SED-MVS | | | 79.21 1 | 84.74 2 | 72.75 1 | 78.66 2 | 81.96 2 | 82.94 4 | 58.16 4 | 86.82 2 | 67.66 1 | 88.29 4 | 86.15 3 | 66.42 2 | 80.41 4 | 78.65 6 | 82.65 16 | 90.92 2 |
|
DVP-MVS |  | | 78.77 2 | 84.89 1 | 71.62 4 | 78.04 3 | 82.05 1 | 81.64 10 | 57.96 7 | 87.53 1 | 66.64 2 | 88.77 1 | 86.31 1 | 63.16 10 | 79.99 7 | 78.56 7 | 82.31 22 | 91.03 1 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
DVP-MVS++ | | | 78.76 3 | 84.44 3 | 72.14 2 | 76.63 7 | 81.93 3 | 82.92 5 | 58.10 5 | 85.86 4 | 66.53 3 | 87.86 5 | 86.16 2 | 66.45 1 | 80.46 3 | 78.53 9 | 82.19 27 | 90.29 4 |
|
MTAPA | | | | | | | | | | | 65.14 4 | | 80.20 20 | | | | | |
|
SF-MVS | | | 77.13 8 | 81.70 8 | 71.79 3 | 79.32 1 | 80.76 5 | 82.96 2 | 57.49 11 | 82.82 9 | 64.79 5 | 83.69 10 | 84.46 5 | 62.83 13 | 77.13 26 | 75.21 31 | 83.35 7 | 87.85 16 |
|
MSP-MVS | | | 77.82 5 | 83.46 5 | 71.24 8 | 75.26 17 | 80.22 7 | 82.95 3 | 57.85 8 | 85.90 3 | 64.79 5 | 88.54 3 | 83.43 7 | 66.24 3 | 78.21 17 | 78.56 7 | 80.34 46 | 89.39 7 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
SMA-MVS |  | | 77.32 7 | 82.51 7 | 71.26 7 | 75.43 15 | 80.19 8 | 82.22 7 | 58.26 3 | 84.83 7 | 64.36 7 | 78.19 15 | 83.46 6 | 63.61 8 | 81.00 1 | 80.28 1 | 83.66 4 | 89.62 6 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
HFP-MVS | | | 74.87 15 | 78.86 20 | 70.21 12 | 73.99 22 | 77.91 18 | 80.36 16 | 56.63 16 | 78.41 19 | 64.27 8 | 74.54 20 | 77.75 28 | 62.96 12 | 78.70 12 | 77.82 13 | 83.02 9 | 86.91 21 |
|
CSCG | | | 74.68 16 | 79.22 16 | 69.40 17 | 75.69 12 | 80.01 9 | 79.12 24 | 52.83 41 | 79.34 17 | 63.99 9 | 70.49 25 | 82.02 12 | 60.35 32 | 77.48 24 | 77.22 19 | 84.38 1 | 87.97 15 |
|
ACMMP_NAP | | | 76.15 9 | 81.17 9 | 70.30 11 | 74.09 21 | 79.47 10 | 81.59 12 | 57.09 14 | 81.38 11 | 63.89 10 | 79.02 13 | 80.48 19 | 62.24 17 | 80.05 6 | 79.12 4 | 82.94 11 | 88.64 9 |
|
HPM-MVS++ |  | | 76.01 10 | 80.47 12 | 70.81 9 | 76.60 8 | 74.96 36 | 80.18 17 | 58.36 2 | 81.96 10 | 63.50 11 | 78.80 14 | 82.53 11 | 64.40 6 | 78.74 10 | 78.84 5 | 81.81 33 | 87.46 18 |
|
DPE-MVS |  | | 78.11 4 | 83.84 4 | 71.42 5 | 77.82 5 | 81.32 4 | 82.92 5 | 57.81 9 | 84.04 8 | 63.19 12 | 88.63 2 | 86.00 4 | 64.52 5 | 78.71 11 | 77.63 15 | 82.26 23 | 90.57 3 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
CNVR-MVS | | | 75.62 12 | 79.91 14 | 70.61 10 | 75.76 10 | 78.82 14 | 81.66 9 | 57.12 13 | 79.77 16 | 63.04 13 | 70.69 24 | 81.15 16 | 62.99 11 | 80.23 5 | 79.54 3 | 83.11 8 | 89.16 8 |
|
SD-MVS | | | 74.43 17 | 78.87 18 | 69.26 19 | 74.39 20 | 73.70 45 | 79.06 25 | 55.24 25 | 81.04 12 | 62.71 14 | 80.18 12 | 82.61 10 | 61.70 21 | 75.43 40 | 73.92 43 | 82.44 21 | 85.22 31 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
TSAR-MVS + MP. | | | 75.22 14 | 80.06 13 | 69.56 16 | 74.61 19 | 72.74 49 | 80.59 14 | 55.70 23 | 80.80 13 | 62.65 15 | 86.25 6 | 82.92 9 | 62.07 19 | 76.89 28 | 75.66 30 | 81.77 35 | 85.19 32 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
MTMP | | | | | | | | | | | 62.63 16 | | 78.04 26 | | | | | |
|
TPM-MVS | | | | | | 75.48 14 | 76.70 29 | 79.31 21 | | | 62.34 17 | 64.71 42 | 77.88 27 | 56.94 53 | | | 81.88 31 | 83.68 40 |
|
NCCC | | | 74.27 19 | 77.83 24 | 70.13 13 | 75.70 11 | 77.41 22 | 80.51 15 | 57.09 14 | 78.25 20 | 62.28 18 | 65.54 37 | 78.26 25 | 62.18 18 | 79.13 8 | 78.51 10 | 83.01 10 | 87.68 17 |
|
DPM-MVS | | | 72.80 26 | 75.90 29 | 69.19 20 | 75.51 13 | 77.68 20 | 81.62 11 | 54.83 26 | 75.96 25 | 62.06 19 | 63.96 47 | 76.58 30 | 58.55 40 | 76.66 32 | 76.77 23 | 82.60 18 | 83.68 40 |
|
DeepC-MVS | | 66.32 2 | 73.85 22 | 78.10 23 | 68.90 22 | 67.92 49 | 79.31 11 | 78.16 29 | 59.28 1 | 78.24 21 | 61.13 20 | 67.36 35 | 76.10 33 | 63.40 9 | 79.11 9 | 78.41 11 | 83.52 5 | 88.16 13 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
APDe-MVS | | | 77.58 6 | 82.93 6 | 71.35 6 | 77.86 4 | 80.55 6 | 83.38 1 | 57.61 10 | 85.57 5 | 61.11 21 | 86.10 7 | 82.98 8 | 64.76 4 | 78.29 15 | 76.78 22 | 83.40 6 | 90.20 5 |
|
CLD-MVS | | | 67.02 49 | 71.57 42 | 61.71 51 | 71.01 35 | 74.81 38 | 71.62 51 | 38.91 159 | 71.86 40 | 60.70 22 | 64.97 41 | 67.88 64 | 51.88 92 | 76.77 31 | 74.98 36 | 76.11 95 | 69.75 123 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
MP-MVS |  | | 74.31 18 | 78.87 18 | 68.99 21 | 73.49 24 | 78.56 15 | 79.25 23 | 56.51 17 | 75.33 27 | 60.69 23 | 75.30 19 | 79.12 23 | 61.81 20 | 77.78 21 | 77.93 12 | 82.18 29 | 88.06 14 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
MSLP-MVS++ | | | 68.17 43 | 70.72 48 | 65.19 38 | 69.41 42 | 70.64 55 | 74.99 41 | 45.76 77 | 70.20 45 | 60.17 24 | 56.42 75 | 73.01 44 | 61.14 23 | 72.80 54 | 70.54 58 | 79.70 52 | 81.42 51 |
|
MCST-MVS | | | 73.67 24 | 77.39 25 | 69.33 18 | 76.26 9 | 78.19 17 | 78.77 26 | 54.54 30 | 75.33 27 | 59.99 25 | 67.96 31 | 79.23 22 | 62.43 16 | 78.00 18 | 75.71 29 | 84.02 2 | 87.30 19 |
|
SteuartSystems-ACMMP | | | 75.23 13 | 79.60 15 | 70.13 13 | 76.81 6 | 78.92 12 | 81.74 8 | 57.99 6 | 75.30 29 | 59.83 26 | 75.69 18 | 78.45 24 | 60.48 29 | 80.58 2 | 79.77 2 | 83.94 3 | 88.52 10 |
Skip Steuart: Steuart Systems R&D Blog. |
APD-MVS |  | | 75.80 11 | 80.90 11 | 69.86 15 | 75.42 16 | 78.48 16 | 81.43 13 | 57.44 12 | 80.45 14 | 59.32 27 | 85.28 8 | 80.82 18 | 63.96 7 | 76.89 28 | 76.08 27 | 81.58 39 | 88.30 12 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
train_agg | | | 73.89 21 | 78.25 22 | 68.80 23 | 75.25 18 | 72.27 51 | 79.75 18 | 56.05 20 | 74.87 32 | 58.97 28 | 81.83 11 | 79.76 21 | 61.05 25 | 77.39 25 | 76.01 28 | 81.71 36 | 85.61 29 |
|
CP-MVS | | | 72.63 27 | 76.95 27 | 67.59 26 | 70.67 36 | 75.53 34 | 77.95 31 | 56.01 21 | 75.65 26 | 58.82 29 | 69.16 29 | 76.48 31 | 60.46 30 | 77.66 22 | 77.20 20 | 81.65 37 | 86.97 20 |
|
3Dnovator+ | | 62.63 4 | 69.51 35 | 72.62 39 | 65.88 36 | 68.21 48 | 76.47 30 | 73.50 49 | 52.74 42 | 70.85 42 | 58.65 30 | 55.97 77 | 69.95 51 | 61.11 24 | 76.80 30 | 75.09 32 | 81.09 42 | 83.23 44 |
|
DeepC-MVS_fast | | 65.08 3 | 72.00 29 | 76.11 28 | 67.21 28 | 68.93 45 | 77.46 21 | 76.54 35 | 54.35 31 | 74.92 31 | 58.64 31 | 65.18 39 | 74.04 43 | 62.62 14 | 77.92 19 | 77.02 21 | 82.16 30 | 86.21 23 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
ACMMPR | | | 73.79 23 | 78.41 21 | 68.40 24 | 72.35 28 | 77.79 19 | 79.32 20 | 56.38 18 | 77.67 23 | 58.30 32 | 74.16 21 | 76.66 29 | 61.40 22 | 78.32 14 | 77.80 14 | 82.68 15 | 86.51 22 |
|
DeepPCF-MVS | | 66.49 1 | 74.25 20 | 80.97 10 | 66.41 31 | 67.75 51 | 78.87 13 | 75.61 39 | 54.16 33 | 84.86 6 | 58.22 33 | 77.94 16 | 81.01 17 | 62.52 15 | 78.34 13 | 77.38 16 | 80.16 49 | 88.40 11 |
|
PGM-MVS | | | 72.89 25 | 77.13 26 | 67.94 25 | 72.47 27 | 77.25 23 | 79.27 22 | 54.63 29 | 73.71 34 | 57.95 34 | 72.38 22 | 75.33 35 | 60.75 27 | 78.25 16 | 77.36 18 | 82.57 19 | 85.62 28 |
|
AdaColmap |  | | 67.89 45 | 68.85 58 | 66.77 29 | 73.73 23 | 74.30 43 | 75.28 40 | 53.58 36 | 70.24 44 | 57.59 35 | 51.19 103 | 59.19 92 | 60.74 28 | 75.33 42 | 73.72 45 | 79.69 54 | 77.96 70 |
|
TSAR-MVS + GP. | | | 69.71 34 | 73.92 36 | 64.80 42 | 68.27 47 | 70.56 56 | 71.90 50 | 50.75 51 | 71.38 41 | 57.46 36 | 68.68 30 | 75.42 34 | 60.10 33 | 73.47 51 | 73.99 42 | 80.32 47 | 83.97 37 |
|
CNLPA | | | 62.78 66 | 66.31 66 | 58.65 66 | 58.47 103 | 68.41 66 | 65.98 81 | 41.22 144 | 78.02 22 | 56.04 37 | 46.65 127 | 59.50 91 | 57.50 45 | 69.67 80 | 65.27 128 | 72.70 139 | 76.67 79 |
|
ACMP | | 61.42 5 | 68.72 42 | 71.37 43 | 65.64 37 | 69.06 44 | 74.45 42 | 75.88 38 | 53.30 37 | 68.10 48 | 55.74 38 | 61.53 59 | 62.29 77 | 56.97 51 | 74.70 46 | 74.23 41 | 82.88 12 | 84.31 34 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
ACMMP |  | | 71.57 30 | 75.84 30 | 66.59 30 | 70.30 40 | 76.85 28 | 78.46 28 | 53.95 34 | 73.52 35 | 55.56 39 | 70.13 26 | 71.36 48 | 58.55 40 | 77.00 27 | 76.23 26 | 82.71 14 | 85.81 27 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
MAR-MVS | | | 68.04 44 | 70.74 47 | 64.90 41 | 71.68 32 | 76.33 31 | 74.63 44 | 50.48 55 | 63.81 54 | 55.52 40 | 54.88 83 | 69.90 52 | 57.39 47 | 75.42 41 | 74.79 37 | 79.71 51 | 80.03 56 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
TSAR-MVS + ACMM | | | 72.56 28 | 79.07 17 | 64.96 40 | 73.24 25 | 73.16 48 | 78.50 27 | 48.80 66 | 79.34 17 | 55.32 41 | 85.04 9 | 81.49 15 | 58.57 39 | 75.06 43 | 73.75 44 | 75.35 107 | 85.61 29 |
|
OMC-MVS | | | 65.16 58 | 71.35 44 | 57.94 72 | 52.95 150 | 68.82 63 | 69.00 57 | 38.28 167 | 79.89 15 | 55.20 42 | 62.76 52 | 68.31 59 | 56.14 59 | 71.30 63 | 68.70 77 | 76.06 99 | 79.67 57 |
|
MVS_111021_HR | | | 67.62 46 | 70.39 49 | 64.39 43 | 69.77 41 | 70.45 58 | 71.44 53 | 51.72 47 | 60.77 63 | 55.06 43 | 62.14 56 | 66.40 67 | 58.13 43 | 76.13 34 | 74.79 37 | 80.19 48 | 82.04 49 |
|
3Dnovator | | 60.86 6 | 66.99 51 | 70.32 50 | 63.11 48 | 66.63 55 | 74.52 39 | 71.56 52 | 45.76 77 | 67.37 50 | 55.00 44 | 54.31 88 | 68.19 60 | 58.49 42 | 73.97 49 | 73.63 46 | 81.22 41 | 80.23 55 |
|
HQP-MVS | | | 70.88 33 | 75.02 33 | 66.05 34 | 71.69 31 | 74.47 41 | 77.51 32 | 53.17 38 | 72.89 36 | 54.88 45 | 70.03 27 | 70.48 50 | 57.26 48 | 76.02 35 | 75.01 35 | 81.78 34 | 86.21 23 |
|
CANet | | | 68.77 40 | 73.01 37 | 63.83 45 | 68.30 46 | 75.19 35 | 73.73 48 | 47.90 67 | 63.86 53 | 54.84 46 | 67.51 33 | 74.36 41 | 57.62 44 | 74.22 48 | 73.57 47 | 80.56 44 | 82.36 46 |
|
ACMM | | 60.30 7 | 67.58 47 | 68.82 59 | 66.13 33 | 70.59 37 | 72.01 53 | 76.54 35 | 54.26 32 | 65.64 52 | 54.78 47 | 50.35 106 | 61.72 81 | 58.74 38 | 75.79 38 | 75.03 33 | 81.88 31 | 81.17 52 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
XVS | | | | | | 70.49 38 | 76.96 25 | 74.36 45 | | | 54.48 48 | | 74.47 38 | | | | 82.24 24 | |
|
X-MVStestdata | | | | | | 70.49 38 | 76.96 25 | 74.36 45 | | | 54.48 48 | | 74.47 38 | | | | 82.24 24 | |
|
X-MVS | | | 71.18 32 | 75.66 32 | 65.96 35 | 71.71 30 | 76.96 25 | 77.26 33 | 55.88 22 | 72.75 37 | 54.48 48 | 64.39 44 | 74.47 38 | 54.19 66 | 77.84 20 | 77.37 17 | 82.21 26 | 85.85 26 |
|
PCF-MVS | | 59.98 8 | 67.32 48 | 71.04 46 | 62.97 49 | 64.77 63 | 74.49 40 | 74.78 43 | 49.54 57 | 67.44 49 | 54.39 51 | 58.35 69 | 72.81 45 | 55.79 62 | 71.54 61 | 69.24 69 | 78.57 62 | 83.41 42 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
MVS_0304 | | | 69.49 36 | 73.96 35 | 64.28 44 | 67.92 49 | 76.13 32 | 74.90 42 | 47.60 68 | 63.29 57 | 54.09 52 | 67.44 34 | 76.35 32 | 59.53 35 | 75.81 37 | 75.03 33 | 81.62 38 | 83.70 39 |
|
OPM-MVS | | | 69.33 37 | 71.05 45 | 67.32 27 | 72.34 29 | 75.70 33 | 79.57 19 | 56.34 19 | 55.21 74 | 53.81 53 | 59.51 64 | 68.96 56 | 59.67 34 | 77.61 23 | 76.44 25 | 82.19 27 | 83.88 38 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
MVS_111021_LR | | | 63.05 64 | 66.43 65 | 59.10 64 | 61.33 84 | 63.77 115 | 65.87 82 | 43.58 115 | 60.20 64 | 53.70 54 | 62.09 57 | 62.38 76 | 55.84 61 | 70.24 76 | 68.08 82 | 74.30 115 | 78.28 68 |
|
EC-MVSNet | | | 67.01 50 | 70.27 52 | 63.21 47 | 67.21 52 | 70.47 57 | 69.01 56 | 46.96 71 | 59.16 66 | 53.23 55 | 64.01 46 | 69.71 54 | 60.37 31 | 74.92 44 | 71.24 55 | 82.50 20 | 82.41 45 |
|
CDPH-MVS | | | 71.47 31 | 75.82 31 | 66.41 31 | 72.97 26 | 77.15 24 | 78.14 30 | 54.71 27 | 69.88 46 | 53.07 56 | 70.98 23 | 74.83 37 | 56.95 52 | 76.22 33 | 76.57 24 | 82.62 17 | 85.09 33 |
|
CS-MVS | | | 65.88 52 | 69.71 54 | 61.41 52 | 61.76 81 | 68.14 68 | 67.65 62 | 44.00 105 | 59.14 67 | 52.69 57 | 65.19 38 | 68.13 61 | 60.90 26 | 74.74 45 | 71.58 51 | 81.46 40 | 81.04 53 |
|
PVSNet_BlendedMVS | | | 61.63 72 | 64.82 75 | 57.91 74 | 57.21 122 | 67.55 78 | 63.47 101 | 46.08 75 | 54.72 75 | 52.46 58 | 58.59 67 | 60.73 84 | 51.82 93 | 70.46 72 | 65.20 130 | 76.44 88 | 76.50 84 |
|
PVSNet_Blended | | | 61.63 72 | 64.82 75 | 57.91 74 | 57.21 122 | 67.55 78 | 63.47 101 | 46.08 75 | 54.72 75 | 52.46 58 | 58.59 67 | 60.73 84 | 51.82 93 | 70.46 72 | 65.20 130 | 76.44 88 | 76.50 84 |
|
LGP-MVS_train | | | 68.87 39 | 72.03 41 | 65.18 39 | 69.33 43 | 74.03 44 | 76.67 34 | 53.88 35 | 68.46 47 | 52.05 60 | 63.21 49 | 63.89 70 | 56.31 56 | 75.99 36 | 74.43 39 | 82.83 13 | 84.18 35 |
|
CS-MVS-test | | | 65.18 57 | 68.70 60 | 61.07 53 | 61.92 78 | 68.06 70 | 67.09 70 | 45.18 85 | 58.47 68 | 52.02 61 | 65.76 36 | 66.44 66 | 59.24 37 | 72.71 55 | 70.05 63 | 80.98 43 | 79.40 59 |
|
casdiffmvs_mvg |  | | 65.26 56 | 69.48 57 | 60.33 56 | 62.99 76 | 69.34 61 | 69.80 55 | 45.27 83 | 63.38 56 | 51.11 62 | 65.12 40 | 69.75 53 | 53.51 74 | 71.74 59 | 68.86 75 | 79.33 56 | 78.19 69 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
PHI-MVS | | | 69.27 38 | 74.84 34 | 62.76 50 | 66.83 54 | 74.83 37 | 73.88 47 | 49.32 60 | 70.61 43 | 50.93 63 | 69.62 28 | 74.84 36 | 57.25 49 | 75.53 39 | 74.32 40 | 78.35 67 | 84.17 36 |
|
PVSNet_Blended_VisFu | | | 63.65 61 | 66.92 62 | 59.83 60 | 60.03 93 | 73.44 47 | 66.33 76 | 48.95 62 | 52.20 93 | 50.81 64 | 56.07 76 | 60.25 88 | 53.56 72 | 73.23 53 | 70.01 64 | 79.30 57 | 83.24 43 |
|
CPTT-MVS | | | 68.76 41 | 73.01 37 | 63.81 46 | 65.42 61 | 73.66 46 | 76.39 37 | 52.08 43 | 72.61 38 | 50.33 65 | 60.73 60 | 72.65 46 | 59.43 36 | 73.32 52 | 72.12 49 | 79.19 60 | 85.99 25 |
|
OpenMVS |  | 57.13 9 | 62.81 65 | 65.75 70 | 59.39 62 | 66.47 57 | 69.52 60 | 64.26 97 | 43.07 129 | 61.34 62 | 50.19 66 | 47.29 124 | 64.41 69 | 54.60 65 | 70.18 77 | 68.62 79 | 77.73 69 | 78.89 62 |
|
MVS_Test | | | 62.40 69 | 66.23 67 | 57.94 72 | 59.77 97 | 64.77 106 | 66.50 75 | 41.76 138 | 57.26 70 | 49.33 67 | 62.68 53 | 67.47 65 | 53.50 76 | 68.57 92 | 66.25 113 | 76.77 83 | 76.58 81 |
|
QAPM | | | 65.27 55 | 69.49 56 | 60.35 55 | 65.43 60 | 72.20 52 | 65.69 85 | 47.23 69 | 63.46 55 | 49.14 68 | 53.56 89 | 71.04 49 | 57.01 50 | 72.60 56 | 71.41 53 | 77.62 71 | 82.14 48 |
|
casdiffmvs |  | | 64.09 60 | 68.13 61 | 59.37 63 | 61.81 79 | 68.32 67 | 68.48 60 | 44.45 95 | 61.95 60 | 49.12 69 | 63.04 50 | 69.67 55 | 53.83 70 | 70.46 72 | 66.06 116 | 78.55 63 | 77.43 72 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
DELS-MVS | | | 65.87 53 | 70.30 51 | 60.71 54 | 64.05 71 | 72.68 50 | 70.90 54 | 45.43 81 | 57.49 69 | 49.05 70 | 64.43 43 | 68.66 57 | 55.11 64 | 74.31 47 | 73.02 48 | 79.70 52 | 81.51 50 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
TAPA-MVS | | 54.74 10 | 60.85 75 | 66.61 63 | 54.12 99 | 47.38 183 | 65.33 98 | 65.35 88 | 36.51 176 | 75.16 30 | 48.82 71 | 54.70 85 | 63.51 72 | 53.31 80 | 68.36 94 | 64.97 134 | 73.37 127 | 74.27 100 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
GeoE | | | 62.43 68 | 64.79 77 | 59.68 61 | 64.15 70 | 67.17 83 | 68.80 58 | 44.42 96 | 55.65 73 | 47.38 72 | 51.54 100 | 62.51 75 | 54.04 69 | 69.99 78 | 68.07 83 | 79.28 58 | 78.57 64 |
|
canonicalmvs | | | 65.62 54 | 72.06 40 | 58.11 68 | 63.94 72 | 71.05 54 | 64.49 95 | 43.18 126 | 74.08 33 | 47.35 73 | 64.17 45 | 71.97 47 | 51.17 95 | 71.87 58 | 70.74 56 | 78.51 65 | 80.56 54 |
|
tpm cat1 | | | 53.30 137 | 53.41 160 | 53.17 107 | 58.16 104 | 59.15 149 | 63.73 100 | 38.27 168 | 50.73 98 | 46.98 74 | 45.57 143 | 44.00 181 | 49.20 101 | 55.90 194 | 54.02 193 | 62.65 185 | 64.50 167 |
|
DI_MVS_plusplus_trai | | | 61.88 70 | 65.17 74 | 58.06 69 | 60.05 92 | 65.26 100 | 66.03 79 | 44.22 97 | 55.75 72 | 46.73 75 | 54.64 86 | 68.12 62 | 54.13 68 | 69.13 84 | 66.66 105 | 77.18 78 | 76.61 80 |
|
diffmvs |  | | 61.64 71 | 66.55 64 | 55.90 88 | 56.63 126 | 63.71 116 | 67.13 69 | 41.27 143 | 59.49 65 | 46.70 76 | 63.93 48 | 68.01 63 | 50.46 96 | 67.30 117 | 65.51 124 | 73.24 132 | 77.87 71 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
Effi-MVS+ | | | 63.28 62 | 65.96 69 | 60.17 57 | 64.26 67 | 68.06 70 | 68.78 59 | 45.71 79 | 54.08 77 | 46.64 77 | 55.92 78 | 63.13 74 | 55.94 60 | 70.38 75 | 71.43 52 | 79.68 55 | 78.70 63 |
|
TSAR-MVS + COLMAP | | | 62.65 67 | 69.90 53 | 54.19 97 | 46.31 187 | 66.73 87 | 65.49 87 | 41.36 142 | 76.57 24 | 46.31 78 | 76.80 17 | 56.68 101 | 53.27 81 | 69.50 81 | 66.65 106 | 72.40 144 | 76.36 86 |
|
ETV-MVS | | | 63.23 63 | 66.08 68 | 59.91 59 | 63.13 75 | 68.13 69 | 67.62 63 | 44.62 92 | 53.39 82 | 46.23 79 | 58.74 66 | 58.19 95 | 57.45 46 | 73.60 50 | 71.38 54 | 80.39 45 | 79.13 60 |
|
EPNet | | | 65.14 59 | 69.54 55 | 60.00 58 | 66.61 56 | 67.67 76 | 67.53 64 | 55.32 24 | 62.67 59 | 46.22 80 | 67.74 32 | 65.93 68 | 48.07 110 | 72.17 57 | 72.12 49 | 76.28 91 | 78.47 66 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
FA-MVS(training) | | | 60.00 79 | 63.14 85 | 56.33 86 | 59.50 98 | 64.30 111 | 65.15 90 | 38.75 164 | 56.20 71 | 45.77 81 | 53.08 90 | 56.45 103 | 52.10 90 | 69.04 86 | 67.67 91 | 76.69 84 | 75.27 96 |
|
v8 | | | 58.88 85 | 60.57 99 | 56.92 81 | 57.35 116 | 65.69 97 | 66.69 74 | 42.64 131 | 47.89 127 | 45.77 81 | 49.04 111 | 52.98 118 | 52.77 83 | 67.51 114 | 65.57 123 | 76.26 92 | 75.30 95 |
|
EIA-MVS | | | 61.53 74 | 63.79 82 | 58.89 65 | 63.82 73 | 67.61 77 | 65.35 88 | 42.15 137 | 49.98 101 | 45.66 83 | 57.47 73 | 56.62 102 | 56.59 55 | 70.91 69 | 69.15 70 | 79.78 50 | 74.80 97 |
|
v10 | | | 59.17 84 | 60.60 97 | 57.50 77 | 57.95 106 | 66.73 87 | 67.09 70 | 44.11 98 | 46.85 132 | 45.42 84 | 48.18 120 | 51.07 125 | 53.63 71 | 67.84 107 | 66.59 109 | 76.79 82 | 76.92 77 |
|
Fast-Effi-MVS+ | | | 60.36 76 | 63.35 83 | 56.87 82 | 58.70 100 | 65.86 95 | 65.08 91 | 37.11 173 | 53.00 87 | 45.36 85 | 52.12 97 | 56.07 108 | 56.27 57 | 71.28 64 | 69.42 68 | 78.71 61 | 75.69 91 |
|
v2v482 | | | 58.69 88 | 60.12 108 | 57.03 80 | 57.16 124 | 66.05 94 | 67.17 67 | 43.52 117 | 46.33 136 | 45.19 86 | 49.46 110 | 51.02 126 | 52.51 85 | 67.30 117 | 66.03 117 | 76.61 85 | 74.62 98 |
|
CMPMVS |  | 37.70 17 | 49.24 164 | 52.71 165 | 45.19 165 | 45.97 189 | 51.23 184 | 47.44 183 | 29.31 201 | 43.04 161 | 44.69 87 | 34.45 193 | 48.35 136 | 43.64 129 | 62.59 155 | 59.82 169 | 60.08 191 | 69.48 129 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
CostFormer | | | 56.57 111 | 59.13 121 | 53.60 101 | 57.52 111 | 61.12 131 | 66.94 72 | 35.95 178 | 53.44 80 | 44.68 88 | 55.87 79 | 54.44 112 | 48.21 107 | 60.37 167 | 58.33 174 | 68.27 166 | 70.33 121 |
|
PLC |  | 52.09 14 | 59.21 83 | 62.47 86 | 55.41 92 | 53.24 148 | 64.84 105 | 64.47 96 | 40.41 153 | 65.92 51 | 44.53 89 | 46.19 135 | 55.69 109 | 55.33 63 | 68.24 98 | 65.30 127 | 74.50 113 | 71.09 114 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
v1144 | | | 58.88 85 | 60.16 105 | 57.39 78 | 58.03 105 | 67.26 81 | 67.14 68 | 44.46 94 | 45.17 144 | 44.33 90 | 47.81 121 | 49.92 134 | 53.20 82 | 67.77 109 | 66.62 108 | 77.15 79 | 76.58 81 |
|
IB-MVS | | 54.11 11 | 58.36 95 | 60.70 96 | 55.62 90 | 58.67 101 | 68.02 72 | 61.56 104 | 43.15 127 | 46.09 138 | 44.06 91 | 44.24 154 | 50.99 128 | 48.71 104 | 66.70 127 | 70.33 59 | 77.60 72 | 78.50 65 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
MSDG | | | 58.46 92 | 58.97 123 | 57.85 76 | 66.27 59 | 66.23 93 | 67.72 61 | 42.33 133 | 53.43 81 | 43.68 92 | 43.39 162 | 45.35 165 | 49.75 99 | 68.66 90 | 67.77 88 | 77.38 75 | 67.96 138 |
|
v1192 | | | 58.51 89 | 59.66 112 | 57.17 79 | 57.82 107 | 67.72 74 | 66.21 78 | 44.83 89 | 44.15 152 | 43.49 93 | 46.68 126 | 47.94 138 | 53.55 73 | 67.39 116 | 66.51 110 | 77.13 80 | 77.20 75 |
|
tpm | | | 48.82 168 | 51.27 176 | 45.96 161 | 54.10 143 | 47.35 195 | 56.05 142 | 30.23 200 | 46.70 133 | 43.21 94 | 52.54 95 | 47.55 145 | 37.28 163 | 54.11 199 | 50.50 202 | 54.90 202 | 60.12 185 |
|
v144192 | | | 58.23 98 | 59.40 119 | 56.87 82 | 57.56 108 | 66.89 85 | 65.70 83 | 45.01 87 | 44.06 153 | 42.88 95 | 46.61 128 | 48.09 137 | 53.49 77 | 66.94 125 | 65.90 120 | 76.61 85 | 77.29 73 |
|
v1921920 | | | 57.89 101 | 59.02 122 | 56.58 85 | 57.55 109 | 66.66 91 | 64.72 94 | 44.70 91 | 43.55 157 | 42.73 96 | 46.17 136 | 46.93 151 | 53.51 74 | 66.78 126 | 65.75 122 | 76.29 90 | 77.28 74 |
|
V42 | | | 56.97 107 | 60.14 106 | 53.28 104 | 48.16 179 | 62.78 121 | 66.30 77 | 37.93 169 | 47.44 129 | 42.68 97 | 48.19 119 | 52.59 120 | 51.90 91 | 67.46 115 | 65.94 119 | 72.72 137 | 76.55 83 |
|
v1240 | | | 57.55 103 | 58.63 126 | 56.29 87 | 57.30 119 | 66.48 92 | 63.77 99 | 44.56 93 | 42.77 167 | 42.48 98 | 45.64 142 | 46.28 158 | 53.46 78 | 66.32 133 | 65.80 121 | 76.16 94 | 77.13 76 |
|
ET-MVSNet_ETH3D | | | 58.38 94 | 61.57 89 | 54.67 95 | 42.15 200 | 65.26 100 | 65.70 83 | 43.82 107 | 48.84 114 | 42.34 99 | 59.76 63 | 47.76 141 | 56.68 54 | 67.02 124 | 68.60 80 | 77.33 77 | 73.73 106 |
|
v148 | | | 55.58 121 | 57.61 137 | 53.20 105 | 54.59 140 | 61.86 123 | 61.18 108 | 38.70 165 | 44.30 151 | 42.25 100 | 47.53 122 | 50.24 132 | 48.73 103 | 65.15 147 | 62.61 156 | 73.79 120 | 71.61 112 |
|
MS-PatchMatch | | | 58.19 99 | 60.20 104 | 55.85 89 | 65.17 62 | 64.16 112 | 64.82 92 | 41.48 141 | 50.95 96 | 42.17 101 | 45.38 145 | 56.42 104 | 48.08 109 | 68.30 95 | 66.70 104 | 73.39 126 | 69.46 131 |
|
Effi-MVS+-dtu | | | 60.34 77 | 62.32 87 | 58.03 71 | 64.31 65 | 67.44 80 | 65.99 80 | 42.26 134 | 49.55 104 | 42.00 102 | 48.92 114 | 59.79 90 | 56.27 57 | 68.07 103 | 67.03 97 | 77.35 76 | 75.45 93 |
|
EG-PatchMatch MVS | | | 56.98 106 | 58.24 130 | 55.50 91 | 64.66 64 | 68.62 64 | 61.48 106 | 43.63 114 | 38.44 192 | 41.44 103 | 38.05 183 | 46.18 160 | 43.95 128 | 71.71 60 | 70.61 57 | 77.87 68 | 74.08 103 |
|
SCA | | | 50.99 154 | 53.22 164 | 48.40 146 | 51.07 166 | 56.78 167 | 50.25 170 | 39.05 158 | 48.31 123 | 41.38 104 | 49.54 108 | 46.70 155 | 46.00 119 | 58.31 177 | 56.28 177 | 62.65 185 | 56.60 193 |
|
MVSTER | | | 57.19 104 | 61.11 92 | 52.62 112 | 50.82 170 | 58.79 151 | 61.55 105 | 37.86 170 | 48.81 116 | 41.31 105 | 57.43 74 | 52.10 121 | 48.60 105 | 68.19 100 | 66.75 103 | 75.56 103 | 75.68 92 |
|
LS3D | | | 60.20 78 | 61.70 88 | 58.45 67 | 64.18 68 | 67.77 73 | 67.19 66 | 48.84 65 | 61.67 61 | 41.27 106 | 45.89 139 | 51.81 123 | 54.18 67 | 68.78 87 | 66.50 111 | 75.03 110 | 69.48 129 |
|
baseline2 | | | 55.89 115 | 57.82 133 | 53.64 100 | 57.36 115 | 61.09 132 | 59.75 116 | 40.45 151 | 47.38 130 | 41.26 107 | 51.23 102 | 46.90 152 | 48.11 108 | 65.63 143 | 64.38 139 | 74.90 111 | 68.16 137 |
|
thisisatest0530 | | | 56.68 110 | 59.68 111 | 53.19 106 | 52.97 149 | 60.96 134 | 59.41 118 | 40.51 149 | 48.26 124 | 41.06 108 | 52.67 93 | 46.30 157 | 49.78 97 | 67.66 112 | 67.83 86 | 75.39 105 | 74.07 104 |
|
PatchmatchNet |  | | 49.92 161 | 51.29 175 | 48.32 148 | 51.83 160 | 51.86 182 | 53.38 164 | 37.63 172 | 47.90 126 | 40.83 109 | 48.54 115 | 45.30 166 | 45.19 124 | 56.86 184 | 53.99 195 | 61.08 190 | 54.57 196 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
pmmvs4 | | | 54.66 131 | 56.07 142 | 53.00 108 | 54.63 137 | 57.08 166 | 60.43 114 | 44.10 99 | 51.69 95 | 40.55 110 | 46.55 131 | 44.79 174 | 45.95 120 | 62.54 156 | 63.66 144 | 72.36 145 | 66.20 153 |
|
tttt0517 | | | 56.53 112 | 59.59 113 | 52.95 109 | 52.66 152 | 60.99 133 | 59.21 120 | 40.51 149 | 47.89 127 | 40.40 111 | 52.50 96 | 46.04 161 | 49.78 97 | 67.75 110 | 67.83 86 | 75.15 108 | 74.17 101 |
|
dps | | | 50.42 156 | 51.20 177 | 49.51 129 | 55.88 129 | 56.07 168 | 53.73 159 | 38.89 160 | 43.66 154 | 40.36 112 | 45.66 141 | 37.63 203 | 45.23 123 | 59.05 170 | 56.18 178 | 62.94 184 | 60.16 184 |
|
IterMVS-LS | | | 58.30 96 | 61.39 90 | 54.71 94 | 59.92 95 | 58.40 155 | 59.42 117 | 43.64 113 | 48.71 118 | 40.25 113 | 57.53 72 | 58.55 94 | 52.15 89 | 65.42 146 | 65.34 126 | 72.85 133 | 75.77 89 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
tpmrst | | | 48.08 173 | 49.88 185 | 45.98 160 | 52.71 151 | 48.11 193 | 53.62 162 | 33.70 191 | 48.70 119 | 39.74 114 | 48.96 113 | 46.23 159 | 40.29 147 | 50.14 208 | 49.28 204 | 55.80 199 | 57.71 191 |
|
Anonymous20231211 | | | 57.71 102 | 60.79 94 | 54.13 98 | 61.68 82 | 65.81 96 | 60.81 112 | 43.70 112 | 51.97 94 | 39.67 115 | 34.82 191 | 63.59 71 | 43.31 133 | 68.55 93 | 66.63 107 | 75.59 102 | 74.13 102 |
|
CR-MVSNet | | | 50.47 155 | 52.61 166 | 47.98 152 | 49.03 178 | 52.94 176 | 48.27 177 | 38.86 161 | 44.41 148 | 39.59 116 | 44.34 153 | 44.65 177 | 46.63 116 | 58.97 172 | 60.31 167 | 65.48 175 | 62.66 173 |
|
Patchmtry | | | | | | | 47.61 194 | 48.27 177 | 38.86 161 | | 39.59 116 | | | | | | | |
|
PatchT | | | 48.08 173 | 51.03 178 | 44.64 169 | 42.96 197 | 50.12 187 | 40.36 206 | 35.09 180 | 43.17 160 | 39.59 116 | 42.00 174 | 39.96 195 | 46.63 116 | 58.97 172 | 60.31 167 | 63.21 182 | 62.66 173 |
|
baseline | | | 55.19 127 | 60.88 93 | 48.55 143 | 49.87 174 | 58.10 160 | 58.70 122 | 34.75 182 | 52.82 89 | 39.48 119 | 60.18 61 | 60.86 83 | 45.41 122 | 61.05 163 | 60.74 166 | 63.10 183 | 72.41 109 |
|
DCV-MVSNet | | | 59.49 80 | 64.00 81 | 54.23 96 | 61.81 79 | 64.33 110 | 61.42 107 | 43.77 108 | 52.85 88 | 38.94 120 | 55.62 80 | 62.15 79 | 43.24 135 | 69.39 82 | 67.66 92 | 76.22 93 | 75.97 88 |
|
CHOSEN 1792x2688 | | | 55.85 117 | 58.01 131 | 53.33 103 | 57.26 121 | 62.82 120 | 63.29 103 | 41.55 140 | 46.65 134 | 38.34 121 | 34.55 192 | 53.50 114 | 52.43 86 | 67.10 122 | 67.56 94 | 67.13 170 | 73.92 105 |
|
MVS-HIRNet | | | 42.24 194 | 41.15 207 | 43.51 173 | 44.06 196 | 40.74 208 | 35.77 212 | 35.35 179 | 35.38 200 | 38.34 121 | 25.63 209 | 38.55 200 | 43.48 131 | 50.77 205 | 47.03 208 | 64.07 179 | 49.98 204 |
|
thisisatest0515 | | | 53.85 134 | 56.84 141 | 50.37 124 | 50.25 173 | 58.17 159 | 55.99 144 | 39.90 156 | 41.88 172 | 38.16 123 | 45.91 138 | 45.30 166 | 44.58 126 | 66.15 137 | 66.89 101 | 73.36 128 | 73.57 107 |
|
v7n | | | 55.67 119 | 57.46 138 | 53.59 102 | 56.06 128 | 65.29 99 | 61.06 110 | 43.26 125 | 40.17 183 | 37.99 124 | 40.79 177 | 45.27 168 | 47.09 114 | 67.67 111 | 66.21 114 | 76.08 96 | 76.82 78 |
|
MDTV_nov1_ep13 | | | 50.32 158 | 52.43 169 | 47.86 154 | 49.87 174 | 54.70 170 | 58.10 126 | 34.29 186 | 45.59 143 | 37.71 125 | 47.44 123 | 47.42 146 | 41.86 140 | 58.07 180 | 55.21 186 | 65.34 177 | 58.56 189 |
|
PatchMatch-RL | | | 50.11 160 | 51.56 174 | 48.43 145 | 46.23 188 | 51.94 180 | 50.21 171 | 38.62 166 | 46.62 135 | 37.51 126 | 42.43 173 | 39.38 196 | 52.24 88 | 60.98 164 | 59.56 170 | 65.76 174 | 60.01 186 |
|
HyFIR lowres test | | | 56.87 109 | 58.60 127 | 54.84 93 | 56.62 127 | 69.27 62 | 64.77 93 | 42.21 135 | 45.66 142 | 37.50 127 | 33.08 194 | 57.47 100 | 53.33 79 | 65.46 145 | 67.94 84 | 74.60 112 | 71.35 113 |
|
CANet_DTU | | | 58.88 85 | 64.68 78 | 52.12 115 | 55.77 130 | 66.75 86 | 63.92 98 | 37.04 174 | 53.32 83 | 37.45 128 | 59.81 62 | 61.81 80 | 44.43 127 | 68.25 96 | 67.47 95 | 74.12 117 | 75.33 94 |
|
pmmvs-eth3d | | | 51.33 151 | 52.25 170 | 50.26 125 | 50.82 170 | 54.65 171 | 56.03 143 | 43.45 122 | 43.51 158 | 37.20 129 | 39.20 180 | 39.04 198 | 42.28 138 | 61.85 161 | 62.78 153 | 71.78 150 | 64.72 165 |
|
GA-MVS | | | 55.67 119 | 58.33 128 | 52.58 113 | 55.23 135 | 63.09 117 | 61.08 109 | 40.15 155 | 42.95 162 | 37.02 130 | 52.61 94 | 47.68 142 | 47.51 112 | 65.92 139 | 65.35 125 | 74.49 114 | 70.68 119 |
|
USDC | | | 51.11 152 | 53.71 157 | 48.08 151 | 44.76 192 | 55.99 169 | 53.01 165 | 40.90 145 | 52.49 90 | 36.14 131 | 44.67 150 | 33.66 209 | 43.27 134 | 63.23 152 | 61.10 163 | 70.39 159 | 64.82 164 |
|
ACMH+ | | 53.71 12 | 59.26 82 | 60.28 101 | 58.06 69 | 64.17 69 | 68.46 65 | 67.51 65 | 50.93 50 | 52.46 91 | 35.83 132 | 40.83 176 | 45.12 169 | 52.32 87 | 69.88 79 | 69.00 74 | 77.59 73 | 76.21 87 |
|
RPSCF | | | 46.41 182 | 54.42 154 | 37.06 196 | 25.70 220 | 45.14 204 | 45.39 193 | 20.81 213 | 62.79 58 | 35.10 133 | 44.92 149 | 55.60 110 | 43.56 130 | 56.12 191 | 52.45 199 | 51.80 208 | 63.91 169 |
|
Fast-Effi-MVS+-dtu | | | 56.30 114 | 59.29 120 | 52.82 111 | 58.64 102 | 64.89 104 | 65.56 86 | 32.89 196 | 45.80 141 | 35.04 134 | 45.89 139 | 54.14 113 | 49.41 100 | 67.16 120 | 66.45 112 | 75.37 106 | 70.69 118 |
|
FC-MVSNet-train | | | 58.40 93 | 63.15 84 | 52.85 110 | 64.29 66 | 61.84 124 | 55.98 145 | 46.47 73 | 53.06 85 | 34.96 135 | 61.95 58 | 56.37 106 | 39.49 148 | 68.67 89 | 68.36 81 | 75.92 101 | 71.81 111 |
|
PMMVS | | | 49.20 166 | 54.28 156 | 43.28 176 | 34.13 208 | 45.70 203 | 48.98 175 | 26.09 209 | 46.31 137 | 34.92 136 | 55.22 81 | 53.47 115 | 47.48 113 | 59.43 169 | 59.04 172 | 68.05 167 | 60.77 181 |
|
IterMVS | | | 53.45 136 | 57.12 139 | 49.17 133 | 49.23 176 | 60.93 135 | 59.05 121 | 34.63 184 | 44.53 147 | 33.22 137 | 51.09 105 | 51.01 127 | 48.38 106 | 62.43 158 | 60.79 165 | 70.54 158 | 69.05 134 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
RE-MVS-def | | | | | | | | | | | 33.01 138 | | | | | | | |
|
UGNet | | | 57.03 105 | 65.25 73 | 47.44 156 | 46.54 186 | 66.73 87 | 56.30 140 | 43.28 124 | 50.06 100 | 32.99 139 | 62.57 54 | 63.26 73 | 33.31 180 | 68.25 96 | 67.58 93 | 72.20 147 | 78.29 67 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
COLMAP_ROB |  | 46.52 15 | 51.99 148 | 54.86 152 | 48.63 142 | 49.13 177 | 61.73 125 | 60.53 113 | 36.57 175 | 53.14 84 | 32.95 140 | 37.10 184 | 38.68 199 | 40.49 145 | 65.72 141 | 63.08 149 | 72.11 148 | 64.60 166 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
IterMVS-SCA-FT | | | 52.18 144 | 57.75 135 | 45.68 163 | 51.01 168 | 62.06 122 | 55.10 154 | 34.75 182 | 44.85 145 | 32.86 141 | 51.13 104 | 51.22 124 | 48.74 102 | 62.47 157 | 61.51 161 | 51.61 209 | 71.02 115 |
|
anonymousdsp | | | 52.84 138 | 57.78 134 | 47.06 157 | 40.24 203 | 58.95 150 | 53.70 160 | 33.54 192 | 36.51 199 | 32.69 142 | 43.88 156 | 45.40 164 | 47.97 111 | 67.17 119 | 70.28 60 | 74.22 116 | 82.29 47 |
|
test-LLR | | | 49.28 163 | 50.29 181 | 48.10 150 | 55.26 133 | 47.16 196 | 49.52 172 | 43.48 120 | 39.22 187 | 31.98 143 | 43.65 160 | 47.93 139 | 41.29 143 | 56.80 185 | 55.36 184 | 67.08 171 | 61.94 177 |
|
TESTMET0.1,1 | | | 46.09 185 | 50.29 181 | 41.18 184 | 36.91 206 | 47.16 196 | 49.52 172 | 20.32 214 | 39.22 187 | 31.98 143 | 43.65 160 | 47.93 139 | 41.29 143 | 56.80 185 | 55.36 184 | 67.08 171 | 61.94 177 |
|
TinyColmap | | | 47.08 179 | 47.56 193 | 46.52 159 | 42.35 199 | 53.44 175 | 51.77 167 | 40.70 148 | 43.44 159 | 31.92 145 | 29.78 202 | 23.72 219 | 45.04 125 | 61.99 160 | 59.54 171 | 67.35 169 | 61.03 180 |
|
RPMNet | | | 46.41 182 | 48.72 188 | 43.72 172 | 47.77 182 | 52.94 176 | 46.02 190 | 33.92 188 | 44.41 148 | 31.82 146 | 36.89 185 | 37.42 204 | 37.41 161 | 53.88 200 | 54.02 193 | 65.37 176 | 61.47 179 |
|
UA-Net | | | 58.50 90 | 64.68 78 | 51.30 119 | 66.97 53 | 67.13 84 | 53.68 161 | 45.65 80 | 49.51 106 | 31.58 147 | 62.91 51 | 68.47 58 | 35.85 171 | 68.20 99 | 67.28 96 | 74.03 118 | 69.24 133 |
|
TDRefinement | | | 49.31 162 | 52.44 168 | 45.67 164 | 30.44 213 | 59.42 145 | 59.24 119 | 39.78 157 | 48.76 117 | 31.20 148 | 35.73 188 | 29.90 213 | 42.81 137 | 64.24 151 | 62.59 157 | 70.55 157 | 66.43 149 |
|
GBi-Net | | | 55.20 125 | 60.25 102 | 49.31 130 | 52.42 153 | 61.44 126 | 57.03 133 | 44.04 101 | 49.18 110 | 30.47 149 | 48.28 116 | 58.19 95 | 38.22 153 | 68.05 104 | 66.96 98 | 73.69 122 | 69.65 124 |
|
test1 | | | 55.20 125 | 60.25 102 | 49.31 130 | 52.42 153 | 61.44 126 | 57.03 133 | 44.04 101 | 49.18 110 | 30.47 149 | 48.28 116 | 58.19 95 | 38.22 153 | 68.05 104 | 66.96 98 | 73.69 122 | 69.65 124 |
|
FMVSNet3 | | | 54.78 130 | 59.58 115 | 49.17 133 | 52.37 156 | 61.31 130 | 56.72 138 | 44.04 101 | 49.18 110 | 30.47 149 | 48.28 116 | 58.19 95 | 38.09 156 | 65.48 144 | 65.20 130 | 73.31 129 | 69.45 132 |
|
FMVSNet2 | | | 55.04 129 | 59.95 110 | 49.31 130 | 52.42 153 | 61.44 126 | 57.03 133 | 44.08 100 | 49.55 104 | 30.40 152 | 46.89 125 | 58.84 93 | 38.22 153 | 67.07 123 | 66.21 114 | 73.69 122 | 69.65 124 |
|
Vis-MVSNet |  | | 58.48 91 | 65.70 71 | 50.06 126 | 53.40 147 | 67.20 82 | 60.24 115 | 43.32 123 | 48.83 115 | 30.23 153 | 62.38 55 | 61.61 82 | 40.35 146 | 71.03 66 | 69.77 65 | 72.82 135 | 79.11 61 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
PM-MVS | | | 44.55 189 | 48.13 191 | 40.37 187 | 32.85 212 | 46.82 200 | 46.11 189 | 29.28 202 | 40.48 180 | 29.99 154 | 39.98 179 | 34.39 208 | 41.80 141 | 56.08 192 | 53.88 197 | 62.19 188 | 65.31 160 |
|
MDTV_nov1_ep13_2view | | | 47.62 177 | 49.72 186 | 45.18 166 | 48.05 180 | 53.70 174 | 54.90 155 | 33.80 190 | 39.90 185 | 29.79 155 | 38.85 181 | 41.89 185 | 39.17 149 | 58.99 171 | 55.55 183 | 65.34 177 | 59.17 187 |
|
baseline1 | | | 54.48 132 | 58.69 124 | 49.57 128 | 60.63 89 | 58.29 158 | 55.70 147 | 44.95 88 | 49.20 109 | 29.62 156 | 54.77 84 | 54.75 111 | 35.29 172 | 67.15 121 | 64.08 140 | 71.21 154 | 62.58 176 |
|
EPMVS | | | 44.66 188 | 47.86 192 | 40.92 185 | 47.97 181 | 44.70 205 | 47.58 182 | 33.27 193 | 48.11 125 | 29.58 157 | 49.65 107 | 44.38 179 | 34.65 174 | 51.71 203 | 47.90 206 | 52.49 207 | 48.57 208 |
|
CDS-MVSNet | | | 52.42 141 | 57.06 140 | 47.02 158 | 53.92 145 | 58.30 157 | 55.50 149 | 46.47 73 | 42.52 169 | 29.38 158 | 49.50 109 | 52.85 119 | 28.49 190 | 66.70 127 | 66.89 101 | 68.34 165 | 62.63 175 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
FMVSNet1 | | | 54.08 133 | 58.68 125 | 48.71 140 | 50.90 169 | 61.35 129 | 56.73 137 | 43.94 106 | 45.91 140 | 29.32 159 | 42.72 170 | 56.26 107 | 37.70 160 | 68.05 104 | 66.96 98 | 73.69 122 | 69.50 128 |
|
ACMH | | 52.42 13 | 58.24 97 | 59.56 117 | 56.70 84 | 66.34 58 | 69.59 59 | 66.71 73 | 49.12 61 | 46.08 139 | 28.90 160 | 42.67 171 | 41.20 188 | 52.60 84 | 71.39 62 | 70.28 60 | 76.51 87 | 75.72 90 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
ADS-MVSNet | | | 40.67 198 | 43.38 204 | 37.50 195 | 44.36 194 | 39.79 212 | 42.09 204 | 32.67 198 | 44.34 150 | 28.87 161 | 40.76 178 | 40.37 193 | 30.22 184 | 48.34 212 | 45.87 211 | 46.81 213 | 44.21 212 |
|
pmmvs5 | | | 47.07 180 | 51.02 179 | 42.46 178 | 45.18 191 | 51.47 183 | 48.23 179 | 33.09 195 | 38.17 195 | 28.62 162 | 46.60 129 | 43.48 182 | 30.74 183 | 58.28 178 | 58.63 173 | 68.92 163 | 60.48 182 |
|
test-mter | | | 45.30 186 | 50.37 180 | 39.38 189 | 33.65 210 | 46.99 198 | 47.59 181 | 18.59 215 | 38.75 190 | 28.00 163 | 43.28 165 | 46.82 154 | 41.50 142 | 57.28 183 | 55.78 181 | 66.93 173 | 63.70 170 |
|
thres100view900 | | | 52.04 147 | 54.81 153 | 48.80 138 | 57.31 117 | 59.33 146 | 55.30 152 | 42.92 130 | 42.85 165 | 27.81 164 | 43.00 168 | 45.06 171 | 36.99 164 | 64.74 149 | 63.51 145 | 72.47 143 | 65.21 162 |
|
tfpn200view9 | | | 52.53 140 | 55.51 145 | 49.06 135 | 57.31 117 | 60.24 138 | 55.42 151 | 43.77 108 | 42.85 165 | 27.81 164 | 43.00 168 | 45.06 171 | 37.32 162 | 66.38 130 | 64.54 136 | 72.71 138 | 66.54 148 |
|
thres200 | | | 52.39 142 | 55.37 148 | 48.90 137 | 57.39 114 | 60.18 139 | 55.60 148 | 43.73 110 | 42.93 163 | 27.41 166 | 43.35 163 | 45.09 170 | 36.61 167 | 66.36 131 | 63.92 143 | 72.66 140 | 65.78 158 |
|
EPNet_dtu | | | 52.05 146 | 58.26 129 | 44.81 168 | 54.10 143 | 50.09 188 | 52.01 166 | 40.82 147 | 53.03 86 | 27.41 166 | 54.90 82 | 57.96 99 | 26.72 192 | 62.97 153 | 62.70 155 | 67.78 168 | 66.19 154 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
EPP-MVSNet | | | 59.39 81 | 65.45 72 | 52.32 114 | 60.96 86 | 67.70 75 | 58.42 125 | 44.75 90 | 49.71 103 | 27.23 168 | 59.03 65 | 62.20 78 | 43.34 132 | 70.71 70 | 69.13 71 | 79.25 59 | 79.63 58 |
|
test2506 | | | 55.82 118 | 59.57 116 | 51.46 117 | 60.39 90 | 64.55 108 | 58.69 123 | 48.87 63 | 53.91 78 | 26.99 169 | 48.97 112 | 41.72 187 | 37.71 158 | 70.96 67 | 69.49 66 | 76.08 96 | 67.37 143 |
|
UniMVSNet_ETH3D | | | 52.62 139 | 55.98 143 | 48.70 141 | 51.04 167 | 60.71 136 | 56.87 136 | 46.74 72 | 42.52 169 | 26.96 170 | 42.50 172 | 45.95 162 | 37.87 157 | 66.22 135 | 65.15 133 | 72.74 136 | 68.78 136 |
|
ECVR-MVS |  | | 56.44 113 | 60.74 95 | 51.42 118 | 60.39 90 | 64.55 108 | 58.69 123 | 48.87 63 | 53.91 78 | 26.76 171 | 45.55 144 | 53.43 116 | 37.71 158 | 70.96 67 | 69.49 66 | 76.08 96 | 67.32 145 |
|
thres400 | | | 52.38 143 | 55.51 145 | 48.74 139 | 57.49 112 | 60.10 141 | 55.45 150 | 43.54 116 | 42.90 164 | 26.72 172 | 43.34 164 | 45.03 173 | 36.61 167 | 66.20 136 | 64.53 137 | 72.66 140 | 66.43 149 |
|
dmvs_re | | | 52.07 145 | 55.11 150 | 48.54 144 | 57.27 120 | 51.93 181 | 57.73 129 | 43.13 128 | 43.65 155 | 26.57 173 | 44.52 151 | 50.00 133 | 36.53 169 | 66.58 129 | 62.15 158 | 69.97 160 | 66.91 146 |
|
IS_MVSNet | | | 57.95 100 | 64.26 80 | 50.60 121 | 61.62 83 | 65.25 102 | 57.18 132 | 45.42 82 | 50.79 97 | 26.49 174 | 57.81 71 | 60.05 89 | 34.51 175 | 71.24 65 | 70.20 62 | 78.36 66 | 74.44 99 |
|
tfpnnormal | | | 50.16 159 | 52.19 171 | 47.78 155 | 56.86 125 | 58.37 156 | 54.15 157 | 44.01 104 | 38.35 194 | 25.94 175 | 36.10 187 | 37.89 201 | 34.50 176 | 65.93 138 | 63.42 146 | 71.26 153 | 65.28 161 |
|
pm-mvs1 | | | 51.02 153 | 55.55 144 | 45.73 162 | 54.16 142 | 58.52 153 | 50.92 168 | 42.56 132 | 40.32 181 | 25.67 176 | 43.66 159 | 50.34 131 | 30.06 185 | 65.85 140 | 63.97 142 | 70.99 156 | 66.21 152 |
|
thres600view7 | | | 51.91 150 | 55.14 149 | 48.14 149 | 57.43 113 | 60.18 139 | 54.60 156 | 43.73 110 | 42.61 168 | 25.20 177 | 43.10 167 | 44.47 178 | 35.19 173 | 66.36 131 | 63.28 148 | 72.66 140 | 66.01 156 |
|
TransMVSNet (Re) | | | 51.92 149 | 55.38 147 | 47.88 153 | 60.95 87 | 59.90 142 | 53.95 158 | 45.14 86 | 39.47 186 | 24.85 178 | 43.87 157 | 46.51 156 | 29.15 187 | 67.55 113 | 65.23 129 | 73.26 131 | 65.16 163 |
|
ambc | | | | 45.54 199 | | 50.66 172 | 52.63 179 | 40.99 205 | | 38.36 193 | 24.67 179 | 22.62 212 | 13.94 222 | 29.14 188 | 65.71 142 | 58.06 175 | 58.60 195 | 67.43 140 |
|
pmmvs6 | | | 48.35 171 | 51.64 173 | 44.51 170 | 51.92 159 | 57.94 162 | 49.44 174 | 42.17 136 | 34.45 201 | 24.62 180 | 28.87 205 | 46.90 152 | 29.07 189 | 64.60 150 | 63.08 149 | 69.83 161 | 65.68 159 |
|
UniMVSNet_NR-MVSNet | | | 56.94 108 | 61.14 91 | 52.05 116 | 60.02 94 | 65.21 103 | 57.44 130 | 52.93 40 | 49.37 107 | 24.31 181 | 54.62 87 | 50.54 129 | 39.04 150 | 68.69 88 | 68.84 76 | 78.53 64 | 70.72 116 |
|
DU-MVS | | | 55.41 122 | 59.59 113 | 50.54 123 | 54.60 138 | 62.97 118 | 57.44 130 | 51.80 45 | 48.62 121 | 24.31 181 | 51.99 98 | 47.00 150 | 39.04 150 | 68.11 101 | 67.75 89 | 76.03 100 | 70.72 116 |
|
pmnet_mix02 | | | 40.48 200 | 43.80 202 | 36.61 197 | 45.79 190 | 40.45 210 | 42.12 203 | 33.18 194 | 40.30 182 | 24.11 183 | 38.76 182 | 37.11 205 | 24.30 196 | 52.97 201 | 46.66 210 | 50.17 210 | 50.33 203 |
|
MIMVSNet | | | 43.79 191 | 48.53 189 | 38.27 192 | 41.46 201 | 48.97 191 | 50.81 169 | 32.88 197 | 44.55 146 | 22.07 184 | 32.05 195 | 47.15 148 | 24.76 195 | 58.73 174 | 56.09 180 | 57.63 198 | 52.14 197 |
|
FMVSNet5 | | | 40.96 196 | 45.81 197 | 35.29 201 | 34.30 207 | 44.55 206 | 47.28 184 | 28.84 203 | 40.76 178 | 21.62 185 | 29.85 201 | 42.44 183 | 24.77 194 | 57.53 182 | 55.00 187 | 54.93 201 | 50.56 202 |
|
test1111 | | | 55.24 124 | 59.98 109 | 49.71 127 | 59.80 96 | 64.10 113 | 56.48 139 | 49.34 59 | 52.27 92 | 21.56 186 | 44.49 152 | 51.96 122 | 35.93 170 | 70.59 71 | 69.07 72 | 75.13 109 | 67.40 141 |
|
UniMVSNet (Re) | | | 55.15 128 | 60.39 100 | 49.03 136 | 55.31 132 | 64.59 107 | 55.77 146 | 50.63 52 | 48.66 120 | 20.95 187 | 51.47 101 | 50.40 130 | 34.41 177 | 67.81 108 | 67.89 85 | 77.11 81 | 71.88 110 |
|
NR-MVSNet | | | 55.35 123 | 59.46 118 | 50.56 122 | 61.33 84 | 62.97 118 | 57.91 128 | 51.80 45 | 48.62 121 | 20.59 188 | 51.99 98 | 44.73 175 | 34.10 178 | 68.58 91 | 68.64 78 | 77.66 70 | 70.67 120 |
|
TranMVSNet+NR-MVSNet | | | 55.87 116 | 60.14 106 | 50.88 120 | 59.46 99 | 63.82 114 | 57.93 127 | 52.98 39 | 48.94 113 | 20.52 189 | 52.87 92 | 47.33 147 | 36.81 166 | 69.12 85 | 69.03 73 | 77.56 74 | 69.89 122 |
|
TAMVS | | | 44.02 190 | 49.18 187 | 37.99 194 | 47.03 185 | 45.97 202 | 45.04 194 | 28.47 204 | 39.11 189 | 20.23 190 | 43.22 166 | 48.52 135 | 28.49 190 | 58.15 179 | 57.95 176 | 58.71 193 | 51.36 199 |
|
SixPastTwentyTwo | | | 47.55 178 | 50.25 183 | 44.41 171 | 47.30 184 | 54.31 173 | 47.81 180 | 40.36 154 | 33.76 202 | 19.93 191 | 43.75 158 | 32.77 211 | 42.07 139 | 59.82 168 | 60.94 164 | 68.98 162 | 66.37 151 |
|
PMVS |  | 27.84 18 | 33.81 208 | 35.28 212 | 32.09 204 | 34.13 208 | 24.81 218 | 32.51 215 | 26.48 208 | 26.41 212 | 19.37 192 | 23.76 210 | 24.02 218 | 25.18 193 | 50.78 204 | 47.24 207 | 54.89 203 | 49.95 205 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
FPMVS | | | 38.36 204 | 40.41 208 | 35.97 198 | 38.92 205 | 39.85 211 | 45.50 192 | 25.79 210 | 41.13 176 | 18.70 193 | 30.10 200 | 24.56 217 | 31.86 182 | 49.42 210 | 46.80 209 | 55.04 200 | 51.03 200 |
|
CHOSEN 280x420 | | | 40.80 197 | 45.05 200 | 35.84 200 | 32.95 211 | 29.57 216 | 44.98 195 | 23.71 212 | 37.54 197 | 18.42 194 | 31.36 198 | 47.07 149 | 46.41 118 | 56.71 187 | 54.65 191 | 48.55 212 | 58.47 190 |
|
MDA-MVSNet-bldmvs | | | 41.36 195 | 43.15 205 | 39.27 190 | 28.74 215 | 52.68 178 | 44.95 196 | 40.84 146 | 32.89 204 | 18.13 195 | 31.61 197 | 22.09 220 | 38.97 152 | 50.45 207 | 56.11 179 | 64.01 180 | 56.23 194 |
|
Baseline_NR-MVSNet | | | 53.50 135 | 57.89 132 | 48.37 147 | 54.60 138 | 59.25 148 | 56.10 141 | 51.84 44 | 49.32 108 | 17.92 196 | 45.38 145 | 47.68 142 | 36.93 165 | 68.11 101 | 65.95 118 | 72.84 134 | 69.57 127 |
|
pmmvs3 | | | 35.10 207 | 38.47 209 | 31.17 205 | 26.37 219 | 40.47 209 | 34.51 214 | 18.09 216 | 24.75 213 | 16.88 197 | 23.05 211 | 26.69 215 | 32.69 181 | 50.73 206 | 51.60 200 | 58.46 196 | 51.98 198 |
|
test0.0.03 1 | | | 43.15 192 | 46.95 194 | 38.72 191 | 55.26 133 | 50.56 185 | 42.48 202 | 43.48 120 | 38.16 196 | 15.11 198 | 35.07 190 | 44.69 176 | 16.47 206 | 55.95 193 | 54.34 192 | 59.54 192 | 49.87 206 |
|
CVMVSNet | | | 46.38 184 | 52.01 172 | 39.81 188 | 42.40 198 | 50.26 186 | 46.15 188 | 37.68 171 | 40.03 184 | 15.09 199 | 46.56 130 | 47.56 144 | 33.72 179 | 56.50 189 | 55.65 182 | 63.80 181 | 67.53 139 |
|
LTVRE_ROB | | 44.17 16 | 47.06 181 | 50.15 184 | 43.44 174 | 51.39 162 | 58.42 154 | 42.90 201 | 43.51 118 | 22.27 216 | 14.85 200 | 41.94 175 | 34.57 207 | 45.43 121 | 62.28 159 | 62.77 154 | 62.56 187 | 68.83 135 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
Anonymous20231206 | | | 42.28 193 | 45.89 196 | 38.07 193 | 51.96 158 | 48.98 190 | 43.66 200 | 38.81 163 | 38.74 191 | 14.32 201 | 26.74 207 | 40.90 189 | 20.94 201 | 56.64 188 | 54.67 190 | 58.71 193 | 54.59 195 |
|
Vis-MVSNet (Re-imp) | | | 50.37 157 | 57.73 136 | 41.80 182 | 57.53 110 | 54.35 172 | 45.70 191 | 45.24 84 | 49.80 102 | 13.43 202 | 58.23 70 | 56.42 104 | 20.11 203 | 62.96 154 | 63.36 147 | 68.76 164 | 58.96 188 |
|
tmp_tt | | | | | 5.40 218 | 3.97 224 | 2.35 226 | 3.26 226 | 0.44 221 | 17.56 217 | 12.09 203 | 11.48 218 | 7.14 224 | 1.98 220 | 15.68 219 | 15.49 219 | 10.69 223 | |
|
gg-mvs-nofinetune | | | 49.07 167 | 52.56 167 | 45.00 167 | 61.99 77 | 59.78 143 | 53.55 163 | 41.63 139 | 31.62 208 | 12.08 204 | 29.56 203 | 53.28 117 | 29.57 186 | 66.27 134 | 64.49 138 | 71.19 155 | 62.92 172 |
|
gm-plane-assit | | | 44.74 187 | 45.95 195 | 43.33 175 | 60.88 88 | 46.79 201 | 36.97 210 | 32.24 199 | 24.15 214 | 11.79 205 | 29.26 204 | 32.97 210 | 46.64 115 | 65.09 148 | 62.95 151 | 71.45 152 | 60.42 183 |
|
CP-MVSNet | | | 48.37 170 | 53.53 159 | 42.34 179 | 51.35 163 | 58.01 161 | 46.56 186 | 50.54 53 | 41.62 174 | 10.61 206 | 46.53 132 | 40.68 192 | 23.18 198 | 58.71 175 | 61.83 159 | 71.81 149 | 67.36 144 |
|
PS-CasMVS | | | 48.18 172 | 53.25 163 | 42.27 180 | 51.26 164 | 57.94 162 | 46.51 187 | 50.52 54 | 41.30 175 | 10.56 207 | 45.35 147 | 40.34 194 | 23.04 199 | 58.66 176 | 61.79 160 | 71.74 151 | 67.38 142 |
|
EU-MVSNet | | | 40.63 199 | 45.65 198 | 34.78 202 | 39.11 204 | 46.94 199 | 40.02 207 | 34.03 187 | 33.50 203 | 10.37 208 | 35.57 189 | 37.80 202 | 23.65 197 | 51.90 202 | 50.21 203 | 61.49 189 | 63.62 171 |
|
test_method | | | 12.44 217 | 14.66 217 | 9.85 217 | 1.30 225 | 3.32 225 | 13.00 221 | 3.21 219 | 22.42 215 | 10.22 209 | 14.13 215 | 25.64 216 | 11.43 216 | 19.75 217 | 11.61 220 | 19.96 220 | 5.79 221 |
|
PEN-MVS | | | 49.21 165 | 54.32 155 | 43.24 177 | 54.33 141 | 59.26 147 | 47.04 185 | 51.37 49 | 41.67 173 | 9.97 210 | 46.22 134 | 41.80 186 | 22.97 200 | 60.52 165 | 64.03 141 | 73.73 121 | 66.75 147 |
|
test20.03 | | | 40.38 201 | 44.20 201 | 35.92 199 | 53.73 146 | 49.05 189 | 38.54 208 | 43.49 119 | 32.55 205 | 9.54 211 | 27.88 206 | 39.12 197 | 12.24 211 | 56.28 190 | 54.69 189 | 57.96 197 | 49.83 207 |
|
N_pmnet | | | 32.67 210 | 36.85 211 | 27.79 209 | 40.55 202 | 32.13 215 | 35.80 211 | 26.79 207 | 37.24 198 | 9.10 212 | 32.02 196 | 30.94 212 | 16.30 207 | 47.22 213 | 41.21 212 | 38.21 216 | 37.21 213 |
|
Gipuma |  | | 25.87 211 | 26.91 214 | 24.66 210 | 28.98 214 | 20.17 219 | 20.46 218 | 34.62 185 | 29.55 210 | 9.10 212 | 4.91 222 | 5.31 226 | 15.76 208 | 49.37 211 | 49.10 205 | 39.03 215 | 29.95 215 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
testgi | | | 38.71 203 | 43.64 203 | 32.95 203 | 52.30 157 | 48.63 192 | 35.59 213 | 35.05 181 | 31.58 209 | 9.03 214 | 30.29 199 | 40.75 191 | 11.19 217 | 55.30 195 | 53.47 198 | 54.53 204 | 45.48 210 |
|
WR-MVS | | | 48.78 169 | 55.06 151 | 41.45 183 | 55.50 131 | 60.40 137 | 43.77 199 | 49.99 56 | 41.92 171 | 8.10 215 | 45.24 148 | 45.56 163 | 17.47 204 | 61.57 162 | 64.60 135 | 73.85 119 | 66.14 155 |
|
DTE-MVSNet | | | 48.03 175 | 53.28 162 | 41.91 181 | 54.64 136 | 57.50 164 | 44.63 198 | 51.66 48 | 41.02 177 | 7.97 216 | 46.26 133 | 40.90 189 | 20.24 202 | 60.45 166 | 62.89 152 | 72.33 146 | 63.97 168 |
|
WR-MVS_H | | | 47.65 176 | 53.67 158 | 40.63 186 | 51.45 161 | 59.74 144 | 44.71 197 | 49.37 58 | 40.69 179 | 7.61 217 | 46.04 137 | 44.34 180 | 17.32 205 | 57.79 181 | 61.18 162 | 73.30 130 | 65.86 157 |
|
MIMVSNet1 | | | 35.51 206 | 41.41 206 | 28.63 207 | 27.53 217 | 43.36 207 | 38.09 209 | 33.82 189 | 32.01 206 | 6.77 218 | 21.63 213 | 35.43 206 | 11.97 213 | 55.05 197 | 53.99 195 | 53.59 206 | 48.36 209 |
|
new-patchmatchnet | | | 33.24 209 | 37.20 210 | 28.62 208 | 44.32 195 | 38.26 214 | 29.68 217 | 36.05 177 | 31.97 207 | 6.33 219 | 26.59 208 | 27.33 214 | 11.12 218 | 50.08 209 | 41.05 213 | 44.23 214 | 45.15 211 |
|
new_pmnet | | | 23.19 212 | 28.17 213 | 17.37 211 | 17.03 221 | 24.92 217 | 19.66 219 | 16.16 218 | 27.05 211 | 4.42 220 | 20.77 214 | 19.20 221 | 12.19 212 | 37.71 214 | 36.38 214 | 34.77 217 | 31.17 214 |
|
E-PMN | | | 15.09 214 | 13.19 218 | 17.30 212 | 27.80 216 | 12.62 222 | 7.81 223 | 27.54 205 | 14.62 220 | 3.19 221 | 6.89 219 | 2.52 229 | 15.09 209 | 15.93 218 | 20.22 217 | 22.38 218 | 19.53 218 |
|
EMVS | | | 14.49 215 | 12.45 219 | 16.87 214 | 27.02 218 | 12.56 223 | 8.13 222 | 27.19 206 | 15.05 219 | 3.14 222 | 6.69 220 | 2.67 228 | 15.08 210 | 14.60 220 | 18.05 218 | 20.67 219 | 17.56 220 |
|
FC-MVSNet-test | | | 39.65 202 | 48.35 190 | 29.49 206 | 44.43 193 | 39.28 213 | 30.23 216 | 40.44 152 | 43.59 156 | 3.12 223 | 53.00 91 | 42.03 184 | 10.02 219 | 55.09 196 | 54.77 188 | 48.66 211 | 50.71 201 |
|
MVE |  | 12.28 19 | 13.53 216 | 15.72 216 | 10.96 216 | 7.39 223 | 15.71 221 | 6.05 224 | 23.73 211 | 10.29 222 | 3.01 224 | 5.77 221 | 3.41 227 | 11.91 214 | 20.11 216 | 29.79 215 | 13.67 222 | 24.98 216 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
DeepMVS_CX |  | | | | | | 6.95 224 | 5.98 225 | 2.25 220 | 11.73 221 | 2.07 225 | 11.85 217 | 5.43 225 | 11.75 215 | 11.40 221 | | 8.10 224 | 18.38 219 |
|
PMMVS2 | | | 15.84 213 | 19.68 215 | 11.35 215 | 15.74 222 | 16.95 220 | 13.31 220 | 17.64 217 | 16.08 218 | 0.36 226 | 13.12 216 | 11.47 223 | 1.69 221 | 28.82 215 | 27.24 216 | 19.38 221 | 24.09 217 |
|
GG-mvs-BLEND | | | 36.62 205 | 53.39 161 | 17.06 213 | 0.01 226 | 58.61 152 | 48.63 176 | 0.01 222 | 47.13 131 | 0.02 227 | 43.98 155 | 60.64 86 | 0.03 222 | 54.92 198 | 51.47 201 | 53.64 205 | 56.99 192 |
|
uanet_test | | | 0.00 220 | 0.00 222 | 0.00 219 | 0.00 227 | 0.00 227 | 0.00 229 | 0.00 223 | 0.00 225 | 0.00 228 | 0.00 225 | 0.00 230 | 0.00 225 | 0.00 223 | 0.00 223 | 0.00 225 | 0.00 224 |
|
sosnet-low-res | | | 0.00 220 | 0.00 222 | 0.00 219 | 0.00 227 | 0.00 227 | 0.00 229 | 0.00 223 | 0.00 225 | 0.00 228 | 0.00 225 | 0.00 230 | 0.00 225 | 0.00 223 | 0.00 223 | 0.00 225 | 0.00 224 |
|
sosnet | | | 0.00 220 | 0.00 222 | 0.00 219 | 0.00 227 | 0.00 227 | 0.00 229 | 0.00 223 | 0.00 225 | 0.00 228 | 0.00 225 | 0.00 230 | 0.00 225 | 0.00 223 | 0.00 223 | 0.00 225 | 0.00 224 |
|
testmvs | | | 0.01 218 | 0.02 220 | 0.00 219 | 0.00 227 | 0.00 227 | 0.01 228 | 0.00 223 | 0.01 223 | 0.00 228 | 0.03 224 | 0.00 230 | 0.01 223 | 0.01 222 | 0.01 221 | 0.00 225 | 0.06 223 |
|
test123 | | | 0.01 218 | 0.02 220 | 0.00 219 | 0.00 227 | 0.00 227 | 0.00 229 | 0.00 223 | 0.01 223 | 0.00 228 | 0.04 223 | 0.00 230 | 0.01 223 | 0.00 223 | 0.01 221 | 0.00 225 | 0.07 222 |
|
9.14 | | | | | | | | | | | | | 81.81 13 | | | | | |
|
SR-MVS | | | | | | 71.46 34 | | | 54.67 28 | | | | 81.54 14 | | | | | |
|
Anonymous202405211 | | | | 60.60 97 | | 63.44 74 | 66.71 90 | 61.00 111 | 47.23 69 | 50.62 99 | | 36.85 186 | 60.63 87 | 43.03 136 | 69.17 83 | 67.72 90 | 75.41 104 | 72.54 108 |
|
our_test_3 | | | | | | 51.15 165 | 57.31 165 | 55.12 153 | | | | | | | | | | |
|
Patchmatch-RL test | | | | | | | | 1.04 227 | | | | | | | | | | |
|
mPP-MVS | | | | | | 71.67 33 | | | | | | | 74.36 41 | | | | | |
|
NP-MVS | | | | | | | | | | 72.00 39 | | | | | | | | |
|