MTMP | | | | | | | | | | | 93.14 1 | | 90.21 30 | | | | | |
|
MTAPA | | | | | | | | | | | 92.97 2 | | 91.03 23 | | | | | |
|
DVP-MVS++ | | | 95.79 1 | 96.42 1 | 95.06 1 | 97.84 2 | 98.17 2 | 97.03 4 | 92.84 3 | 96.68 1 | 92.83 3 | 95.90 5 | 94.38 4 | 92.90 5 | 95.98 2 | 94.85 5 | 96.93 3 | 98.99 1 |
|
SED-MVS | | | 95.61 2 | 96.36 2 | 94.73 3 | 96.84 19 | 98.15 3 | 97.08 3 | 92.92 2 | 95.64 3 | 91.84 4 | 95.98 4 | 95.33 1 | 92.83 7 | 96.00 1 | 94.94 3 | 96.90 4 | 98.45 3 |
|
DVP-MVS |  | | 95.56 3 | 96.26 3 | 94.73 3 | 96.93 16 | 98.19 1 | 96.62 7 | 92.81 5 | 96.15 2 | 91.73 5 | 95.01 7 | 95.31 2 | 93.41 1 | 95.95 3 | 94.77 8 | 96.90 4 | 98.46 2 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
DPE-MVS |  | | 95.53 4 | 96.13 4 | 94.82 2 | 96.81 22 | 98.05 4 | 97.42 1 | 93.09 1 | 94.31 9 | 91.49 6 | 97.12 1 | 95.03 3 | 93.27 3 | 95.55 6 | 94.58 12 | 96.86 6 | 98.25 4 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
SD-MVS | | | 94.53 10 | 95.22 8 | 93.73 14 | 95.69 36 | 97.03 14 | 95.77 21 | 91.95 12 | 94.41 8 | 91.35 7 | 94.97 8 | 93.34 8 | 91.80 19 | 94.72 20 | 93.99 20 | 95.82 38 | 98.07 7 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
SF-MVS | | | 94.61 8 | 94.96 10 | 94.20 9 | 96.75 24 | 97.07 12 | 95.82 18 | 92.60 7 | 93.98 12 | 91.09 8 | 95.89 6 | 92.54 12 | 91.93 15 | 94.40 27 | 93.56 29 | 97.04 2 | 97.27 17 |
|
APDe-MVS | | | 95.23 5 | 95.69 6 | 94.70 5 | 97.12 10 | 97.81 6 | 97.19 2 | 92.83 4 | 95.06 6 | 90.98 9 | 96.47 2 | 92.77 10 | 93.38 2 | 95.34 9 | 94.21 16 | 96.68 9 | 98.17 5 |
|
TSAR-MVS + MP. | | | 94.48 11 | 94.97 9 | 93.90 12 | 95.53 37 | 97.01 15 | 96.69 6 | 90.71 23 | 94.24 10 | 90.92 10 | 94.97 8 | 92.19 15 | 93.03 4 | 94.83 16 | 93.60 27 | 96.51 13 | 97.97 9 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
HPM-MVS++ |  | | 94.60 9 | 94.91 11 | 94.24 8 | 97.86 1 | 96.53 32 | 96.14 9 | 92.51 8 | 93.87 14 | 90.76 11 | 93.45 18 | 93.84 5 | 92.62 9 | 95.11 12 | 94.08 19 | 95.58 54 | 97.48 14 |
|
MSP-MVS | | | 95.12 6 | 95.83 5 | 94.30 6 | 96.82 21 | 97.94 5 | 96.98 5 | 92.37 11 | 95.40 4 | 90.59 12 | 96.16 3 | 93.71 6 | 92.70 8 | 94.80 17 | 94.77 8 | 96.37 14 | 97.99 8 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
SMA-MVS |  | | 94.70 7 | 95.35 7 | 93.93 11 | 97.57 3 | 97.57 8 | 95.98 12 | 91.91 13 | 94.50 7 | 90.35 13 | 93.46 17 | 92.72 11 | 91.89 17 | 95.89 4 | 95.22 1 | 95.88 31 | 98.10 6 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
MSLP-MVS++ | | | 92.02 33 | 91.40 36 | 92.75 23 | 96.01 32 | 95.88 43 | 93.73 40 | 89.00 33 | 89.89 42 | 90.31 14 | 81.28 58 | 88.85 39 | 91.45 22 | 92.88 51 | 94.24 15 | 96.00 27 | 96.76 29 |
|
HFP-MVS | | | 94.02 15 | 94.22 18 | 93.78 13 | 97.25 7 | 96.85 20 | 95.81 19 | 90.94 22 | 94.12 11 | 90.29 15 | 94.09 14 | 89.98 31 | 92.52 11 | 93.94 33 | 93.49 32 | 95.87 33 | 97.10 23 |
|
APD-MVS |  | | 94.37 12 | 94.47 16 | 94.26 7 | 97.18 8 | 96.99 16 | 96.53 8 | 92.68 6 | 92.45 23 | 89.96 16 | 94.53 11 | 91.63 21 | 92.89 6 | 94.58 22 | 93.82 23 | 96.31 18 | 97.26 18 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
3Dnovator+ | | 86.06 4 | 91.60 35 | 90.86 42 | 92.47 26 | 96.00 33 | 96.50 35 | 94.70 32 | 87.83 42 | 90.49 38 | 89.92 17 | 74.68 92 | 89.35 36 | 90.66 31 | 94.02 31 | 94.14 17 | 95.67 47 | 96.85 27 |
|
CNVR-MVS | | | 94.37 12 | 94.65 12 | 94.04 10 | 97.29 6 | 97.11 11 | 96.00 11 | 92.43 10 | 93.45 15 | 89.85 18 | 90.92 25 | 93.04 9 | 92.59 10 | 95.77 5 | 94.82 6 | 96.11 25 | 97.42 16 |
|
CSCG | | | 92.76 25 | 93.16 27 | 92.29 28 | 96.30 28 | 97.74 7 | 94.67 33 | 88.98 35 | 92.46 22 | 89.73 19 | 86.67 37 | 92.15 18 | 88.69 43 | 92.26 59 | 92.92 43 | 95.40 63 | 97.89 10 |
|
ACMMPR | | | 93.72 18 | 93.94 20 | 93.48 17 | 97.07 11 | 96.93 17 | 95.78 20 | 90.66 25 | 93.88 13 | 89.24 20 | 93.53 16 | 89.08 38 | 92.24 12 | 93.89 35 | 93.50 30 | 95.88 31 | 96.73 30 |
|
CP-MVS | | | 93.25 21 | 93.26 26 | 93.24 20 | 96.84 19 | 96.51 33 | 95.52 23 | 90.61 26 | 92.37 24 | 88.88 21 | 90.91 26 | 89.52 34 | 91.91 16 | 93.64 40 | 92.78 45 | 95.69 45 | 97.09 24 |
|
AdaColmap |  | | 90.29 43 | 88.38 58 | 92.53 25 | 96.10 31 | 95.19 55 | 92.98 46 | 91.40 17 | 89.08 45 | 88.65 22 | 78.35 72 | 81.44 71 | 91.30 28 | 90.81 88 | 90.21 81 | 94.72 96 | 93.59 89 |
|
ACMMP_NAP | | | 93.94 16 | 94.49 15 | 93.30 19 | 97.03 13 | 97.31 10 | 95.96 13 | 91.30 18 | 93.41 17 | 88.55 23 | 93.00 19 | 90.33 28 | 91.43 25 | 95.53 7 | 94.41 14 | 95.53 58 | 97.47 15 |
|
NCCC | | | 93.69 19 | 93.66 23 | 93.72 15 | 97.37 5 | 96.66 29 | 95.93 17 | 92.50 9 | 93.40 18 | 88.35 24 | 87.36 34 | 92.33 14 | 92.18 13 | 94.89 15 | 94.09 18 | 96.00 27 | 96.91 26 |
|
DeepC-MVS_fast | | 88.76 1 | 93.10 22 | 93.02 29 | 93.19 21 | 97.13 9 | 96.51 33 | 95.35 25 | 91.19 19 | 93.14 20 | 88.14 25 | 85.26 40 | 89.49 35 | 91.45 22 | 95.17 10 | 95.07 2 | 95.85 36 | 96.48 34 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
MP-MVS |  | | 93.35 20 | 93.59 24 | 93.08 22 | 97.39 4 | 96.82 22 | 95.38 24 | 90.71 23 | 90.82 35 | 88.07 26 | 92.83 21 | 90.29 29 | 91.32 27 | 94.03 30 | 93.19 39 | 95.61 52 | 97.16 20 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
3Dnovator | | 85.17 5 | 90.48 41 | 89.90 48 | 91.16 36 | 94.88 43 | 95.74 47 | 93.82 37 | 85.36 55 | 89.28 43 | 87.81 27 | 74.34 95 | 87.40 48 | 88.56 44 | 93.07 47 | 93.74 26 | 96.53 12 | 95.71 48 |
|
CNLPA | | | 88.40 58 | 87.00 73 | 90.03 44 | 93.73 54 | 94.28 70 | 89.56 79 | 85.81 52 | 91.87 28 | 87.55 28 | 69.53 122 | 81.49 70 | 89.23 37 | 89.45 107 | 88.59 119 | 94.31 119 | 93.82 84 |
|
SteuartSystems-ACMMP | | | 94.06 14 | 94.65 12 | 93.38 18 | 96.97 15 | 97.36 9 | 96.12 10 | 91.78 14 | 92.05 27 | 87.34 29 | 94.42 12 | 90.87 25 | 91.87 18 | 95.47 8 | 94.59 11 | 96.21 23 | 97.77 11 |
Skip Steuart: Steuart Systems R&D Blog. |
CANet | | | 91.33 37 | 91.46 35 | 91.18 35 | 95.01 40 | 96.71 24 | 93.77 38 | 87.39 45 | 87.72 50 | 87.26 30 | 81.77 53 | 89.73 32 | 87.32 59 | 94.43 26 | 93.86 22 | 96.31 18 | 96.02 44 |
|
MCST-MVS | | | 93.81 17 | 94.06 19 | 93.53 16 | 96.79 23 | 96.85 20 | 95.95 14 | 91.69 16 | 92.20 25 | 87.17 31 | 90.83 27 | 93.41 7 | 91.96 14 | 94.49 25 | 93.50 30 | 97.61 1 | 97.12 22 |
|
PLC |  | 83.76 9 | 88.61 57 | 86.83 75 | 90.70 38 | 94.22 48 | 92.63 98 | 91.50 59 | 87.19 46 | 89.16 44 | 86.87 32 | 75.51 87 | 80.87 73 | 89.98 36 | 90.01 98 | 89.20 109 | 94.41 115 | 90.45 148 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
CPTT-MVS | | | 91.39 36 | 90.95 40 | 91.91 31 | 95.06 39 | 95.24 54 | 95.02 29 | 88.98 35 | 91.02 34 | 86.71 33 | 84.89 42 | 88.58 43 | 91.60 21 | 90.82 87 | 89.67 97 | 94.08 123 | 96.45 35 |
|
DeepC-MVS | | 87.86 3 | 92.26 30 | 91.86 33 | 92.73 24 | 96.18 29 | 96.87 19 | 95.19 27 | 91.76 15 | 92.17 26 | 86.58 34 | 81.79 52 | 85.85 51 | 90.88 30 | 94.57 23 | 94.61 10 | 95.80 39 | 97.18 19 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
PGM-MVS | | | 92.76 25 | 93.03 28 | 92.45 27 | 97.03 13 | 96.67 28 | 95.73 22 | 87.92 41 | 90.15 41 | 86.53 35 | 92.97 20 | 88.33 44 | 91.69 20 | 93.62 41 | 93.03 40 | 95.83 37 | 96.41 37 |
|
TPM-MVS | | | | | | 96.31 27 | 96.02 38 | 94.89 30 | | | 86.52 36 | 87.18 36 | 92.17 16 | 86.76 64 | | | 95.56 55 | 93.85 82 |
|
PVSNet_BlendedMVS | | | 88.19 63 | 88.00 63 | 88.42 63 | 92.71 69 | 94.82 64 | 89.08 89 | 83.81 72 | 84.91 66 | 86.38 37 | 79.14 66 | 78.11 93 | 82.66 85 | 93.05 48 | 91.10 61 | 95.86 34 | 94.86 62 |
|
PVSNet_Blended | | | 88.19 63 | 88.00 63 | 88.42 63 | 92.71 69 | 94.82 64 | 89.08 89 | 83.81 72 | 84.91 66 | 86.38 37 | 79.14 66 | 78.11 93 | 82.66 85 | 93.05 48 | 91.10 61 | 95.86 34 | 94.86 62 |
|
TSAR-MVS + GP. | | | 92.71 27 | 93.91 21 | 91.30 34 | 91.96 73 | 96.00 40 | 93.43 41 | 87.94 40 | 92.53 21 | 86.27 39 | 93.57 15 | 91.94 19 | 91.44 24 | 93.29 44 | 92.89 44 | 96.78 7 | 97.15 21 |
|
DPM-MVS | | | 91.72 34 | 91.48 34 | 92.00 30 | 95.53 37 | 95.75 46 | 95.94 15 | 91.07 20 | 91.20 33 | 85.58 40 | 81.63 56 | 90.74 26 | 88.40 46 | 93.40 42 | 93.75 25 | 95.45 62 | 93.85 82 |
|
CS-MVS | | | 90.34 42 | 90.58 44 | 90.07 43 | 93.11 60 | 95.82 45 | 90.57 65 | 83.62 76 | 87.07 53 | 85.35 41 | 82.98 46 | 83.47 61 | 91.37 26 | 94.94 13 | 93.37 36 | 96.37 14 | 96.41 37 |
|
ACMMP |  | | 92.03 32 | 92.16 31 | 91.87 33 | 95.88 34 | 96.55 31 | 94.47 35 | 89.49 32 | 91.71 30 | 85.26 42 | 91.52 24 | 84.48 57 | 90.21 34 | 92.82 52 | 91.63 57 | 95.92 30 | 96.42 36 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
CLD-MVS | | | 88.66 55 | 88.52 56 | 88.82 57 | 91.37 80 | 94.22 71 | 92.82 48 | 82.08 102 | 88.27 49 | 85.14 43 | 81.86 51 | 78.53 91 | 85.93 70 | 91.17 75 | 90.61 74 | 95.55 56 | 95.00 58 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
DELS-MVS | | | 89.71 48 | 89.68 50 | 89.74 46 | 93.75 53 | 96.22 36 | 93.76 39 | 85.84 51 | 82.53 77 | 85.05 44 | 78.96 69 | 84.24 58 | 84.25 77 | 94.91 14 | 94.91 4 | 95.78 42 | 96.02 44 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
OMC-MVS | | | 90.23 45 | 90.40 45 | 90.03 44 | 93.45 56 | 95.29 51 | 91.89 55 | 86.34 50 | 93.25 19 | 84.94 45 | 81.72 54 | 86.65 50 | 88.90 39 | 91.69 67 | 90.27 80 | 94.65 100 | 93.95 80 |
|
CS-MVS-test | | | 90.29 43 | 90.96 39 | 89.51 51 | 93.18 59 | 95.87 44 | 89.18 84 | 83.72 75 | 88.32 48 | 84.82 46 | 84.89 42 | 85.23 54 | 90.25 33 | 94.04 29 | 92.66 49 | 95.94 29 | 95.69 49 |
|
DeepPCF-MVS | | 88.51 2 | 92.64 28 | 94.42 17 | 90.56 39 | 94.84 44 | 96.92 18 | 91.31 62 | 89.61 31 | 95.16 5 | 84.55 47 | 89.91 29 | 91.45 22 | 90.15 35 | 95.12 11 | 94.81 7 | 92.90 155 | 97.58 13 |
|
MVS_111021_LR | | | 90.14 46 | 90.89 41 | 89.26 53 | 93.23 58 | 94.05 75 | 90.43 67 | 84.65 61 | 90.16 40 | 84.52 48 | 90.14 28 | 83.80 60 | 87.99 49 | 92.50 56 | 90.92 66 | 94.74 94 | 94.70 66 |
|
XVS | | | | | | 93.11 60 | 96.70 25 | 91.91 53 | | | 83.95 49 | | 88.82 40 | | | | 95.79 40 | |
|
X-MVStestdata | | | | | | 93.11 60 | 96.70 25 | 91.91 53 | | | 83.95 49 | | 88.82 40 | | | | 95.79 40 | |
|
X-MVS | | | 92.36 29 | 92.75 30 | 91.90 32 | 96.89 17 | 96.70 25 | 95.25 26 | 90.48 28 | 91.50 32 | 83.95 49 | 88.20 31 | 88.82 40 | 89.11 38 | 93.75 38 | 93.43 33 | 95.75 43 | 96.83 28 |
|
train_agg | | | 92.87 24 | 93.53 25 | 92.09 29 | 96.88 18 | 95.38 50 | 95.94 15 | 90.59 27 | 90.65 37 | 83.65 52 | 94.31 13 | 91.87 20 | 90.30 32 | 93.38 43 | 92.42 50 | 95.17 75 | 96.73 30 |
|
EPNet | | | 89.60 49 | 89.91 47 | 89.24 54 | 96.45 26 | 93.61 80 | 92.95 47 | 88.03 39 | 85.74 59 | 83.36 53 | 87.29 35 | 83.05 64 | 80.98 99 | 92.22 60 | 91.85 55 | 93.69 141 | 95.58 53 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
EC-MVSNet | | | 89.96 47 | 90.77 43 | 89.01 55 | 90.54 91 | 95.15 56 | 91.34 61 | 81.43 107 | 85.27 61 | 83.08 54 | 82.83 47 | 87.22 49 | 90.97 29 | 94.79 18 | 93.38 34 | 96.73 8 | 96.71 32 |
|
TSAR-MVS + ACMM | | | 92.97 23 | 94.51 14 | 91.16 36 | 95.88 34 | 96.59 30 | 95.09 28 | 90.45 29 | 93.42 16 | 83.01 55 | 94.68 10 | 90.74 26 | 88.74 42 | 94.75 19 | 93.78 24 | 93.82 136 | 97.63 12 |
|
MVS_0304 | | | 90.88 39 | 91.35 37 | 90.34 40 | 93.91 51 | 96.79 23 | 94.49 34 | 86.54 48 | 86.57 55 | 82.85 56 | 81.68 55 | 89.70 33 | 87.57 55 | 94.64 21 | 93.93 21 | 96.67 11 | 96.15 42 |
|
ACMM | | 83.27 10 | 87.68 68 | 86.09 81 | 89.54 50 | 93.26 57 | 92.19 104 | 91.43 60 | 86.74 47 | 86.02 57 | 82.85 56 | 75.63 86 | 75.14 105 | 88.41 45 | 90.68 92 | 89.99 86 | 94.59 103 | 92.97 97 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
canonicalmvs | | | 89.36 51 | 89.92 46 | 88.70 59 | 91.38 79 | 95.92 42 | 91.81 57 | 82.61 99 | 90.37 39 | 82.73 58 | 82.09 50 | 79.28 86 | 88.30 47 | 91.17 75 | 93.59 28 | 95.36 65 | 97.04 25 |
|
FA-MVS(training) | | | 85.65 82 | 85.79 86 | 85.48 85 | 90.44 96 | 93.47 82 | 88.66 98 | 73.11 175 | 83.34 72 | 82.26 59 | 71.79 107 | 78.39 92 | 83.14 82 | 91.00 82 | 89.47 103 | 95.28 72 | 93.06 95 |
|
PVSNet_Blended_VisFu | | | 87.40 71 | 87.80 65 | 86.92 74 | 92.86 65 | 95.40 49 | 88.56 102 | 83.45 86 | 79.55 108 | 82.26 59 | 74.49 94 | 84.03 59 | 79.24 129 | 92.97 50 | 91.53 59 | 95.15 77 | 96.65 33 |
|
OpenMVS |  | 82.53 11 | 87.71 67 | 86.84 74 | 88.73 58 | 94.42 47 | 95.06 59 | 91.02 64 | 83.49 82 | 82.50 79 | 82.24 61 | 67.62 133 | 85.48 52 | 85.56 71 | 91.19 74 | 91.30 60 | 95.67 47 | 94.75 64 |
|
casdiffmvs_mvg |  | | 87.97 65 | 87.63 70 | 88.37 65 | 90.55 90 | 94.42 68 | 91.82 56 | 84.69 60 | 84.05 69 | 82.08 62 | 76.57 80 | 79.00 87 | 85.49 72 | 92.35 57 | 92.29 52 | 95.55 56 | 94.70 66 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
ETV-MVS | | | 89.22 52 | 89.76 49 | 88.60 61 | 91.60 77 | 94.61 67 | 89.48 81 | 83.46 85 | 85.20 63 | 81.58 63 | 82.75 48 | 82.59 66 | 88.80 40 | 94.57 23 | 93.28 38 | 96.68 9 | 95.31 56 |
|
MVSTER | | | 86.03 78 | 86.12 80 | 85.93 80 | 88.62 114 | 89.93 129 | 89.33 83 | 79.91 126 | 81.87 86 | 81.35 64 | 81.07 59 | 74.91 107 | 80.66 104 | 92.13 64 | 90.10 83 | 95.68 46 | 92.80 102 |
|
MVS_111021_HR | | | 90.56 40 | 91.29 38 | 89.70 48 | 94.71 46 | 95.63 48 | 91.81 57 | 86.38 49 | 87.53 51 | 81.29 65 | 87.96 32 | 85.43 53 | 87.69 52 | 93.90 34 | 92.93 42 | 96.33 16 | 95.69 49 |
|
ACMP | | 83.90 8 | 88.32 61 | 88.06 61 | 88.62 60 | 92.18 71 | 93.98 76 | 91.28 63 | 85.24 56 | 86.69 54 | 81.23 66 | 85.62 39 | 75.13 106 | 87.01 63 | 89.83 100 | 89.77 94 | 94.79 90 | 95.43 55 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
casdiffmvs |  | | 87.45 70 | 87.15 72 | 87.79 70 | 90.15 102 | 94.22 71 | 89.96 72 | 83.93 71 | 85.08 64 | 80.91 67 | 75.81 85 | 77.88 96 | 86.08 68 | 91.86 66 | 90.86 67 | 95.74 44 | 94.37 71 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
IB-MVS | | 79.09 12 | 82.60 111 | 82.19 110 | 83.07 113 | 91.08 82 | 93.55 81 | 80.90 180 | 81.35 108 | 76.56 124 | 80.87 68 | 64.81 153 | 69.97 132 | 68.87 181 | 85.64 155 | 90.06 85 | 95.36 65 | 94.74 65 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
EIA-MVS | | | 87.94 66 | 88.05 62 | 87.81 68 | 91.46 78 | 95.00 61 | 88.67 96 | 82.81 91 | 82.53 77 | 80.81 69 | 80.04 62 | 80.20 77 | 87.48 56 | 92.58 55 | 91.61 58 | 95.63 49 | 94.36 72 |
|
PHI-MVS | | | 92.05 31 | 93.74 22 | 90.08 42 | 94.96 41 | 97.06 13 | 93.11 45 | 87.71 43 | 90.71 36 | 80.78 70 | 92.40 22 | 91.03 23 | 87.68 53 | 94.32 28 | 94.48 13 | 96.21 23 | 96.16 41 |
|
DI_MVS_plusplus_trai | | | 86.41 75 | 85.54 88 | 87.42 72 | 89.24 108 | 93.13 87 | 92.16 51 | 82.65 97 | 82.30 81 | 80.75 71 | 68.30 129 | 80.41 75 | 85.01 74 | 90.56 94 | 90.07 84 | 94.70 98 | 94.01 79 |
|
diffmvs |  | | 86.52 74 | 86.76 77 | 86.23 77 | 88.31 117 | 92.63 98 | 89.58 78 | 81.61 106 | 86.14 56 | 80.26 72 | 79.00 68 | 77.27 98 | 83.58 78 | 88.94 112 | 89.06 112 | 94.05 125 | 94.29 73 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
TAPA-MVS | | 84.37 7 | 88.91 54 | 88.93 54 | 88.89 56 | 93.00 64 | 94.85 63 | 92.00 52 | 84.84 59 | 91.68 31 | 80.05 73 | 79.77 64 | 84.56 56 | 88.17 48 | 90.11 97 | 89.00 115 | 95.30 69 | 92.57 112 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
QAPM | | | 89.49 50 | 89.58 51 | 89.38 52 | 94.73 45 | 95.94 41 | 92.35 49 | 85.00 58 | 85.69 60 | 80.03 74 | 76.97 79 | 87.81 46 | 87.87 50 | 92.18 63 | 92.10 53 | 96.33 16 | 96.40 39 |
|
PCF-MVS | | 84.60 6 | 88.66 55 | 87.75 68 | 89.73 47 | 93.06 63 | 96.02 38 | 93.22 44 | 90.00 30 | 82.44 80 | 80.02 75 | 77.96 75 | 85.16 55 | 87.36 58 | 88.54 117 | 88.54 120 | 94.72 96 | 95.61 52 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
PatchMatch-RL | | | 83.34 105 | 81.36 117 | 85.65 81 | 90.33 99 | 89.52 141 | 84.36 153 | 81.82 104 | 80.87 99 | 79.29 76 | 74.04 96 | 62.85 162 | 86.05 69 | 88.40 120 | 87.04 136 | 92.04 163 | 86.77 173 |
|
MSDG | | | 83.87 100 | 81.02 122 | 87.19 73 | 92.17 72 | 89.80 133 | 89.15 87 | 85.72 53 | 80.61 100 | 79.24 77 | 66.66 136 | 68.75 139 | 82.69 84 | 87.95 124 | 87.44 129 | 94.19 121 | 85.92 180 |
|
MAR-MVS | | | 88.39 60 | 88.44 57 | 88.33 66 | 94.90 42 | 95.06 59 | 90.51 66 | 83.59 79 | 85.27 61 | 79.07 78 | 77.13 77 | 82.89 65 | 87.70 51 | 92.19 62 | 92.32 51 | 94.23 120 | 94.20 78 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
tpm cat1 | | | 77.78 162 | 75.28 188 | 80.70 139 | 87.14 130 | 85.84 177 | 85.81 137 | 70.40 185 | 77.44 121 | 78.80 79 | 63.72 157 | 64.01 155 | 76.55 147 | 75.60 207 | 75.21 205 | 85.51 207 | 85.12 182 |
|
baseline | | | 84.89 90 | 86.06 82 | 83.52 110 | 87.25 128 | 89.67 138 | 87.76 109 | 75.68 166 | 84.92 65 | 78.40 80 | 80.10 61 | 80.98 72 | 80.20 113 | 86.69 141 | 87.05 135 | 91.86 166 | 92.99 96 |
|
Anonymous20231211 | | | 84.42 98 | 83.02 104 | 86.05 79 | 88.85 113 | 92.70 96 | 88.92 95 | 83.40 87 | 79.99 103 | 78.31 81 | 55.83 192 | 78.92 89 | 83.33 81 | 89.06 111 | 89.76 95 | 93.50 146 | 94.90 60 |
|
MVS_Test | | | 86.93 72 | 87.24 71 | 86.56 75 | 90.10 103 | 93.47 82 | 90.31 68 | 80.12 121 | 83.55 71 | 78.12 82 | 79.58 65 | 79.80 81 | 85.45 73 | 90.17 96 | 90.59 75 | 95.29 70 | 93.53 90 |
|
RPSCF | | | 83.46 104 | 83.36 103 | 83.59 108 | 87.75 120 | 87.35 166 | 84.82 150 | 79.46 131 | 83.84 70 | 78.12 82 | 82.69 49 | 79.87 79 | 82.60 87 | 82.47 186 | 81.13 189 | 88.78 191 | 86.13 178 |
|
DCV-MVSNet | | | 85.88 81 | 86.17 79 | 85.54 84 | 89.10 111 | 89.85 131 | 89.34 82 | 80.70 112 | 83.04 73 | 78.08 84 | 76.19 83 | 79.00 87 | 82.42 88 | 89.67 103 | 90.30 79 | 93.63 144 | 95.12 57 |
|
UGNet | | | 85.90 80 | 88.23 59 | 83.18 112 | 88.96 112 | 94.10 73 | 87.52 112 | 83.60 78 | 81.66 88 | 77.90 85 | 80.76 60 | 83.19 63 | 66.70 191 | 91.13 80 | 90.71 72 | 94.39 116 | 96.06 43 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
CDPH-MVS | | | 91.14 38 | 92.01 32 | 90.11 41 | 96.18 29 | 96.18 37 | 94.89 30 | 88.80 37 | 88.76 46 | 77.88 86 | 89.18 30 | 87.71 47 | 87.29 60 | 93.13 46 | 93.31 37 | 95.62 50 | 95.84 46 |
|
CostFormer | | | 80.94 128 | 80.21 131 | 81.79 126 | 87.69 122 | 88.58 157 | 87.47 114 | 70.66 184 | 80.02 102 | 77.88 86 | 73.03 102 | 71.40 126 | 78.24 134 | 79.96 195 | 79.63 191 | 88.82 190 | 88.84 155 |
|
dps | | | 78.02 159 | 75.94 181 | 80.44 144 | 86.06 139 | 86.62 172 | 82.58 164 | 69.98 188 | 75.14 133 | 77.76 88 | 69.08 125 | 59.93 177 | 78.47 132 | 79.47 197 | 77.96 198 | 87.78 195 | 83.40 189 |
|
OPM-MVS | | | 87.56 69 | 85.80 85 | 89.62 49 | 93.90 52 | 94.09 74 | 94.12 36 | 88.18 38 | 75.40 132 | 77.30 89 | 76.41 81 | 77.93 95 | 88.79 41 | 92.20 61 | 90.82 68 | 95.40 63 | 93.72 87 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
GeoE | | | 84.62 93 | 83.98 100 | 85.35 86 | 89.34 107 | 92.83 94 | 88.34 103 | 78.95 136 | 79.29 110 | 77.16 90 | 68.10 130 | 74.56 108 | 83.40 80 | 89.31 109 | 89.23 108 | 94.92 84 | 94.57 70 |
|
GBi-Net | | | 84.51 95 | 84.80 91 | 84.17 99 | 84.20 164 | 89.95 126 | 89.70 75 | 80.37 115 | 81.17 91 | 75.50 91 | 69.63 118 | 79.69 83 | 79.75 121 | 90.73 89 | 90.72 69 | 95.52 59 | 91.71 128 |
|
test1 | | | 84.51 95 | 84.80 91 | 84.17 99 | 84.20 164 | 89.95 126 | 89.70 75 | 80.37 115 | 81.17 91 | 75.50 91 | 69.63 118 | 79.69 83 | 79.75 121 | 90.73 89 | 90.72 69 | 95.52 59 | 91.71 128 |
|
FMVSNet3 | | | 84.44 97 | 84.64 93 | 84.21 98 | 84.32 163 | 90.13 124 | 89.85 74 | 80.37 115 | 81.17 91 | 75.50 91 | 69.63 118 | 79.69 83 | 79.62 124 | 89.72 102 | 90.52 77 | 95.59 53 | 91.58 135 |
|
HQP-MVS | | | 89.13 53 | 89.58 51 | 88.60 61 | 93.53 55 | 93.67 78 | 93.29 43 | 87.58 44 | 88.53 47 | 75.50 91 | 87.60 33 | 80.32 76 | 87.07 61 | 90.66 93 | 89.95 89 | 94.62 102 | 96.35 40 |
|
test2506 | | | 85.20 86 | 84.11 98 | 86.47 76 | 91.84 74 | 95.28 52 | 89.18 84 | 84.49 63 | 82.59 75 | 75.34 95 | 74.66 93 | 58.07 188 | 81.68 92 | 93.76 36 | 92.71 46 | 96.28 21 | 91.71 128 |
|
FMVSNet2 | | | 83.87 100 | 83.73 102 | 84.05 103 | 84.20 164 | 89.95 126 | 89.70 75 | 80.21 120 | 79.17 112 | 74.89 96 | 65.91 139 | 77.49 97 | 79.75 121 | 90.87 86 | 91.00 65 | 95.52 59 | 91.71 128 |
|
pmmvs4 | | | 79.99 134 | 78.08 156 | 82.22 123 | 83.04 179 | 87.16 169 | 84.95 146 | 78.80 140 | 78.64 115 | 74.53 97 | 64.61 154 | 59.41 182 | 79.45 126 | 84.13 175 | 84.54 172 | 92.53 159 | 88.08 163 |
|
thisisatest0530 | | | 85.15 88 | 85.86 83 | 84.33 95 | 89.19 110 | 92.57 101 | 87.22 120 | 80.11 122 | 82.15 83 | 74.41 98 | 78.15 73 | 73.80 115 | 79.90 117 | 90.99 83 | 89.58 98 | 95.13 79 | 93.75 86 |
|
FC-MVSNet-train | | | 85.18 87 | 85.31 89 | 85.03 88 | 90.67 87 | 91.62 108 | 87.66 111 | 83.61 77 | 79.75 106 | 74.37 99 | 78.69 70 | 71.21 127 | 78.91 130 | 91.23 71 | 89.96 88 | 94.96 83 | 94.69 68 |
|
tttt0517 | | | 85.11 89 | 85.81 84 | 84.30 96 | 89.24 108 | 92.68 97 | 87.12 124 | 80.11 122 | 81.98 84 | 74.31 100 | 78.08 74 | 73.57 117 | 79.90 117 | 91.01 81 | 89.58 98 | 95.11 81 | 93.77 85 |
|
LGP-MVS_train | | | 88.25 62 | 88.55 55 | 87.89 67 | 92.84 67 | 93.66 79 | 93.35 42 | 85.22 57 | 85.77 58 | 74.03 101 | 86.60 38 | 76.29 102 | 86.62 66 | 91.20 73 | 90.58 76 | 95.29 70 | 95.75 47 |
|
TSAR-MVS + COLMAP | | | 88.40 58 | 89.09 53 | 87.60 71 | 92.72 68 | 93.92 77 | 92.21 50 | 85.57 54 | 91.73 29 | 73.72 102 | 91.75 23 | 73.22 121 | 87.64 54 | 91.49 69 | 89.71 96 | 93.73 139 | 91.82 126 |
|
EPP-MVSNet | | | 86.55 73 | 87.76 67 | 85.15 87 | 90.52 92 | 94.41 69 | 87.24 119 | 82.32 101 | 81.79 87 | 73.60 103 | 78.57 71 | 82.41 67 | 82.07 90 | 91.23 71 | 90.39 78 | 95.14 78 | 95.48 54 |
|
ECVR-MVS |  | | 85.25 85 | 84.47 94 | 86.16 78 | 91.84 74 | 95.28 52 | 89.18 84 | 84.49 63 | 82.59 75 | 73.49 104 | 66.12 138 | 69.28 136 | 81.68 92 | 93.76 36 | 92.71 46 | 96.28 21 | 91.58 135 |
|
IterMVS-LS | | | 83.28 106 | 82.95 106 | 83.65 106 | 88.39 116 | 88.63 156 | 86.80 128 | 78.64 141 | 76.56 124 | 73.43 105 | 72.52 106 | 75.35 104 | 80.81 101 | 86.43 147 | 88.51 121 | 93.84 135 | 92.66 107 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
UA-Net | | | 86.07 77 | 87.78 66 | 84.06 102 | 92.85 66 | 95.11 58 | 87.73 110 | 84.38 65 | 73.22 152 | 73.18 106 | 79.99 63 | 89.22 37 | 71.47 174 | 93.22 45 | 93.03 40 | 94.76 93 | 90.69 143 |
|
baseline2 | | | 82.80 108 | 82.86 107 | 82.73 117 | 87.68 123 | 90.50 117 | 84.92 148 | 78.93 137 | 78.07 119 | 73.06 107 | 75.08 90 | 69.77 133 | 77.31 141 | 88.90 114 | 86.94 137 | 94.50 108 | 90.74 142 |
|
Fast-Effi-MVS+ | | | 83.77 102 | 82.98 105 | 84.69 89 | 87.98 118 | 91.87 106 | 88.10 106 | 77.70 150 | 78.10 118 | 73.04 108 | 69.13 124 | 68.51 140 | 86.66 65 | 90.49 95 | 89.85 92 | 94.67 99 | 92.88 99 |
|
ET-MVSNet_ETH3D | | | 84.65 92 | 85.58 87 | 83.56 109 | 74.99 212 | 92.62 100 | 90.29 69 | 80.38 114 | 82.16 82 | 73.01 109 | 83.41 44 | 71.10 128 | 87.05 62 | 87.77 125 | 90.17 82 | 95.62 50 | 91.82 126 |
|
LS3D | | | 85.96 79 | 84.37 96 | 87.81 68 | 94.13 49 | 93.27 86 | 90.26 70 | 89.00 33 | 84.91 66 | 72.84 110 | 71.74 108 | 72.47 123 | 87.45 57 | 89.53 106 | 89.09 111 | 93.20 151 | 89.60 151 |
|
FMVSNet1 | | | 81.64 122 | 80.61 127 | 82.84 115 | 82.36 189 | 89.20 147 | 88.67 96 | 79.58 129 | 70.79 164 | 72.63 111 | 58.95 183 | 72.26 124 | 79.34 127 | 90.73 89 | 90.72 69 | 94.47 111 | 91.62 133 |
|
Effi-MVS+ | | | 85.33 84 | 85.08 90 | 85.63 82 | 89.69 105 | 93.42 84 | 89.90 73 | 80.31 119 | 79.32 109 | 72.48 112 | 73.52 101 | 74.03 112 | 86.55 67 | 90.99 83 | 89.98 87 | 94.83 88 | 94.27 77 |
|
test1111 | | | 84.86 91 | 84.21 97 | 85.61 83 | 91.75 76 | 95.14 57 | 88.63 99 | 84.57 62 | 81.88 85 | 71.21 113 | 65.66 145 | 68.51 140 | 81.19 96 | 93.74 39 | 92.68 48 | 96.31 18 | 91.86 125 |
|
baseline1 | | | 84.54 94 | 84.43 95 | 84.67 90 | 90.62 88 | 91.16 111 | 88.63 99 | 83.75 74 | 79.78 105 | 71.16 114 | 75.14 89 | 74.10 111 | 77.84 138 | 91.56 68 | 90.67 73 | 96.04 26 | 88.58 157 |
|
CDS-MVSNet | | | 81.63 123 | 82.09 111 | 81.09 136 | 87.21 129 | 90.28 120 | 87.46 115 | 80.33 118 | 69.06 173 | 70.66 115 | 71.30 109 | 73.87 113 | 67.99 184 | 89.58 104 | 89.87 91 | 92.87 156 | 90.69 143 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
CHOSEN 280x420 | | | 80.28 132 | 81.66 113 | 78.67 158 | 82.92 182 | 79.24 209 | 85.36 144 | 66.79 200 | 78.11 117 | 70.32 116 | 75.03 91 | 79.87 79 | 81.09 98 | 89.07 110 | 83.16 179 | 85.54 206 | 87.17 170 |
|
CHOSEN 1792x2688 | | | 82.16 114 | 80.91 125 | 83.61 107 | 91.14 81 | 92.01 105 | 89.55 80 | 79.15 135 | 79.87 104 | 70.29 117 | 52.51 200 | 72.56 122 | 81.39 94 | 88.87 115 | 88.17 123 | 90.15 184 | 92.37 119 |
|
IS_MVSNet | | | 86.18 76 | 88.18 60 | 83.85 105 | 91.02 83 | 94.72 66 | 87.48 113 | 82.46 100 | 81.05 95 | 70.28 118 | 76.98 78 | 82.20 69 | 76.65 146 | 93.97 32 | 93.38 34 | 95.18 74 | 94.97 59 |
|
HyFIR lowres test | | | 81.62 124 | 79.45 145 | 84.14 101 | 91.00 84 | 93.38 85 | 88.27 104 | 78.19 144 | 76.28 126 | 70.18 119 | 48.78 204 | 73.69 116 | 83.52 79 | 87.05 132 | 87.83 127 | 93.68 142 | 89.15 154 |
|
PMMVS | | | 81.65 121 | 84.05 99 | 78.86 154 | 78.56 203 | 82.63 197 | 83.10 161 | 67.22 198 | 81.39 89 | 70.11 120 | 84.91 41 | 79.74 82 | 82.12 89 | 87.31 128 | 85.70 159 | 92.03 164 | 86.67 176 |
|
thres100view900 | | | 82.55 112 | 81.01 124 | 84.34 94 | 90.30 100 | 92.27 102 | 89.04 92 | 82.77 92 | 75.14 133 | 69.56 121 | 65.72 142 | 63.13 157 | 79.62 124 | 89.97 99 | 89.26 107 | 94.73 95 | 91.61 134 |
|
tfpn200view9 | | | 82.86 107 | 81.46 115 | 84.48 92 | 90.30 100 | 93.09 88 | 89.05 91 | 82.71 93 | 75.14 133 | 69.56 121 | 65.72 142 | 63.13 157 | 80.38 110 | 91.15 77 | 89.51 100 | 94.91 85 | 92.50 116 |
|
thres200 | | | 82.77 109 | 81.25 119 | 84.54 91 | 90.38 97 | 93.05 89 | 89.13 88 | 82.67 95 | 74.40 139 | 69.53 123 | 65.69 144 | 63.03 160 | 80.63 105 | 91.15 77 | 89.42 104 | 94.88 86 | 92.04 122 |
|
MDTV_nov1_ep13 | | | 79.14 148 | 79.49 144 | 78.74 157 | 85.40 148 | 86.89 170 | 84.32 155 | 70.29 186 | 78.85 113 | 69.42 124 | 75.37 88 | 73.29 120 | 75.64 151 | 80.61 192 | 79.48 193 | 87.36 197 | 81.91 194 |
|
v148 | | | 78.59 155 | 76.84 171 | 80.62 141 | 83.61 172 | 89.16 148 | 83.65 159 | 79.24 134 | 69.38 171 | 69.34 125 | 59.88 177 | 60.41 174 | 75.19 153 | 83.81 177 | 84.63 170 | 92.70 158 | 90.63 145 |
|
thres400 | | | 82.68 110 | 81.15 120 | 84.47 93 | 90.52 92 | 92.89 93 | 88.95 94 | 82.71 93 | 74.33 140 | 69.22 126 | 65.31 147 | 62.61 163 | 80.63 105 | 90.96 85 | 89.50 101 | 94.79 90 | 92.45 118 |
|
MS-PatchMatch | | | 81.79 120 | 81.44 116 | 82.19 124 | 90.35 98 | 89.29 145 | 88.08 107 | 75.36 168 | 77.60 120 | 69.00 127 | 64.37 156 | 78.87 90 | 77.14 144 | 88.03 123 | 85.70 159 | 93.19 152 | 86.24 177 |
|
UniMVSNet_ETH3D | | | 79.24 147 | 76.47 173 | 82.48 119 | 85.66 145 | 90.97 112 | 86.08 135 | 81.63 105 | 64.48 193 | 68.94 128 | 54.47 194 | 57.65 190 | 78.83 131 | 85.20 165 | 88.91 116 | 93.72 140 | 93.60 88 |
|
thres600view7 | | | 82.53 113 | 81.02 122 | 84.28 97 | 90.61 89 | 93.05 89 | 88.57 101 | 82.67 95 | 74.12 143 | 68.56 129 | 65.09 150 | 62.13 168 | 80.40 109 | 91.15 77 | 89.02 114 | 94.88 86 | 92.59 110 |
|
Vis-MVSNet |  | | 84.38 99 | 86.68 78 | 81.70 127 | 87.65 124 | 94.89 62 | 88.14 105 | 80.90 111 | 74.48 138 | 68.23 130 | 77.53 76 | 80.72 74 | 69.98 178 | 92.68 53 | 91.90 54 | 95.33 68 | 94.58 69 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
v8 | | | 79.90 136 | 78.39 153 | 81.66 128 | 83.97 168 | 89.81 132 | 87.16 122 | 77.40 152 | 71.49 159 | 67.71 131 | 61.24 166 | 62.49 164 | 79.83 120 | 85.48 159 | 86.17 151 | 93.89 132 | 92.02 124 |
|
V42 | | | 79.59 141 | 78.43 152 | 80.94 137 | 82.79 185 | 89.71 136 | 86.66 129 | 76.73 159 | 71.38 160 | 67.42 132 | 61.01 168 | 62.30 166 | 78.39 133 | 85.56 157 | 86.48 145 | 93.65 143 | 92.60 109 |
|
thisisatest0515 | | | 79.76 139 | 80.59 128 | 78.80 155 | 84.40 162 | 88.91 154 | 79.48 186 | 76.94 156 | 72.29 157 | 67.33 133 | 67.82 132 | 65.99 147 | 70.80 176 | 88.50 118 | 87.84 125 | 93.86 134 | 92.75 105 |
|
tpmrst | | | 76.55 173 | 75.99 180 | 77.20 167 | 87.32 127 | 83.05 193 | 82.86 163 | 65.62 203 | 78.61 116 | 67.22 134 | 69.19 123 | 65.71 148 | 75.87 150 | 76.75 205 | 75.33 204 | 84.31 209 | 83.28 190 |
|
Effi-MVS+-dtu | | | 82.05 115 | 81.76 112 | 82.38 121 | 87.72 121 | 90.56 116 | 86.90 127 | 78.05 146 | 73.85 146 | 66.85 135 | 71.29 110 | 71.90 125 | 82.00 91 | 86.64 142 | 85.48 161 | 92.76 157 | 92.58 111 |
|
COLMAP_ROB |  | 76.78 15 | 80.50 131 | 78.49 150 | 82.85 114 | 90.96 85 | 89.65 139 | 86.20 134 | 83.40 87 | 77.15 122 | 66.54 136 | 62.27 161 | 65.62 149 | 77.89 137 | 85.23 162 | 84.70 169 | 92.11 162 | 84.83 184 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
SCA | | | 79.51 143 | 80.15 133 | 78.75 156 | 86.58 135 | 87.70 162 | 83.07 162 | 68.53 193 | 81.31 90 | 66.40 137 | 73.83 97 | 75.38 103 | 79.30 128 | 80.49 193 | 79.39 194 | 88.63 193 | 82.96 192 |
|
PatchmatchNet |  | | 78.67 154 | 78.85 148 | 78.46 161 | 86.85 133 | 86.03 174 | 83.77 158 | 68.11 196 | 80.88 98 | 66.19 138 | 72.90 104 | 73.40 119 | 78.06 135 | 79.25 199 | 77.71 199 | 87.75 196 | 81.75 195 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
pmmvs-eth3d | | | 74.32 192 | 71.96 198 | 77.08 169 | 77.33 206 | 82.71 196 | 78.41 192 | 76.02 164 | 66.65 182 | 65.98 139 | 54.23 196 | 49.02 214 | 73.14 169 | 82.37 187 | 82.69 183 | 91.61 169 | 86.05 179 |
|
v2v482 | | | 79.84 137 | 78.07 157 | 81.90 125 | 83.75 169 | 90.21 123 | 87.17 121 | 79.85 127 | 70.65 165 | 65.93 140 | 61.93 163 | 60.07 175 | 80.82 100 | 85.25 161 | 86.71 140 | 93.88 133 | 91.70 132 |
|
ACMH+ | | 79.08 13 | 81.84 119 | 80.06 134 | 83.91 104 | 89.92 104 | 90.62 115 | 86.21 133 | 83.48 84 | 73.88 145 | 65.75 141 | 66.38 137 | 65.30 150 | 84.63 75 | 85.90 152 | 87.25 132 | 93.45 147 | 91.13 141 |
|
v10 | | | 79.62 140 | 78.19 155 | 81.28 134 | 83.73 170 | 89.69 137 | 87.27 118 | 76.86 157 | 70.50 167 | 65.46 142 | 60.58 173 | 60.47 173 | 80.44 108 | 86.91 133 | 86.63 143 | 93.93 129 | 92.55 113 |
|
CMPMVS |  | 56.49 17 | 73.84 194 | 71.73 200 | 76.31 177 | 85.20 152 | 85.67 179 | 75.80 199 | 73.23 174 | 62.26 198 | 65.40 143 | 53.40 198 | 59.70 179 | 71.77 173 | 80.25 194 | 79.56 192 | 86.45 203 | 81.28 197 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
CR-MVSNet | | | 78.71 153 | 78.86 147 | 78.55 159 | 85.85 143 | 85.15 184 | 82.30 169 | 68.23 194 | 74.71 136 | 65.37 144 | 64.39 155 | 69.59 135 | 77.18 142 | 85.10 167 | 84.87 166 | 92.34 161 | 88.21 161 |
|
Patchmtry | | | | | | | 85.54 182 | 82.30 169 | 68.23 194 | | 65.37 144 | | | | | | | |
|
PatchT | | | 76.42 175 | 77.81 161 | 74.80 186 | 78.46 204 | 84.30 189 | 71.82 207 | 65.03 207 | 73.89 144 | 65.37 144 | 61.58 164 | 66.70 145 | 77.18 142 | 85.10 167 | 84.87 166 | 90.94 179 | 88.21 161 |
|
dmvs_re | | | 81.08 127 | 79.92 137 | 82.44 120 | 86.66 134 | 87.70 162 | 87.91 108 | 83.30 89 | 72.86 155 | 65.29 147 | 65.76 141 | 63.43 156 | 76.69 145 | 88.93 113 | 89.50 101 | 94.80 89 | 91.23 140 |
|
UniMVSNet (Re) | | | 81.22 125 | 81.08 121 | 81.39 131 | 85.35 149 | 91.76 107 | 84.93 147 | 82.88 90 | 76.13 127 | 65.02 148 | 64.94 151 | 63.09 159 | 75.17 154 | 87.71 126 | 89.04 113 | 94.97 82 | 94.88 61 |
|
CANet_DTU | | | 85.43 83 | 87.72 69 | 82.76 116 | 90.95 86 | 93.01 91 | 89.99 71 | 75.46 167 | 82.67 74 | 64.91 149 | 83.14 45 | 80.09 78 | 80.68 103 | 92.03 65 | 91.03 63 | 94.57 105 | 92.08 120 |
|
TDRefinement | | | 79.05 149 | 77.05 168 | 81.39 131 | 88.45 115 | 89.00 152 | 86.92 125 | 82.65 97 | 74.21 142 | 64.41 150 | 59.17 180 | 59.16 184 | 74.52 160 | 85.23 162 | 85.09 164 | 91.37 172 | 87.51 169 |
|
UniMVSNet_NR-MVSNet | | | 81.87 117 | 81.33 118 | 82.50 118 | 85.31 150 | 91.30 109 | 85.70 138 | 84.25 66 | 75.89 128 | 64.21 151 | 66.95 135 | 64.65 152 | 80.22 111 | 87.07 131 | 89.18 110 | 95.27 73 | 94.29 73 |
|
DU-MVS | | | 81.20 126 | 80.30 130 | 82.25 122 | 84.98 157 | 90.94 113 | 85.70 138 | 83.58 80 | 75.74 129 | 64.21 151 | 65.30 148 | 59.60 181 | 80.22 111 | 86.89 134 | 89.31 105 | 94.77 92 | 94.29 73 |
|
EPMVS | | | 77.53 164 | 78.07 157 | 76.90 171 | 86.89 132 | 84.91 187 | 82.18 172 | 66.64 201 | 81.00 96 | 64.11 153 | 72.75 105 | 69.68 134 | 74.42 162 | 79.36 198 | 78.13 197 | 87.14 199 | 80.68 201 |
|
v1144 | | | 79.38 146 | 77.83 160 | 81.18 135 | 83.62 171 | 90.23 121 | 87.15 123 | 78.35 143 | 69.13 172 | 64.02 154 | 60.20 175 | 59.41 182 | 80.14 115 | 86.78 137 | 86.57 144 | 93.81 137 | 92.53 115 |
|
tpm | | | 76.30 179 | 76.05 179 | 76.59 173 | 86.97 131 | 83.01 194 | 83.83 157 | 67.06 199 | 71.83 158 | 63.87 155 | 69.56 121 | 62.88 161 | 73.41 167 | 79.79 196 | 78.59 195 | 84.41 208 | 86.68 174 |
|
pm-mvs1 | | | 78.51 157 | 77.75 162 | 79.40 150 | 84.83 160 | 89.30 144 | 83.55 160 | 79.38 132 | 62.64 197 | 63.68 156 | 58.73 185 | 64.68 151 | 70.78 177 | 89.79 101 | 87.84 125 | 94.17 122 | 91.28 139 |
|
USDC | | | 80.69 129 | 79.89 138 | 81.62 129 | 86.48 136 | 89.11 150 | 86.53 130 | 78.86 138 | 81.15 94 | 63.48 157 | 72.98 103 | 59.12 186 | 81.16 97 | 87.10 130 | 85.01 165 | 93.23 150 | 84.77 185 |
|
Baseline_NR-MVSNet | | | 79.84 137 | 78.37 154 | 81.55 130 | 84.98 157 | 86.66 171 | 85.06 145 | 83.49 82 | 75.57 131 | 63.31 158 | 58.22 187 | 60.97 171 | 78.00 136 | 86.89 134 | 87.13 133 | 94.47 111 | 93.15 93 |
|
v144192 | | | 78.81 151 | 77.22 166 | 80.67 140 | 82.95 180 | 89.79 134 | 86.40 131 | 77.42 151 | 68.26 178 | 63.13 159 | 59.50 178 | 58.13 187 | 80.08 116 | 85.93 151 | 86.08 153 | 94.06 124 | 92.83 101 |
|
MVS-HIRNet | | | 68.83 201 | 66.39 205 | 71.68 196 | 77.58 205 | 75.52 212 | 66.45 212 | 65.05 206 | 62.16 199 | 62.84 160 | 44.76 211 | 56.60 197 | 71.96 172 | 78.04 202 | 75.06 206 | 86.18 205 | 72.56 211 |
|
test-LLR | | | 79.47 144 | 79.84 139 | 79.03 153 | 87.47 125 | 82.40 200 | 81.24 177 | 78.05 146 | 73.72 147 | 62.69 161 | 73.76 98 | 74.42 109 | 73.49 165 | 84.61 171 | 82.99 181 | 91.25 174 | 87.01 171 |
|
TESTMET0.1,1 | | | 77.78 162 | 79.84 139 | 75.38 182 | 80.86 198 | 82.40 200 | 81.24 177 | 62.72 211 | 73.72 147 | 62.69 161 | 73.76 98 | 74.42 109 | 73.49 165 | 84.61 171 | 82.99 181 | 91.25 174 | 87.01 171 |
|
v1192 | | | 78.94 150 | 77.33 164 | 80.82 138 | 83.25 175 | 89.90 130 | 86.91 126 | 77.72 149 | 68.63 176 | 62.61 163 | 59.17 180 | 57.53 191 | 80.62 107 | 86.89 134 | 86.47 146 | 93.79 138 | 92.75 105 |
|
Vis-MVSNet (Re-imp) | | | 83.65 103 | 86.81 76 | 79.96 147 | 90.46 95 | 92.71 95 | 84.84 149 | 82.00 103 | 80.93 97 | 62.44 164 | 76.29 82 | 82.32 68 | 65.54 194 | 92.29 58 | 91.66 56 | 94.49 110 | 91.47 137 |
|
ACMH | | 78.52 14 | 81.86 118 | 80.45 129 | 83.51 111 | 90.51 94 | 91.22 110 | 85.62 141 | 84.23 67 | 70.29 169 | 62.21 165 | 69.04 126 | 64.05 154 | 84.48 76 | 87.57 127 | 88.45 122 | 94.01 127 | 92.54 114 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
test-mter | | | 77.79 161 | 80.02 135 | 75.18 183 | 81.18 197 | 82.85 195 | 80.52 183 | 62.03 212 | 73.62 149 | 62.16 166 | 73.55 100 | 73.83 114 | 73.81 163 | 84.67 170 | 83.34 178 | 91.37 172 | 88.31 160 |
|
TinyColmap | | | 76.73 169 | 73.95 193 | 79.96 147 | 85.16 154 | 85.64 180 | 82.34 168 | 78.19 144 | 70.63 166 | 62.06 167 | 60.69 172 | 49.61 212 | 80.81 101 | 85.12 166 | 83.69 177 | 91.22 176 | 82.27 193 |
|
IterMVS-SCA-FT | | | 79.41 145 | 80.20 132 | 78.49 160 | 85.88 140 | 86.26 173 | 83.95 156 | 71.94 179 | 73.55 150 | 61.94 168 | 70.48 115 | 70.50 129 | 75.23 152 | 85.81 154 | 84.61 171 | 91.99 165 | 90.18 149 |
|
PM-MVS | | | 74.17 193 | 73.10 194 | 75.41 181 | 76.07 209 | 82.53 198 | 77.56 196 | 71.69 180 | 71.04 161 | 61.92 169 | 61.23 167 | 47.30 215 | 74.82 158 | 81.78 189 | 79.80 190 | 90.42 181 | 88.05 164 |
|
pmmvs6 | | | 74.83 189 | 72.89 196 | 77.09 168 | 82.11 190 | 87.50 165 | 80.88 181 | 76.97 155 | 52.79 213 | 61.91 170 | 46.66 206 | 60.49 172 | 69.28 180 | 86.74 140 | 85.46 162 | 91.39 171 | 90.56 146 |
|
v1921920 | | | 78.57 156 | 76.99 169 | 80.41 145 | 82.93 181 | 89.63 140 | 86.38 132 | 77.14 154 | 68.31 177 | 61.80 171 | 58.89 184 | 56.79 194 | 80.19 114 | 86.50 146 | 86.05 155 | 94.02 126 | 92.76 104 |
|
tfpnnormal | | | 77.46 165 | 74.86 190 | 80.49 143 | 86.34 138 | 88.92 153 | 84.33 154 | 81.26 109 | 61.39 201 | 61.70 172 | 51.99 201 | 53.66 207 | 74.84 157 | 88.63 116 | 87.38 131 | 94.50 108 | 92.08 120 |
|
FMVSNet5 | | | 75.50 187 | 76.07 177 | 74.83 185 | 76.16 208 | 81.19 203 | 81.34 175 | 70.21 187 | 73.20 153 | 61.59 173 | 58.97 182 | 68.33 143 | 68.50 182 | 85.87 153 | 85.85 157 | 91.18 177 | 79.11 204 |
|
pmmvs5 | | | 76.93 168 | 76.33 175 | 77.62 165 | 81.97 191 | 88.40 159 | 81.32 176 | 74.35 171 | 65.42 191 | 61.42 174 | 63.07 159 | 57.95 189 | 73.23 168 | 85.60 156 | 85.35 163 | 93.41 148 | 88.55 158 |
|
NR-MVSNet | | | 80.25 133 | 79.98 136 | 80.56 142 | 85.20 152 | 90.94 113 | 85.65 140 | 83.58 80 | 75.74 129 | 61.36 175 | 65.30 148 | 56.75 195 | 72.38 170 | 88.46 119 | 88.80 117 | 95.16 76 | 93.87 81 |
|
IterMVS | | | 78.79 152 | 79.71 142 | 77.71 164 | 85.26 151 | 85.91 176 | 84.54 152 | 69.84 190 | 73.38 151 | 61.25 176 | 70.53 114 | 70.35 130 | 74.43 161 | 85.21 164 | 83.80 176 | 90.95 178 | 88.77 156 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
v7n | | | 77.22 166 | 76.23 176 | 78.38 162 | 81.89 192 | 89.10 151 | 82.24 171 | 76.36 160 | 65.96 187 | 61.21 177 | 56.56 190 | 55.79 199 | 75.07 156 | 86.55 143 | 86.68 141 | 93.52 145 | 92.95 98 |
|
v1240 | | | 78.15 158 | 76.53 172 | 80.04 146 | 82.85 184 | 89.48 143 | 85.61 142 | 76.77 158 | 67.05 180 | 61.18 178 | 58.37 186 | 56.16 198 | 79.89 119 | 86.11 150 | 86.08 153 | 93.92 130 | 92.47 117 |
|
TAMVS | | | 76.42 175 | 77.16 167 | 75.56 180 | 83.05 178 | 85.55 181 | 80.58 182 | 71.43 181 | 65.40 192 | 61.04 179 | 67.27 134 | 69.22 138 | 67.99 184 | 84.88 169 | 84.78 168 | 89.28 189 | 83.01 191 |
|
TranMVSNet+NR-MVSNet | | | 80.52 130 | 79.84 139 | 81.33 133 | 84.92 159 | 90.39 118 | 85.53 143 | 84.22 68 | 74.27 141 | 60.68 180 | 64.93 152 | 59.96 176 | 77.48 140 | 86.75 139 | 89.28 106 | 95.12 80 | 93.29 91 |
|
RPMNet | | | 77.07 167 | 77.63 163 | 76.42 174 | 85.56 147 | 85.15 184 | 81.37 174 | 65.27 205 | 74.71 136 | 60.29 181 | 63.71 158 | 66.59 146 | 73.64 164 | 82.71 184 | 82.12 186 | 92.38 160 | 88.39 159 |
|
EPNet_dtu | | | 81.98 116 | 83.82 101 | 79.83 149 | 94.10 50 | 85.97 175 | 87.29 117 | 84.08 70 | 80.61 100 | 59.96 182 | 81.62 57 | 77.19 99 | 62.91 198 | 87.21 129 | 86.38 148 | 90.66 180 | 87.77 168 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
ADS-MVSNet | | | 74.53 191 | 75.69 184 | 73.17 193 | 81.57 195 | 80.71 205 | 79.27 189 | 63.03 210 | 79.27 111 | 59.94 183 | 67.86 131 | 68.32 144 | 71.08 175 | 77.33 203 | 76.83 201 | 84.12 211 | 79.53 202 |
|
EG-PatchMatch MVS | | | 76.40 177 | 75.47 186 | 77.48 166 | 85.86 142 | 90.22 122 | 82.45 166 | 73.96 173 | 59.64 206 | 59.60 184 | 52.75 199 | 62.20 167 | 68.44 183 | 88.23 121 | 87.50 128 | 94.55 106 | 87.78 167 |
|
Fast-Effi-MVS+-dtu | | | 79.95 135 | 80.69 126 | 79.08 152 | 86.36 137 | 89.14 149 | 85.85 136 | 72.28 178 | 72.85 156 | 59.32 185 | 70.43 116 | 68.42 142 | 77.57 139 | 86.14 149 | 86.44 147 | 93.11 153 | 91.39 138 |
|
MDTV_nov1_ep13_2view | | | 73.21 195 | 72.91 195 | 73.56 192 | 80.01 199 | 84.28 190 | 78.62 191 | 66.43 202 | 68.64 175 | 59.12 186 | 60.39 174 | 59.69 180 | 69.81 179 | 78.82 201 | 77.43 200 | 87.36 197 | 81.11 199 |
|
MIMVSNet | | | 74.69 190 | 75.60 185 | 73.62 191 | 76.02 210 | 85.31 183 | 81.21 179 | 67.43 197 | 71.02 162 | 59.07 187 | 54.48 193 | 64.07 153 | 66.14 193 | 86.52 145 | 86.64 142 | 91.83 167 | 81.17 198 |
|
TransMVSNet (Re) | | | 76.57 172 | 75.16 189 | 78.22 163 | 85.60 146 | 87.24 167 | 82.46 165 | 81.23 110 | 59.80 205 | 59.05 188 | 57.07 189 | 59.14 185 | 66.60 192 | 88.09 122 | 86.82 138 | 94.37 117 | 87.95 166 |
|
anonymousdsp | | | 77.94 160 | 79.00 146 | 76.71 172 | 79.03 201 | 87.83 161 | 79.58 185 | 72.87 176 | 65.80 188 | 58.86 189 | 65.82 140 | 62.48 165 | 75.99 149 | 86.77 138 | 88.66 118 | 93.92 130 | 95.68 51 |
|
GA-MVS | | | 79.52 142 | 79.71 142 | 79.30 151 | 85.68 144 | 90.36 119 | 84.55 151 | 78.44 142 | 70.47 168 | 57.87 190 | 68.52 128 | 61.38 169 | 76.21 148 | 89.40 108 | 87.89 124 | 93.04 154 | 89.96 150 |
|
SixPastTwentyTwo | | | 76.02 181 | 75.72 183 | 76.36 175 | 83.38 173 | 87.54 164 | 75.50 200 | 76.22 161 | 65.50 190 | 57.05 191 | 70.64 112 | 53.97 206 | 74.54 159 | 80.96 191 | 82.12 186 | 91.44 170 | 89.35 153 |
|
RE-MVS-def | | | | | | | | | | | 56.08 192 | | | | | | | |
|
pmnet_mix02 | | | 71.95 196 | 71.83 199 | 72.10 195 | 81.40 196 | 80.63 206 | 73.78 203 | 72.85 177 | 70.90 163 | 54.89 193 | 62.17 162 | 57.42 192 | 62.92 197 | 76.80 204 | 73.98 208 | 86.74 202 | 80.87 200 |
|
PMVS |  | 50.48 18 | 55.81 211 | 51.93 213 | 60.33 209 | 72.90 213 | 49.34 219 | 48.78 218 | 69.51 191 | 43.49 218 | 54.25 194 | 36.26 216 | 41.04 221 | 39.71 215 | 65.07 213 | 60.70 214 | 76.85 216 | 67.58 214 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
CP-MVSNet | | | 76.36 178 | 76.41 174 | 76.32 176 | 82.73 186 | 88.64 155 | 79.39 187 | 79.62 128 | 67.21 179 | 53.70 195 | 60.72 171 | 55.22 201 | 67.91 186 | 83.52 179 | 86.34 149 | 94.55 106 | 93.19 92 |
|
FPMVS | | | 63.63 207 | 60.08 212 | 67.78 202 | 80.01 199 | 71.50 215 | 72.88 206 | 69.41 192 | 61.82 200 | 53.11 196 | 45.12 209 | 42.11 219 | 50.86 208 | 66.69 212 | 63.84 213 | 80.41 213 | 69.46 213 |
|
PS-CasMVS | | | 75.90 183 | 75.86 182 | 75.96 178 | 82.59 187 | 88.46 158 | 79.23 190 | 79.56 130 | 66.00 186 | 52.77 197 | 59.48 179 | 54.35 205 | 67.14 189 | 83.37 180 | 86.23 150 | 94.47 111 | 93.10 94 |
|
WR-MVS_H | | | 75.84 184 | 76.93 170 | 74.57 189 | 82.86 183 | 89.50 142 | 78.34 193 | 79.36 133 | 66.90 181 | 52.51 198 | 60.20 175 | 59.71 178 | 59.73 200 | 83.61 178 | 85.77 158 | 94.65 100 | 92.84 100 |
|
WR-MVS | | | 76.63 171 | 78.02 159 | 75.02 184 | 84.14 167 | 89.76 135 | 78.34 193 | 80.64 113 | 69.56 170 | 52.32 199 | 61.26 165 | 61.24 170 | 60.66 199 | 84.45 173 | 87.07 134 | 93.99 128 | 92.77 103 |
|
ambc | | | | 61.92 209 | | 70.98 214 | 73.54 214 | 63.64 215 | | 60.06 203 | 52.23 200 | 38.44 214 | 19.17 225 | 57.12 201 | 82.33 188 | 75.03 207 | 83.21 212 | 84.89 183 |
|
PEN-MVS | | | 76.02 181 | 76.07 177 | 75.95 179 | 83.17 177 | 87.97 160 | 79.65 184 | 80.07 125 | 66.57 183 | 51.45 201 | 60.94 169 | 55.47 200 | 66.81 190 | 82.72 183 | 86.80 139 | 94.59 103 | 92.03 123 |
|
tmp_tt | | | | | 32.73 216 | 43.96 223 | 21.15 225 | 26.71 223 | 8.99 221 | 65.67 189 | 51.39 202 | 56.01 191 | 42.64 218 | 11.76 221 | 56.60 216 | 50.81 217 | 53.55 221 | |
|
CVMVSNet | | | 76.70 170 | 78.46 151 | 74.64 188 | 83.34 174 | 84.48 188 | 81.83 173 | 74.58 169 | 68.88 174 | 51.23 203 | 69.77 117 | 70.05 131 | 67.49 187 | 84.27 174 | 83.81 175 | 89.38 188 | 87.96 165 |
|
test0.0.03 1 | | | 76.03 180 | 78.51 149 | 73.12 194 | 87.47 125 | 85.13 186 | 76.32 198 | 78.05 146 | 73.19 154 | 50.98 204 | 70.64 112 | 69.28 136 | 55.53 202 | 85.33 160 | 84.38 173 | 90.39 182 | 81.63 196 |
|
Anonymous20231206 | | | 70.80 198 | 70.59 202 | 71.04 197 | 81.60 194 | 82.49 199 | 74.64 202 | 75.87 165 | 64.17 194 | 49.27 205 | 44.85 210 | 53.59 208 | 54.68 205 | 83.07 181 | 82.34 185 | 90.17 183 | 83.65 188 |
|
DTE-MVSNet | | | 75.14 188 | 75.44 187 | 74.80 186 | 83.18 176 | 87.19 168 | 78.25 195 | 80.11 122 | 66.05 185 | 48.31 206 | 60.88 170 | 54.67 202 | 64.54 195 | 82.57 185 | 86.17 151 | 94.43 114 | 90.53 147 |
|
MDA-MVSNet-bldmvs | | | 66.22 204 | 64.49 207 | 68.24 201 | 61.67 216 | 82.11 202 | 70.07 209 | 76.16 162 | 59.14 207 | 47.94 207 | 54.35 195 | 35.82 222 | 67.33 188 | 64.94 214 | 75.68 203 | 86.30 204 | 79.36 203 |
|
N_pmnet | | | 66.85 203 | 66.63 204 | 67.11 204 | 78.73 202 | 74.66 213 | 70.53 208 | 71.07 182 | 66.46 184 | 46.54 208 | 51.68 202 | 51.91 210 | 55.48 203 | 74.68 208 | 72.38 209 | 80.29 214 | 74.65 210 |
|
testgi | | | 71.92 197 | 74.20 192 | 69.27 200 | 84.58 161 | 83.06 192 | 73.40 204 | 74.39 170 | 64.04 195 | 46.17 209 | 68.90 127 | 57.15 193 | 48.89 210 | 84.07 176 | 83.08 180 | 88.18 194 | 79.09 205 |
|
LTVRE_ROB | | 74.41 16 | 75.78 185 | 74.72 191 | 77.02 170 | 85.88 140 | 89.22 146 | 82.44 167 | 77.17 153 | 50.57 215 | 45.45 210 | 65.44 146 | 52.29 209 | 81.25 95 | 85.50 158 | 87.42 130 | 89.94 186 | 92.62 108 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
pmmvs3 | | | 61.89 208 | 61.74 210 | 62.06 208 | 64.30 215 | 70.83 216 | 64.22 213 | 52.14 216 | 48.78 217 | 44.47 211 | 41.67 213 | 41.70 220 | 63.03 196 | 76.06 206 | 76.02 202 | 84.18 210 | 77.14 208 |
|
new-patchmatchnet | | | 63.80 206 | 63.31 208 | 64.37 206 | 76.49 207 | 75.99 211 | 63.73 214 | 70.99 183 | 57.27 209 | 43.08 212 | 45.86 208 | 43.80 216 | 45.13 212 | 73.20 209 | 70.68 212 | 86.80 201 | 76.34 209 |
|
EU-MVSNet | | | 69.98 200 | 72.30 197 | 67.28 203 | 75.67 211 | 79.39 208 | 73.12 205 | 69.94 189 | 63.59 196 | 42.80 213 | 62.93 160 | 56.71 196 | 55.07 204 | 79.13 200 | 78.55 196 | 87.06 200 | 85.82 181 |
|
MIMVSNet1 | | | 65.00 205 | 66.24 206 | 63.55 207 | 58.41 219 | 80.01 207 | 69.00 210 | 74.03 172 | 55.81 211 | 41.88 214 | 36.81 215 | 49.48 213 | 47.89 211 | 81.32 190 | 82.40 184 | 90.08 185 | 77.88 206 |
|
gm-plane-assit | | | 70.29 199 | 70.65 201 | 69.88 199 | 85.03 155 | 78.50 210 | 58.41 217 | 65.47 204 | 50.39 216 | 40.88 215 | 49.60 203 | 50.11 211 | 75.14 155 | 91.43 70 | 89.78 93 | 94.32 118 | 84.73 186 |
|
test20.03 | | | 68.31 202 | 70.05 203 | 66.28 205 | 82.41 188 | 80.84 204 | 67.35 211 | 76.11 163 | 58.44 208 | 40.80 216 | 53.77 197 | 54.54 203 | 42.28 213 | 83.07 181 | 81.96 188 | 88.73 192 | 77.76 207 |
|
FC-MVSNet-test | | | 76.53 174 | 81.62 114 | 70.58 198 | 84.99 156 | 85.73 178 | 74.81 201 | 78.85 139 | 77.00 123 | 39.13 217 | 75.90 84 | 73.50 118 | 54.08 206 | 86.54 144 | 85.99 156 | 91.65 168 | 86.68 174 |
|
test_method | | | 41.78 213 | 48.10 214 | 34.42 215 | 10.74 225 | 19.78 226 | 44.64 220 | 17.73 220 | 59.83 204 | 38.67 218 | 35.82 217 | 54.41 204 | 34.94 216 | 62.87 215 | 43.13 218 | 59.81 219 | 60.82 216 |
|
gg-mvs-nofinetune | | | 75.64 186 | 77.26 165 | 73.76 190 | 87.92 119 | 92.20 103 | 87.32 116 | 64.67 208 | 51.92 214 | 35.35 219 | 46.44 207 | 77.05 100 | 71.97 171 | 92.64 54 | 91.02 64 | 95.34 67 | 89.53 152 |
|
new_pmnet | | | 59.28 209 | 61.47 211 | 56.73 210 | 61.66 217 | 68.29 217 | 59.57 216 | 54.91 213 | 60.83 202 | 34.38 220 | 44.66 212 | 43.65 217 | 49.90 209 | 71.66 210 | 71.56 211 | 79.94 215 | 69.67 212 |
|
Gipuma |  | | 49.17 212 | 47.05 215 | 51.65 211 | 59.67 218 | 48.39 220 | 41.98 221 | 63.47 209 | 55.64 212 | 33.33 221 | 14.90 219 | 13.78 226 | 41.34 214 | 69.31 211 | 72.30 210 | 70.11 217 | 55.00 218 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
DeepMVS_CX |  | | | | | | 48.31 221 | 48.03 219 | 26.08 219 | 56.42 210 | 25.77 222 | 47.51 205 | 31.31 223 | 51.30 207 | 48.49 218 | | 53.61 220 | 61.52 215 |
|
MVE |  | 30.17 19 | 30.88 216 | 33.52 217 | 27.80 218 | 23.78 224 | 39.16 222 | 18.69 226 | 46.90 218 | 21.88 222 | 15.39 223 | 14.37 221 | 7.31 229 | 24.41 219 | 41.63 219 | 56.22 216 | 37.64 224 | 54.07 219 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
E-PMN | | | 31.40 215 | 26.80 218 | 36.78 213 | 51.39 221 | 29.96 223 | 20.20 224 | 54.17 214 | 25.93 221 | 12.75 224 | 14.73 220 | 8.58 228 | 34.10 218 | 27.36 220 | 37.83 219 | 48.07 222 | 43.18 220 |
|
EMVS | | | 30.49 217 | 25.44 219 | 36.39 214 | 51.47 220 | 29.89 224 | 20.17 225 | 54.00 215 | 26.49 220 | 12.02 225 | 13.94 222 | 8.84 227 | 34.37 217 | 25.04 221 | 34.37 220 | 46.29 223 | 39.53 221 |
|
PMMVS2 | | | 41.68 214 | 44.74 216 | 38.10 212 | 46.97 222 | 52.32 218 | 40.63 222 | 48.08 217 | 35.51 219 | 7.36 226 | 26.86 218 | 24.64 224 | 16.72 220 | 55.24 217 | 59.03 215 | 68.85 218 | 59.59 217 |
|
GG-mvs-BLEND | | | 57.56 210 | 82.61 109 | 28.34 217 | 0.22 226 | 90.10 125 | 79.37 188 | 0.14 223 | 79.56 107 | 0.40 227 | 71.25 111 | 83.40 62 | 0.30 224 | 86.27 148 | 83.87 174 | 89.59 187 | 83.83 187 |
|
testmvs | | | 1.03 218 | 1.63 220 | 0.34 219 | 0.09 227 | 0.35 227 | 0.61 228 | 0.16 222 | 1.49 223 | 0.10 228 | 3.15 223 | 0.15 230 | 0.86 223 | 1.32 222 | 1.18 221 | 0.20 225 | 3.76 223 |
|
test123 | | | 0.87 219 | 1.40 221 | 0.25 220 | 0.03 228 | 0.25 228 | 0.35 229 | 0.08 224 | 1.21 224 | 0.05 229 | 2.84 224 | 0.03 231 | 0.89 222 | 0.43 223 | 1.16 222 | 0.13 226 | 3.87 222 |
|
uanet_test | | | 0.00 220 | 0.00 222 | 0.00 221 | 0.00 229 | 0.00 229 | 0.00 230 | 0.00 225 | 0.00 225 | 0.00 230 | 0.00 225 | 0.00 232 | 0.00 225 | 0.00 224 | 0.00 223 | 0.00 227 | 0.00 224 |
|
sosnet-low-res | | | 0.00 220 | 0.00 222 | 0.00 221 | 0.00 229 | 0.00 229 | 0.00 230 | 0.00 225 | 0.00 225 | 0.00 230 | 0.00 225 | 0.00 232 | 0.00 225 | 0.00 224 | 0.00 223 | 0.00 227 | 0.00 224 |
|
sosnet | | | 0.00 220 | 0.00 222 | 0.00 221 | 0.00 229 | 0.00 229 | 0.00 230 | 0.00 225 | 0.00 225 | 0.00 230 | 0.00 225 | 0.00 232 | 0.00 225 | 0.00 224 | 0.00 223 | 0.00 227 | 0.00 224 |
|
9.14 | | | | | | | | | | | | | 92.16 17 | | | | | |
|
SR-MVS | | | | | | 96.58 25 | | | 90.99 21 | | | | 92.40 13 | | | | | |
|
Anonymous202405211 | | | | 82.75 108 | | 89.58 106 | 92.97 92 | 89.04 92 | 84.13 69 | 78.72 114 | | 57.18 188 | 76.64 101 | 83.13 83 | 89.55 105 | 89.92 90 | 93.38 149 | 94.28 76 |
|
our_test_3 | | | | | | 81.81 193 | 83.96 191 | 76.61 197 | | | | | | | | | | |
|
Patchmatch-RL test | | | | | | | | 8.55 227 | | | | | | | | | | |
|
mPP-MVS | | | | | | 97.06 12 | | | | | | | 88.08 45 | | | | | |
|
NP-MVS | | | | | | | | | | 87.47 52 | | | | | | | | |
|