This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort by
MCST-MVS93.81 1794.06 1993.53 1696.79 2396.85 2095.95 1491.69 1692.20 2587.17 3190.83 2793.41 791.96 1494.49 2593.50 3097.61 197.12 22
SF-MVS94.61 894.96 1094.20 996.75 2497.07 1295.82 1892.60 793.98 1291.09 895.89 692.54 1291.93 1594.40 2793.56 2997.04 297.27 17
DVP-MVS++95.79 196.42 195.06 197.84 298.17 297.03 492.84 396.68 192.83 395.90 594.38 492.90 595.98 294.85 596.93 398.99 1
SED-MVS95.61 296.36 294.73 396.84 1998.15 397.08 392.92 295.64 391.84 495.98 495.33 192.83 796.00 194.94 396.90 498.45 3
DVP-MVScopyleft95.56 396.26 394.73 396.93 1698.19 196.62 792.81 596.15 291.73 595.01 795.31 293.41 195.95 394.77 896.90 498.46 2
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
DPE-MVScopyleft95.53 496.13 494.82 296.81 2298.05 497.42 193.09 194.31 991.49 697.12 195.03 393.27 395.55 694.58 1296.86 698.25 4
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
TSAR-MVS + GP.92.71 2793.91 2191.30 3491.96 7396.00 4093.43 4187.94 4092.53 2186.27 3993.57 1591.94 1991.44 2493.29 4492.89 4496.78 797.15 21
EC-MVSNet89.96 4790.77 4389.01 5590.54 9195.15 5691.34 6181.43 10785.27 6183.08 5482.83 4787.22 4990.97 2994.79 1893.38 3496.73 896.71 32
ETV-MVS89.22 5289.76 4988.60 6191.60 7794.61 6789.48 8183.46 8585.20 6381.58 6382.75 4882.59 6688.80 4094.57 2393.28 3896.68 995.31 56
APDe-MVS95.23 595.69 694.70 597.12 1097.81 697.19 292.83 495.06 690.98 996.47 292.77 1093.38 295.34 994.21 1696.68 998.17 5
MVS_030490.88 3991.35 3790.34 4093.91 5196.79 2394.49 3486.54 4886.57 5582.85 5681.68 5589.70 3387.57 5594.64 2193.93 2196.67 1196.15 42
3Dnovator85.17 590.48 4189.90 4891.16 3694.88 4395.74 4793.82 3785.36 5589.28 4387.81 2774.34 9587.40 4888.56 4493.07 4793.74 2696.53 1295.71 48
TSAR-MVS + MP.94.48 1194.97 993.90 1295.53 3797.01 1596.69 690.71 2394.24 1090.92 1094.97 892.19 1593.03 494.83 1693.60 2796.51 1397.97 9
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
CS-MVS90.34 4290.58 4490.07 4393.11 6095.82 4590.57 6583.62 7687.07 5385.35 4182.98 4683.47 6191.37 2694.94 1393.37 3696.37 1496.41 37
MSP-MVS95.12 695.83 594.30 696.82 2197.94 596.98 592.37 1195.40 490.59 1296.16 393.71 692.70 894.80 1794.77 896.37 1497.99 8
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
QAPM89.49 5089.58 5189.38 5294.73 4595.94 4192.35 4985.00 5885.69 6080.03 7476.97 7987.81 4687.87 5092.18 6392.10 5396.33 1696.40 39
MVS_111021_HR90.56 4091.29 3889.70 4894.71 4695.63 4891.81 5786.38 4987.53 5181.29 6587.96 3285.43 5387.69 5293.90 3492.93 4296.33 1695.69 49
test111184.86 9184.21 9785.61 8391.75 7695.14 5788.63 9984.57 6281.88 8571.21 11365.66 14568.51 14081.19 9693.74 3992.68 4896.31 1891.86 125
CANet91.33 3791.46 3591.18 3595.01 4096.71 2493.77 3887.39 4587.72 5087.26 3081.77 5389.73 3287.32 5994.43 2693.86 2296.31 1896.02 44
APD-MVScopyleft94.37 1294.47 1694.26 797.18 896.99 1696.53 892.68 692.45 2389.96 1694.53 1191.63 2192.89 694.58 2293.82 2396.31 1897.26 18
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
test250685.20 8684.11 9886.47 7691.84 7495.28 5289.18 8484.49 6382.59 7575.34 9574.66 9358.07 18881.68 9293.76 3692.71 4696.28 2191.71 128
ECVR-MVScopyleft85.25 8584.47 9486.16 7891.84 7495.28 5289.18 8484.49 6382.59 7573.49 10466.12 13869.28 13681.68 9293.76 3692.71 4696.28 2191.58 135
SteuartSystems-ACMMP94.06 1494.65 1293.38 1896.97 1597.36 996.12 1091.78 1492.05 2787.34 2994.42 1290.87 2591.87 1895.47 894.59 1196.21 2397.77 11
Skip Steuart: Steuart Systems R&D Blog.
PHI-MVS92.05 3193.74 2290.08 4294.96 4197.06 1393.11 4587.71 4390.71 3680.78 7092.40 2291.03 2387.68 5394.32 2894.48 1396.21 2396.16 41
CNVR-MVS94.37 1294.65 1294.04 1097.29 697.11 1196.00 1192.43 1093.45 1589.85 1890.92 2593.04 992.59 1095.77 594.82 696.11 2597.42 16
baseline184.54 9484.43 9584.67 9090.62 8891.16 11188.63 9983.75 7479.78 10571.16 11475.14 8974.10 11177.84 13891.56 6890.67 7396.04 2688.58 157
MSLP-MVS++92.02 3391.40 3692.75 2396.01 3295.88 4393.73 4089.00 3389.89 4290.31 1481.28 5888.85 3991.45 2292.88 5194.24 1596.00 2796.76 29
NCCC93.69 1993.66 2393.72 1597.37 596.66 2995.93 1792.50 993.40 1888.35 2487.36 3492.33 1492.18 1394.89 1594.09 1896.00 2796.91 26
CS-MVS-test90.29 4390.96 3989.51 5193.18 5995.87 4489.18 8483.72 7588.32 4884.82 4684.89 4285.23 5490.25 3394.04 2992.66 4995.94 2995.69 49
ACMMPcopyleft92.03 3292.16 3191.87 3395.88 3496.55 3194.47 3589.49 3291.71 3085.26 4291.52 2484.48 5790.21 3492.82 5291.63 5795.92 3096.42 36
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
SMA-MVScopyleft94.70 795.35 793.93 1197.57 397.57 895.98 1291.91 1394.50 790.35 1393.46 1792.72 1191.89 1795.89 495.22 195.88 3198.10 6
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
ACMMPR93.72 1893.94 2093.48 1797.07 1196.93 1795.78 2090.66 2593.88 1389.24 2093.53 1689.08 3892.24 1293.89 3593.50 3095.88 3196.73 30
HFP-MVS94.02 1594.22 1893.78 1397.25 796.85 2095.81 1990.94 2294.12 1190.29 1594.09 1489.98 3192.52 1193.94 3393.49 3295.87 3397.10 23
PVSNet_BlendedMVS88.19 6388.00 6388.42 6392.71 6994.82 6489.08 8983.81 7284.91 6686.38 3779.14 6678.11 9382.66 8593.05 4891.10 6195.86 3494.86 62
PVSNet_Blended88.19 6388.00 6388.42 6392.71 6994.82 6489.08 8983.81 7284.91 6686.38 3779.14 6678.11 9382.66 8593.05 4891.10 6195.86 3494.86 62
DeepC-MVS_fast88.76 193.10 2293.02 2993.19 2197.13 996.51 3395.35 2591.19 1993.14 2088.14 2585.26 4089.49 3591.45 2295.17 1095.07 295.85 3696.48 34
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PGM-MVS92.76 2593.03 2892.45 2797.03 1396.67 2895.73 2287.92 4190.15 4186.53 3592.97 2088.33 4491.69 2093.62 4193.03 4095.83 3796.41 37
SD-MVS94.53 1095.22 893.73 1495.69 3697.03 1495.77 2191.95 1294.41 891.35 794.97 893.34 891.80 1994.72 2093.99 2095.82 3898.07 7
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DeepC-MVS87.86 392.26 3091.86 3392.73 2496.18 2996.87 1995.19 2791.76 1592.17 2686.58 3481.79 5285.85 5190.88 3094.57 2394.61 1095.80 3997.18 19
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
XVS93.11 6096.70 2591.91 5383.95 4988.82 4095.79 40
X-MVStestdata93.11 6096.70 2591.91 5383.95 4988.82 4095.79 40
DELS-MVS89.71 4889.68 5089.74 4693.75 5396.22 3693.76 3985.84 5182.53 7785.05 4478.96 6984.24 5884.25 7794.91 1494.91 495.78 4296.02 44
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
X-MVS92.36 2992.75 3091.90 3296.89 1796.70 2595.25 2690.48 2891.50 3283.95 4988.20 3188.82 4089.11 3893.75 3893.43 3395.75 4396.83 28
casdiffmvspermissive87.45 7087.15 7287.79 7090.15 10294.22 7189.96 7283.93 7185.08 6480.91 6775.81 8577.88 9686.08 6891.86 6690.86 6795.74 4494.37 71
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CP-MVS93.25 2193.26 2693.24 2096.84 1996.51 3395.52 2390.61 2692.37 2488.88 2190.91 2689.52 3491.91 1693.64 4092.78 4595.69 4597.09 24
MVSTER86.03 7886.12 8085.93 8088.62 11489.93 12989.33 8379.91 12681.87 8681.35 6481.07 5974.91 10780.66 10492.13 6490.10 8395.68 4692.80 102
3Dnovator+86.06 491.60 3590.86 4292.47 2696.00 3396.50 3594.70 3287.83 4290.49 3889.92 1774.68 9289.35 3690.66 3194.02 3194.14 1795.67 4796.85 27
OpenMVScopyleft82.53 1187.71 6786.84 7488.73 5894.42 4795.06 5991.02 6483.49 8282.50 7982.24 6167.62 13385.48 5285.56 7191.19 7491.30 6095.67 4794.75 64
EIA-MVS87.94 6688.05 6287.81 6891.46 7895.00 6188.67 9682.81 9182.53 7780.81 6980.04 6280.20 7787.48 5692.58 5591.61 5895.63 4994.36 72
ET-MVSNet_ETH3D84.65 9285.58 8783.56 10974.99 21292.62 10090.29 6980.38 11482.16 8273.01 10983.41 4471.10 12887.05 6287.77 12590.17 8295.62 5091.82 126
CDPH-MVS91.14 3892.01 3290.11 4196.18 2996.18 3794.89 3088.80 3788.76 4677.88 8689.18 3087.71 4787.29 6093.13 4693.31 3795.62 5095.84 46
MP-MVScopyleft93.35 2093.59 2493.08 2297.39 496.82 2295.38 2490.71 2390.82 3588.07 2692.83 2190.29 2991.32 2794.03 3093.19 3995.61 5297.16 20
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
FMVSNet384.44 9784.64 9384.21 9884.32 16390.13 12489.85 7480.37 11581.17 9175.50 9169.63 11879.69 8379.62 12489.72 10290.52 7795.59 5391.58 135
HPM-MVS++copyleft94.60 994.91 1194.24 897.86 196.53 3296.14 992.51 893.87 1490.76 1193.45 1893.84 592.62 995.11 1294.08 1995.58 5497.48 14
TPM-MVS96.31 2796.02 3894.89 3086.52 3687.18 3692.17 1686.76 6495.56 5593.85 82
casdiffmvs_mvgpermissive87.97 6587.63 7088.37 6590.55 9094.42 6891.82 5684.69 6084.05 6982.08 6276.57 8079.00 8785.49 7292.35 5792.29 5295.55 5694.70 66
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CLD-MVS88.66 5588.52 5688.82 5791.37 8094.22 7192.82 4882.08 10288.27 4985.14 4381.86 5178.53 9185.93 7091.17 7590.61 7495.55 5695.00 58
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
ACMMP_NAP93.94 1694.49 1593.30 1997.03 1397.31 1095.96 1391.30 1893.41 1788.55 2393.00 1990.33 2891.43 2595.53 794.41 1495.53 5897.47 15
GBi-Net84.51 9584.80 9184.17 9984.20 16489.95 12689.70 7580.37 11581.17 9175.50 9169.63 11879.69 8379.75 12190.73 8990.72 6995.52 5991.71 128
test184.51 9584.80 9184.17 9984.20 16489.95 12689.70 7580.37 11581.17 9175.50 9169.63 11879.69 8379.75 12190.73 8990.72 6995.52 5991.71 128
FMVSNet283.87 10083.73 10284.05 10384.20 16489.95 12689.70 7580.21 12079.17 11274.89 9665.91 13977.49 9779.75 12190.87 8691.00 6595.52 5991.71 128
DPM-MVS91.72 3491.48 3492.00 3095.53 3795.75 4695.94 1591.07 2091.20 3385.58 4081.63 5690.74 2688.40 4693.40 4293.75 2595.45 6293.85 82
OPM-MVS87.56 6985.80 8589.62 4993.90 5294.09 7494.12 3688.18 3875.40 13277.30 8976.41 8177.93 9588.79 4192.20 6190.82 6895.40 6393.72 87
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
CSCG92.76 2593.16 2792.29 2896.30 2897.74 794.67 3388.98 3592.46 2289.73 1986.67 3792.15 1888.69 4392.26 5992.92 4395.40 6397.89 10
canonicalmvs89.36 5189.92 4688.70 5991.38 7995.92 4291.81 5782.61 9990.37 3982.73 5882.09 5079.28 8688.30 4791.17 7593.59 2895.36 6597.04 25
IB-MVS79.09 1282.60 11182.19 11083.07 11391.08 8293.55 8180.90 18081.35 10876.56 12480.87 6864.81 15369.97 13268.87 18185.64 15590.06 8595.36 6594.74 65
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
gg-mvs-nofinetune75.64 18677.26 16573.76 19087.92 11992.20 10387.32 11664.67 20851.92 21435.35 21946.44 20777.05 10071.97 17192.64 5491.02 6495.34 6789.53 152
Vis-MVSNetpermissive84.38 9986.68 7881.70 12787.65 12494.89 6288.14 10580.90 11174.48 13868.23 13077.53 7680.72 7469.98 17892.68 5391.90 5495.33 6894.58 69
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
TAPA-MVS84.37 788.91 5488.93 5488.89 5693.00 6494.85 6392.00 5284.84 5991.68 3180.05 7379.77 6484.56 5688.17 4890.11 9789.00 11595.30 6992.57 112
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
MVS_Test86.93 7287.24 7186.56 7590.10 10393.47 8290.31 6880.12 12183.55 7178.12 8279.58 6579.80 8185.45 7390.17 9690.59 7595.29 7093.53 90
LGP-MVS_train88.25 6288.55 5587.89 6792.84 6793.66 7993.35 4285.22 5785.77 5874.03 10186.60 3876.29 10286.62 6691.20 7390.58 7695.29 7095.75 47
FA-MVS(training)85.65 8285.79 8685.48 8590.44 9693.47 8288.66 9873.11 17583.34 7282.26 5971.79 10778.39 9283.14 8291.00 8289.47 10395.28 7293.06 95
UniMVSNet_NR-MVSNet81.87 11781.33 11882.50 11885.31 15091.30 10985.70 13884.25 6675.89 12864.21 15166.95 13564.65 15280.22 11187.07 13189.18 11095.27 7394.29 73
IS_MVSNet86.18 7688.18 6083.85 10591.02 8394.72 6687.48 11382.46 10081.05 9570.28 11876.98 7882.20 6976.65 14693.97 3293.38 3495.18 7494.97 59
train_agg92.87 2493.53 2592.09 2996.88 1895.38 5095.94 1590.59 2790.65 3783.65 5294.31 1391.87 2090.30 3293.38 4392.42 5095.17 7596.73 30
NR-MVSNet80.25 13379.98 13680.56 14285.20 15290.94 11385.65 14083.58 8075.74 12961.36 17565.30 14856.75 19572.38 17088.46 11988.80 11795.16 7693.87 81
PVSNet_Blended_VisFu87.40 7187.80 6586.92 7492.86 6595.40 4988.56 10283.45 8679.55 10882.26 5974.49 9484.03 5979.24 12992.97 5091.53 5995.15 7796.65 33
EPP-MVSNet86.55 7387.76 6785.15 8790.52 9294.41 6987.24 11982.32 10181.79 8773.60 10378.57 7182.41 6782.07 9091.23 7190.39 7895.14 7895.48 54
thisisatest053085.15 8885.86 8384.33 9589.19 11092.57 10187.22 12080.11 12282.15 8374.41 9878.15 7373.80 11579.90 11790.99 8389.58 9895.13 7993.75 86
TranMVSNet+NR-MVSNet80.52 13079.84 13981.33 13384.92 15990.39 11885.53 14384.22 6874.27 14160.68 18064.93 15259.96 17677.48 14086.75 13989.28 10695.12 8093.29 91
tttt051785.11 8985.81 8484.30 9689.24 10892.68 9787.12 12480.11 12281.98 8474.31 10078.08 7473.57 11779.90 11791.01 8189.58 9895.11 8193.77 85
UniMVSNet (Re)81.22 12581.08 12181.39 13185.35 14991.76 10784.93 14782.88 9076.13 12765.02 14864.94 15163.09 15975.17 15487.71 12689.04 11394.97 8294.88 61
FC-MVSNet-train85.18 8785.31 8985.03 8890.67 8791.62 10887.66 11183.61 7779.75 10674.37 9978.69 7071.21 12778.91 13091.23 7189.96 8894.96 8394.69 68
GeoE84.62 9383.98 10085.35 8689.34 10792.83 9488.34 10378.95 13679.29 11077.16 9068.10 13074.56 10883.40 8089.31 10989.23 10894.92 8494.57 70
tfpn200view982.86 10781.46 11584.48 9290.30 10093.09 8889.05 9182.71 9375.14 13369.56 12165.72 14263.13 15780.38 11091.15 7789.51 10094.91 8592.50 116
thres600view782.53 11381.02 12284.28 9790.61 8993.05 8988.57 10182.67 9574.12 14368.56 12965.09 15062.13 16880.40 10991.15 7789.02 11494.88 8692.59 110
thres20082.77 10981.25 11984.54 9190.38 9793.05 8989.13 8882.67 9574.40 13969.53 12365.69 14463.03 16080.63 10591.15 7789.42 10494.88 8692.04 122
Effi-MVS+85.33 8485.08 9085.63 8289.69 10593.42 8489.90 7380.31 11979.32 10972.48 11273.52 10174.03 11286.55 6790.99 8389.98 8794.83 8894.27 77
dmvs_re81.08 12779.92 13782.44 12086.66 13487.70 16287.91 10883.30 8972.86 15565.29 14765.76 14163.43 15676.69 14588.93 11389.50 10194.80 8991.23 140
thres40082.68 11081.15 12084.47 9390.52 9292.89 9388.95 9482.71 9374.33 14069.22 12665.31 14762.61 16380.63 10590.96 8589.50 10194.79 9092.45 118
ACMP83.90 888.32 6188.06 6188.62 6092.18 7193.98 7691.28 6385.24 5686.69 5481.23 6685.62 3975.13 10687.01 6389.83 10089.77 9494.79 9095.43 55
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
DU-MVS81.20 12680.30 13082.25 12284.98 15790.94 11385.70 13883.58 8075.74 12964.21 15165.30 14859.60 18180.22 11186.89 13489.31 10594.77 9294.29 73
UA-Net86.07 7787.78 6684.06 10292.85 6695.11 5887.73 11084.38 6573.22 15273.18 10679.99 6389.22 3771.47 17493.22 4593.03 4094.76 9390.69 143
MVS_111021_LR90.14 4690.89 4189.26 5393.23 5894.05 7590.43 6784.65 6190.16 4084.52 4890.14 2883.80 6087.99 4992.50 5690.92 6694.74 9494.70 66
thres100view90082.55 11281.01 12484.34 9490.30 10092.27 10289.04 9282.77 9275.14 13369.56 12165.72 14263.13 15779.62 12489.97 9989.26 10794.73 9591.61 134
AdaColmapbinary90.29 4388.38 5892.53 2596.10 3195.19 5592.98 4691.40 1789.08 4588.65 2278.35 7281.44 7191.30 2890.81 8890.21 8194.72 9693.59 89
PCF-MVS84.60 688.66 5587.75 6889.73 4793.06 6396.02 3893.22 4490.00 3082.44 8080.02 7577.96 7585.16 5587.36 5888.54 11788.54 12094.72 9695.61 52
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
DI_MVS_plusplus_trai86.41 7585.54 8887.42 7289.24 10893.13 8792.16 5182.65 9782.30 8180.75 7168.30 12980.41 7585.01 7490.56 9490.07 8494.70 9894.01 79
Fast-Effi-MVS+83.77 10282.98 10584.69 8987.98 11891.87 10688.10 10677.70 15078.10 11873.04 10869.13 12468.51 14086.66 6590.49 9589.85 9294.67 9992.88 99
WR-MVS_H75.84 18476.93 17074.57 18982.86 18389.50 14278.34 19379.36 13366.90 18152.51 19860.20 17559.71 17859.73 20083.61 17885.77 15894.65 10092.84 100
OMC-MVS90.23 4590.40 4590.03 4493.45 5695.29 5191.89 5586.34 5093.25 1984.94 4581.72 5486.65 5088.90 3991.69 6790.27 8094.65 10093.95 80
HQP-MVS89.13 5389.58 5188.60 6193.53 5593.67 7893.29 4387.58 4488.53 4775.50 9187.60 3380.32 7687.07 6190.66 9389.95 8994.62 10296.35 40
PEN-MVS76.02 18176.07 17775.95 17983.17 17787.97 16079.65 18480.07 12566.57 18351.45 20160.94 16955.47 20066.81 19082.72 18386.80 13994.59 10392.03 123
ACMM83.27 1087.68 6886.09 8189.54 5093.26 5792.19 10491.43 6086.74 4786.02 5782.85 5675.63 8675.14 10588.41 4590.68 9289.99 8694.59 10392.97 97
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CANet_DTU85.43 8387.72 6982.76 11690.95 8693.01 9189.99 7175.46 16782.67 7464.91 14983.14 4580.09 7880.68 10392.03 6591.03 6394.57 10592.08 120
CP-MVSNet76.36 17876.41 17476.32 17682.73 18688.64 15579.39 18779.62 12867.21 17953.70 19560.72 17155.22 20167.91 18683.52 17986.34 14994.55 10693.19 92
EG-PatchMatch MVS76.40 17775.47 18677.48 16685.86 14290.22 12282.45 16673.96 17359.64 20659.60 18452.75 19962.20 16768.44 18388.23 12187.50 12894.55 10687.78 167
tfpnnormal77.46 16574.86 19080.49 14386.34 13888.92 15384.33 15481.26 10961.39 20161.70 17251.99 20153.66 20774.84 15788.63 11687.38 13194.50 10892.08 120
baseline282.80 10882.86 10782.73 11787.68 12390.50 11784.92 14878.93 13778.07 11973.06 10775.08 9069.77 13377.31 14188.90 11486.94 13794.50 10890.74 142
Vis-MVSNet (Re-imp)83.65 10386.81 7679.96 14790.46 9592.71 9584.84 14982.00 10380.93 9762.44 16476.29 8282.32 6865.54 19492.29 5891.66 5694.49 11091.47 137
PS-CasMVS75.90 18375.86 18275.96 17882.59 18788.46 15879.23 19079.56 13066.00 18652.77 19759.48 17954.35 20567.14 18983.37 18086.23 15094.47 11193.10 94
Baseline_NR-MVSNet79.84 13778.37 15481.55 13084.98 15786.66 17185.06 14583.49 8275.57 13163.31 15858.22 18760.97 17178.00 13686.89 13487.13 13394.47 11193.15 93
FMVSNet181.64 12280.61 12782.84 11582.36 18989.20 14788.67 9679.58 12970.79 16472.63 11158.95 18372.26 12479.34 12790.73 8990.72 6994.47 11191.62 133
DTE-MVSNet75.14 18875.44 18774.80 18683.18 17687.19 16878.25 19580.11 12266.05 18548.31 20660.88 17054.67 20264.54 19582.57 18586.17 15194.43 11490.53 147
PLCcopyleft83.76 988.61 5786.83 7590.70 3894.22 4892.63 9891.50 5987.19 4689.16 4486.87 3275.51 8780.87 7389.98 3690.01 9889.20 10994.41 11590.45 148
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
UGNet85.90 8088.23 5983.18 11288.96 11294.10 7387.52 11283.60 7881.66 8877.90 8580.76 6083.19 6366.70 19191.13 8090.71 7294.39 11696.06 43
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
TransMVSNet (Re)76.57 17275.16 18978.22 16385.60 14687.24 16782.46 16581.23 11059.80 20559.05 18857.07 18959.14 18566.60 19288.09 12286.82 13894.37 11787.95 166
gm-plane-assit70.29 19970.65 20169.88 19985.03 15578.50 21058.41 21765.47 20450.39 21640.88 21549.60 20350.11 21175.14 15591.43 7089.78 9394.32 11884.73 186
CNLPA88.40 5887.00 7390.03 4493.73 5494.28 7089.56 7985.81 5291.87 2887.55 2869.53 12281.49 7089.23 3789.45 10788.59 11994.31 11993.82 84
MAR-MVS88.39 6088.44 5788.33 6694.90 4295.06 5990.51 6683.59 7985.27 6179.07 7877.13 7782.89 6587.70 5192.19 6292.32 5194.23 12094.20 78
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
MSDG83.87 10081.02 12287.19 7392.17 7289.80 13389.15 8785.72 5380.61 10079.24 7766.66 13668.75 13982.69 8487.95 12487.44 12994.19 12185.92 180
pm-mvs178.51 15777.75 16279.40 15084.83 16089.30 14483.55 16079.38 13262.64 19763.68 15658.73 18564.68 15170.78 17789.79 10187.84 12594.17 12291.28 139
CPTT-MVS91.39 3690.95 4091.91 3195.06 3995.24 5495.02 2988.98 3591.02 3486.71 3384.89 4288.58 4391.60 2190.82 8789.67 9794.08 12396.45 35
v14419278.81 15177.22 16680.67 14082.95 18089.79 13486.40 13177.42 15168.26 17863.13 15959.50 17858.13 18780.08 11685.93 15186.08 15394.06 12492.83 101
diffmvspermissive86.52 7486.76 7786.23 7788.31 11792.63 9889.58 7881.61 10686.14 5680.26 7279.00 6877.27 9883.58 7888.94 11289.06 11294.05 12594.29 73
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
v192192078.57 15676.99 16980.41 14582.93 18189.63 14086.38 13277.14 15468.31 17761.80 17158.89 18456.79 19480.19 11486.50 14686.05 15594.02 12692.76 104
ACMH78.52 1481.86 11880.45 12983.51 11190.51 9491.22 11085.62 14184.23 6770.29 16962.21 16569.04 12664.05 15484.48 7687.57 12788.45 12294.01 12792.54 114
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
WR-MVS76.63 17178.02 15975.02 18484.14 16789.76 13578.34 19380.64 11369.56 17052.32 19961.26 16561.24 17060.66 19984.45 17387.07 13493.99 12892.77 103
v1079.62 14078.19 15581.28 13483.73 17089.69 13787.27 11876.86 15770.50 16765.46 14260.58 17360.47 17380.44 10886.91 13386.63 14393.93 12992.55 113
anonymousdsp77.94 16079.00 14676.71 17279.03 20187.83 16179.58 18572.87 17665.80 18858.86 18965.82 14062.48 16575.99 14986.77 13888.66 11893.92 13095.68 51
v124078.15 15876.53 17280.04 14682.85 18489.48 14385.61 14276.77 15867.05 18061.18 17858.37 18656.16 19879.89 11986.11 15086.08 15393.92 13092.47 117
v879.90 13678.39 15381.66 12883.97 16889.81 13287.16 12277.40 15271.49 15967.71 13161.24 16662.49 16479.83 12085.48 15986.17 15193.89 13292.02 124
v2v48279.84 13778.07 15781.90 12583.75 16990.21 12387.17 12179.85 12770.65 16565.93 14061.93 16360.07 17580.82 10085.25 16186.71 14093.88 13391.70 132
thisisatest051579.76 13980.59 12878.80 15584.40 16288.91 15479.48 18676.94 15672.29 15767.33 13367.82 13265.99 14770.80 17688.50 11887.84 12593.86 13492.75 105
IterMVS-LS83.28 10682.95 10683.65 10688.39 11688.63 15686.80 12878.64 14176.56 12473.43 10572.52 10675.35 10480.81 10186.43 14788.51 12193.84 13592.66 107
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
TSAR-MVS + ACMM92.97 2394.51 1491.16 3695.88 3496.59 3095.09 2890.45 2993.42 1683.01 5594.68 1090.74 2688.74 4294.75 1993.78 2493.82 13697.63 12
v114479.38 14677.83 16081.18 13583.62 17190.23 12187.15 12378.35 14369.13 17264.02 15460.20 17559.41 18280.14 11586.78 13786.57 14493.81 13792.53 115
v119278.94 15077.33 16480.82 13883.25 17589.90 13086.91 12677.72 14968.63 17662.61 16359.17 18057.53 19180.62 10786.89 13486.47 14693.79 13892.75 105
TSAR-MVS + COLMAP88.40 5889.09 5387.60 7192.72 6893.92 7792.21 5085.57 5491.73 2973.72 10291.75 2373.22 12187.64 5491.49 6989.71 9693.73 13991.82 126
UniMVSNet_ETH3D79.24 14776.47 17382.48 11985.66 14590.97 11286.08 13581.63 10564.48 19368.94 12854.47 19457.65 19078.83 13185.20 16588.91 11693.72 14093.60 88
EPNet89.60 4989.91 4789.24 5496.45 2693.61 8092.95 4788.03 3985.74 5983.36 5387.29 3583.05 6480.98 9992.22 6091.85 5593.69 14195.58 53
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
HyFIR lowres test81.62 12479.45 14584.14 10191.00 8493.38 8588.27 10478.19 14476.28 12670.18 11948.78 20473.69 11683.52 7987.05 13287.83 12793.68 14289.15 154
V4279.59 14178.43 15280.94 13782.79 18589.71 13686.66 12976.73 15971.38 16067.42 13261.01 16862.30 16678.39 13385.56 15786.48 14593.65 14392.60 109
DCV-MVSNet85.88 8186.17 7985.54 8489.10 11189.85 13189.34 8280.70 11283.04 7378.08 8476.19 8379.00 8782.42 8889.67 10390.30 7993.63 14495.12 57
v7n77.22 16676.23 17678.38 16281.89 19289.10 15182.24 17176.36 16065.96 18761.21 17756.56 19055.79 19975.07 15686.55 14386.68 14193.52 14592.95 98
Anonymous2023121184.42 9883.02 10486.05 7988.85 11392.70 9688.92 9583.40 8779.99 10378.31 8155.83 19278.92 8983.33 8189.06 11189.76 9593.50 14694.90 60
ACMH+79.08 1381.84 11980.06 13483.91 10489.92 10490.62 11586.21 13383.48 8473.88 14565.75 14166.38 13765.30 15084.63 7585.90 15287.25 13293.45 14791.13 141
pmmvs576.93 16876.33 17577.62 16581.97 19188.40 15981.32 17674.35 17165.42 19161.42 17463.07 15957.95 18973.23 16885.60 15685.35 16393.41 14888.55 158
Anonymous20240521182.75 10889.58 10692.97 9289.04 9284.13 6978.72 11457.18 18876.64 10183.13 8389.55 10589.92 9093.38 14994.28 76
USDC80.69 12979.89 13881.62 12986.48 13689.11 15086.53 13078.86 13881.15 9463.48 15772.98 10359.12 18681.16 9787.10 13085.01 16593.23 15084.77 185
LS3D85.96 7984.37 9687.81 6894.13 4993.27 8690.26 7089.00 3384.91 6672.84 11071.74 10872.47 12387.45 5789.53 10689.09 11193.20 15189.60 151
MS-PatchMatch81.79 12081.44 11682.19 12490.35 9889.29 14588.08 10775.36 16877.60 12069.00 12764.37 15678.87 9077.14 14488.03 12385.70 15993.19 15286.24 177
Fast-Effi-MVS+-dtu79.95 13580.69 12679.08 15286.36 13789.14 14985.85 13672.28 17872.85 15659.32 18570.43 11668.42 14277.57 13986.14 14986.44 14793.11 15391.39 138
GA-MVS79.52 14279.71 14279.30 15185.68 14490.36 11984.55 15178.44 14270.47 16857.87 19068.52 12861.38 16976.21 14889.40 10887.89 12493.04 15489.96 150
DeepPCF-MVS88.51 292.64 2894.42 1790.56 3994.84 4496.92 1891.31 6289.61 3195.16 584.55 4789.91 2991.45 2290.15 3595.12 1194.81 792.90 15597.58 13
CDS-MVSNet81.63 12382.09 11181.09 13687.21 12990.28 12087.46 11580.33 11869.06 17370.66 11571.30 10973.87 11367.99 18489.58 10489.87 9192.87 15690.69 143
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
Effi-MVS+-dtu82.05 11581.76 11282.38 12187.72 12190.56 11686.90 12778.05 14673.85 14666.85 13571.29 11071.90 12582.00 9186.64 14285.48 16192.76 15792.58 111
v14878.59 15576.84 17180.62 14183.61 17289.16 14883.65 15979.24 13469.38 17169.34 12559.88 17760.41 17475.19 15383.81 17784.63 17092.70 15890.63 145
pmmvs479.99 13478.08 15682.22 12383.04 17987.16 16984.95 14678.80 14078.64 11574.53 9764.61 15459.41 18279.45 12684.13 17584.54 17292.53 15988.08 163
RPMNet77.07 16777.63 16376.42 17485.56 14785.15 18481.37 17465.27 20574.71 13660.29 18163.71 15866.59 14673.64 16482.71 18482.12 18692.38 16088.39 159
CR-MVSNet78.71 15378.86 14778.55 15985.85 14385.15 18482.30 16968.23 19474.71 13665.37 14464.39 15569.59 13577.18 14285.10 16784.87 16692.34 16188.21 161
COLMAP_ROBcopyleft76.78 1580.50 13178.49 15082.85 11490.96 8589.65 13986.20 13483.40 8777.15 12266.54 13662.27 16165.62 14977.89 13785.23 16284.70 16992.11 16284.83 184
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
PatchMatch-RL83.34 10581.36 11785.65 8190.33 9989.52 14184.36 15381.82 10480.87 9979.29 7674.04 9662.85 16286.05 6988.40 12087.04 13692.04 16386.77 173
PMMVS81.65 12184.05 9978.86 15478.56 20382.63 19783.10 16167.22 19881.39 8970.11 12084.91 4179.74 8282.12 8987.31 12885.70 15992.03 16486.67 176
IterMVS-SCA-FT79.41 14580.20 13278.49 16085.88 14086.26 17383.95 15671.94 17973.55 15061.94 16870.48 11570.50 12975.23 15285.81 15484.61 17191.99 16590.18 149
baseline84.89 9086.06 8283.52 11087.25 12889.67 13887.76 10975.68 16684.92 6578.40 8080.10 6180.98 7280.20 11386.69 14187.05 13591.86 16692.99 96
MIMVSNet74.69 19075.60 18573.62 19176.02 21085.31 18381.21 17967.43 19771.02 16259.07 18754.48 19364.07 15366.14 19386.52 14586.64 14291.83 16781.17 198
FC-MVSNet-test76.53 17481.62 11470.58 19884.99 15685.73 17874.81 20178.85 13977.00 12339.13 21775.90 8473.50 11854.08 20686.54 14485.99 15691.65 16886.68 174
pmmvs-eth3d74.32 19271.96 19877.08 16977.33 20682.71 19678.41 19276.02 16466.65 18265.98 13954.23 19649.02 21473.14 16982.37 18782.69 18391.61 16986.05 179
SixPastTwentyTwo76.02 18175.72 18376.36 17583.38 17387.54 16475.50 20076.22 16165.50 19057.05 19170.64 11253.97 20674.54 15980.96 19182.12 18691.44 17089.35 153
pmmvs674.83 18972.89 19677.09 16882.11 19087.50 16580.88 18176.97 15552.79 21361.91 17046.66 20660.49 17269.28 18086.74 14085.46 16291.39 17190.56 146
test-mter77.79 16180.02 13575.18 18381.18 19782.85 19580.52 18362.03 21273.62 14962.16 16673.55 10073.83 11473.81 16384.67 17083.34 17891.37 17288.31 160
TDRefinement79.05 14977.05 16881.39 13188.45 11589.00 15286.92 12582.65 9774.21 14264.41 15059.17 18059.16 18474.52 16085.23 16285.09 16491.37 17287.51 169
test-LLR79.47 14479.84 13979.03 15387.47 12582.40 20081.24 17778.05 14673.72 14762.69 16173.76 9874.42 10973.49 16584.61 17182.99 18191.25 17487.01 171
TESTMET0.1,177.78 16279.84 13975.38 18280.86 19882.40 20081.24 17762.72 21173.72 14762.69 16173.76 9874.42 10973.49 16584.61 17182.99 18191.25 17487.01 171
TinyColmap76.73 16973.95 19379.96 14785.16 15485.64 18082.34 16878.19 14470.63 16662.06 16760.69 17249.61 21280.81 10185.12 16683.69 17791.22 17682.27 193
FMVSNet575.50 18776.07 17774.83 18576.16 20881.19 20381.34 17570.21 18773.20 15361.59 17358.97 18268.33 14368.50 18285.87 15385.85 15791.18 17779.11 204
IterMVS78.79 15279.71 14277.71 16485.26 15185.91 17684.54 15269.84 19073.38 15161.25 17670.53 11470.35 13074.43 16185.21 16483.80 17690.95 17888.77 156
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
PatchT76.42 17577.81 16174.80 18678.46 20484.30 18971.82 20765.03 20773.89 14465.37 14461.58 16466.70 14577.18 14285.10 16784.87 16690.94 17988.21 161
EPNet_dtu81.98 11683.82 10179.83 14994.10 5085.97 17587.29 11784.08 7080.61 10059.96 18281.62 5777.19 9962.91 19887.21 12986.38 14890.66 18087.77 168
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PM-MVS74.17 19373.10 19475.41 18176.07 20982.53 19877.56 19671.69 18071.04 16161.92 16961.23 16747.30 21574.82 15881.78 18979.80 19090.42 18188.05 164
test0.0.03 176.03 18078.51 14973.12 19487.47 12585.13 18676.32 19878.05 14673.19 15450.98 20470.64 11269.28 13655.53 20285.33 16084.38 17390.39 18281.63 196
Anonymous2023120670.80 19870.59 20271.04 19781.60 19482.49 19974.64 20275.87 16564.17 19449.27 20544.85 21053.59 20854.68 20583.07 18182.34 18590.17 18383.65 188
CHOSEN 1792x268882.16 11480.91 12583.61 10791.14 8192.01 10589.55 8079.15 13579.87 10470.29 11752.51 20072.56 12281.39 9488.87 11588.17 12390.15 18492.37 119
MIMVSNet165.00 20566.24 20663.55 20758.41 21980.01 20769.00 21074.03 17255.81 21141.88 21436.81 21549.48 21347.89 21181.32 19082.40 18490.08 18577.88 206
LTVRE_ROB74.41 1675.78 18574.72 19177.02 17085.88 14089.22 14682.44 16777.17 15350.57 21545.45 21065.44 14652.29 20981.25 9585.50 15887.42 13089.94 18692.62 108
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
GG-mvs-BLEND57.56 21082.61 10928.34 2170.22 22690.10 12579.37 1880.14 22379.56 1070.40 22771.25 11183.40 620.30 22486.27 14883.87 17489.59 18783.83 187
CVMVSNet76.70 17078.46 15174.64 18883.34 17484.48 18881.83 17374.58 16968.88 17451.23 20369.77 11770.05 13167.49 18784.27 17483.81 17589.38 18887.96 165
TAMVS76.42 17577.16 16775.56 18083.05 17885.55 18180.58 18271.43 18165.40 19261.04 17967.27 13469.22 13867.99 18484.88 16984.78 16889.28 18983.01 191
CostFormer80.94 12880.21 13181.79 12687.69 12288.58 15787.47 11470.66 18480.02 10277.88 8673.03 10271.40 12678.24 13479.96 19579.63 19188.82 19088.84 155
RPSCF83.46 10483.36 10383.59 10887.75 12087.35 16684.82 15079.46 13183.84 7078.12 8282.69 4979.87 7982.60 8782.47 18681.13 18988.78 19186.13 178
test20.0368.31 20270.05 20366.28 20582.41 18880.84 20467.35 21176.11 16358.44 20840.80 21653.77 19754.54 20342.28 21383.07 18181.96 18888.73 19277.76 207
SCA79.51 14380.15 13378.75 15686.58 13587.70 16283.07 16268.53 19381.31 9066.40 13773.83 9775.38 10379.30 12880.49 19379.39 19488.63 19382.96 192
testgi71.92 19774.20 19269.27 20084.58 16183.06 19273.40 20474.39 17064.04 19546.17 20968.90 12757.15 19348.89 21084.07 17683.08 18088.18 19479.09 205
dps78.02 15975.94 18180.44 14486.06 13986.62 17282.58 16469.98 18875.14 13377.76 8869.08 12559.93 17778.47 13279.47 19777.96 19887.78 19583.40 189
PatchmatchNetpermissive78.67 15478.85 14878.46 16186.85 13386.03 17483.77 15868.11 19680.88 9866.19 13872.90 10473.40 11978.06 13579.25 19977.71 19987.75 19681.75 195
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
MDTV_nov1_ep13_2view73.21 19572.91 19573.56 19280.01 19984.28 19078.62 19166.43 20268.64 17559.12 18660.39 17459.69 18069.81 17978.82 20177.43 20087.36 19781.11 199
MDTV_nov1_ep1379.14 14879.49 14478.74 15785.40 14886.89 17084.32 15570.29 18678.85 11369.42 12475.37 8873.29 12075.64 15180.61 19279.48 19387.36 19781.91 194
EPMVS77.53 16478.07 15776.90 17186.89 13284.91 18782.18 17266.64 20181.00 9664.11 15372.75 10569.68 13474.42 16279.36 19878.13 19787.14 19980.68 201
EU-MVSNet69.98 20072.30 19767.28 20375.67 21179.39 20873.12 20569.94 18963.59 19642.80 21362.93 16056.71 19655.07 20479.13 20078.55 19687.06 20085.82 181
new-patchmatchnet63.80 20663.31 20864.37 20676.49 20775.99 21163.73 21470.99 18357.27 20943.08 21245.86 20843.80 21645.13 21273.20 20970.68 21286.80 20176.34 209
pmnet_mix0271.95 19671.83 19972.10 19581.40 19680.63 20673.78 20372.85 17770.90 16354.89 19362.17 16257.42 19262.92 19776.80 20473.98 20886.74 20280.87 200
CMPMVSbinary56.49 1773.84 19471.73 20076.31 17785.20 15285.67 17975.80 19973.23 17462.26 19865.40 14353.40 19859.70 17971.77 17380.25 19479.56 19286.45 20381.28 197
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
MDA-MVSNet-bldmvs66.22 20464.49 20768.24 20161.67 21682.11 20270.07 20976.16 16259.14 20747.94 20754.35 19535.82 22267.33 18864.94 21475.68 20386.30 20479.36 203
MVS-HIRNet68.83 20166.39 20571.68 19677.58 20575.52 21266.45 21265.05 20662.16 19962.84 16044.76 21156.60 19771.96 17278.04 20275.06 20686.18 20572.56 211
CHOSEN 280x42080.28 13281.66 11378.67 15882.92 18279.24 20985.36 14466.79 20078.11 11770.32 11675.03 9179.87 7981.09 9889.07 11083.16 17985.54 20687.17 170
tpm cat177.78 16275.28 18880.70 13987.14 13085.84 17785.81 13770.40 18577.44 12178.80 7963.72 15764.01 15576.55 14775.60 20775.21 20585.51 20785.12 182
tpm76.30 17976.05 17976.59 17386.97 13183.01 19483.83 15767.06 19971.83 15863.87 15569.56 12162.88 16173.41 16779.79 19678.59 19584.41 20886.68 174
tpmrst76.55 17375.99 18077.20 16787.32 12783.05 19382.86 16365.62 20378.61 11667.22 13469.19 12365.71 14875.87 15076.75 20575.33 20484.31 20983.28 190
pmmvs361.89 20861.74 21062.06 20864.30 21570.83 21664.22 21352.14 21648.78 21744.47 21141.67 21341.70 22063.03 19676.06 20676.02 20284.18 21077.14 208
ADS-MVSNet74.53 19175.69 18473.17 19381.57 19580.71 20579.27 18963.03 21079.27 11159.94 18367.86 13168.32 14471.08 17577.33 20376.83 20184.12 21179.53 202
ambc61.92 20970.98 21473.54 21463.64 21560.06 20352.23 20038.44 21419.17 22557.12 20182.33 18875.03 20783.21 21284.89 183
FPMVS63.63 20760.08 21267.78 20280.01 19971.50 21572.88 20669.41 19261.82 20053.11 19645.12 20942.11 21950.86 20866.69 21263.84 21380.41 21369.46 213
N_pmnet66.85 20366.63 20467.11 20478.73 20274.66 21370.53 20871.07 18266.46 18446.54 20851.68 20251.91 21055.48 20374.68 20872.38 20980.29 21474.65 210
new_pmnet59.28 20961.47 21156.73 21061.66 21768.29 21759.57 21654.91 21360.83 20234.38 22044.66 21243.65 21749.90 20971.66 21071.56 21179.94 21569.67 212
PMVScopyleft50.48 1855.81 21151.93 21360.33 20972.90 21349.34 21948.78 21869.51 19143.49 21854.25 19436.26 21641.04 22139.71 21565.07 21360.70 21476.85 21667.58 214
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
Gipumacopyleft49.17 21247.05 21551.65 21159.67 21848.39 22041.98 22163.47 20955.64 21233.33 22114.90 21913.78 22641.34 21469.31 21172.30 21070.11 21755.00 218
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMMVS241.68 21444.74 21638.10 21246.97 22252.32 21840.63 22248.08 21735.51 2197.36 22626.86 21824.64 22416.72 22055.24 21759.03 21568.85 21859.59 217
test_method41.78 21348.10 21434.42 21510.74 22519.78 22644.64 22017.73 22059.83 20438.67 21835.82 21754.41 20434.94 21662.87 21543.13 21859.81 21960.82 216
DeepMVS_CXcopyleft48.31 22148.03 21926.08 21956.42 21025.77 22247.51 20531.31 22351.30 20748.49 21853.61 22061.52 215
tmp_tt32.73 21643.96 22321.15 22526.71 2238.99 22165.67 18951.39 20256.01 19142.64 21811.76 22156.60 21650.81 21753.55 221
E-PMN31.40 21526.80 21836.78 21351.39 22129.96 22320.20 22454.17 21425.93 22112.75 22414.73 2208.58 22834.10 21827.36 22037.83 21948.07 22243.18 220
EMVS30.49 21725.44 21936.39 21451.47 22029.89 22420.17 22554.00 21526.49 22012.02 22513.94 2228.84 22734.37 21725.04 22134.37 22046.29 22339.53 221
MVEpermissive30.17 1930.88 21633.52 21727.80 21823.78 22439.16 22218.69 22646.90 21821.88 22215.39 22314.37 2217.31 22924.41 21941.63 21956.22 21637.64 22454.07 219
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
testmvs1.03 2181.63 2200.34 2190.09 2270.35 2270.61 2280.16 2221.49 2230.10 2283.15 2230.15 2300.86 2231.32 2221.18 2210.20 2253.76 223
test1230.87 2191.40 2210.25 2200.03 2280.25 2280.35 2290.08 2241.21 2240.05 2292.84 2240.03 2310.89 2220.43 2231.16 2220.13 2263.87 222
uanet_test0.00 2200.00 2220.00 2210.00 2290.00 2290.00 2300.00 2250.00 2250.00 2300.00 2250.00 2320.00 2250.00 2240.00 2230.00 2270.00 224
sosnet-low-res0.00 2200.00 2220.00 2210.00 2290.00 2290.00 2300.00 2250.00 2250.00 2300.00 2250.00 2320.00 2250.00 2240.00 2230.00 2270.00 224
sosnet0.00 2200.00 2220.00 2210.00 2290.00 2290.00 2300.00 2250.00 2250.00 2300.00 2250.00 2320.00 2250.00 2240.00 2230.00 2270.00 224
RE-MVS-def56.08 192
9.1492.16 17
SR-MVS96.58 2590.99 2192.40 13
our_test_381.81 19383.96 19176.61 197
MTAPA92.97 291.03 23
MTMP93.14 190.21 30
Patchmatch-RL test8.55 227
mPP-MVS97.06 1288.08 45
NP-MVS87.47 52
Patchmtry85.54 18282.30 16968.23 19465.37 144