This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort by
MTAPA83.48 186.45 19
SED-MVS88.85 291.59 385.67 290.54 1592.29 391.71 376.40 292.41 383.24 292.50 390.64 481.10 389.53 388.02 791.00 895.73 3
DVP-MVS++89.14 191.86 185.97 192.55 292.38 191.69 476.31 393.31 183.11 392.44 491.18 181.17 289.55 287.93 891.01 796.21 1
DVP-MVScopyleft88.67 391.62 285.22 490.47 1692.36 290.69 976.15 493.08 282.75 492.19 690.71 380.45 689.27 687.91 990.82 1195.84 2
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
MTMP82.66 584.91 26
DPE-MVScopyleft88.63 491.29 485.53 390.87 892.20 491.98 276.00 690.55 882.09 693.85 190.75 281.25 188.62 887.59 1490.96 995.48 4
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
SF-MVS87.47 889.70 884.86 891.26 691.10 890.90 675.65 889.21 981.25 791.12 888.93 778.82 1087.42 1986.23 3091.28 393.90 13
MSP-MVS88.09 590.84 584.88 790.00 2391.80 691.63 575.80 791.99 481.23 892.54 289.18 680.89 487.99 1587.91 989.70 4594.51 7
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
HPM-MVS++copyleft87.09 988.92 1384.95 692.61 187.91 4090.23 1576.06 588.85 1281.20 987.33 1387.93 1279.47 988.59 988.23 590.15 3493.60 20
SD-MVS86.96 1089.45 984.05 1490.13 1989.23 2289.77 1874.59 1489.17 1080.70 1089.93 1189.67 578.47 1287.57 1886.79 2290.67 1793.76 16
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
HFP-MVS86.15 1587.95 1884.06 1390.80 989.20 2389.62 1974.26 1687.52 1480.63 1186.82 1684.19 2878.22 1487.58 1787.19 1690.81 1293.13 24
TSAR-MVS + MP.86.88 1189.23 1084.14 1289.78 2688.67 3090.59 1073.46 2688.99 1180.52 1291.26 788.65 979.91 886.96 2986.22 3190.59 1993.83 14
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SMA-MVScopyleft87.56 790.17 784.52 991.71 390.57 990.77 875.19 1390.67 780.50 1386.59 1788.86 878.09 1589.92 189.41 190.84 1095.19 5
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
APDe-MVS88.00 690.50 685.08 590.95 791.58 792.03 175.53 1291.15 580.10 1492.27 588.34 1180.80 588.00 1486.99 1891.09 595.16 6
ACMMP_NAP86.52 1389.01 1183.62 1690.28 1890.09 1390.32 1374.05 1988.32 1379.74 1587.04 1585.59 2376.97 2889.35 488.44 490.35 3094.27 11
CSCG85.28 2187.68 1982.49 2489.95 2491.99 588.82 2471.20 3786.41 2179.63 1679.26 2988.36 1073.94 4186.64 3186.67 2591.40 294.41 8
CNVR-MVS86.36 1488.19 1784.23 1191.33 589.84 1490.34 1175.56 1087.36 1778.97 1781.19 2886.76 1878.74 1189.30 588.58 290.45 2794.33 10
APD-MVScopyleft86.84 1288.91 1484.41 1090.66 1190.10 1290.78 775.64 987.38 1678.72 1890.68 1086.82 1780.15 787.13 2486.45 2890.51 2193.83 14
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
MSLP-MVS++82.09 3682.66 4081.42 2987.03 4387.22 4385.82 4270.04 4280.30 4278.66 1968.67 7081.04 4477.81 1885.19 4684.88 4389.19 5591.31 36
3Dnovator+75.73 482.40 3482.76 3981.97 2888.02 3889.67 1786.60 3771.48 3681.28 4178.18 2064.78 8577.96 5277.13 2687.32 2286.83 2190.41 2891.48 35
MP-MVScopyleft85.50 1887.40 2183.28 1990.65 1289.51 1989.16 2374.11 1883.70 3378.06 2185.54 2084.89 2777.31 2387.40 2187.14 1790.41 2893.65 19
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
NCCC85.34 1986.59 2483.88 1591.48 488.88 2589.79 1775.54 1186.67 2077.94 2276.55 3484.99 2578.07 1688.04 1287.68 1290.46 2693.31 21
DeepC-MVS78.47 284.81 2586.03 2883.37 1889.29 3290.38 1188.61 2676.50 186.25 2277.22 2375.12 4080.28 4577.59 2188.39 1088.17 691.02 693.66 18
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ACMMPR85.52 1787.53 2083.17 2190.13 1989.27 2089.30 2073.97 2086.89 1977.14 2486.09 1883.18 3277.74 1987.42 1987.20 1590.77 1392.63 25
TPM-MVS90.07 2188.36 3588.45 2977.10 2575.60 3783.98 2971.33 6389.75 4389.62 51
CP-MVS84.74 2686.43 2682.77 2389.48 3088.13 3988.64 2573.93 2184.92 2476.77 2681.94 2683.50 3077.29 2586.92 3086.49 2790.49 2293.14 23
DPM-MVS83.30 3184.33 3482.11 2689.56 2888.49 3390.33 1273.24 2783.85 3276.46 2772.43 5082.65 3373.02 4886.37 3586.91 1990.03 3689.62 51
DeepC-MVS_fast78.24 384.27 2885.50 3082.85 2290.46 1789.24 2187.83 3374.24 1784.88 2576.23 2875.26 3981.05 4377.62 2088.02 1387.62 1390.69 1692.41 27
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MCST-MVS85.13 2286.62 2383.39 1790.55 1489.82 1689.29 2173.89 2284.38 3076.03 2979.01 3185.90 2178.47 1287.81 1686.11 3392.11 193.29 22
SteuartSystems-ACMMP85.99 1688.31 1683.27 2090.73 1089.84 1490.27 1474.31 1584.56 2975.88 3087.32 1485.04 2477.31 2389.01 788.46 391.14 493.96 12
Skip Steuart: Steuart Systems R&D Blog.
AdaColmapbinary79.74 4678.62 6281.05 3289.23 3386.06 5184.95 4971.96 3379.39 4675.51 3163.16 9168.84 9576.51 2983.55 6182.85 5888.13 7486.46 76
CLD-MVS79.35 5081.23 4677.16 5385.01 5786.92 4585.87 4160.89 13180.07 4575.35 3272.96 4873.21 6968.43 7885.41 4484.63 4487.41 9285.44 87
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
PGM-MVS84.42 2786.29 2782.23 2590.04 2288.82 2689.23 2271.74 3582.82 3674.61 3384.41 2382.09 3577.03 2787.13 2486.73 2490.73 1592.06 31
CANet81.62 3983.41 3679.53 4087.06 4288.59 3185.47 4567.96 5776.59 5174.05 3474.69 4181.98 3672.98 4986.14 3985.47 3789.68 4690.42 45
3Dnovator73.76 579.75 4580.52 5378.84 4384.94 5987.35 4184.43 5265.54 7578.29 4773.97 3563.00 9375.62 6074.07 4085.00 4785.34 3990.11 3589.04 54
TSAR-MVS + GP.83.69 2986.58 2580.32 3585.14 5486.96 4484.91 5070.25 4184.71 2873.91 3685.16 2185.63 2277.92 1785.44 4285.71 3689.77 4192.45 26
DeepPCF-MVS79.04 185.30 2088.93 1281.06 3188.77 3690.48 1085.46 4673.08 2890.97 673.77 3784.81 2285.95 2077.43 2288.22 1187.73 1187.85 8494.34 9
train_agg84.86 2487.21 2282.11 2690.59 1385.47 5489.81 1673.55 2583.95 3173.30 3889.84 1287.23 1575.61 3386.47 3385.46 3889.78 4092.06 31
CNLPA77.20 6477.54 6876.80 5682.63 6584.31 6479.77 7264.64 8185.17 2373.18 3956.37 12969.81 8674.53 3781.12 9078.69 11586.04 13187.29 68
ACMMPcopyleft83.42 3085.27 3181.26 3088.47 3788.49 3388.31 3172.09 3283.42 3472.77 4082.65 2478.22 5075.18 3486.24 3885.76 3590.74 1492.13 30
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
OMC-MVS80.26 4182.59 4177.54 5083.04 6285.54 5383.25 5665.05 7987.32 1872.42 4172.04 5278.97 4773.30 4583.86 5781.60 6988.15 7388.83 56
TSAR-MVS + ACMM85.10 2388.81 1580.77 3489.55 2988.53 3288.59 2772.55 3087.39 1571.90 4290.95 987.55 1374.57 3687.08 2686.54 2687.47 9193.67 17
PVSNet_BlendedMVS76.21 6777.52 6974.69 6979.46 9583.79 7077.50 9764.34 8569.88 7071.88 4368.54 7170.42 8167.05 8283.48 6279.63 10087.89 8286.87 72
PVSNet_Blended76.21 6777.52 6974.69 6979.46 9583.79 7077.50 9764.34 8569.88 7071.88 4368.54 7170.42 8167.05 8283.48 6279.63 10087.89 8286.87 72
XVS86.63 4588.68 2785.00 4771.81 4581.92 3790.47 23
X-MVStestdata86.63 4588.68 2785.00 4771.81 4581.92 3790.47 23
X-MVS83.23 3285.20 3280.92 3389.71 2788.68 2788.21 3273.60 2382.57 3771.81 4577.07 3281.92 3771.72 5886.98 2886.86 2090.47 2392.36 28
CPTT-MVS81.77 3783.10 3880.21 3685.93 5086.45 4987.72 3470.98 3882.54 3871.53 4874.23 4581.49 4076.31 3182.85 6981.87 6588.79 6392.26 29
ACMM72.26 878.86 5678.13 6479.71 3986.89 4483.40 7586.02 4070.50 3975.28 5371.49 4963.01 9269.26 8973.57 4384.11 5683.98 4789.76 4287.84 63
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MVS_111021_LR78.13 6079.85 5876.13 5981.12 7981.50 9080.28 6765.25 7776.09 5271.32 5076.49 3572.87 7172.21 5182.79 7081.29 7186.59 11787.91 62
ACMP73.23 779.79 4480.53 5278.94 4285.61 5285.68 5285.61 4369.59 4677.33 4971.00 5174.45 4369.16 9071.88 5483.15 6683.37 5489.92 3790.57 44
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
MVS_030481.73 3883.86 3579.26 4186.22 4989.18 2486.41 3867.15 6475.28 5370.75 5274.59 4283.49 3174.42 3887.05 2786.34 2990.58 2091.08 39
CS-MVS79.22 5181.11 4877.01 5481.36 7584.03 6580.35 6663.25 9673.43 6470.37 5374.10 4676.03 5876.40 3086.32 3783.95 4990.34 3189.93 47
MVS_111021_HR80.13 4281.46 4478.58 4585.77 5185.17 5883.45 5569.28 4974.08 6070.31 5474.31 4475.26 6173.13 4686.46 3485.15 4189.53 4789.81 49
CS-MVS-test78.79 5780.72 5076.53 5781.11 8083.88 6879.69 7563.72 9173.80 6169.95 5575.40 3876.17 5674.85 3584.50 5382.78 5989.87 3988.54 58
DELS-MVS79.15 5481.07 4976.91 5583.54 6187.31 4284.45 5164.92 8069.98 6969.34 5671.62 5476.26 5569.84 6886.57 3285.90 3489.39 4989.88 48
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
EC-MVSNet79.44 4881.35 4577.22 5282.95 6384.67 6281.31 6063.65 9272.47 6768.75 5773.15 4778.33 4975.99 3286.06 4083.96 4890.67 1790.79 41
PCF-MVS73.28 679.42 4980.41 5478.26 4684.88 6088.17 3786.08 3969.85 4375.23 5568.43 5868.03 7378.38 4871.76 5781.26 8780.65 8788.56 6691.18 38
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
MAR-MVS79.21 5280.32 5577.92 4987.46 4088.15 3883.95 5367.48 6374.28 5768.25 5964.70 8677.04 5372.17 5285.42 4385.00 4288.22 7087.62 65
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PVSNet_Blended_VisFu76.57 6677.90 6575.02 6580.56 8586.58 4879.24 7966.18 6964.81 9568.18 6065.61 7971.45 7467.05 8284.16 5581.80 6688.90 5990.92 40
casdiffmvs_mvgpermissive77.79 6179.55 5975.73 6181.56 7284.70 6182.12 5764.26 8774.27 5867.93 6170.83 5974.66 6369.19 7383.33 6581.94 6489.29 5187.14 70
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
OpenMVScopyleft70.44 1076.15 6976.82 7775.37 6485.01 5784.79 6078.99 8362.07 12071.27 6867.88 6257.91 12272.36 7270.15 6782.23 7481.41 7088.12 7587.78 64
OPM-MVS79.68 4779.28 6080.15 3787.99 3986.77 4688.52 2872.72 2964.55 9867.65 6367.87 7474.33 6574.31 3986.37 3585.25 4089.73 4489.81 49
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
CDPH-MVS82.64 3385.03 3379.86 3889.41 3188.31 3688.32 3071.84 3480.11 4367.47 6482.09 2581.44 4171.85 5685.89 4186.15 3290.24 3291.25 37
canonicalmvs79.16 5382.37 4275.41 6382.33 6986.38 5080.80 6363.18 9882.90 3567.34 6572.79 4976.07 5769.62 6983.46 6484.41 4589.20 5490.60 43
EPNet79.08 5580.62 5177.28 5188.90 3583.17 8083.65 5472.41 3174.41 5667.15 6676.78 3374.37 6464.43 9883.70 6083.69 5287.15 9588.19 60
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
HQP-MVS81.19 4083.27 3778.76 4487.40 4185.45 5586.95 3570.47 4081.31 4066.91 6779.24 3076.63 5471.67 5984.43 5483.78 5189.19 5592.05 33
PLCcopyleft68.99 1175.68 7075.31 8276.12 6082.94 6481.26 9479.94 7066.10 7077.15 5066.86 6859.13 11268.53 9773.73 4280.38 10079.04 11087.13 9981.68 127
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
casdiffmvspermissive76.76 6578.46 6374.77 6880.32 8983.73 7280.65 6463.24 9773.58 6366.11 6969.39 6574.09 6669.49 7182.52 7279.35 10988.84 6286.52 75
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PHI-MVS82.36 3585.89 2978.24 4786.40 4789.52 1885.52 4469.52 4882.38 3965.67 7081.35 2782.36 3473.07 4787.31 2386.76 2389.24 5291.56 34
FA-MVS(training)73.66 8074.95 8472.15 8078.63 10280.46 10478.92 8454.79 17069.71 7365.37 7162.04 9466.89 10367.10 8180.72 9479.87 9788.10 7784.97 95
QAPM78.47 5880.22 5676.43 5885.03 5686.75 4780.62 6566.00 7273.77 6265.35 7265.54 8178.02 5172.69 5083.71 5983.36 5588.87 6190.41 46
LGP-MVS_train79.83 4381.22 4778.22 4886.28 4885.36 5786.76 3669.59 4677.34 4865.14 7375.68 3670.79 7971.37 6284.60 5084.01 4690.18 3390.74 42
DI_MVS_plusplus_trai75.13 7476.12 8073.96 7478.18 10481.55 8880.97 6262.54 11468.59 7565.13 7461.43 9674.81 6269.32 7281.01 9279.59 10287.64 8985.89 79
TAPA-MVS71.42 977.69 6280.05 5774.94 6680.68 8484.52 6381.36 5963.14 9984.77 2664.82 7568.72 6875.91 5971.86 5581.62 7679.55 10487.80 8685.24 90
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
diffmvspermissive74.86 7577.37 7271.93 8175.62 12780.35 10679.42 7860.15 14172.81 6664.63 7671.51 5573.11 7066.53 9279.02 12177.98 12385.25 14686.83 74
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MVS_Test75.37 7277.13 7573.31 7779.07 9881.32 9379.98 6860.12 14269.72 7264.11 7770.53 6073.22 6868.90 7480.14 10779.48 10687.67 8885.50 85
ETV-MVS77.32 6378.81 6175.58 6282.24 7083.64 7379.98 6864.02 8869.64 7463.90 7870.89 5869.94 8573.41 4485.39 4583.91 5089.92 3788.31 59
GeoE74.23 7774.84 8573.52 7580.42 8881.46 9179.77 7261.06 12967.23 8163.67 7959.56 10968.74 9667.90 7980.25 10579.37 10888.31 6787.26 69
tpm cat165.41 15463.81 17767.28 13275.61 12872.88 16875.32 11152.85 17862.97 11163.66 8053.24 15553.29 17161.83 11965.54 20064.14 20274.43 19774.60 178
IB-MVS66.94 1271.21 10071.66 10870.68 8879.18 9782.83 8372.61 14961.77 12459.66 13463.44 8153.26 15459.65 12859.16 13376.78 14682.11 6387.90 8187.33 67
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
EIA-MVS75.64 7176.60 7874.53 7182.43 6883.84 6978.32 9062.28 11965.96 8863.28 8268.95 6667.54 10071.61 6082.55 7181.63 6889.24 5285.72 81
MSDG71.52 9669.87 11973.44 7682.21 7179.35 11479.52 7664.59 8266.15 8661.87 8353.21 15656.09 14665.85 9678.94 12278.50 11786.60 11676.85 165
TSAR-MVS + COLMAP78.34 5981.64 4374.48 7280.13 9285.01 5981.73 5865.93 7484.75 2761.68 8485.79 1966.27 10571.39 6182.91 6880.78 7886.01 13285.98 78
CostFormer68.92 12369.58 12468.15 11775.98 12376.17 15078.22 9251.86 18465.80 8961.56 8563.57 9062.83 11561.85 11870.40 18968.67 18679.42 17579.62 148
MVSTER72.06 9074.24 8669.51 10570.39 17675.97 15176.91 10357.36 16464.64 9761.39 8668.86 6763.76 11263.46 10381.44 8079.70 9987.56 9085.31 89
Fast-Effi-MVS+73.11 8473.66 9072.48 7977.72 11080.88 10078.55 8758.83 15765.19 9260.36 8759.98 10662.42 11771.22 6481.66 7580.61 8988.20 7184.88 98
Effi-MVS+75.28 7376.20 7974.20 7381.15 7883.24 7881.11 6163.13 10066.37 8460.27 8864.30 8968.88 9470.93 6681.56 7881.69 6788.61 6487.35 66
PatchMatch-RL67.78 13766.65 15769.10 10973.01 15272.69 16968.49 16561.85 12362.93 11260.20 8956.83 12850.42 18769.52 7075.62 15274.46 16281.51 16773.62 184
Anonymous2023121171.90 9172.48 10271.21 8480.14 9181.53 8976.92 10262.89 10364.46 10058.94 9043.80 19270.98 7862.22 11080.70 9580.19 9486.18 12485.73 80
RPSCF67.64 14171.25 10963.43 16261.86 20270.73 17667.26 17050.86 18974.20 5958.91 9167.49 7569.33 8864.10 10171.41 17668.45 19077.61 18177.17 162
LS3D74.08 7873.39 9374.88 6785.05 5582.62 8479.71 7468.66 5272.82 6558.80 9257.61 12361.31 12071.07 6580.32 10178.87 11486.00 13380.18 142
DCV-MVSNet73.65 8175.78 8171.16 8580.19 9079.27 11577.45 9961.68 12666.73 8358.72 9365.31 8269.96 8462.19 11181.29 8680.97 7586.74 11086.91 71
thisisatest053071.48 9773.01 9669.70 10373.83 14678.62 12374.53 12459.12 15164.13 10158.63 9464.60 8758.63 13264.27 9980.28 10380.17 9587.82 8584.64 101
baseline70.45 10674.09 8866.20 14570.95 17375.67 15274.26 13253.57 17268.33 7658.42 9569.87 6371.45 7461.55 12174.84 15774.76 16078.42 17983.72 110
dps64.00 16462.99 18065.18 14873.29 15072.07 17168.98 16453.07 17757.74 14458.41 9655.55 13447.74 19760.89 12869.53 19267.14 19576.44 18971.19 188
tttt051771.41 9872.95 9769.60 10473.70 14878.70 12274.42 12859.12 15163.89 10558.35 9764.56 8858.39 13464.27 9980.29 10280.17 9587.74 8784.69 100
v870.23 10869.86 12070.67 8974.69 13679.82 11078.79 8559.18 15058.80 13858.20 9855.00 13857.33 13866.31 9477.51 13676.71 14586.82 10783.88 108
pmmvs467.89 13467.39 15268.48 11571.60 16773.57 16674.45 12560.98 13064.65 9657.97 9954.95 13951.73 18161.88 11773.78 16375.11 15783.99 15977.91 157
IterMVS-LS71.69 9472.82 10070.37 9377.54 11276.34 14875.13 11760.46 13761.53 12357.57 10064.89 8467.33 10166.04 9577.09 14277.37 13685.48 14285.18 91
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
ET-MVSNet_ETH3D72.46 8874.19 8770.44 9262.50 20081.17 9579.90 7162.46 11764.52 9957.52 10171.49 5659.15 13072.08 5378.61 12681.11 7388.16 7283.29 113
v14867.85 13567.53 14868.23 11673.25 15177.57 13974.26 13257.36 16455.70 16057.45 10253.53 15055.42 14861.96 11675.23 15473.92 16385.08 14881.32 130
baseline269.69 11470.27 11669.01 11075.72 12677.13 14173.82 13958.94 15561.35 12457.09 10361.68 9557.17 14061.99 11578.10 13176.58 14786.48 12079.85 144
v2v48270.05 11269.46 12670.74 8674.62 13780.32 10779.00 8260.62 13457.41 14756.89 10455.43 13655.14 15166.39 9377.25 13977.14 13986.90 10483.57 112
UGNet72.78 8577.67 6767.07 13671.65 16583.24 7875.20 11363.62 9364.93 9456.72 10571.82 5373.30 6749.02 18181.02 9180.70 8586.22 12388.67 57
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
CMPMVSbinary47.78 1762.49 17262.52 18562.46 16470.01 17970.66 17762.97 19251.84 18551.98 18456.71 10642.87 19453.62 16057.80 14372.23 17070.37 17875.45 19475.91 169
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
v1070.22 10969.76 12270.74 8674.79 13580.30 10879.22 8059.81 14557.71 14556.58 10754.22 14755.31 14966.95 8578.28 12977.47 13387.12 10185.07 93
V4268.76 12669.63 12367.74 12164.93 19678.01 12778.30 9156.48 16658.65 13956.30 10854.26 14557.03 14164.85 9777.47 13777.01 14185.60 14084.96 96
UA-Net74.47 7677.80 6670.59 9185.33 5385.40 5673.54 14365.98 7360.65 12956.00 10972.11 5179.15 4654.63 16883.13 6782.25 6288.04 7881.92 125
Effi-MVS+-dtu71.82 9271.86 10771.78 8278.77 9980.47 10378.55 8761.67 12760.68 12855.49 11058.48 11665.48 10768.85 7576.92 14375.55 15587.35 9385.46 86
tpm62.41 17363.15 17961.55 16872.24 15963.79 20071.31 15546.12 20757.82 14155.33 11159.90 10754.74 15353.63 17167.24 19964.29 20170.65 20774.25 182
v114469.93 11369.36 12770.61 9074.89 13480.93 9779.11 8160.64 13355.97 15955.31 11253.85 14954.14 15666.54 9178.10 13177.44 13487.14 9885.09 92
MS-PatchMatch70.17 11070.49 11469.79 10180.98 8277.97 13377.51 9658.95 15462.33 11655.22 11353.14 15765.90 10662.03 11479.08 12077.11 14084.08 15777.91 157
CHOSEN 1792x268869.20 12169.26 12869.13 10876.86 11778.93 11777.27 10060.12 14261.86 12054.42 11442.54 19661.61 11966.91 8778.55 12778.14 12279.23 17783.23 114
v119269.50 11768.83 13370.29 9474.49 13880.92 9978.55 8760.54 13555.04 16554.21 11552.79 16352.33 17666.92 8677.88 13377.35 13787.04 10285.51 84
SCA65.40 15566.58 15864.02 15770.65 17473.37 16767.35 16953.46 17463.66 10654.14 11660.84 9960.20 12561.50 12269.96 19068.14 19177.01 18669.91 190
v14419269.34 11968.68 13770.12 9774.06 14280.54 10278.08 9360.54 13554.99 16754.13 11752.92 16152.80 17466.73 8977.13 14176.72 14487.15 9585.63 82
HyFIR lowres test69.47 11868.94 13270.09 9876.77 11882.93 8276.63 10660.17 14059.00 13754.03 11840.54 20165.23 10867.89 8076.54 14978.30 12085.03 14980.07 143
tpmrst62.00 17762.35 18861.58 16771.62 16664.14 19769.07 16348.22 20362.21 11753.93 11958.26 12155.30 15055.81 16063.22 20562.62 20470.85 20670.70 189
MDTV_nov1_ep1364.37 16165.24 16563.37 16368.94 18570.81 17572.40 15250.29 19360.10 13353.91 12060.07 10559.15 13057.21 14869.43 19367.30 19377.47 18269.78 192
PatchmatchNetpermissive64.21 16364.65 17163.69 15971.29 17268.66 18469.63 16051.70 18663.04 11053.77 12159.83 10858.34 13560.23 13168.54 19666.06 19875.56 19268.08 196
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
thisisatest051567.40 14468.78 13465.80 14770.02 17875.24 15869.36 16257.37 16354.94 16853.67 12255.53 13554.85 15258.00 14178.19 13078.91 11386.39 12183.78 109
v192192069.03 12268.32 14169.86 10074.03 14380.37 10577.55 9560.25 13954.62 16953.59 12352.36 16751.50 18266.75 8877.17 14076.69 14686.96 10385.56 83
FC-MVSNet-train72.60 8775.07 8369.71 10281.10 8178.79 12173.74 14265.23 7866.10 8753.34 12470.36 6163.40 11456.92 15281.44 8080.96 7687.93 8084.46 103
CANet_DTU73.29 8376.96 7669.00 11177.04 11682.06 8679.49 7756.30 16767.85 7953.29 12571.12 5770.37 8361.81 12081.59 7780.96 7686.09 12684.73 99
v124068.64 12767.89 14769.51 10573.89 14580.26 10976.73 10559.97 14453.43 17753.08 12651.82 17050.84 18566.62 9076.79 14576.77 14386.78 10985.34 88
pmmvs-eth3d63.52 16562.44 18764.77 15266.82 19170.12 17969.41 16159.48 14854.34 17352.71 12746.24 18944.35 20656.93 15172.37 16773.77 16583.30 16175.91 169
CR-MVSNet64.83 15865.54 16364.01 15870.64 17569.41 18065.97 18052.74 17957.81 14252.65 12854.27 14356.31 14560.92 12672.20 17273.09 16881.12 17075.69 172
Patchmtry65.80 19465.97 18052.74 17952.65 128
PatchT61.97 17864.04 17559.55 17960.49 20467.40 18856.54 20548.65 19956.69 15152.65 12851.10 17452.14 17960.92 12672.20 17273.09 16878.03 18075.69 172
ACMH+66.54 1371.36 9970.09 11772.85 7882.59 6681.13 9678.56 8668.04 5561.55 12252.52 13151.50 17154.14 15668.56 7778.85 12379.50 10586.82 10783.94 107
MVS-HIRNet54.41 20052.10 20757.11 18858.99 20656.10 21349.68 21349.10 19646.18 20152.15 13233.18 20946.11 20156.10 15663.19 20659.70 20976.64 18860.25 209
GBi-Net70.78 10173.37 9467.76 11972.95 15378.00 12875.15 11462.72 10764.13 10151.44 13358.37 11769.02 9157.59 14481.33 8380.72 8086.70 11182.02 119
test170.78 10173.37 9467.76 11972.95 15378.00 12875.15 11462.72 10764.13 10151.44 13358.37 11769.02 9157.59 14481.33 8380.72 8086.70 11182.02 119
FMVSNet370.49 10572.90 9967.67 12472.88 15677.98 13174.96 12262.72 10764.13 10151.44 13358.37 11769.02 9157.43 14779.43 11679.57 10386.59 11781.81 126
EG-PatchMatch MVS67.24 14666.94 15467.60 12578.73 10081.35 9273.28 14759.49 14746.89 19951.42 13643.65 19353.49 16455.50 16481.38 8280.66 8687.15 9581.17 131
FMVSNet270.39 10772.67 10167.72 12272.95 15378.00 12875.15 11462.69 11163.29 10951.25 13755.64 13268.49 9857.59 14480.91 9380.35 9286.70 11182.02 119
v7n67.05 14966.94 15467.17 13372.35 15878.97 11673.26 14858.88 15651.16 18850.90 13848.21 18450.11 18960.96 12577.70 13477.38 13586.68 11485.05 94
PMMVS65.06 15769.17 13060.26 17455.25 21463.43 20166.71 17643.01 20962.41 11550.64 13969.44 6467.04 10263.29 10474.36 16073.54 16682.68 16473.99 183
Vis-MVSNetpermissive72.77 8677.20 7467.59 12674.19 14184.01 6676.61 10761.69 12560.62 13050.61 14070.25 6271.31 7755.57 16383.85 5882.28 6186.90 10488.08 61
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
USDC67.36 14567.90 14666.74 14271.72 16375.23 15971.58 15360.28 13867.45 8050.54 14160.93 9845.20 20462.08 11276.56 14874.50 16184.25 15575.38 175
COLMAP_ROBcopyleft62.73 1567.66 13966.76 15668.70 11380.49 8777.98 13175.29 11262.95 10263.62 10749.96 14247.32 18750.72 18658.57 13676.87 14475.50 15684.94 15175.33 176
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
FMVSNet168.84 12470.47 11566.94 13871.35 17077.68 13674.71 12362.35 11856.93 15049.94 14350.01 17764.59 10957.07 14981.33 8380.72 8086.25 12282.00 122
test250671.72 9372.95 9770.29 9481.49 7383.27 7675.74 10867.59 6168.19 7749.81 14461.15 9749.73 19158.82 13484.76 4882.94 5688.27 6880.63 136
EPP-MVSNet74.00 7977.41 7170.02 9980.53 8683.91 6774.99 11962.68 11265.06 9349.77 14568.68 6972.09 7363.06 10682.49 7380.73 7989.12 5788.91 55
TDRefinement66.09 15265.03 16967.31 13069.73 18076.75 14475.33 11064.55 8360.28 13249.72 14645.63 19042.83 20760.46 13075.75 15175.95 15284.08 15778.04 156
CDS-MVSNet67.65 14069.83 12165.09 14975.39 12976.55 14674.42 12863.75 9053.55 17549.37 14759.41 11062.45 11644.44 18879.71 11079.82 9883.17 16377.36 161
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
ECVR-MVScopyleft72.20 8973.91 8970.20 9681.49 7383.27 7675.74 10867.59 6168.19 7749.31 14855.77 13162.00 11858.82 13484.76 4882.94 5688.27 6880.41 140
IterMVS-SCA-FT66.89 15069.22 12964.17 15571.30 17175.64 15371.33 15453.17 17657.63 14649.08 14960.72 10060.05 12663.09 10574.99 15673.92 16377.07 18581.57 128
IS_MVSNet73.33 8277.34 7368.65 11481.29 7683.47 7474.45 12563.58 9465.75 9048.49 15067.11 7870.61 8054.63 16884.51 5283.58 5389.48 4886.34 77
GA-MVS68.14 12969.17 13066.93 13973.77 14778.50 12574.45 12558.28 15955.11 16448.44 15160.08 10453.99 15961.50 12278.43 12877.57 13085.13 14780.54 137
baseline170.10 11172.17 10467.69 12379.74 9376.80 14373.91 13664.38 8462.74 11448.30 15264.94 8364.08 11154.17 17081.46 7978.92 11285.66 13976.22 167
IterMVS66.36 15168.30 14264.10 15669.48 18374.61 16373.41 14650.79 19057.30 14848.28 15360.64 10159.92 12760.85 12974.14 16172.66 17081.80 16678.82 153
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
PM-MVS60.48 18660.94 19459.94 17558.85 20766.83 19164.27 18851.39 18755.03 16648.03 15450.00 17940.79 21158.26 13969.20 19467.13 19678.84 17877.60 159
test-LLR64.42 16064.36 17364.49 15475.02 13263.93 19866.61 17761.96 12154.41 17047.77 15557.46 12460.25 12355.20 16570.80 18369.33 18180.40 17374.38 180
TESTMET0.1,161.10 18464.36 17357.29 18657.53 20963.93 19866.61 17736.22 21354.41 17047.77 15557.46 12460.25 12355.20 16570.80 18369.33 18180.40 17374.38 180
TinyColmap62.84 16861.03 19364.96 15169.61 18171.69 17268.48 16659.76 14655.41 16147.69 15747.33 18634.20 21662.76 10874.52 15872.59 17181.44 16871.47 187
anonymousdsp65.28 15667.98 14462.13 16558.73 20873.98 16567.10 17250.69 19148.41 19547.66 15854.27 14352.75 17561.45 12476.71 14780.20 9387.13 9989.53 53
UniMVSNet_ETH3D67.18 14867.03 15367.36 12974.44 13978.12 12674.07 13566.38 6752.22 18246.87 15948.64 18251.84 18056.96 15077.29 13878.53 11685.42 14382.59 116
thres100view90067.60 14268.02 14367.12 13577.83 10877.75 13573.90 13762.52 11556.64 15246.82 16052.65 16453.47 16655.92 15878.77 12477.62 12985.72 13779.23 150
tfpn200view968.11 13068.72 13667.40 12877.83 10878.93 11774.28 13062.81 10456.64 15246.82 16052.65 16453.47 16656.59 15380.41 9778.43 11886.11 12580.52 138
Fast-Effi-MVS+-dtu68.34 12869.47 12567.01 13775.15 13077.97 13377.12 10155.40 16957.87 14046.68 16256.17 13060.39 12262.36 10976.32 15076.25 15185.35 14581.34 129
thres20067.98 13268.55 13967.30 13177.89 10778.86 11974.18 13462.75 10556.35 15546.48 16352.98 16053.54 16256.46 15480.41 9777.97 12486.05 12979.78 146
test111171.56 9573.44 9269.38 10781.16 7782.95 8174.99 11967.68 5966.89 8246.33 16455.19 13760.91 12157.99 14284.59 5182.70 6088.12 7580.85 133
RE-MVS-def46.24 165
test-mter60.84 18564.62 17256.42 18955.99 21264.18 19665.39 18234.23 21454.39 17246.21 16657.40 12659.49 12955.86 15971.02 18269.65 18080.87 17276.20 168
ACMH65.37 1470.71 10370.00 11871.54 8382.51 6782.47 8577.78 9468.13 5456.19 15746.06 16754.30 14151.20 18368.68 7680.66 9680.72 8086.07 12784.45 104
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MDTV_nov1_ep13_2view60.16 18760.51 19559.75 17665.39 19369.05 18368.00 16748.29 20151.99 18345.95 16848.01 18549.64 19253.39 17268.83 19566.52 19777.47 18269.55 193
thres40067.95 13368.62 13867.17 13377.90 10578.59 12474.27 13162.72 10756.34 15645.77 16953.00 15953.35 16956.46 15480.21 10678.43 11885.91 13680.43 139
RPMNet61.71 18362.88 18160.34 17369.51 18269.41 18063.48 19049.23 19557.81 14245.64 17050.51 17550.12 18853.13 17468.17 19868.49 18981.07 17175.62 174
EPNet_dtu68.08 13171.00 11064.67 15379.64 9468.62 18575.05 11863.30 9566.36 8545.27 17167.40 7666.84 10443.64 19075.37 15374.98 15981.15 16977.44 160
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
pmmvs562.37 17664.04 17560.42 17265.03 19471.67 17367.17 17152.70 18150.30 18944.80 17254.23 14651.19 18449.37 18072.88 16673.48 16783.45 16074.55 179
dmvs_re67.22 14767.92 14566.40 14475.94 12470.55 17874.97 12163.87 8957.07 14944.75 17354.29 14256.72 14354.65 16779.53 11477.51 13284.20 15679.78 146
EPMVS60.00 18861.97 18957.71 18568.46 18663.17 20464.54 18648.23 20263.30 10844.72 17460.19 10356.05 14750.85 17865.27 20362.02 20569.44 20963.81 203
thres600view767.68 13868.43 14066.80 14077.90 10578.86 11973.84 13862.75 10556.07 15844.70 17552.85 16252.81 17355.58 16280.41 9777.77 12686.05 12980.28 141
pm-mvs165.62 15367.42 15063.53 16173.66 14976.39 14769.66 15960.87 13249.73 19243.97 17651.24 17357.00 14248.16 18279.89 10877.84 12584.85 15379.82 145
UniMVSNet_NR-MVSNet70.59 10472.19 10368.72 11277.72 11080.72 10173.81 14069.65 4561.99 11843.23 17760.54 10257.50 13758.57 13679.56 11381.07 7489.34 5083.97 105
DU-MVS69.63 11570.91 11168.13 11875.99 12179.54 11173.81 14069.20 5061.20 12643.23 17758.52 11453.50 16358.57 13679.22 11880.45 9087.97 7983.97 105
tfpnnormal64.27 16263.64 17865.02 15075.84 12575.61 15471.24 15662.52 11547.79 19642.97 17942.65 19544.49 20552.66 17578.77 12476.86 14284.88 15279.29 149
ADS-MVSNet55.94 19758.01 19853.54 19962.48 20158.48 21059.12 20346.20 20659.65 13542.88 18052.34 16853.31 17046.31 18562.00 20760.02 20864.23 21460.24 210
pmmvs662.41 17362.88 18161.87 16671.38 16975.18 16167.76 16859.45 14941.64 20742.52 18137.33 20352.91 17246.87 18477.67 13576.26 15083.23 16279.18 151
UniMVSNet (Re)69.53 11671.90 10666.76 14176.42 11980.93 9772.59 15068.03 5661.75 12141.68 18258.34 12057.23 13953.27 17379.53 11480.62 8888.57 6584.90 97
TransMVSNet (Re)64.74 15965.66 16263.66 16077.40 11475.33 15769.86 15862.67 11347.63 19741.21 18350.01 17752.33 17645.31 18779.57 11277.69 12885.49 14177.07 164
NR-MVSNet68.79 12570.56 11366.71 14377.48 11379.54 11173.52 14469.20 5061.20 12639.76 18458.52 11450.11 18951.37 17780.26 10480.71 8488.97 5883.59 111
TranMVSNet+NR-MVSNet69.25 12070.81 11267.43 12777.23 11579.46 11373.48 14569.66 4460.43 13139.56 18558.82 11353.48 16555.74 16179.59 11181.21 7288.89 6082.70 115
FMVSNet557.24 19360.02 19653.99 19756.45 21162.74 20565.27 18347.03 20455.14 16339.55 18640.88 19853.42 16841.83 19172.35 16871.10 17773.79 19964.50 202
MIMVSNet58.52 19261.34 19255.22 19360.76 20367.01 19066.81 17449.02 19756.43 15438.90 18740.59 20054.54 15540.57 19773.16 16571.65 17375.30 19566.00 199
pmnet_mix0255.30 19857.01 20253.30 20064.14 19759.09 20958.39 20450.24 19453.47 17638.68 18849.75 18045.86 20240.14 19865.38 20260.22 20768.19 21165.33 200
Baseline_NR-MVSNet67.53 14368.77 13566.09 14675.99 12174.75 16272.43 15168.41 5361.33 12538.33 18951.31 17254.13 15856.03 15779.22 11878.19 12185.37 14482.45 117
CHOSEN 280x42058.70 19161.88 19054.98 19455.45 21350.55 21664.92 18440.36 21055.21 16238.13 19048.31 18363.76 11263.03 10773.73 16468.58 18868.00 21273.04 185
SixPastTwentyTwo61.84 18062.45 18661.12 17069.20 18472.20 17062.03 19557.40 16246.54 20038.03 19157.14 12741.72 20958.12 14069.67 19171.58 17481.94 16578.30 155
ambc53.42 20464.99 19563.36 20249.96 21247.07 19837.12 19228.97 21216.36 22441.82 19275.10 15567.34 19271.55 20575.72 171
TAMVS59.58 18962.81 18355.81 19166.03 19265.64 19563.86 18948.74 19849.95 19137.07 19354.77 14058.54 13344.44 18872.29 16971.79 17274.70 19666.66 198
PMVScopyleft39.38 1846.06 21043.30 21249.28 20462.93 19838.75 21841.88 21753.50 17333.33 21735.46 19428.90 21331.01 21933.04 20558.61 21254.63 21368.86 21057.88 212
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
FPMVS51.87 20450.00 20954.07 19666.83 19057.25 21160.25 20050.91 18850.25 19034.36 19536.04 20632.02 21841.49 19358.98 21156.07 21070.56 20859.36 211
Vis-MVSNet (Re-imp)67.83 13673.52 9161.19 16978.37 10376.72 14566.80 17562.96 10165.50 9134.17 19667.19 7769.68 8739.20 19979.39 11779.44 10785.68 13876.73 166
CVMVSNet62.55 17065.89 15958.64 18266.95 18969.15 18266.49 17956.29 16852.46 18132.70 19759.27 11158.21 13650.09 17971.77 17571.39 17579.31 17678.99 152
MDA-MVSNet-bldmvs53.37 20353.01 20653.79 19843.67 21867.95 18759.69 20157.92 16043.69 20332.41 19841.47 19727.89 22152.38 17656.97 21365.99 19976.68 18767.13 197
pmmvs347.65 20649.08 21145.99 20644.61 21654.79 21450.04 21131.95 21733.91 21429.90 19930.37 21033.53 21746.31 18563.50 20463.67 20373.14 20263.77 204
test0.0.03 158.80 19061.58 19155.56 19275.02 13268.45 18659.58 20261.96 12152.74 17829.57 20049.75 18054.56 15431.46 20671.19 17869.77 17975.75 19064.57 201
Anonymous2023120656.36 19657.80 20054.67 19570.08 17766.39 19260.46 19957.54 16149.50 19429.30 20133.86 20846.64 19935.18 20270.44 18768.88 18575.47 19368.88 195
tmp_tt14.50 21814.68 2237.17 22510.46 2262.21 22137.73 21228.71 20225.26 21516.98 2224.37 22131.49 21729.77 21726.56 222
LTVRE_ROB59.44 1661.82 18262.64 18460.87 17172.83 15777.19 14064.37 18758.97 15333.56 21628.00 20352.59 16642.21 20863.93 10274.52 15876.28 14977.15 18482.13 118
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
CP-MVSNet62.68 16965.49 16459.40 18071.84 16175.34 15662.87 19367.04 6552.64 17927.19 20453.38 15248.15 19541.40 19471.26 17775.68 15386.07 12782.00 122
PS-CasMVS62.38 17565.06 16759.25 18171.73 16275.21 16062.77 19466.99 6651.94 18626.96 20552.00 16947.52 19841.06 19571.16 18075.60 15485.97 13481.97 124
PEN-MVS62.96 16765.77 16159.70 17773.98 14475.45 15563.39 19167.61 6052.49 18025.49 20653.39 15149.12 19340.85 19671.94 17477.26 13886.86 10680.72 135
WR-MVS63.03 16667.40 15157.92 18475.14 13177.60 13860.56 19866.10 7054.11 17423.88 20753.94 14853.58 16134.50 20373.93 16277.71 12787.35 9380.94 132
testgi54.39 20157.86 19950.35 20271.59 16867.24 18954.95 20753.25 17543.36 20423.78 20844.64 19147.87 19624.96 21170.45 18668.66 18773.60 20062.78 206
gm-plane-assit57.00 19457.62 20156.28 19076.10 12062.43 20747.62 21546.57 20533.84 21523.24 20937.52 20240.19 21259.61 13279.81 10977.55 13184.55 15472.03 186
EU-MVSNet54.63 19958.69 19749.90 20356.99 21062.70 20656.41 20650.64 19245.95 20223.14 21050.42 17646.51 20036.63 20165.51 20164.85 20075.57 19174.91 177
WR-MVS_H61.83 18165.87 16057.12 18771.72 16376.87 14261.45 19666.19 6851.97 18522.92 21153.13 15852.30 17833.80 20471.03 18175.00 15886.65 11580.78 134
test20.0353.93 20256.28 20351.19 20172.19 16065.83 19353.20 20961.08 12842.74 20522.08 21237.07 20445.76 20324.29 21470.44 18769.04 18374.31 19863.05 205
gg-mvs-nofinetune62.55 17065.05 16859.62 17878.72 10177.61 13770.83 15753.63 17139.71 21122.04 21336.36 20564.32 11047.53 18381.16 8879.03 11185.00 15077.17 162
DTE-MVSNet61.85 17964.96 17058.22 18374.32 14074.39 16461.01 19767.85 5851.76 18721.91 21453.28 15348.17 19437.74 20072.22 17176.44 14886.52 11978.49 154
N_pmnet47.35 20750.13 20844.11 20859.98 20551.64 21551.86 21044.80 20849.58 19320.76 21540.65 19940.05 21329.64 20759.84 20955.15 21157.63 21554.00 213
test_method22.26 21425.94 21617.95 2163.24 2257.17 22523.83 2207.27 22037.35 21320.44 21621.87 21739.16 21418.67 21834.56 21620.84 22034.28 21920.64 221
MIMVSNet149.27 20553.25 20544.62 20744.61 21661.52 20853.61 20852.18 18241.62 20818.68 21728.14 21441.58 21025.50 20968.46 19769.04 18373.15 20162.37 207
Gipumacopyleft36.38 21235.80 21437.07 21045.76 21533.90 21929.81 21948.47 20039.91 21018.02 2188.00 2228.14 22625.14 21059.29 21061.02 20655.19 21740.31 215
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
new-patchmatchnet46.97 20849.47 21044.05 20962.82 19956.55 21245.35 21652.01 18342.47 20617.04 21935.73 20735.21 21521.84 21761.27 20854.83 21265.26 21360.26 208
new_pmnet38.40 21142.64 21333.44 21137.54 22145.00 21736.60 21832.72 21640.27 20912.72 22029.89 21128.90 22024.78 21253.17 21452.90 21456.31 21648.34 214
FC-MVSNet-test56.90 19565.20 16647.21 20566.98 18863.20 20349.11 21458.60 15859.38 13611.50 22165.60 8056.68 14424.66 21371.17 17971.36 17672.38 20369.02 194
DeepMVS_CXcopyleft18.74 22418.55 2228.02 21926.96 2187.33 22223.81 21613.05 22525.99 20825.17 21922.45 22436.25 218
E-PMN21.77 21518.24 21825.89 21240.22 21919.58 22212.46 22439.87 21118.68 2216.71 2239.57 2194.31 22922.36 21619.89 22027.28 21833.73 22028.34 219
EMVS20.98 21617.15 21925.44 21339.51 22019.37 22312.66 22339.59 21219.10 2206.62 2249.27 2204.40 22822.43 21517.99 22124.40 21931.81 22125.53 220
MVEpermissive19.12 1920.47 21723.27 21717.20 21712.66 22425.41 22110.52 22534.14 21514.79 2226.53 2258.79 2214.68 22716.64 21929.49 21841.63 21522.73 22338.11 216
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMMVS225.60 21329.75 21520.76 21528.00 22230.93 22023.10 22129.18 21823.14 2191.46 22618.23 21816.54 2235.08 22040.22 21541.40 21637.76 21837.79 217
GG-mvs-BLEND46.86 20967.51 14922.75 2140.05 22676.21 14964.69 1850.04 22261.90 1190.09 22755.57 13371.32 760.08 22270.54 18567.19 19471.58 20469.86 191
testmvs0.09 2180.15 2200.02 2190.01 2270.02 2270.05 2280.01 2230.11 2230.01 2280.26 2240.01 2300.06 2240.10 2220.10 2210.01 2250.43 223
uanet_test0.00 2200.00 2220.00 2210.00 2280.00 2290.00 2300.00 2250.00 2250.00 2290.00 2250.00 2310.00 2250.00 2240.00 2230.00 2270.00 224
sosnet-low-res0.00 2200.00 2220.00 2210.00 2280.00 2290.00 2300.00 2250.00 2250.00 2290.00 2250.00 2310.00 2250.00 2240.00 2230.00 2270.00 224
sosnet0.00 2200.00 2220.00 2210.00 2280.00 2290.00 2300.00 2250.00 2250.00 2290.00 2250.00 2310.00 2250.00 2240.00 2230.00 2270.00 224
test1230.09 2180.14 2210.02 2190.00 2280.02 2270.02 2290.01 2230.09 2240.00 2290.30 2230.00 2310.08 2220.03 2230.09 2220.01 2250.45 222
9.1486.88 16
SR-MVS88.99 3473.57 2487.54 14
Anonymous20240521172.16 10580.85 8381.85 8776.88 10465.40 7662.89 11346.35 18867.99 9962.05 11381.15 8980.38 9185.97 13484.50 102
our_test_367.93 18770.99 17466.89 173
Patchmatch-RL test2.85 227
mPP-MVS89.90 2581.29 42
NP-MVS80.10 44