84 4396.89 3496.68 7997.63 13692.22 10198.17 4897.82 12594.44 6198.23 2897.36 13690.97 7199.22 13097.74 1999.66 1098.61 132
EC-MVSNet96.42 6296.47 5796.26 11597.01 16991.52 12898.89 597.75 13094.42 6296.64 7897.68 11289.32 8998.60 20997.45 3299.11 8698.67 130
MGCFI-Net95.94 7895.40 8697.56 4897.59 14094.62 3198.21 4297.57 15494.41 6396.17 9996.16 20487.54 12099.17 13896.19 6894.73 21098.91 105
UGNet94.04 13693.28 14796.31 10996.85 17691.19 14497.88 8097.68 14094.40 6493.00 17996.18 20173.39 32799.61 7291.72 17598.46 11598.13 173
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
alignmvs95.87 8195.23 9197.78 3197.56 14595.19 2197.86 8197.17 20494.39 6596.47 8796.40 19285.89 14699.20 13296.21 6595.11 20198.95 100
CANet_DTU94.37 12193.65 13096.55 8796.46 21592.13 10696.21 25396.67 25294.38 6693.53 16797.03 15579.34 26199.71 4990.76 19498.45 11697.82 194
Vis-MVSNetpermissive95.23 9794.81 10096.51 9297.18 15491.58 12698.26 3498.12 7094.38 6694.90 13498.15 7582.28 21098.92 17391.45 18398.58 11099.01 93
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
MVS_111021_HR96.68 5596.58 5296.99 7598.46 7392.31 9896.20 25498.90 394.30 6895.86 11197.74 10992.33 4299.38 11696.04 7499.42 5099.28 68
TSAR-MVS + GP.96.69 5396.49 5597.27 6198.31 8493.39 6296.79 20096.72 24594.17 6997.44 4797.66 11592.76 3199.33 11896.86 4497.76 14099.08 87
3Dnovator91.36 595.19 10094.44 11697.44 5296.56 20193.36 6598.65 1198.36 2494.12 7089.25 28198.06 8082.20 21299.77 4093.41 14399.32 6499.18 75
fmvsm_s_conf0.1_n_a96.40 6396.47 5796.16 12295.48 26190.69 16497.91 7698.33 2994.07 7198.93 999.14 187.44 12599.61 7298.63 1398.32 12098.18 168
plane_prior89.99 18297.24 16094.06 7292.16 253
casdiffmvspermissive95.64 8595.49 7996.08 12496.76 19090.45 17197.29 15797.44 18094.00 7395.46 12697.98 8887.52 12398.73 19595.64 9097.33 15299.08 87
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
casdiffmvs_mvgpermissive95.81 8295.57 7796.51 9296.87 17491.49 12997.50 13197.56 15893.99 7495.13 13197.92 9287.89 11298.78 18795.97 7697.33 15299.26 70
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MVS_111021_LR96.24 6996.19 6896.39 10498.23 9491.35 13696.24 25298.79 693.99 7495.80 11397.65 11689.92 8699.24 12895.87 7899.20 7698.58 135
dcpmvs_296.37 6597.05 2594.31 22398.96 4984.11 32997.56 12497.51 16293.92 7697.43 4998.52 3792.75 3299.32 12097.32 3799.50 3599.51 40
DeepC-MVS93.07 396.06 7195.66 7697.29 5897.96 11493.17 7497.30 15698.06 8593.92 7693.38 17198.66 2986.83 13399.73 4595.60 9599.22 7398.96 98
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
VNet95.89 7995.45 8297.21 6598.07 10892.94 8097.50 13198.15 6593.87 7897.52 4497.61 12285.29 15399.53 9495.81 8395.27 19699.16 76
Effi-MVS+-dtu93.08 17093.21 14992.68 29896.02 24083.25 33997.14 17296.72 24593.85 7991.20 23093.44 33983.08 18998.30 23591.69 17895.73 18796.50 242
PS-MVSNAJ95.37 9295.33 8995.49 16197.35 14990.66 16695.31 29997.48 16693.85 7996.51 8495.70 23188.65 10099.65 6194.80 11498.27 12296.17 251
SR-MVS97.01 3296.86 3597.47 5199.09 3493.27 7097.98 6398.07 8293.75 8197.45 4698.48 4391.43 5999.59 7796.22 6199.27 6799.54 36
TSAR-MVS + MP.97.42 1697.33 1897.69 4199.25 2794.24 4198.07 5597.85 11993.72 8298.57 2198.35 5493.69 1899.40 11397.06 3999.46 4199.44 52
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
OPM-MVS93.28 16192.76 16194.82 19294.63 31590.77 16196.65 21597.18 20293.72 8291.68 21397.26 14279.33 26298.63 20692.13 16592.28 24895.07 310
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
xiu_mvs_v2_base95.32 9495.29 9095.40 16697.22 15190.50 16995.44 29397.44 18093.70 8496.46 8896.18 20188.59 10399.53 9494.79 11697.81 13796.17 251
baseline95.58 8895.42 8596.08 12496.78 18590.41 17397.16 17097.45 17693.69 8595.65 12097.85 9987.29 12898.68 20195.66 8697.25 15799.13 80
GDP-MVS95.62 8695.13 9497.09 7196.79 18493.26 7197.89 7997.83 12493.58 8696.80 6797.82 10383.06 19199.16 14094.40 12397.95 13498.87 114
EIA-MVS95.53 9095.47 8195.71 14897.06 16389.63 19297.82 8997.87 11493.57 8793.92 15995.04 25990.61 7798.95 16994.62 11998.68 10498.54 137
HQP-NCC95.86 24396.65 21593.55 8890.14 244
ACMP_Plane95.86 24396.65 21593.55 8890.14 244
HQP-MVS93.19 16592.74 16494.54 21095.86 24389.33 20996.65 21597.39 18793.55 8890.14 24495.87 21780.95 23098.50 21792.13 16592.10 25495.78 269
MCST-MVS97.18 2496.84 3798.20 1499.30 2495.35 1597.12 17398.07 8293.54 9196.08 10397.69 11193.86 1699.71 4996.50 5499.39 5799.55 34
test111193.19 16592.82 15994.30 22497.58 14484.56 32398.21 4289.02 40493.53 9294.58 14198.21 7072.69 32899.05 16293.06 15098.48 11499.28 68
SR-MVS-dyc-post96.88 3896.80 4297.11 7099.02 4292.34 9697.98 6398.03 9493.52 9397.43 4998.51 3891.40 6099.56 8896.05 7299.26 6999.43 54
RE-MVS-def96.72 4699.02 4292.34 9697.98 6398.03 9493.52 9397.43 4998.51 3890.71 7696.05 7299.26 6999.43 54
MG-MVS95.61 8795.38 8796.31 10998.42 7690.53 16896.04 26097.48 16693.47 9595.67 11998.10 7689.17 9199.25 12791.27 18698.77 10199.13 80
test250691.60 22990.78 23694.04 23597.66 13283.81 33298.27 3275.53 42193.43 9695.23 12898.21 7067.21 36899.07 15993.01 15498.49 11299.25 71
ECVR-MVScopyleft93.19 16592.73 16594.57 20997.66 13285.41 30698.21 4288.23 40693.43 9694.70 13998.21 7072.57 32999.07 15993.05 15198.49 11299.25 71
FC-MVSNet-test93.94 13993.57 13295.04 17995.48 26191.45 13398.12 5098.71 1193.37 9890.23 24396.70 17087.66 11597.85 29591.49 18190.39 28295.83 265
MP-MVScopyleft96.77 4796.45 6197.72 3899.39 1393.80 5398.41 2398.06 8593.37 9895.54 12498.34 5790.59 7899.88 494.83 11199.54 2899.49 45
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
FIs94.09 13393.70 12895.27 16995.70 25192.03 10998.10 5198.68 1393.36 10090.39 24096.70 17087.63 11897.94 28692.25 16190.50 28195.84 264
test_cas_vis1_n_192094.48 12094.55 11194.28 22596.78 18586.45 28997.63 11797.64 14593.32 10197.68 4298.36 5373.75 32599.08 15596.73 4799.05 8997.31 220
mPP-MVS96.86 3996.60 5097.64 4499.40 1193.44 6198.50 1898.09 7693.27 10295.95 10998.33 6091.04 6999.88 495.20 10099.57 2599.60 23
HFP-MVS97.14 2696.92 3397.83 2699.42 794.12 4698.52 1598.32 3093.21 10397.18 5598.29 6692.08 4699.83 2695.63 9199.59 1999.54 36
ACMMPR97.07 2996.84 3797.79 3099.44 693.88 5298.52 1598.31 3193.21 10397.15 5798.33 6091.35 6199.86 995.63 9199.59 1999.62 20
IS-MVSNet94.90 10894.52 11296.05 12797.67 13090.56 16798.44 2196.22 27693.21 10393.99 15697.74 10985.55 15198.45 22189.98 20697.86 13599.14 79
region2R97.07 2996.84 3797.77 3399.46 293.79 5498.52 1598.24 4793.19 10697.14 5898.34 5791.59 5699.87 795.46 9799.59 1999.64 18
RRT-MVS94.51 11894.35 11894.98 18496.40 21886.55 28797.56 12497.41 18593.19 10694.93 13397.04 15479.12 26599.30 12496.19 6897.32 15499.09 86
SDMVSNet94.17 12693.61 13195.86 13898.09 10491.37 13597.35 15098.20 5393.18 10891.79 20997.28 13979.13 26498.93 17294.61 12092.84 24097.28 221
sd_testset93.10 16992.45 17895.05 17898.09 10489.21 21596.89 19197.64 14593.18 10891.79 20997.28 13975.35 31198.65 20488.99 23592.84 24097.28 221
EPNet_dtu91.71 22391.28 21692.99 28493.76 34283.71 33596.69 21195.28 31993.15 11087.02 33295.95 21483.37 18397.38 33979.46 35996.84 16497.88 189
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
UniMVSNet (Re)93.31 16092.55 17295.61 15395.39 26693.34 6697.39 14698.71 1193.14 11190.10 25294.83 26987.71 11498.03 26991.67 17983.99 35295.46 284
APD-MVS_3200maxsize96.81 4596.71 4797.12 6999.01 4592.31 9897.98 6398.06 8593.11 11297.44 4798.55 3590.93 7299.55 9096.06 7199.25 7199.51 40
testdata195.26 30493.10 113
DU-MVS92.90 18092.04 18795.49 16194.95 29792.83 8197.16 17098.24 4793.02 11490.13 24895.71 22983.47 18097.85 29591.71 17683.93 35395.78 269
xiu_mvs_v1_base_debu95.01 10294.76 10195.75 14396.58 19891.71 11896.25 24997.35 19392.99 11596.70 7396.63 17982.67 20099.44 10996.22 6197.46 14496.11 256
xiu_mvs_v1_base95.01 10294.76 10195.75 14396.58 19891.71 11896.25 24997.35 19392.99 11596.70 7396.63 17982.67 20099.44 10996.22 6197.46 14496.11 256
xiu_mvs_v1_base_debi95.01 10294.76 10195.75 14396.58 19891.71 11896.25 24997.35 19392.99 11596.70 7396.63 17982.67 20099.44 10996.22 6197.46 14496.11 256
CP-MVS97.02 3196.81 4197.64 4499.33 2193.54 5998.80 898.28 3692.99 11596.45 8998.30 6591.90 4999.85 1895.61 9399.68 499.54 36
ACMMPcopyleft96.27 6895.93 7197.28 6099.24 2892.62 8798.25 3598.81 592.99 11594.56 14298.39 5088.96 9499.85 1894.57 12297.63 14199.36 63
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
UniMVSNet_NR-MVSNet93.37 15892.67 16795.47 16495.34 27292.83 8197.17 16998.58 1792.98 12090.13 24895.80 22288.37 10597.85 29591.71 17683.93 35395.73 275
VPNet92.23 20791.31 21494.99 18295.56 25790.96 15397.22 16597.86 11892.96 12190.96 23196.62 18275.06 31298.20 24291.90 16983.65 35895.80 267
nrg03094.05 13593.31 14696.27 11495.22 28394.59 3298.34 2597.46 17192.93 12291.21 22996.64 17587.23 13098.22 24094.99 10785.80 32495.98 260
MonoMVSNet91.92 21691.77 19692.37 30292.94 36383.11 34097.09 17595.55 30792.91 12390.85 23394.55 28281.27 22896.52 36293.01 15487.76 30597.47 212
TranMVSNet+NR-MVSNet92.50 19191.63 20295.14 17494.76 30892.07 10797.53 12998.11 7392.90 12489.56 26996.12 20683.16 18697.60 32089.30 22583.20 36295.75 273
diffmvspermissive95.25 9695.13 9495.63 15196.43 21789.34 20895.99 26497.35 19392.83 12596.31 9397.37 13586.44 13898.67 20296.26 5897.19 15998.87 114
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
ACMMP_NAP97.20 2396.86 3598.23 1199.09 3495.16 2297.60 12098.19 5892.82 12697.93 3698.74 2891.60 5599.86 996.26 5899.52 3099.67 13
test_prior296.35 24192.80 12796.03 10497.59 12392.01 4795.01 10699.38 58
GST-MVS96.85 4196.52 5497.82 2799.36 1894.14 4598.29 2998.13 6892.72 12896.70 7398.06 8091.35 6199.86 994.83 11199.28 6699.47 49
CLD-MVS92.98 17592.53 17494.32 22196.12 23689.20 21695.28 30097.47 16992.66 12989.90 25795.62 23580.58 23898.40 22492.73 15792.40 24795.38 291
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
NR-MVSNet92.34 19991.27 21795.53 15894.95 29793.05 7697.39 14698.07 8292.65 13084.46 35695.71 22985.00 15797.77 30589.71 21383.52 35995.78 269
ZNCC-MVS96.96 3396.67 4897.85 2599.37 1694.12 4698.49 1998.18 6092.64 13196.39 9198.18 7391.61 5499.88 495.59 9699.55 2699.57 28
PS-MVSNAJss93.74 14793.51 13894.44 21493.91 33789.28 21397.75 9697.56 15892.50 13289.94 25696.54 18588.65 10098.18 24593.83 13690.90 27595.86 261
VDD-MVS93.82 14493.08 15096.02 13097.88 12189.96 18697.72 10295.85 29092.43 13395.86 11198.44 4668.42 36299.39 11496.31 5794.85 20398.71 127
LCM-MVSNet-Re92.50 19192.52 17592.44 30096.82 18181.89 35596.92 18993.71 37192.41 13484.30 35894.60 28085.08 15697.03 35091.51 18097.36 15098.40 155
SF-MVS97.39 1897.13 1998.17 1599.02 4295.28 1998.23 3998.27 3992.37 13598.27 2798.65 3193.33 2399.72 4896.49 5599.52 3099.51 40
VPA-MVSNet93.24 16292.48 17795.51 15995.70 25192.39 9497.86 8198.66 1692.30 13692.09 20295.37 24580.49 24098.40 22493.95 13085.86 32395.75 273
PGM-MVS96.81 4596.53 5397.65 4299.35 2093.53 6097.65 11198.98 292.22 13797.14 5898.44 4691.17 6799.85 1894.35 12499.46 4199.57 28
Vis-MVSNet (Re-imp)94.15 12893.88 12594.95 18897.61 13887.92 25298.10 5195.80 29392.22 13793.02 17897.45 13084.53 16397.91 29288.24 24597.97 13299.02 90
thres100view90092.43 19491.58 20494.98 18497.92 11889.37 20797.71 10494.66 34592.20 13993.31 17394.90 26578.06 28799.08 15581.40 34194.08 22296.48 243
baseline192.82 18591.90 19395.55 15797.20 15390.77 16197.19 16794.58 34892.20 13992.36 19196.34 19584.16 17098.21 24189.20 23183.90 35697.68 200
tfpn200view992.38 19791.52 20794.95 18897.85 12289.29 21197.41 14194.88 33992.19 14193.27 17594.46 29078.17 28399.08 15581.40 34194.08 22296.48 243
thres40092.42 19591.52 20795.12 17697.85 12289.29 21197.41 14194.88 33992.19 14193.27 17594.46 29078.17 28399.08 15581.40 34194.08 22296.98 228
thres600view792.49 19391.60 20395.18 17297.91 11989.47 20197.65 11194.66 34592.18 14393.33 17294.91 26478.06 28799.10 14981.61 33894.06 22696.98 228
Fast-Effi-MVS+-dtu92.29 20391.99 19093.21 27895.27 27985.52 30497.03 17796.63 25692.09 14489.11 28495.14 25680.33 24498.08 25887.54 26594.74 20996.03 259
thres20092.23 20791.39 21094.75 20197.61 13889.03 22196.60 22395.09 32992.08 14593.28 17494.00 31678.39 28199.04 16581.26 34794.18 21896.19 250
mvs_tets92.31 20191.76 19793.94 24493.41 35488.29 23997.63 11797.53 16092.04 14688.76 29296.45 18974.62 31798.09 25793.91 13291.48 26395.45 285
OMC-MVS95.09 10194.70 10496.25 11898.46 7391.28 13796.43 23197.57 15492.04 14694.77 13897.96 9087.01 13299.09 15291.31 18596.77 16698.36 159
jajsoiax92.42 19591.89 19494.03 23693.33 35788.50 23597.73 9997.53 16092.00 14888.85 28996.50 18775.62 30998.11 25293.88 13491.56 26295.48 281
XVG-OURS93.72 14893.35 14594.80 19797.07 16088.61 22994.79 31797.46 17191.97 14993.99 15697.86 9881.74 22198.88 17792.64 15892.67 24596.92 232
WR-MVS92.34 19991.53 20694.77 19995.13 29090.83 15896.40 23797.98 10391.88 15089.29 27895.54 24082.50 20597.80 30189.79 21285.27 33295.69 276
PAPM_NR95.01 10294.59 10696.26 11598.89 5490.68 16597.24 16097.73 13391.80 15192.93 18496.62 18289.13 9299.14 14589.21 23097.78 13898.97 97
testing9191.90 21891.02 22694.53 21196.54 20486.55 28795.86 27095.64 30391.77 15291.89 20693.47 33869.94 35098.86 17890.23 20493.86 22998.18 168
testgi87.97 32387.21 32390.24 35492.86 36480.76 36396.67 21494.97 33491.74 15385.52 34795.83 22062.66 39094.47 38976.25 37588.36 30195.48 281
CP-MVSNet91.89 21991.24 21893.82 25095.05 29388.57 23197.82 8998.19 5891.70 15488.21 30795.76 22781.96 21697.52 32887.86 25184.65 34195.37 292
XVG-OURS-SEG-HR93.86 14393.55 13394.81 19497.06 16388.53 23495.28 30097.45 17691.68 15594.08 15597.68 11282.41 20898.90 17693.84 13592.47 24696.98 228
OurMVSNet-221017-090.51 28390.19 26691.44 33193.41 35481.25 35996.98 18596.28 27291.68 15586.55 34096.30 19674.20 32097.98 27488.96 23687.40 31295.09 309
testing9991.62 22890.72 24294.32 22196.48 21286.11 29895.81 27394.76 34391.55 15791.75 21193.44 33968.55 36098.82 18290.43 19893.69 23098.04 181
ACMP89.59 1092.62 19092.14 18594.05 23496.40 21888.20 24497.36 14997.25 20191.52 15888.30 30396.64 17578.46 27998.72 19891.86 17291.48 26395.23 303
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
APD-MVScopyleft96.95 3496.60 5098.01 2099.03 4194.93 2797.72 10298.10 7591.50 15998.01 3298.32 6292.33 4299.58 8094.85 10999.51 3399.53 39
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
ITE_SJBPF92.43 30195.34 27285.37 30995.92 28591.47 16087.75 31696.39 19371.00 34097.96 28182.36 33589.86 28693.97 356
PS-CasMVS91.55 23490.84 23493.69 25894.96 29688.28 24097.84 8598.24 4791.46 16188.04 31195.80 22279.67 25697.48 33087.02 27684.54 34795.31 296
WR-MVS_H92.00 21491.35 21193.95 24295.09 29289.47 20198.04 5898.68 1391.46 16188.34 30194.68 27685.86 14797.56 32285.77 29684.24 35094.82 327
MVSFormer95.37 9295.16 9395.99 13396.34 22291.21 14198.22 4097.57 15491.42 16396.22 9797.32 13786.20 14397.92 28994.07 12799.05 8998.85 116
test_djsdf93.07 17192.76 16194.00 23793.49 35188.70 22898.22 4097.57 15491.42 16390.08 25495.55 23982.85 19797.92 28994.07 12791.58 26195.40 289
ACMM89.79 892.96 17692.50 17694.35 21896.30 22488.71 22797.58 12197.36 19291.40 16590.53 23796.65 17479.77 25498.75 19291.24 18791.64 25995.59 279
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
mvsmamba94.57 11794.14 12195.87 13697.03 16789.93 18797.84 8595.85 29091.34 16694.79 13796.80 16480.67 23698.81 18494.85 10998.12 12998.85 116
PEN-MVS91.20 25590.44 25193.48 26794.49 32087.91 25497.76 9598.18 6091.29 16787.78 31595.74 22880.35 24397.33 34185.46 30082.96 36395.19 307
LPG-MVS_test92.94 17892.56 17194.10 23196.16 23188.26 24197.65 11197.46 17191.29 16790.12 25097.16 14779.05 26798.73 19592.25 16191.89 25795.31 296
LGP-MVS_train94.10 23196.16 23188.26 24197.46 17191.29 16790.12 25097.16 14779.05 26798.73 19592.25 16191.89 25795.31 296
9.1496.75 4598.93 5097.73 9998.23 5091.28 17097.88 3798.44 4693.00 2699.65 6195.76 8499.47 40
MVSTER93.20 16492.81 16094.37 21796.56 20189.59 19597.06 17697.12 20791.24 17191.30 22395.96 21382.02 21598.05 26593.48 14090.55 27995.47 283
test_yl94.78 11394.23 11996.43 10097.74 12791.22 13996.85 19497.10 20991.23 17295.71 11696.93 15784.30 16699.31 12293.10 14795.12 19998.75 122
DCV-MVSNet94.78 11394.23 11996.43 10097.74 12791.22 13996.85 19497.10 20991.23 17295.71 11696.93 15784.30 16699.31 12293.10 14795.12 19998.75 122
test_vis1_n92.37 19892.26 18392.72 29594.75 30982.64 34498.02 5996.80 24291.18 17497.77 4197.93 9158.02 39698.29 23697.63 2598.21 12497.23 224
MVS_Test94.89 10994.62 10595.68 14996.83 17989.55 19796.70 20997.17 20491.17 17595.60 12196.11 21087.87 11398.76 19193.01 15497.17 16098.72 125
HPM-MVScopyleft96.69 5396.45 6197.40 5399.36 1893.11 7598.87 698.06 8591.17 17596.40 9097.99 8790.99 7099.58 8095.61 9399.61 1899.49 45
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
test-LLR91.42 24191.19 22192.12 31094.59 31680.66 36594.29 33792.98 37891.11 17790.76 23592.37 35779.02 26998.07 26288.81 23896.74 16797.63 201
test0.0.03 189.37 30988.70 30791.41 33292.47 37385.63 30295.22 30592.70 38391.11 17786.91 33793.65 33179.02 26993.19 40178.00 36689.18 29295.41 286
testing1191.68 22690.75 23994.47 21296.53 20686.56 28695.76 27794.51 35191.10 17991.24 22893.59 33368.59 35998.86 17891.10 18994.29 21598.00 183
XVG-ACMP-BASELINE90.93 26890.21 26593.09 28194.31 32885.89 29995.33 29797.26 19991.06 18089.38 27495.44 24468.61 35898.60 20989.46 22091.05 27194.79 332
Effi-MVS+94.93 10794.45 11596.36 10796.61 19591.47 13196.41 23397.41 18591.02 18194.50 14495.92 21587.53 12198.78 18793.89 13396.81 16598.84 119
testing22290.31 28688.96 30394.35 21896.54 20487.29 26395.50 29093.84 36990.97 18291.75 21192.96 34662.18 39298.00 27282.86 32794.08 22297.76 196
dmvs_re90.21 29189.50 29292.35 30395.47 26485.15 31295.70 27994.37 35690.94 18388.42 29893.57 33474.63 31695.67 37682.80 33089.57 28996.22 248
SCA91.84 22091.18 22293.83 24995.59 25584.95 31994.72 31895.58 30690.82 18492.25 19693.69 32775.80 30698.10 25386.20 28695.98 18098.45 149
SixPastTwentyTwo89.15 31088.54 31090.98 33993.49 35180.28 37396.70 20994.70 34490.78 18584.15 36195.57 23771.78 33597.71 31084.63 31085.07 33694.94 316
PC_three_145290.77 18698.89 1498.28 6896.24 198.35 23195.76 8499.58 2399.59 24
DTE-MVSNet90.56 28089.75 28593.01 28393.95 33587.25 26697.64 11597.65 14390.74 18787.12 32795.68 23279.97 25197.00 35383.33 32381.66 36994.78 334
GA-MVS91.38 24390.31 25694.59 20494.65 31487.62 26094.34 33396.19 27990.73 18890.35 24193.83 32071.84 33497.96 28187.22 27193.61 23498.21 166
test_fmvs1_n92.73 18892.88 15792.29 30696.08 23981.05 36297.98 6397.08 21290.72 18996.79 6998.18 7363.07 38798.45 22197.62 2698.42 11797.36 216
EPP-MVSNet95.22 9895.04 9795.76 14197.49 14689.56 19698.67 1097.00 22390.69 19094.24 15097.62 12189.79 8798.81 18493.39 14496.49 17498.92 104
test_fmvs193.21 16393.53 13592.25 30896.55 20381.20 36197.40 14596.96 22590.68 19196.80 6798.04 8269.25 35498.40 22497.58 2798.50 11197.16 225
MP-MVS-pluss96.70 5196.27 6697.98 2299.23 3094.71 2996.96 18798.06 8590.67 19295.55 12298.78 2791.07 6899.86 996.58 5299.55 2699.38 61
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
IterMVS-LS92.29 20391.94 19293.34 27296.25 22586.97 27596.57 22797.05 21790.67 19289.50 27294.80 27186.59 13497.64 31589.91 20886.11 32295.40 289
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EI-MVSNet93.03 17392.88 15793.48 26795.77 24986.98 27496.44 22997.12 20790.66 19491.30 22397.64 11986.56 13598.05 26589.91 20890.55 27995.41 286
K. test v387.64 32886.75 33090.32 35393.02 36279.48 38396.61 22192.08 38990.66 19480.25 38594.09 31267.21 36896.65 36185.96 29480.83 37294.83 325
tttt051792.96 17692.33 18194.87 19197.11 15887.16 27197.97 6992.09 38890.63 19693.88 16097.01 15676.50 29999.06 16190.29 20395.45 19398.38 157
BH-RMVSNet92.72 18991.97 19194.97 18697.16 15587.99 25096.15 25695.60 30490.62 19791.87 20797.15 14978.41 28098.57 21383.16 32497.60 14298.36 159
IterMVS-SCA-FT90.31 28689.81 28191.82 32095.52 25984.20 32894.30 33696.15 28090.61 19887.39 32394.27 30275.80 30696.44 36387.34 26886.88 31894.82 327
WTY-MVS94.71 11594.02 12296.79 7797.71 12992.05 10896.59 22497.35 19390.61 19894.64 14096.93 15786.41 13999.39 11491.20 18894.71 21198.94 101
ET-MVSNet_ETH3D91.49 23890.11 26795.63 15196.40 21891.57 12795.34 29693.48 37390.60 20075.58 39695.49 24280.08 24896.79 35994.25 12589.76 28798.52 139
SMA-MVScopyleft97.35 1997.03 2798.30 899.06 3895.42 1097.94 7398.18 6090.57 20198.85 1598.94 1293.33 2399.83 2696.72 4899.68 499.63 19
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
LFMVS93.60 15092.63 16896.52 8998.13 10391.27 13897.94 7393.39 37490.57 20196.29 9498.31 6369.00 35599.16 14094.18 12695.87 18399.12 83
HPM-MVS_fast96.51 5996.27 6697.22 6499.32 2292.74 8498.74 998.06 8590.57 20196.77 7098.35 5490.21 8199.53 9494.80 11499.63 1699.38 61
UBG91.55 23490.76 23793.94 24496.52 20885.06 31595.22 30594.54 34990.47 20491.98 20492.71 34972.02 33298.74 19488.10 24795.26 19798.01 182
MVSMamba_PlusPlus96.51 5996.48 5696.59 8598.07 10891.97 11198.14 4997.79 12790.43 20597.34 5297.52 12991.29 6399.19 13398.12 1599.64 1498.60 133
DPM-MVS95.69 8394.92 9898.01 2098.08 10795.71 995.27 30297.62 14890.43 20595.55 12297.07 15291.72 5099.50 10289.62 21798.94 9598.82 120
IU-MVS99.42 795.39 1197.94 10790.40 20798.94 897.41 3599.66 1099.74 8
mmtdpeth89.70 30588.96 30391.90 31695.84 24884.42 32497.46 13995.53 31090.27 20894.46 14690.50 37769.74 35398.95 16997.39 3669.48 40292.34 379
PVSNet_Blended_VisFu95.27 9594.91 9996.38 10598.20 9690.86 15797.27 15898.25 4590.21 20994.18 15297.27 14187.48 12499.73 4593.53 13897.77 13998.55 136
PVSNet_BlendedMVS94.06 13493.92 12494.47 21298.27 8689.46 20396.73 20598.36 2490.17 21094.36 14795.24 25388.02 10999.58 8093.44 14190.72 27794.36 347
thisisatest053093.03 17392.21 18495.49 16197.07 16089.11 22097.49 13692.19 38790.16 21194.09 15496.41 19176.43 30299.05 16290.38 20095.68 18998.31 161
testing387.67 32786.88 32890.05 35696.14 23480.71 36497.10 17492.85 38090.15 21287.54 31994.55 28255.70 40194.10 39273.77 38894.10 22195.35 293
CNLPA94.28 12393.53 13596.52 8998.38 8192.55 9096.59 22496.88 23690.13 21391.91 20597.24 14385.21 15499.09 15287.64 26297.83 13697.92 186
BH-untuned92.94 17892.62 16993.92 24797.22 15186.16 29796.40 23796.25 27590.06 21489.79 26196.17 20383.19 18598.35 23187.19 27297.27 15697.24 223
IterMVS90.15 29489.67 28791.61 32795.48 26183.72 33494.33 33496.12 28189.99 21587.31 32694.15 31075.78 30896.27 36686.97 27786.89 31794.83 325
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
mamv494.66 11696.10 6990.37 35298.01 11173.41 40096.82 19897.78 12889.95 21694.52 14397.43 13392.91 2799.09 15298.28 1499.16 8098.60 133
AdaColmapbinary94.34 12293.68 12996.31 10998.59 6991.68 12196.59 22497.81 12689.87 21792.15 19897.06 15383.62 17999.54 9289.34 22498.07 13097.70 199
UnsupCasMVSNet_eth85.99 34584.45 35090.62 34889.97 38982.40 35193.62 36097.37 19089.86 21878.59 39192.37 35765.25 38395.35 38382.27 33670.75 39994.10 353
PHI-MVS96.77 4796.46 6097.71 4098.40 7894.07 4898.21 4298.45 2289.86 21897.11 6098.01 8692.52 3999.69 5596.03 7599.53 2999.36 63
mvs_anonymous93.82 14493.74 12794.06 23396.44 21685.41 30695.81 27397.05 21789.85 22090.09 25396.36 19487.44 12597.75 30793.97 12996.69 17099.02 90
test_fmvs289.77 30489.93 27689.31 36693.68 34576.37 39397.64 11595.90 28789.84 22191.49 21696.26 19958.77 39597.10 34794.65 11891.13 26994.46 343
ab-mvs93.57 15292.55 17296.64 8097.28 15091.96 11395.40 29497.45 17689.81 22293.22 17796.28 19779.62 25899.46 10690.74 19593.11 23798.50 142
FMVSNet391.78 22190.69 24495.03 18096.53 20692.27 10097.02 17996.93 22889.79 22389.35 27594.65 27877.01 29597.47 33186.12 28988.82 29495.35 293
ETVMVS90.52 28289.14 30194.67 20396.81 18387.85 25695.91 26893.97 36589.71 22492.34 19492.48 35565.41 38297.96 28181.37 34494.27 21698.21 166
AUN-MVS91.76 22290.75 23994.81 19497.00 17088.57 23196.65 21596.49 26289.63 22592.15 19896.12 20678.66 27698.50 21790.83 19279.18 37997.36 216
FA-MVS(test-final)93.52 15492.92 15595.31 16896.77 18788.54 23394.82 31696.21 27889.61 22694.20 15195.25 25283.24 18499.14 14590.01 20596.16 17898.25 163
tt080591.09 25990.07 27194.16 22995.61 25488.31 23897.56 12496.51 26189.56 22789.17 28295.64 23467.08 37298.38 22991.07 19088.44 30095.80 267
v2v48291.59 23090.85 23393.80 25193.87 33988.17 24696.94 18896.88 23689.54 22889.53 27094.90 26581.70 22298.02 27089.25 22885.04 33895.20 304
PatchmatchNetpermissive91.91 21791.35 21193.59 26295.38 26784.11 32993.15 36995.39 31289.54 22892.10 20193.68 32982.82 19898.13 24884.81 30795.32 19598.52 139
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
EPMVS90.70 27689.81 28193.37 27194.73 31184.21 32793.67 35888.02 40789.50 23092.38 19093.49 33677.82 29197.78 30386.03 29292.68 24498.11 177
GeoE93.89 14193.28 14795.72 14796.96 17289.75 19198.24 3896.92 23289.47 23192.12 20097.21 14584.42 16498.39 22887.71 25696.50 17399.01 93
WBMVS90.69 27889.99 27492.81 29296.48 21285.00 31695.21 30796.30 27189.46 23289.04 28594.05 31472.45 33197.82 29989.46 22087.41 31195.61 278
v14890.99 26490.38 25392.81 29293.83 34085.80 30096.78 20296.68 25089.45 23388.75 29393.93 31982.96 19597.82 29987.83 25283.25 36094.80 330
anonymousdsp92.16 20991.55 20593.97 24092.58 37189.55 19797.51 13097.42 18489.42 23488.40 29994.84 26880.66 23797.88 29491.87 17191.28 26794.48 342
baseline291.63 22790.86 23193.94 24494.33 32686.32 29195.92 26791.64 39289.37 23586.94 33594.69 27581.62 22398.69 20088.64 24294.57 21296.81 235
IB-MVS87.33 1789.91 29788.28 31394.79 19895.26 28287.70 25995.12 31093.95 36689.35 23687.03 33192.49 35470.74 34299.19 13389.18 23281.37 37097.49 210
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
jason94.84 11194.39 11796.18 12195.52 25990.93 15596.09 25896.52 26089.28 23796.01 10797.32 13784.70 16098.77 19095.15 10398.91 9798.85 116
jason: jason.
TAMVS94.01 13793.46 14095.64 15096.16 23190.45 17196.71 20896.89 23589.27 23893.46 16996.92 16087.29 12897.94 28688.70 24195.74 18698.53 138
ZD-MVS99.05 3994.59 3298.08 7789.22 23997.03 6398.10 7692.52 3999.65 6194.58 12199.31 65
API-MVS94.84 11194.49 11395.90 13597.90 12092.00 11097.80 9297.48 16689.19 24094.81 13696.71 16888.84 9699.17 13888.91 23798.76 10296.53 240
XXY-MVS92.16 20991.23 21994.95 18894.75 30990.94 15497.47 13797.43 18389.14 24188.90 28696.43 19079.71 25598.24 23889.56 21887.68 30695.67 277
UWE-MVS89.91 29789.48 29391.21 33595.88 24278.23 39094.91 31590.26 40089.11 24292.35 19394.52 28468.76 35797.96 28183.95 31995.59 19197.42 214
dmvs_testset81.38 36582.60 36077.73 38891.74 38051.49 42393.03 37284.21 41689.07 24378.28 39291.25 37476.97 29688.53 41156.57 41182.24 36793.16 365
pm-mvs190.72 27589.65 28993.96 24194.29 32989.63 19297.79 9396.82 24189.07 24386.12 34495.48 24378.61 27797.78 30386.97 27781.67 36894.46 343
HY-MVS89.66 993.87 14292.95 15496.63 8297.10 15992.49 9295.64 28596.64 25389.05 24593.00 17995.79 22585.77 14999.45 10889.16 23394.35 21397.96 184
CSCG96.05 7295.91 7296.46 9899.24 2890.47 17098.30 2898.57 1889.01 24693.97 15897.57 12492.62 3799.76 4194.66 11799.27 6799.15 78
v891.29 25290.53 25093.57 26494.15 33088.12 24897.34 15197.06 21688.99 24788.32 30294.26 30483.08 18998.01 27187.62 26383.92 35594.57 341
PAPR94.18 12593.42 14496.48 9597.64 13491.42 13495.55 28797.71 13988.99 24792.34 19495.82 22189.19 9099.11 14886.14 28897.38 14998.90 108
CDS-MVSNet94.14 13193.54 13495.93 13496.18 22991.46 13296.33 24397.04 21988.97 24993.56 16496.51 18687.55 11997.89 29389.80 21195.95 18198.44 152
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
sss94.51 11893.80 12696.64 8097.07 16091.97 11196.32 24498.06 8588.94 25094.50 14496.78 16584.60 16199.27 12691.90 16996.02 17998.68 129
lupinMVS94.99 10694.56 10896.29 11396.34 22291.21 14195.83 27296.27 27388.93 25196.22 9796.88 16286.20 14398.85 18095.27 9999.05 8998.82 120
D2MVS91.30 25090.95 22892.35 30394.71 31285.52 30496.18 25598.21 5188.89 25286.60 33993.82 32279.92 25297.95 28589.29 22690.95 27493.56 360
v7n90.76 27289.86 27893.45 26993.54 34887.60 26197.70 10797.37 19088.85 25387.65 31794.08 31381.08 22998.10 25384.68 30983.79 35794.66 339
PVSNet_Blended94.87 11094.56 10895.81 14098.27 8689.46 20395.47 29298.36 2488.84 25494.36 14796.09 21188.02 10999.58 8093.44 14198.18 12698.40 155
ACMH+87.92 1490.20 29289.18 29993.25 27596.48 21286.45 28996.99 18496.68 25088.83 25584.79 35596.22 20070.16 34798.53 21584.42 31388.04 30294.77 335
GBi-Net91.35 24690.27 25994.59 20496.51 20991.18 14597.50 13196.93 22888.82 25689.35 27594.51 28573.87 32197.29 34386.12 28988.82 29495.31 296
test191.35 24690.27 25994.59 20496.51 20991.18 14597.50 13196.93 22888.82 25689.35 27594.51 28573.87 32197.29 34386.12 28988.82 29495.31 296
FMVSNet291.31 24990.08 26894.99 18296.51 20992.21 10297.41 14196.95 22688.82 25688.62 29494.75 27373.87 32197.42 33685.20 30488.55 29995.35 293
V4291.58 23290.87 23093.73 25494.05 33488.50 23597.32 15496.97 22488.80 25989.71 26294.33 29782.54 20498.05 26589.01 23485.07 33694.64 340
mvsany_test193.93 14093.98 12393.78 25394.94 29986.80 27794.62 32092.55 38588.77 26096.85 6698.49 4088.98 9398.08 25895.03 10595.62 19096.46 245
BH-w/o92.14 21191.75 19893.31 27396.99 17185.73 30195.67 28095.69 29988.73 26189.26 28094.82 27082.97 19498.07 26285.26 30396.32 17796.13 255
test20.0386.14 34485.40 34088.35 36890.12 38780.06 37695.90 26995.20 32488.59 26281.29 37893.62 33271.43 33792.65 40271.26 39781.17 37192.34 379
train_agg96.30 6795.83 7597.72 3898.70 5994.19 4296.41 23398.02 9788.58 26396.03 10497.56 12692.73 3499.59 7795.04 10499.37 6199.39 59
test_898.67 6194.06 4996.37 24098.01 10088.58 26395.98 10897.55 12892.73 3499.58 80
eth_miper_zixun_eth91.02 26390.59 24792.34 30595.33 27584.35 32594.10 34296.90 23388.56 26588.84 29094.33 29784.08 17197.60 32088.77 24084.37 34995.06 311
Syy-MVS87.13 33287.02 32787.47 37395.16 28673.21 40195.00 31293.93 36788.55 26686.96 33391.99 36575.90 30494.00 39361.59 40794.11 21995.20 304
myMVS_eth3d87.18 33186.38 33189.58 36195.16 28679.53 38095.00 31293.93 36788.55 26686.96 33391.99 36556.23 40094.00 39375.47 38094.11 21995.20 304
tpmrst91.44 24091.32 21391.79 32295.15 28879.20 38593.42 36495.37 31488.55 26693.49 16893.67 33082.49 20698.27 23790.41 19989.34 29197.90 187
ACMH87.59 1690.53 28189.42 29493.87 24896.21 22687.92 25297.24 16096.94 22788.45 26983.91 36696.27 19871.92 33398.62 20884.43 31289.43 29095.05 312
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Baseline_NR-MVSNet91.20 25590.62 24592.95 28693.83 34088.03 24997.01 18295.12 32888.42 27089.70 26395.13 25783.47 18097.44 33489.66 21683.24 36193.37 364
v114491.37 24590.60 24693.68 25993.89 33888.23 24396.84 19697.03 22188.37 27189.69 26494.39 29282.04 21497.98 27487.80 25385.37 32994.84 324
DP-MVS Recon95.68 8495.12 9697.37 5499.19 3194.19 4297.03 17798.08 7788.35 27295.09 13297.65 11689.97 8599.48 10492.08 16898.59 10998.44 152
tpm90.25 28989.74 28691.76 32593.92 33679.73 37993.98 34493.54 37288.28 27391.99 20393.25 34377.51 29397.44 33487.30 27087.94 30398.12 174
v1091.04 26290.23 26293.49 26694.12 33188.16 24797.32 15497.08 21288.26 27488.29 30494.22 30782.17 21397.97 27786.45 28384.12 35194.33 348
Fast-Effi-MVS+93.46 15592.75 16395.59 15496.77 18790.03 17996.81 19997.13 20688.19 27591.30 22394.27 30286.21 14298.63 20687.66 26196.46 17698.12 174
c3_l91.38 24390.89 22992.88 28995.58 25686.30 29294.68 31996.84 24088.17 27688.83 29194.23 30585.65 15097.47 33189.36 22384.63 34294.89 322
TEST998.70 5994.19 4296.41 23398.02 9788.17 27696.03 10497.56 12692.74 3399.59 77
MDTV_nov1_ep1390.76 23795.22 28380.33 37193.03 37295.28 31988.14 27892.84 18593.83 32081.34 22598.08 25882.86 32794.34 214
MAR-MVS94.22 12493.46 14096.51 9298.00 11392.19 10597.67 10897.47 16988.13 27993.00 17995.84 21984.86 15999.51 9987.99 24998.17 12797.83 193
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
UniMVSNet_ETH3D91.34 24890.22 26494.68 20294.86 30487.86 25597.23 16497.46 17187.99 28089.90 25796.92 16066.35 37598.23 23990.30 20290.99 27397.96 184
PatchMatch-RL92.90 18092.02 18995.56 15598.19 9890.80 15995.27 30297.18 20287.96 28191.86 20895.68 23280.44 24198.99 16784.01 31797.54 14396.89 233
thisisatest051592.29 20391.30 21595.25 17096.60 19688.90 22494.36 33292.32 38687.92 28293.43 17094.57 28177.28 29499.00 16689.42 22295.86 18497.86 190
PVSNet86.66 1892.24 20691.74 20093.73 25497.77 12683.69 33692.88 37496.72 24587.91 28393.00 17994.86 26778.51 27899.05 16286.53 28097.45 14898.47 147
LTVRE_ROB88.41 1390.99 26489.92 27794.19 22796.18 22989.55 19796.31 24597.09 21187.88 28485.67 34695.91 21678.79 27598.57 21381.50 33989.98 28494.44 345
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
WB-MVSnew89.88 30089.56 29090.82 34394.57 31983.06 34195.65 28492.85 38087.86 28590.83 23494.10 31179.66 25796.88 35676.34 37494.19 21792.54 376
cl____90.96 26790.32 25592.89 28895.37 26986.21 29594.46 32896.64 25387.82 28688.15 30994.18 30882.98 19397.54 32487.70 25785.59 32594.92 320
DIV-MVS_self_test90.97 26690.33 25492.88 28995.36 27086.19 29694.46 32896.63 25687.82 28688.18 30894.23 30582.99 19297.53 32687.72 25485.57 32694.93 318
cl2291.21 25490.56 24993.14 28096.09 23886.80 27794.41 33096.58 25987.80 28888.58 29693.99 31780.85 23597.62 31889.87 21086.93 31494.99 313
CPTT-MVS95.57 8995.19 9296.70 7899.27 2691.48 13098.33 2698.11 7387.79 28995.17 13098.03 8387.09 13199.61 7293.51 13999.42 5099.02 90
miper_ehance_all_eth91.59 23091.13 22392.97 28595.55 25886.57 28594.47 32696.88 23687.77 29088.88 28894.01 31586.22 14197.54 32489.49 21986.93 31494.79 332
v119291.07 26090.23 26293.58 26393.70 34387.82 25796.73 20597.07 21487.77 29089.58 26794.32 29980.90 23497.97 27786.52 28185.48 32794.95 314
F-COLMAP93.58 15192.98 15395.37 16798.40 7888.98 22297.18 16897.29 19887.75 29290.49 23897.10 15185.21 15499.50 10286.70 27996.72 16997.63 201
131492.81 18692.03 18895.14 17495.33 27589.52 20096.04 26097.44 18087.72 29386.25 34295.33 24683.84 17498.79 18689.26 22797.05 16297.11 226
test-mter90.19 29389.54 29192.12 31094.59 31680.66 36594.29 33792.98 37887.68 29490.76 23592.37 35767.67 36498.07 26288.81 23896.74 16797.63 201
TR-MVS91.48 23990.59 24794.16 22996.40 21887.33 26295.67 28095.34 31887.68 29491.46 21795.52 24176.77 29798.35 23182.85 32993.61 23496.79 236
LF4IMVS87.94 32487.25 32189.98 35792.38 37680.05 37794.38 33195.25 32287.59 29684.34 35794.74 27464.31 38497.66 31484.83 30687.45 30892.23 382
miper_lstm_enhance90.50 28490.06 27291.83 31995.33 27583.74 33393.86 35196.70 24987.56 29787.79 31493.81 32383.45 18296.92 35587.39 26784.62 34394.82 327
TransMVSNet (Re)88.94 31287.56 31893.08 28294.35 32588.45 23797.73 9995.23 32387.47 29884.26 35995.29 24779.86 25397.33 34179.44 36074.44 39393.45 363
v14419291.06 26190.28 25893.39 27093.66 34687.23 26896.83 19797.07 21487.43 29989.69 26494.28 30181.48 22498.00 27287.18 27384.92 34094.93 318
原ACMM196.38 10598.59 6991.09 15097.89 11087.41 30095.22 12997.68 11290.25 8099.54 9287.95 25099.12 8598.49 144
v192192090.85 27090.03 27393.29 27493.55 34786.96 27696.74 20497.04 21987.36 30189.52 27194.34 29680.23 24697.97 27786.27 28485.21 33394.94 316
USDC88.94 31287.83 31792.27 30794.66 31384.96 31893.86 35195.90 28787.34 30283.40 36895.56 23867.43 36698.19 24482.64 33489.67 28893.66 359
PLCcopyleft91.00 694.11 13293.43 14296.13 12398.58 7191.15 14996.69 21197.39 18787.29 30391.37 21996.71 16888.39 10499.52 9887.33 26997.13 16197.73 197
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
tfpnnormal89.70 30588.40 31193.60 26195.15 28890.10 17897.56 12498.16 6487.28 30486.16 34394.63 27977.57 29298.05 26574.48 38284.59 34592.65 373
TESTMET0.1,190.06 29589.42 29491.97 31394.41 32480.62 36794.29 33791.97 39087.28 30490.44 23992.47 35668.79 35697.67 31288.50 24496.60 17297.61 205
v124090.70 27689.85 27993.23 27693.51 35086.80 27796.61 22197.02 22287.16 30689.58 26794.31 30079.55 25997.98 27485.52 29985.44 32894.90 321
Patchmatch-RL test87.38 32986.24 33290.81 34488.74 39978.40 38988.12 40793.17 37687.11 30782.17 37689.29 38881.95 21795.60 37888.64 24277.02 38498.41 154
CDPH-MVS95.97 7695.38 8797.77 3398.93 5094.44 3596.35 24197.88 11286.98 30896.65 7797.89 9391.99 4899.47 10592.26 15999.46 4199.39 59
PM-MVS83.48 35881.86 36488.31 36987.83 40377.59 39193.43 36391.75 39186.91 30980.63 38189.91 38444.42 41095.84 37285.17 30576.73 38791.50 391
CR-MVSNet90.82 27189.77 28393.95 24294.45 32287.19 26990.23 39595.68 30186.89 31092.40 18892.36 36080.91 23297.05 34981.09 34893.95 22797.60 206
1112_ss93.37 15892.42 17996.21 11997.05 16590.99 15196.31 24596.72 24586.87 31189.83 26096.69 17286.51 13799.14 14588.12 24693.67 23198.50 142
miper_enhance_ethall91.54 23691.01 22793.15 27995.35 27187.07 27393.97 34596.90 23386.79 31289.17 28293.43 34286.55 13697.64 31589.97 20786.93 31494.74 336
CL-MVSNet_self_test86.31 34185.15 34289.80 35988.83 39781.74 35793.93 34896.22 27686.67 31385.03 35290.80 37678.09 28694.50 38774.92 38171.86 39893.15 366
FMVSNet189.88 30088.31 31294.59 20495.41 26591.18 14597.50 13196.93 22886.62 31487.41 32294.51 28565.94 38097.29 34383.04 32687.43 30995.31 296
CHOSEN 280x42093.12 16892.72 16694.34 22096.71 19187.27 26590.29 39497.72 13586.61 31591.34 22095.29 24784.29 16898.41 22393.25 14598.94 9597.35 218
test_fmvs383.21 35983.02 35683.78 38286.77 40668.34 40896.76 20394.91 33786.49 31684.14 36289.48 38736.04 41491.73 40491.86 17280.77 37391.26 394
mvsany_test383.59 35782.44 36187.03 37683.80 40973.82 39893.70 35590.92 39886.42 31782.51 37490.26 38046.76 40995.71 37490.82 19376.76 38691.57 389
MIMVSNet88.50 31986.76 32993.72 25694.84 30587.77 25891.39 38594.05 36286.41 31887.99 31292.59 35363.27 38695.82 37377.44 36792.84 24097.57 208
mvs5depth86.53 33685.08 34390.87 34188.74 39982.52 34791.91 38394.23 36086.35 31987.11 32993.70 32666.52 37397.76 30681.37 34475.80 38992.31 381
FE-MVS92.05 21391.05 22595.08 17796.83 17987.93 25193.91 35095.70 29786.30 32094.15 15394.97 26076.59 29899.21 13184.10 31596.86 16398.09 178
tpmvs89.83 30389.15 30091.89 31794.92 30080.30 37293.11 37095.46 31186.28 32188.08 31092.65 35080.44 24198.52 21681.47 34089.92 28596.84 234
PAPM91.52 23790.30 25795.20 17195.30 27889.83 18993.38 36596.85 23986.26 32288.59 29595.80 22284.88 15898.15 24775.67 37895.93 18297.63 201
VDDNet93.05 17292.07 18696.02 13096.84 17790.39 17498.08 5395.85 29086.22 32395.79 11498.46 4467.59 36599.19 13394.92 10894.85 20398.47 147
MS-PatchMatch90.27 28889.77 28391.78 32394.33 32684.72 32295.55 28796.73 24486.17 32486.36 34195.28 24971.28 33897.80 30184.09 31698.14 12892.81 370
MVP-Stereo90.74 27490.08 26892.71 29693.19 35988.20 24495.86 27096.27 27386.07 32584.86 35494.76 27277.84 29097.75 30783.88 32198.01 13192.17 385
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
Anonymous20240521192.07 21290.83 23595.76 14198.19 9888.75 22697.58 12195.00 33286.00 32693.64 16397.45 13066.24 37799.53 9490.68 19792.71 24399.01 93
KD-MVS_self_test85.95 34684.95 34588.96 36789.55 39379.11 38695.13 30996.42 26585.91 32784.07 36490.48 37870.03 34994.82 38680.04 35372.94 39692.94 368
CVMVSNet91.23 25391.75 19889.67 36095.77 24974.69 39696.44 22994.88 33985.81 32892.18 19797.64 11979.07 26695.58 37988.06 24895.86 18498.74 124
our_test_388.78 31687.98 31691.20 33792.45 37482.53 34693.61 36195.69 29985.77 32984.88 35393.71 32579.99 25096.78 36079.47 35886.24 31994.28 351
MSDG91.42 24190.24 26194.96 18797.15 15788.91 22393.69 35796.32 26985.72 33086.93 33696.47 18880.24 24598.98 16880.57 35095.05 20296.98 228
CHOSEN 1792x268894.15 12893.51 13896.06 12698.27 8689.38 20695.18 30898.48 2185.60 33193.76 16297.11 15083.15 18799.61 7291.33 18498.72 10399.19 74
KD-MVS_2432*160084.81 35482.64 35891.31 33391.07 38385.34 31091.22 38795.75 29585.56 33283.09 37190.21 38167.21 36895.89 36977.18 37162.48 41192.69 371
miper_refine_blended84.81 35482.64 35891.31 33391.07 38385.34 31091.22 38795.75 29585.56 33283.09 37190.21 38167.21 36895.89 36977.18 37162.48 41192.69 371
AllTest90.23 29088.98 30293.98 23897.94 11686.64 28196.51 22895.54 30885.38 33485.49 34896.77 16670.28 34599.15 14280.02 35492.87 23896.15 253
TestCases93.98 23897.94 11686.64 28195.54 30885.38 33485.49 34896.77 16670.28 34599.15 14280.02 35492.87 23896.15 253
Test_1112_low_res92.84 18491.84 19595.85 13997.04 16689.97 18595.53 28996.64 25385.38 33489.65 26695.18 25485.86 14799.10 14987.70 25793.58 23698.49 144
test_vis1_rt86.16 34385.06 34489.46 36293.47 35380.46 36996.41 23386.61 41285.22 33779.15 38988.64 39152.41 40497.06 34893.08 14990.57 27890.87 395
EU-MVSNet88.72 31788.90 30588.20 37093.15 36074.21 39796.63 22094.22 36185.18 33887.32 32595.97 21276.16 30394.98 38585.27 30286.17 32095.41 286
LS3D93.57 15292.61 17096.47 9697.59 14091.61 12397.67 10897.72 13585.17 33990.29 24298.34 5784.60 16199.73 4583.85 32298.27 12298.06 180
dp88.90 31488.26 31490.81 34494.58 31876.62 39292.85 37594.93 33685.12 34090.07 25593.07 34475.81 30598.12 25180.53 35187.42 31097.71 198
HyFIR lowres test93.66 14992.92 15595.87 13698.24 9089.88 18894.58 32298.49 1985.06 34193.78 16195.78 22682.86 19698.67 20291.77 17495.71 18899.07 89
new-patchmatchnet83.18 36081.87 36387.11 37586.88 40575.99 39593.70 35595.18 32585.02 34277.30 39488.40 39365.99 37993.88 39674.19 38670.18 40091.47 392
TDRefinement86.53 33684.76 34891.85 31882.23 41484.25 32696.38 23995.35 31584.97 34384.09 36394.94 26265.76 38198.34 23484.60 31174.52 39292.97 367
OpenMVScopyleft89.19 1292.86 18291.68 20196.40 10295.34 27292.73 8598.27 3298.12 7084.86 34485.78 34597.75 10878.89 27499.74 4487.50 26698.65 10596.73 237
gm-plane-assit93.22 35878.89 38884.82 34593.52 33598.64 20587.72 254
PMMVS92.86 18292.34 18094.42 21694.92 30086.73 28094.53 32496.38 26784.78 34694.27 14995.12 25883.13 18898.40 22491.47 18296.49 17498.12 174
pmmvs490.93 26889.85 27994.17 22893.34 35690.79 16094.60 32196.02 28384.62 34787.45 32095.15 25581.88 21997.45 33387.70 25787.87 30494.27 352
MDA-MVSNet-bldmvs85.00 35282.95 35791.17 33893.13 36183.33 33894.56 32395.00 33284.57 34865.13 41092.65 35070.45 34495.85 37173.57 38977.49 38394.33 348
QAPM93.45 15692.27 18296.98 7696.77 18792.62 8798.39 2498.12 7084.50 34988.27 30597.77 10782.39 20999.81 3085.40 30198.81 9998.51 141
ppachtmachnet_test88.35 32187.29 32091.53 32892.45 37483.57 33793.75 35495.97 28484.28 35085.32 35194.18 30879.00 27396.93 35475.71 37784.99 33994.10 353
pmmvs589.86 30288.87 30692.82 29192.86 36486.23 29496.26 24895.39 31284.24 35187.12 32794.51 28574.27 31997.36 34087.61 26487.57 30794.86 323
CostFormer91.18 25890.70 24392.62 29994.84 30581.76 35694.09 34394.43 35284.15 35292.72 18693.77 32479.43 26098.20 24290.70 19692.18 25297.90 187
FMVSNet587.29 33085.79 33691.78 32394.80 30787.28 26495.49 29195.28 31984.09 35383.85 36791.82 36862.95 38894.17 39178.48 36385.34 33193.91 357
MIMVSNet184.93 35383.05 35590.56 34989.56 39284.84 32195.40 29495.35 31583.91 35480.38 38392.21 36457.23 39793.34 39970.69 39982.75 36693.50 361
RPSCF90.75 27390.86 23190.42 35196.84 17776.29 39495.61 28696.34 26883.89 35591.38 21897.87 9676.45 30098.78 18787.16 27492.23 24996.20 249
MDTV_nov1_ep13_2view70.35 40493.10 37183.88 35693.55 16582.47 20786.25 28598.38 157
无先验95.79 27597.87 11483.87 35799.65 6187.68 26098.89 112
ttmdpeth85.91 34784.76 34889.36 36489.14 39480.25 37495.66 28393.16 37783.77 35883.39 36995.26 25166.24 37795.26 38480.65 34975.57 39092.57 374
PVSNet_082.17 1985.46 35183.64 35490.92 34095.27 27979.49 38290.55 39395.60 30483.76 35983.00 37389.95 38371.09 33997.97 27782.75 33260.79 41395.31 296
Anonymous2024052186.42 33985.44 33889.34 36590.33 38679.79 37896.73 20595.92 28583.71 36083.25 37091.36 37363.92 38596.01 36778.39 36585.36 33092.22 383
TinyColmap86.82 33585.35 34191.21 33594.91 30282.99 34293.94 34794.02 36483.58 36181.56 37794.68 27662.34 39198.13 24875.78 37687.35 31392.52 377
Anonymous2023120687.09 33386.14 33489.93 35891.22 38280.35 37096.11 25795.35 31583.57 36284.16 36093.02 34573.54 32695.61 37772.16 39386.14 32193.84 358
pmmvs-eth3d86.22 34284.45 35091.53 32888.34 40187.25 26694.47 32695.01 33183.47 36379.51 38889.61 38669.75 35295.71 37483.13 32576.73 38791.64 387
EG-PatchMatch MVS87.02 33485.44 33891.76 32592.67 36885.00 31696.08 25996.45 26483.41 36479.52 38793.49 33657.10 39897.72 30979.34 36190.87 27692.56 375
ADS-MVSNet289.45 30788.59 30992.03 31295.86 24382.26 35290.93 39094.32 35983.23 36591.28 22691.81 36979.01 27195.99 36879.52 35691.39 26597.84 191
ADS-MVSNet89.89 29988.68 30893.53 26595.86 24384.89 32090.93 39095.07 33083.23 36591.28 22691.81 36979.01 27197.85 29579.52 35691.39 26597.84 191
COLMAP_ROBcopyleft87.81 1590.40 28589.28 29793.79 25297.95 11587.13 27296.92 18995.89 28982.83 36786.88 33897.18 14673.77 32499.29 12578.44 36493.62 23394.95 314
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
testdata95.46 16598.18 10088.90 22497.66 14182.73 36897.03 6398.07 7990.06 8298.85 18089.67 21598.98 9398.64 131
WB-MVS76.77 37076.63 37377.18 38985.32 40756.82 42194.53 32489.39 40382.66 36971.35 40289.18 38975.03 31388.88 40935.42 41866.79 40685.84 403
DP-MVS92.76 18791.51 20996.52 8998.77 5690.99 15197.38 14896.08 28282.38 37089.29 27897.87 9683.77 17599.69 5581.37 34496.69 17098.89 112
MDA-MVSNet_test_wron85.87 34884.23 35290.80 34692.38 37682.57 34593.17 36795.15 32682.15 37167.65 40692.33 36378.20 28295.51 38077.33 36879.74 37594.31 350
YYNet185.87 34884.23 35290.78 34792.38 37682.46 35093.17 36795.14 32782.12 37267.69 40492.36 36078.16 28595.50 38177.31 36979.73 37694.39 346
PatchT88.87 31587.42 31993.22 27794.08 33385.10 31489.51 40094.64 34781.92 37392.36 19188.15 39680.05 24997.01 35272.43 39293.65 23297.54 209
TAPA-MVS90.10 792.30 20291.22 22095.56 15598.33 8389.60 19496.79 20097.65 14381.83 37491.52 21597.23 14487.94 11198.91 17571.31 39698.37 11898.17 171
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
SSC-MVS76.05 37175.83 37476.72 39384.77 40856.22 42294.32 33588.96 40581.82 37570.52 40388.91 39074.79 31588.71 41033.69 41964.71 40985.23 404
旧先验295.94 26681.66 37697.34 5298.82 18292.26 159
新几何197.32 5698.60 6893.59 5897.75 13081.58 37795.75 11597.85 9990.04 8399.67 5986.50 28299.13 8398.69 128
Patchmatch-test89.42 30887.99 31593.70 25795.27 27985.11 31388.98 40294.37 35681.11 37887.10 33093.69 32782.28 21097.50 32974.37 38494.76 20798.48 146
test_040286.46 33884.79 34791.45 33095.02 29485.55 30396.29 24794.89 33880.90 37982.21 37593.97 31868.21 36397.29 34362.98 40588.68 29891.51 390
gg-mvs-nofinetune87.82 32585.61 33794.44 21494.46 32189.27 21491.21 38984.61 41580.88 38089.89 25974.98 41171.50 33697.53 32685.75 29797.21 15896.51 241
JIA-IIPM88.26 32287.04 32691.91 31593.52 34981.42 35889.38 40194.38 35580.84 38190.93 23280.74 40879.22 26397.92 28982.76 33191.62 26096.38 246
Patchmtry88.64 31887.25 32192.78 29494.09 33286.64 28189.82 39995.68 30180.81 38287.63 31892.36 36080.91 23297.03 35078.86 36285.12 33594.67 338
test_f80.57 36679.62 36883.41 38383.38 41267.80 41093.57 36293.72 37080.80 38377.91 39387.63 39933.40 41592.08 40387.14 27579.04 38190.34 398
tpm289.96 29689.21 29892.23 30994.91 30281.25 35993.78 35394.42 35380.62 38491.56 21493.44 33976.44 30197.94 28685.60 29892.08 25697.49 210
pmmvs687.81 32686.19 33392.69 29791.32 38186.30 29297.34 15196.41 26680.59 38584.05 36594.37 29467.37 36797.67 31284.75 30879.51 37894.09 355
Anonymous2023121190.63 27989.42 29494.27 22698.24 9089.19 21898.05 5797.89 11079.95 38688.25 30694.96 26172.56 33098.13 24889.70 21485.14 33495.49 280
cascas91.20 25590.08 26894.58 20894.97 29589.16 21993.65 35997.59 15279.90 38789.40 27392.92 34775.36 31098.36 23092.14 16494.75 20896.23 247
Anonymous2024052991.98 21590.73 24195.73 14698.14 10289.40 20597.99 6297.72 13579.63 38893.54 16697.41 13469.94 35099.56 8891.04 19191.11 27098.22 165
PCF-MVS89.48 1191.56 23389.95 27596.36 10796.60 19692.52 9192.51 37997.26 19979.41 38988.90 28696.56 18484.04 17399.55 9077.01 37397.30 15597.01 227
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
test22298.24 9092.21 10295.33 29797.60 14979.22 39095.25 12797.84 10188.80 9799.15 8198.72 125
UnsupCasMVSNet_bld82.13 36479.46 36990.14 35588.00 40282.47 34990.89 39296.62 25878.94 39175.61 39584.40 40656.63 39996.31 36577.30 37066.77 40791.63 388
N_pmnet78.73 36978.71 37078.79 38792.80 36646.50 42694.14 34143.71 42878.61 39280.83 37991.66 37174.94 31496.36 36467.24 40284.45 34893.50 361
ANet_high63.94 38359.58 38677.02 39061.24 42666.06 41185.66 41087.93 40878.53 39342.94 41871.04 41525.42 42180.71 41752.60 41330.83 41984.28 405
114514_t93.95 13893.06 15196.63 8299.07 3791.61 12397.46 13997.96 10577.99 39493.00 17997.57 12486.14 14599.33 11889.22 22999.15 8198.94 101
DSMNet-mixed86.34 34086.12 33587.00 37789.88 39070.43 40394.93 31490.08 40177.97 39585.42 35092.78 34874.44 31893.96 39574.43 38395.14 19896.62 239
RPMNet88.98 31187.05 32594.77 19994.45 32287.19 26990.23 39598.03 9477.87 39692.40 18887.55 40080.17 24799.51 9968.84 40193.95 22797.60 206
test_vis3_rt72.73 37270.55 37579.27 38680.02 41568.13 40993.92 34974.30 42376.90 39758.99 41473.58 41420.29 42395.37 38284.16 31472.80 39774.31 411
new_pmnet82.89 36181.12 36688.18 37189.63 39180.18 37591.77 38492.57 38476.79 39875.56 39788.23 39561.22 39394.48 38871.43 39582.92 36489.87 399
dongtai69.99 37669.33 37871.98 39788.78 39861.64 41789.86 39859.93 42775.67 39974.96 39885.45 40350.19 40681.66 41643.86 41555.27 41472.63 412
tpm cat188.36 32087.21 32391.81 32195.13 29080.55 36892.58 37895.70 29774.97 40087.45 32091.96 36778.01 28998.17 24680.39 35288.74 29796.72 238
CMPMVSbinary62.92 2185.62 35084.92 34687.74 37289.14 39473.12 40294.17 34096.80 24273.98 40173.65 40094.93 26366.36 37497.61 31983.95 31991.28 26792.48 378
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
MVStest182.38 36380.04 36789.37 36387.63 40482.83 34395.03 31193.37 37573.90 40273.50 40194.35 29562.89 38993.25 40073.80 38765.92 40892.04 386
OpenMVS_ROBcopyleft81.14 2084.42 35682.28 36290.83 34290.06 38884.05 33195.73 27894.04 36373.89 40380.17 38691.53 37259.15 39497.64 31566.92 40389.05 29390.80 396
MVS91.71 22390.44 25195.51 15995.20 28591.59 12596.04 26097.45 17673.44 40487.36 32495.60 23685.42 15299.10 14985.97 29397.46 14495.83 265
pmmvs379.97 36777.50 37287.39 37482.80 41379.38 38492.70 37790.75 39970.69 40578.66 39087.47 40151.34 40593.40 39873.39 39069.65 40189.38 400
APD_test179.31 36877.70 37184.14 38189.11 39669.07 40792.36 38291.50 39369.07 40673.87 39992.63 35239.93 41294.32 39070.54 40080.25 37489.02 401
kuosan65.27 38264.66 38467.11 40083.80 40961.32 41888.53 40460.77 42668.22 40767.67 40580.52 40949.12 40770.76 42229.67 42153.64 41669.26 414
MVS-HIRNet82.47 36281.21 36586.26 37995.38 26769.21 40688.96 40389.49 40266.28 40880.79 38074.08 41368.48 36197.39 33871.93 39495.47 19292.18 384
DeepMVS_CXcopyleft74.68 39690.84 38564.34 41481.61 41965.34 40967.47 40788.01 39848.60 40880.13 41862.33 40673.68 39579.58 408
PMMVS270.19 37566.92 37980.01 38576.35 41865.67 41286.22 40887.58 40964.83 41062.38 41180.29 41026.78 42088.49 41263.79 40454.07 41585.88 402
FPMVS71.27 37469.85 37675.50 39474.64 41959.03 41991.30 38691.50 39358.80 41157.92 41588.28 39429.98 41885.53 41453.43 41282.84 36581.95 407
testf169.31 37766.76 38076.94 39178.61 41661.93 41588.27 40586.11 41355.62 41259.69 41285.31 40420.19 42489.32 40657.62 40869.44 40379.58 408
APD_test269.31 37766.76 38076.94 39178.61 41661.93 41588.27 40586.11 41355.62 41259.69 41285.31 40420.19 42489.32 40657.62 40869.44 40379.58 408
LCM-MVSNet72.55 37369.39 37782.03 38470.81 42465.42 41390.12 39794.36 35855.02 41465.88 40881.72 40724.16 42289.96 40574.32 38568.10 40590.71 397
Gipumacopyleft67.86 38065.41 38275.18 39592.66 36973.45 39966.50 41694.52 35053.33 41557.80 41666.07 41630.81 41689.20 40848.15 41478.88 38262.90 416
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMVScopyleft53.92 2258.58 38455.40 38768.12 39951.00 42748.64 42478.86 41387.10 41146.77 41635.84 42274.28 4128.76 42686.34 41342.07 41673.91 39469.38 413
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
E-PMN53.28 38552.56 38955.43 40274.43 42047.13 42583.63 41276.30 42042.23 41742.59 41962.22 41828.57 41974.40 41931.53 42031.51 41844.78 417
EMVS52.08 38751.31 39054.39 40372.62 42245.39 42783.84 41175.51 42241.13 41840.77 42059.65 41930.08 41773.60 42028.31 42229.90 42044.18 418
MVEpermissive50.73 2353.25 38648.81 39166.58 40165.34 42557.50 42072.49 41570.94 42440.15 41939.28 42163.51 4176.89 42873.48 42138.29 41742.38 41768.76 415
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_method66.11 38164.89 38369.79 39872.62 42235.23 43065.19 41792.83 38220.35 42065.20 40988.08 39743.14 41182.70 41573.12 39163.46 41091.45 393
tmp_tt51.94 38853.82 38846.29 40433.73 42845.30 42878.32 41467.24 42518.02 42150.93 41787.05 40252.99 40353.11 42370.76 39825.29 42140.46 419
wuyk23d25.11 38924.57 39326.74 40573.98 42139.89 42957.88 4189.80 42912.27 42210.39 4236.97 4257.03 42736.44 42425.43 42317.39 4223.89 422
testmvs13.36 39116.33 3944.48 4075.04 4292.26 43293.18 3663.28 4302.70 4238.24 42421.66 4212.29 4302.19 4257.58 4242.96 4239.00 421
test12313.04 39215.66 3955.18 4064.51 4303.45 43192.50 3801.81 4312.50 4247.58 42520.15 4223.67 4292.18 4267.13 4251.07 4249.90 420
EGC-MVSNET68.77 37963.01 38586.07 38092.49 37282.24 35393.96 34690.96 3970.71 4252.62 42690.89 37553.66 40293.46 39757.25 41084.55 34682.51 406
mmdepth0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
monomultidepth0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
test_blank0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
uanet_test0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
DCPMVS0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
cdsmvs_eth3d_5k23.24 39030.99 3920.00 4080.00 4310.00 4330.00 41997.63 1470.00 4260.00 42796.88 16284.38 1650.00 4270.00 4260.00 4250.00 423
pcd_1.5k_mvsjas7.39 3949.85 3970.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 42688.65 1000.00 4270.00 4260.00 4250.00 423
sosnet-low-res0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
sosnet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
uncertanet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
Regformer0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
ab-mvs-re8.06 39310.74 3960.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 42796.69 1720.00 4310.00 4270.00 4260.00 4250.00 423
uanet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
WAC-MVS79.53 38075.56 379
MSC_two_6792asdad98.86 198.67 6196.94 197.93 10899.86 997.68 2099.67 699.77 2
No_MVS98.86 198.67 6196.94 197.93 10899.86 997.68 2099.67 699.77 2
eth-test20.00 431
eth-test0.00 431
OPU-MVS98.55 398.82 5596.86 398.25 3598.26 6996.04 299.24 12895.36 9899.59 1999.56 31
test_0728_SECOND98.51 499.45 395.93 598.21 4298.28 3699.86 997.52 2899.67 699.75 6
GSMVS98.45 149
test_part299.28 2595.74 898.10 30
sam_mvs182.76 19998.45 149
sam_mvs81.94 218
ambc86.56 37883.60 41170.00 40585.69 40994.97 33480.60 38288.45 39237.42 41396.84 35882.69 33375.44 39192.86 369
MTGPAbinary98.08 77
test_post192.81 37616.58 42480.53 23997.68 31186.20 286
test_post17.58 42381.76 22098.08 258
patchmatchnet-post90.45 37982.65 20398.10 253
GG-mvs-BLEND93.62 26093.69 34489.20 21692.39 38183.33 41787.98 31389.84 38571.00 34096.87 35782.08 33795.40 19494.80 330
MTMP97.86 8182.03 418
test9_res94.81 11399.38 5899.45 50
agg_prior293.94 13199.38 5899.50 43
agg_prior98.67 6193.79 5498.00 10195.68 11899.57 87
test_prior493.66 5796.42 232
test_prior97.23 6398.67 6192.99 7898.00 10199.41 11299.29 66
新几何295.79 275
旧先验198.38 8193.38 6397.75 13098.09 7892.30 4599.01 9299.16 76
原ACMM295.67 280
testdata299.67 5985.96 294
segment_acmp92.89 30
test1297.65 4298.46 7394.26 3997.66 14195.52 12590.89 7399.46 10699.25 7199.22 73
plane_prior796.21 22689.98 184
plane_prior696.10 23790.00 18081.32 226
plane_prior597.51 16298.60 20993.02 15292.23 24995.86 261
plane_prior496.64 175
plane_prior196.14 234
n20.00 432
nn0.00 432
door-mid91.06 396
lessismore_v090.45 35091.96 37979.09 38787.19 41080.32 38494.39 29266.31 37697.55 32384.00 31876.84 38594.70 337
test1197.88 112
door91.13 395
HQP5-MVS89.33 209
BP-MVS92.13 165
HQP4-MVS90.14 24498.50 21795.78 269
HQP3-MVS97.39 18792.10 254
HQP2-MVS80.95 230
NP-MVS95.99 24189.81 19095.87 217
ACMMP++_ref90.30 283
ACMMP++91.02 272
Test By Simon88.73 99