This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort by
MCST-MVS93.81 1694.06 1893.53 1796.79 2396.85 2095.95 1391.69 1692.20 2687.17 3290.83 2793.41 691.96 1494.49 2393.50 3197.61 197.12 22
xxxxxxxxxxxxxcwj92.95 2491.88 3394.20 896.75 2497.07 1195.82 1892.60 693.98 1291.09 895.89 571.01 12691.93 1594.40 2593.56 2897.04 297.27 16
SF-MVS94.61 794.96 994.20 896.75 2497.07 1195.82 1892.60 693.98 1291.09 895.89 592.54 1291.93 1594.40 2593.56 2897.04 297.27 16
SED-MVS95.61 196.36 194.73 296.84 1998.15 297.08 392.92 295.64 291.84 495.98 495.33 192.83 696.00 194.94 396.90 498.45 2
DVP-MVS95.56 296.26 294.73 296.93 1698.19 196.62 692.81 496.15 191.73 595.01 795.31 293.41 195.95 294.77 796.90 498.46 1
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
DPE-MVScopyleft95.53 396.13 394.82 196.81 2298.05 397.42 193.09 194.31 891.49 697.12 195.03 393.27 395.55 594.58 1196.86 698.25 3
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
TSAR-MVS + GP.92.71 2893.91 2091.30 3591.96 7296.00 4193.43 4187.94 4192.53 2286.27 4093.57 1591.94 1891.44 2593.29 4092.89 4396.78 797.15 21
ETV-MVS89.22 5089.76 4788.60 6091.60 7394.61 6389.48 8183.46 8185.20 6281.58 6082.75 4682.59 6488.80 3894.57 2193.28 3796.68 895.31 55
APDe-MVS95.23 495.69 594.70 497.12 1097.81 597.19 292.83 395.06 590.98 1096.47 292.77 1093.38 295.34 894.21 1596.68 898.17 4
CS-MVS88.97 5289.44 5188.41 6491.45 7595.24 5190.03 7082.43 9684.08 6881.16 6481.02 5883.83 5888.74 4094.25 2892.73 4596.67 1094.95 60
MVS_030490.88 4091.35 3890.34 4293.91 5296.79 2394.49 3486.54 5086.57 5582.85 5581.68 5389.70 3387.57 5594.64 1993.93 2096.67 1096.15 41
3Dnovator85.17 590.48 4289.90 4691.16 3794.88 4395.74 4693.82 3785.36 5789.28 4587.81 2874.34 9287.40 4888.56 4393.07 4393.74 2596.53 1295.71 47
TSAR-MVS + MP.94.48 1094.97 893.90 1395.53 3797.01 1596.69 590.71 2494.24 990.92 1194.97 892.19 1593.03 494.83 1493.60 2696.51 1397.97 8
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
MSP-MVS95.12 595.83 494.30 596.82 2197.94 496.98 492.37 1195.40 390.59 1396.16 393.71 592.70 794.80 1594.77 796.37 1497.99 7
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
QAPM89.49 4889.58 4989.38 5294.73 4595.94 4292.35 4985.00 6085.69 6080.03 7276.97 7887.81 4687.87 5092.18 5892.10 4896.33 1596.40 38
MVS_111021_HR90.56 4191.29 3989.70 4994.71 4695.63 4791.81 5786.38 5187.53 5281.29 6287.96 3285.43 5287.69 5293.90 3392.93 4196.33 1595.69 48
CANet91.33 3891.46 3691.18 3695.01 4096.71 2493.77 3887.39 4687.72 5187.26 3181.77 5189.73 3287.32 5994.43 2493.86 2196.31 1796.02 43
APD-MVScopyleft94.37 1194.47 1594.26 697.18 896.99 1696.53 792.68 592.45 2489.96 1794.53 1191.63 2092.89 594.58 2093.82 2296.31 1797.26 18
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
SteuartSystems-ACMMP94.06 1394.65 1193.38 1996.97 1597.36 896.12 991.78 1492.05 2887.34 3094.42 1290.87 2491.87 1995.47 794.59 1096.21 1997.77 10
Skip Steuart: Steuart Systems R&D Blog.
PHI-MVS92.05 3293.74 2190.08 4494.96 4197.06 1393.11 4587.71 4490.71 3780.78 6892.40 2291.03 2287.68 5394.32 2794.48 1296.21 1996.16 40
CNVR-MVS94.37 1194.65 1194.04 1197.29 697.11 1096.00 1092.43 1093.45 1689.85 1990.92 2593.04 892.59 995.77 494.82 596.11 2197.42 15
baseline184.54 8884.43 9184.67 8690.62 8591.16 10588.63 9583.75 7279.78 10071.16 10975.14 8774.10 10877.84 13391.56 6390.67 6896.04 2288.58 151
MSLP-MVS++92.02 3491.40 3792.75 2496.01 3295.88 4493.73 4089.00 3489.89 4490.31 1581.28 5688.85 3991.45 2392.88 4794.24 1496.00 2396.76 30
NCCC93.69 1993.66 2293.72 1697.37 596.66 2995.93 1692.50 993.40 1988.35 2587.36 3592.33 1492.18 1294.89 1394.09 1796.00 2396.91 26
ACMMPcopyleft92.03 3392.16 3191.87 3495.88 3496.55 3194.47 3589.49 3391.71 3185.26 4291.52 2484.48 5590.21 3292.82 4891.63 5295.92 2596.42 36
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
zzz-MVS93.80 1793.45 2594.20 897.53 396.43 3695.88 1791.12 2094.09 1192.74 387.68 3390.77 2592.04 1394.74 1793.56 2895.91 2696.85 27
SMA-MVScopyleft94.70 695.35 693.93 1297.57 297.57 795.98 1191.91 1394.50 690.35 1493.46 1792.72 1191.89 1895.89 395.22 195.88 2798.10 5
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
ACMMPR93.72 1893.94 1993.48 1897.07 1196.93 1795.78 2190.66 2693.88 1489.24 2193.53 1689.08 3892.24 1193.89 3493.50 3195.88 2796.73 31
HFP-MVS94.02 1494.22 1793.78 1497.25 796.85 2095.81 2090.94 2394.12 1090.29 1694.09 1489.98 3192.52 1093.94 3293.49 3395.87 2997.10 23
PVSNet_BlendedMVS88.19 6288.00 6288.42 6292.71 6894.82 6089.08 8683.81 7084.91 6586.38 3779.14 6578.11 8982.66 8293.05 4491.10 5695.86 3094.86 63
PVSNet_Blended88.19 6288.00 6288.42 6292.71 6894.82 6089.08 8683.81 7084.91 6586.38 3779.14 6578.11 8982.66 8293.05 4491.10 5695.86 3094.86 63
DeepC-MVS_fast88.76 193.10 2293.02 2993.19 2297.13 996.51 3395.35 2691.19 1993.14 2188.14 2685.26 4189.49 3591.45 2395.17 995.07 295.85 3296.48 34
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PGM-MVS92.76 2693.03 2892.45 2897.03 1396.67 2895.73 2387.92 4290.15 4386.53 3692.97 2088.33 4491.69 2193.62 3793.03 3995.83 3396.41 37
SD-MVS94.53 995.22 793.73 1595.69 3697.03 1495.77 2291.95 1294.41 791.35 794.97 893.34 791.80 2094.72 1893.99 1995.82 3498.07 6
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DeepC-MVS87.86 392.26 3191.86 3492.73 2596.18 2996.87 1995.19 2891.76 1592.17 2786.58 3581.79 5085.85 5090.88 2994.57 2194.61 995.80 3597.18 19
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
XVS93.11 6096.70 2591.91 5483.95 4888.82 4095.79 36
X-MVStestdata93.11 6096.70 2591.91 5483.95 4888.82 4095.79 36
DELS-MVS89.71 4689.68 4889.74 4793.75 5496.22 3893.76 3985.84 5382.53 7385.05 4478.96 6884.24 5684.25 7594.91 1294.91 495.78 3896.02 43
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
X-MVS92.36 3092.75 3091.90 3396.89 1796.70 2595.25 2790.48 2991.50 3383.95 4888.20 3188.82 4089.11 3693.75 3593.43 3495.75 3996.83 29
casdiffmvs87.45 6887.15 7087.79 6990.15 9694.22 6689.96 7283.93 6985.08 6380.91 6575.81 8377.88 9286.08 6791.86 6190.86 6295.74 4094.37 71
CP-MVS93.25 2193.26 2693.24 2196.84 1996.51 3395.52 2490.61 2792.37 2588.88 2290.91 2689.52 3491.91 1793.64 3692.78 4495.69 4197.09 24
MVSTER86.03 7686.12 7885.93 7888.62 10889.93 12489.33 8379.91 12281.87 8181.35 6181.07 5774.91 10380.66 9992.13 5990.10 7895.68 4292.80 100
3Dnovator+86.06 491.60 3690.86 4292.47 2796.00 3396.50 3594.70 3287.83 4390.49 3989.92 1874.68 9089.35 3690.66 3094.02 3094.14 1695.67 4396.85 27
OpenMVScopyleft82.53 1187.71 6586.84 7288.73 5794.42 4895.06 5591.02 6383.49 7882.50 7582.24 5967.62 12985.48 5185.56 7091.19 6991.30 5595.67 4394.75 65
EIA-MVS87.94 6488.05 6187.81 6791.46 7495.00 5788.67 9382.81 8682.53 7380.81 6780.04 6180.20 7587.48 5692.58 5191.61 5395.63 4594.36 72
ET-MVSNet_ETH3D84.65 8685.58 8483.56 10574.99 20692.62 9490.29 6880.38 11082.16 7873.01 10583.41 4471.10 12587.05 6287.77 11990.17 7795.62 4691.82 123
CDPH-MVS91.14 3992.01 3290.11 4396.18 2996.18 3994.89 3188.80 3888.76 4877.88 8489.18 3087.71 4787.29 6093.13 4293.31 3695.62 4695.84 45
MP-MVScopyleft93.35 2093.59 2393.08 2397.39 496.82 2295.38 2590.71 2490.82 3688.07 2792.83 2190.29 2991.32 2794.03 2993.19 3895.61 4897.16 20
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
FMVSNet384.44 9184.64 9084.21 9484.32 15790.13 11989.85 7480.37 11181.17 8675.50 8969.63 11479.69 8179.62 11989.72 9690.52 7295.59 4991.58 131
HPM-MVS++copyleft94.60 894.91 1094.24 797.86 196.53 3296.14 892.51 893.87 1590.76 1293.45 1893.84 492.62 895.11 1194.08 1895.58 5097.48 13
CLD-MVS88.66 5488.52 5588.82 5691.37 7794.22 6692.82 4882.08 9888.27 5085.14 4381.86 4978.53 8885.93 6991.17 7090.61 6995.55 5195.00 58
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
ACMMP_NAP93.94 1594.49 1493.30 2097.03 1397.31 995.96 1291.30 1893.41 1888.55 2493.00 1990.33 2891.43 2695.53 694.41 1395.53 5297.47 14
GBi-Net84.51 8984.80 8884.17 9584.20 15889.95 12189.70 7580.37 11181.17 8675.50 8969.63 11479.69 8179.75 11690.73 8390.72 6495.52 5391.71 125
test184.51 8984.80 8884.17 9584.20 15889.95 12189.70 7580.37 11181.17 8675.50 8969.63 11479.69 8179.75 11690.73 8390.72 6495.52 5391.71 125
FMVSNet283.87 9483.73 9684.05 9984.20 15889.95 12189.70 7580.21 11679.17 10774.89 9365.91 13477.49 9379.75 11690.87 8091.00 6095.52 5391.71 125
DPM-MVS91.72 3591.48 3592.00 3195.53 3795.75 4595.94 1491.07 2191.20 3485.58 4181.63 5490.74 2688.40 4593.40 3893.75 2495.45 5693.85 82
OPM-MVS87.56 6785.80 8389.62 5093.90 5394.09 6994.12 3688.18 3975.40 12777.30 8776.41 7977.93 9188.79 3992.20 5690.82 6395.40 5793.72 86
abl_690.66 4094.65 4796.27 3792.21 5086.94 4890.23 4186.38 3785.50 4092.96 988.37 4695.40 5795.46 53
CSCG92.76 2693.16 2792.29 2996.30 2897.74 694.67 3388.98 3692.46 2389.73 2086.67 3792.15 1788.69 4292.26 5492.92 4295.40 5797.89 9
canonicalmvs89.36 4989.92 4488.70 5891.38 7695.92 4391.81 5782.61 9490.37 4082.73 5782.09 4879.28 8488.30 4791.17 7093.59 2795.36 6097.04 25
IB-MVS79.09 1282.60 10682.19 10483.07 10991.08 7993.55 7680.90 17481.35 10376.56 11980.87 6664.81 14669.97 13068.87 17585.64 14990.06 8095.36 6094.74 66
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
gg-mvs-nofinetune75.64 18077.26 15973.76 18587.92 11492.20 9787.32 11064.67 20351.92 20935.35 21346.44 20177.05 9671.97 16592.64 5091.02 5995.34 6289.53 146
Vis-MVSNetpermissive84.38 9386.68 7681.70 12287.65 11994.89 5888.14 10080.90 10774.48 13368.23 12577.53 7580.72 7269.98 17292.68 4991.90 4995.33 6394.58 69
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
TAPA-MVS84.37 788.91 5388.93 5388.89 5593.00 6394.85 5992.00 5384.84 6191.68 3280.05 7179.77 6384.56 5488.17 4890.11 9189.00 10995.30 6492.57 110
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
MVS_Test86.93 7087.24 6986.56 7490.10 9793.47 7790.31 6780.12 11783.55 7078.12 8079.58 6479.80 7985.45 7190.17 9090.59 7095.29 6593.53 89
LGP-MVS_train88.25 6188.55 5487.89 6692.84 6693.66 7493.35 4285.22 5985.77 5874.03 9886.60 3876.29 9886.62 6591.20 6890.58 7195.29 6595.75 46
UniMVSNet_NR-MVSNet81.87 11281.33 11282.50 11485.31 14491.30 10385.70 13284.25 6475.89 12364.21 14566.95 13164.65 14880.22 10687.07 12589.18 10495.27 6794.29 73
IS_MVSNet86.18 7488.18 5983.85 10191.02 8094.72 6287.48 10782.46 9581.05 9070.28 11376.98 7782.20 6776.65 14093.97 3193.38 3595.18 6894.97 59
train_agg92.87 2593.53 2492.09 3096.88 1895.38 4995.94 1490.59 2890.65 3883.65 5194.31 1391.87 1990.30 3193.38 3992.42 4695.17 6996.73 31
NR-MVSNet80.25 12779.98 13180.56 13785.20 14690.94 10785.65 13483.58 7675.74 12461.36 16965.30 14156.75 18972.38 16488.46 11288.80 11195.16 7093.87 81
PVSNet_Blended_VisFu87.40 6987.80 6486.92 7392.86 6495.40 4888.56 9783.45 8279.55 10382.26 5874.49 9184.03 5779.24 12492.97 4691.53 5495.15 7196.65 33
EPP-MVSNet86.55 7187.76 6685.15 8390.52 8794.41 6487.24 11382.32 9781.79 8273.60 10078.57 7082.41 6582.07 8891.23 6690.39 7395.14 7295.48 52
thisisatest053085.15 8385.86 8184.33 9189.19 10492.57 9587.22 11480.11 11882.15 7974.41 9578.15 7273.80 11279.90 11290.99 7789.58 9395.13 7393.75 85
TranMVSNet+NR-MVSNet80.52 12479.84 13381.33 12884.92 15390.39 11385.53 13784.22 6674.27 13660.68 17464.93 14559.96 17177.48 13586.75 13389.28 9995.12 7493.29 90
tttt051785.11 8485.81 8284.30 9289.24 10292.68 9187.12 11880.11 11881.98 8074.31 9778.08 7373.57 11479.90 11291.01 7689.58 9395.11 7593.77 84
UniMVSNet (Re)81.22 12081.08 11581.39 12685.35 14391.76 10184.93 14182.88 8576.13 12265.02 14264.94 14463.09 15475.17 14887.71 12089.04 10794.97 7694.88 62
FC-MVSNet-train85.18 8285.31 8685.03 8490.67 8491.62 10287.66 10583.61 7379.75 10174.37 9678.69 6971.21 12478.91 12591.23 6689.96 8394.96 7794.69 68
GeoE84.62 8783.98 9485.35 8289.34 10192.83 8888.34 9878.95 13279.29 10577.16 8868.10 12674.56 10583.40 7889.31 10389.23 10294.92 7894.57 70
tfpn200view982.86 10281.46 10984.48 8890.30 9493.09 8289.05 8882.71 8875.14 12869.56 11665.72 13663.13 15280.38 10591.15 7289.51 9594.91 7992.50 114
thres600view782.53 10881.02 11684.28 9390.61 8693.05 8388.57 9682.67 9074.12 13868.56 12465.09 14362.13 16380.40 10491.15 7289.02 10894.88 8092.59 108
thres20082.77 10481.25 11384.54 8790.38 9193.05 8389.13 8582.67 9074.40 13469.53 11865.69 13863.03 15580.63 10091.15 7289.42 9794.88 8092.04 120
Effi-MVS+85.33 8185.08 8785.63 8089.69 9993.42 7889.90 7380.31 11579.32 10472.48 10873.52 9874.03 10986.55 6690.99 7789.98 8294.83 8294.27 77
thres40082.68 10581.15 11484.47 8990.52 8792.89 8788.95 9182.71 8874.33 13569.22 12165.31 14062.61 15880.63 10090.96 7989.50 9694.79 8392.45 116
ACMP83.90 888.32 6088.06 6088.62 5992.18 7093.98 7191.28 6285.24 5886.69 5481.23 6385.62 3975.13 10287.01 6389.83 9489.77 8994.79 8395.43 54
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
DU-MVS81.20 12180.30 12582.25 11784.98 15190.94 10785.70 13283.58 7675.74 12464.21 14565.30 14159.60 17680.22 10686.89 12889.31 9894.77 8594.29 73
UA-Net86.07 7587.78 6584.06 9892.85 6595.11 5487.73 10484.38 6373.22 14773.18 10279.99 6289.22 3771.47 16893.22 4193.03 3994.76 8690.69 137
MVS_111021_LR90.14 4590.89 4189.26 5393.23 5994.05 7090.43 6684.65 6290.16 4284.52 4790.14 2883.80 5987.99 4992.50 5290.92 6194.74 8794.70 67
thres100view90082.55 10781.01 11884.34 9090.30 9492.27 9689.04 8982.77 8775.14 12869.56 11665.72 13663.13 15279.62 11989.97 9389.26 10094.73 8891.61 130
AdaColmapbinary90.29 4388.38 5792.53 2696.10 3195.19 5392.98 4691.40 1789.08 4788.65 2378.35 7181.44 6991.30 2890.81 8290.21 7694.72 8993.59 88
PCF-MVS84.60 688.66 5487.75 6789.73 4893.06 6296.02 4093.22 4490.00 3182.44 7680.02 7377.96 7485.16 5387.36 5888.54 11088.54 11494.72 8995.61 50
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
DI_MVS_plusplus_trai86.41 7385.54 8587.42 7189.24 10293.13 8192.16 5282.65 9282.30 7780.75 6968.30 12580.41 7385.01 7290.56 8890.07 7994.70 9194.01 79
Fast-Effi-MVS+83.77 9682.98 9984.69 8587.98 11391.87 10088.10 10177.70 14678.10 11373.04 10469.13 12068.51 13786.66 6490.49 8989.85 8794.67 9292.88 97
WR-MVS_H75.84 17876.93 16474.57 18482.86 17789.50 13778.34 18779.36 12966.90 17652.51 19260.20 16859.71 17359.73 19483.61 17285.77 15294.65 9392.84 98
OMC-MVS90.23 4490.40 4390.03 4593.45 5795.29 5091.89 5686.34 5293.25 2084.94 4581.72 5286.65 4988.90 3791.69 6290.27 7594.65 9393.95 80
HQP-MVS89.13 5189.58 4988.60 6093.53 5693.67 7393.29 4387.58 4588.53 4975.50 8987.60 3480.32 7487.07 6190.66 8789.95 8494.62 9596.35 39
PEN-MVS76.02 17576.07 17175.95 17483.17 17187.97 15579.65 17880.07 12166.57 17851.45 19560.94 16255.47 19466.81 18482.72 17786.80 13394.59 9692.03 121
ACMM83.27 1087.68 6686.09 7989.54 5193.26 5892.19 9891.43 6086.74 4986.02 5782.85 5575.63 8475.14 10188.41 4490.68 8689.99 8194.59 9692.97 95
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CANet_DTU85.43 8087.72 6882.76 11290.95 8393.01 8589.99 7175.46 16382.67 7264.91 14383.14 4580.09 7680.68 9892.03 6091.03 5894.57 9892.08 118
CP-MVSNet76.36 17276.41 16876.32 17182.73 18088.64 15079.39 18179.62 12467.21 17453.70 18960.72 16455.22 19567.91 18083.52 17386.34 14394.55 9993.19 91
EG-PatchMatch MVS76.40 17175.47 18077.48 16185.86 13690.22 11782.45 16073.96 16959.64 20159.60 17852.75 19362.20 16268.44 17788.23 11487.50 12294.55 9987.78 161
tfpnnormal77.46 15974.86 18480.49 13886.34 13288.92 14884.33 14881.26 10461.39 19661.70 16651.99 19553.66 20174.84 15188.63 10987.38 12594.50 10192.08 118
baseline282.80 10382.86 10182.73 11387.68 11890.50 11284.92 14278.93 13378.07 11473.06 10375.08 8869.77 13177.31 13688.90 10786.94 13194.50 10190.74 136
Vis-MVSNet (Re-imp)83.65 9786.81 7479.96 14290.46 9092.71 8984.84 14382.00 9980.93 9262.44 15876.29 8082.32 6665.54 18892.29 5391.66 5194.49 10391.47 132
PS-CasMVS75.90 17775.86 17675.96 17382.59 18188.46 15379.23 18479.56 12666.00 18152.77 19159.48 17254.35 19967.14 18383.37 17486.23 14494.47 10493.10 93
Baseline_NR-MVSNet79.84 13178.37 14881.55 12584.98 15186.66 16585.06 13983.49 7875.57 12663.31 15258.22 18060.97 16678.00 13186.89 12887.13 12794.47 10493.15 92
FMVSNet181.64 11780.61 12182.84 11182.36 18389.20 14288.67 9379.58 12570.79 15972.63 10758.95 17672.26 12179.34 12290.73 8390.72 6494.47 10491.62 129
DTE-MVSNet75.14 18275.44 18174.80 18183.18 17087.19 16278.25 18980.11 11866.05 18048.31 20060.88 16354.67 19664.54 18982.57 17986.17 14594.43 10790.53 141
PLCcopyleft83.76 988.61 5686.83 7390.70 3994.22 4992.63 9291.50 5987.19 4789.16 4686.87 3375.51 8580.87 7189.98 3490.01 9289.20 10394.41 10890.45 142
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
UGNet85.90 7888.23 5883.18 10888.96 10694.10 6887.52 10683.60 7481.66 8377.90 8380.76 5983.19 6166.70 18591.13 7590.71 6794.39 10996.06 42
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
TransMVSNet (Re)76.57 16675.16 18378.22 15885.60 14087.24 16182.46 15981.23 10559.80 20059.05 18257.07 18259.14 18066.60 18688.09 11586.82 13294.37 11087.95 160
gm-plane-assit70.29 19370.65 19569.88 19485.03 14978.50 20458.41 21165.47 19950.39 21140.88 20949.60 19750.11 20575.14 14991.43 6589.78 8894.32 11184.73 180
CNLPA88.40 5787.00 7190.03 4593.73 5594.28 6589.56 7985.81 5491.87 2987.55 2969.53 11881.49 6889.23 3589.45 10188.59 11394.31 11293.82 83
MAR-MVS88.39 5988.44 5688.33 6594.90 4295.06 5590.51 6583.59 7585.27 6179.07 7677.13 7682.89 6387.70 5192.19 5792.32 4794.23 11394.20 78
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
MSDG83.87 9481.02 11687.19 7292.17 7189.80 12889.15 8485.72 5580.61 9579.24 7566.66 13268.75 13682.69 8187.95 11787.44 12394.19 11485.92 174
pm-mvs178.51 15177.75 15679.40 14584.83 15489.30 13983.55 15479.38 12862.64 19263.68 15058.73 17864.68 14770.78 17189.79 9587.84 11994.17 11591.28 134
CPTT-MVS91.39 3790.95 4091.91 3295.06 3995.24 5195.02 3088.98 3691.02 3586.71 3484.89 4388.58 4391.60 2290.82 8189.67 9294.08 11696.45 35
v14419278.81 14577.22 16080.67 13582.95 17489.79 12986.40 12577.42 14768.26 17363.13 15359.50 17158.13 18280.08 11185.93 14586.08 14794.06 11792.83 99
diffmvs86.52 7286.76 7586.23 7688.31 11292.63 9289.58 7881.61 10286.14 5680.26 7079.00 6777.27 9483.58 7688.94 10689.06 10694.05 11894.29 73
v192192078.57 15076.99 16380.41 14082.93 17589.63 13586.38 12677.14 15068.31 17261.80 16558.89 17756.79 18880.19 10986.50 14086.05 14994.02 11992.76 102
ACMH78.52 1481.86 11380.45 12483.51 10790.51 8991.22 10485.62 13584.23 6570.29 16462.21 15969.04 12264.05 15084.48 7487.57 12188.45 11694.01 12092.54 112
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
WR-MVS76.63 16578.02 15375.02 17984.14 16189.76 13078.34 18780.64 10969.56 16552.32 19361.26 15861.24 16560.66 19384.45 16787.07 12893.99 12192.77 101
v1079.62 13478.19 14981.28 12983.73 16489.69 13287.27 11276.86 15370.50 16265.46 13760.58 16660.47 16880.44 10386.91 12786.63 13793.93 12292.55 111
anonymousdsp77.94 15479.00 14076.71 16779.03 19587.83 15679.58 17972.87 17165.80 18358.86 18365.82 13562.48 16075.99 14386.77 13288.66 11293.92 12395.68 49
v124078.15 15276.53 16680.04 14182.85 17889.48 13885.61 13676.77 15467.05 17561.18 17258.37 17956.16 19279.89 11486.11 14486.08 14793.92 12392.47 115
v879.90 13078.39 14781.66 12383.97 16289.81 12787.16 11677.40 14871.49 15367.71 12661.24 15962.49 15979.83 11585.48 15386.17 14593.89 12592.02 122
v2v48279.84 13178.07 15181.90 12083.75 16390.21 11887.17 11579.85 12370.65 16065.93 13561.93 15660.07 17080.82 9585.25 15586.71 13493.88 12691.70 128
thisisatest051579.76 13380.59 12278.80 15084.40 15688.91 14979.48 18076.94 15272.29 15167.33 12867.82 12865.99 14370.80 17088.50 11187.84 11993.86 12792.75 103
IterMVS-LS83.28 10082.95 10083.65 10288.39 11188.63 15186.80 12278.64 13776.56 11973.43 10172.52 10375.35 10080.81 9686.43 14188.51 11593.84 12892.66 105
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
TSAR-MVS + ACMM92.97 2394.51 1391.16 3795.88 3496.59 3095.09 2990.45 3093.42 1783.01 5394.68 1090.74 2688.74 4094.75 1693.78 2393.82 12997.63 11
v114479.38 14077.83 15481.18 13083.62 16590.23 11687.15 11778.35 13969.13 16764.02 14860.20 16859.41 17780.14 11086.78 13186.57 13893.81 13092.53 113
v119278.94 14477.33 15880.82 13383.25 16989.90 12586.91 12077.72 14568.63 17162.61 15759.17 17357.53 18580.62 10286.89 12886.47 14093.79 13192.75 103
TSAR-MVS + COLMAP88.40 5789.09 5287.60 7092.72 6793.92 7292.21 5085.57 5691.73 3073.72 9991.75 2373.22 11887.64 5491.49 6489.71 9193.73 13291.82 123
UniMVSNet_ETH3D79.24 14176.47 16782.48 11585.66 13990.97 10686.08 12981.63 10164.48 18868.94 12354.47 18857.65 18478.83 12685.20 15988.91 11093.72 13393.60 87
EPNet89.60 4789.91 4589.24 5496.45 2793.61 7592.95 4788.03 4085.74 5983.36 5287.29 3683.05 6280.98 9492.22 5591.85 5093.69 13495.58 51
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
HyFIR lowres test81.62 11979.45 13984.14 9791.00 8193.38 7988.27 9978.19 14076.28 12170.18 11448.78 19873.69 11383.52 7787.05 12687.83 12193.68 13589.15 148
V4279.59 13578.43 14680.94 13282.79 17989.71 13186.66 12376.73 15571.38 15467.42 12761.01 16162.30 16178.39 12885.56 15186.48 13993.65 13692.60 107
DCV-MVSNet85.88 7986.17 7785.54 8189.10 10589.85 12689.34 8280.70 10883.04 7178.08 8276.19 8179.00 8582.42 8589.67 9790.30 7493.63 13795.12 56
v7n77.22 16076.23 17078.38 15781.89 18689.10 14682.24 16576.36 15665.96 18261.21 17156.56 18355.79 19375.07 15086.55 13786.68 13593.52 13892.95 96
Anonymous2023121184.42 9283.02 9886.05 7788.85 10792.70 9088.92 9283.40 8379.99 9878.31 7955.83 18578.92 8683.33 7989.06 10589.76 9093.50 13994.90 61
ACMH+79.08 1381.84 11480.06 12983.91 10089.92 9890.62 10986.21 12783.48 8073.88 14065.75 13666.38 13365.30 14684.63 7385.90 14687.25 12693.45 14091.13 135
pmmvs576.93 16276.33 16977.62 16081.97 18588.40 15481.32 17074.35 16765.42 18661.42 16863.07 15257.95 18373.23 16285.60 15085.35 15793.41 14188.55 152
Anonymous20240521182.75 10289.58 10092.97 8689.04 8984.13 6778.72 10957.18 18176.64 9783.13 8089.55 9989.92 8593.38 14294.28 76
USDC80.69 12379.89 13281.62 12486.48 13089.11 14586.53 12478.86 13481.15 8963.48 15172.98 10059.12 18181.16 9287.10 12485.01 15993.23 14384.77 179
LS3D85.96 7784.37 9287.81 6794.13 5093.27 8090.26 6989.00 3484.91 6572.84 10671.74 10472.47 12087.45 5789.53 10089.09 10593.20 14489.60 145
MS-PatchMatch81.79 11581.44 11082.19 11990.35 9289.29 14088.08 10275.36 16477.60 11569.00 12264.37 14978.87 8777.14 13988.03 11685.70 15393.19 14586.24 171
Fast-Effi-MVS+-dtu79.95 12980.69 12079.08 14786.36 13189.14 14485.85 13072.28 17372.85 15059.32 17970.43 11268.42 13877.57 13486.14 14386.44 14193.11 14691.39 133
GA-MVS79.52 13679.71 13679.30 14685.68 13890.36 11484.55 14578.44 13870.47 16357.87 18468.52 12461.38 16476.21 14289.40 10287.89 11893.04 14789.96 144
DeepPCF-MVS88.51 292.64 2994.42 1690.56 4194.84 4496.92 1891.31 6189.61 3295.16 484.55 4689.91 2991.45 2190.15 3395.12 1094.81 692.90 14897.58 12
CDS-MVSNet81.63 11882.09 10581.09 13187.21 12490.28 11587.46 10980.33 11469.06 16870.66 11071.30 10573.87 11067.99 17889.58 9889.87 8692.87 14990.69 137
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
Effi-MVS+-dtu82.05 11081.76 10682.38 11687.72 11690.56 11186.90 12178.05 14273.85 14166.85 13071.29 10671.90 12282.00 8986.64 13685.48 15592.76 15092.58 109
v14878.59 14976.84 16580.62 13683.61 16689.16 14383.65 15379.24 13069.38 16669.34 12059.88 17060.41 16975.19 14783.81 17184.63 16492.70 15190.63 139
pmmvs479.99 12878.08 15082.22 11883.04 17387.16 16384.95 14078.80 13678.64 11074.53 9464.61 14759.41 17779.45 12184.13 16984.54 16692.53 15288.08 157
test_part183.23 10180.55 12386.35 7588.60 10990.61 11090.78 6481.13 10670.89 15883.01 5355.72 18674.60 10482.19 8687.79 11889.26 10092.39 15395.01 57
RPMNet77.07 16177.63 15776.42 16985.56 14185.15 17881.37 16865.27 20074.71 13160.29 17563.71 15166.59 14273.64 15882.71 17882.12 18092.38 15488.39 153
CR-MVSNet78.71 14778.86 14178.55 15485.85 13785.15 17882.30 16368.23 18974.71 13165.37 13964.39 14869.59 13377.18 13785.10 16184.87 16092.34 15588.21 155
COLMAP_ROBcopyleft76.78 1580.50 12578.49 14482.85 11090.96 8289.65 13486.20 12883.40 8377.15 11766.54 13162.27 15465.62 14577.89 13285.23 15684.70 16392.11 15684.83 178
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
PatchMatch-RL83.34 9981.36 11185.65 7990.33 9389.52 13684.36 14781.82 10080.87 9479.29 7474.04 9362.85 15786.05 6888.40 11387.04 13092.04 15786.77 167
PMMVS81.65 11684.05 9378.86 14978.56 19782.63 19183.10 15567.22 19381.39 8470.11 11584.91 4279.74 8082.12 8787.31 12285.70 15392.03 15886.67 170
IterMVS-SCA-FT79.41 13980.20 12778.49 15585.88 13486.26 16783.95 15071.94 17473.55 14561.94 16270.48 11170.50 12775.23 14685.81 14884.61 16591.99 15990.18 143
baseline84.89 8586.06 8083.52 10687.25 12389.67 13387.76 10375.68 16284.92 6478.40 7880.10 6080.98 7080.20 10886.69 13587.05 12991.86 16092.99 94
MIMVSNet74.69 18475.60 17973.62 18676.02 20485.31 17781.21 17367.43 19271.02 15659.07 18154.48 18764.07 14966.14 18786.52 13986.64 13691.83 16181.17 192
FC-MVSNet-test76.53 16881.62 10870.58 19384.99 15085.73 17274.81 19578.85 13577.00 11839.13 21175.90 8273.50 11554.08 20086.54 13885.99 15091.65 16286.68 168
pmmvs-eth3d74.32 18671.96 19277.08 16477.33 20082.71 19078.41 18676.02 16066.65 17765.98 13454.23 19049.02 20873.14 16382.37 18182.69 17791.61 16386.05 173
SixPastTwentyTwo76.02 17575.72 17776.36 17083.38 16787.54 15875.50 19476.22 15765.50 18557.05 18570.64 10853.97 20074.54 15380.96 18582.12 18091.44 16489.35 147
pmmvs674.83 18372.89 19077.09 16382.11 18487.50 15980.88 17576.97 15152.79 20861.91 16446.66 20060.49 16769.28 17486.74 13485.46 15691.39 16590.56 140
test-mter77.79 15580.02 13075.18 17881.18 19182.85 18980.52 17762.03 20773.62 14462.16 16073.55 9773.83 11173.81 15784.67 16483.34 17291.37 16688.31 154
TDRefinement79.05 14377.05 16281.39 12688.45 11089.00 14786.92 11982.65 9274.21 13764.41 14459.17 17359.16 17974.52 15485.23 15685.09 15891.37 16687.51 163
test-LLR79.47 13879.84 13379.03 14887.47 12082.40 19481.24 17178.05 14273.72 14262.69 15573.76 9574.42 10673.49 15984.61 16582.99 17591.25 16887.01 165
TESTMET0.1,177.78 15679.84 13375.38 17780.86 19282.40 19481.24 17162.72 20673.72 14262.69 15573.76 9574.42 10673.49 15984.61 16582.99 17591.25 16887.01 165
TinyColmap76.73 16373.95 18779.96 14285.16 14885.64 17482.34 16278.19 14070.63 16162.06 16160.69 16549.61 20680.81 9685.12 16083.69 17191.22 17082.27 187
FMVSNet575.50 18176.07 17174.83 18076.16 20281.19 19781.34 16970.21 18273.20 14861.59 16758.97 17568.33 13968.50 17685.87 14785.85 15191.18 17179.11 198
IterMVS78.79 14679.71 13677.71 15985.26 14585.91 17084.54 14669.84 18573.38 14661.25 17070.53 11070.35 12874.43 15585.21 15883.80 17090.95 17288.77 150
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
PatchT76.42 16977.81 15574.80 18178.46 19884.30 18371.82 20165.03 20273.89 13965.37 13961.58 15766.70 14177.18 13785.10 16184.87 16090.94 17388.21 155
EPNet_dtu81.98 11183.82 9579.83 14494.10 5185.97 16987.29 11184.08 6880.61 9559.96 17681.62 5577.19 9562.91 19287.21 12386.38 14290.66 17487.77 162
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PM-MVS74.17 18773.10 18875.41 17676.07 20382.53 19277.56 19071.69 17571.04 15561.92 16361.23 16047.30 20974.82 15281.78 18379.80 18490.42 17588.05 158
test0.0.03 176.03 17478.51 14373.12 18987.47 12085.13 18076.32 19278.05 14273.19 14950.98 19870.64 10869.28 13455.53 19685.33 15484.38 16790.39 17681.63 190
Anonymous2023120670.80 19270.59 19671.04 19281.60 18882.49 19374.64 19675.87 16164.17 18949.27 19944.85 20453.59 20254.68 19983.07 17582.34 17990.17 17783.65 182
CHOSEN 1792x268882.16 10980.91 11983.61 10391.14 7892.01 9989.55 8079.15 13179.87 9970.29 11252.51 19472.56 11981.39 9088.87 10888.17 11790.15 17892.37 117
MIMVSNet165.00 19966.24 20063.55 20258.41 21380.01 20169.00 20474.03 16855.81 20641.88 20836.81 20949.48 20747.89 20581.32 18482.40 17890.08 17977.88 200
LTVRE_ROB74.41 1675.78 17974.72 18577.02 16585.88 13489.22 14182.44 16177.17 14950.57 21045.45 20465.44 13952.29 20381.25 9185.50 15287.42 12489.94 18092.62 106
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
GG-mvs-BLEND57.56 20482.61 10328.34 2120.22 22090.10 12079.37 1820.14 21879.56 1020.40 22171.25 10783.40 600.30 21886.27 14283.87 16889.59 18183.83 181
CVMVSNet76.70 16478.46 14574.64 18383.34 16884.48 18281.83 16774.58 16568.88 16951.23 19769.77 11370.05 12967.49 18184.27 16883.81 16989.38 18287.96 159
TAMVS76.42 16977.16 16175.56 17583.05 17285.55 17580.58 17671.43 17665.40 18761.04 17367.27 13069.22 13567.99 17884.88 16384.78 16289.28 18383.01 185
CostFormer80.94 12280.21 12681.79 12187.69 11788.58 15287.47 10870.66 17980.02 9777.88 8473.03 9971.40 12378.24 12979.96 18979.63 18588.82 18488.84 149
RPSCF83.46 9883.36 9783.59 10487.75 11587.35 16084.82 14479.46 12783.84 6978.12 8082.69 4779.87 7782.60 8482.47 18081.13 18388.78 18586.13 172
test20.0368.31 19670.05 19766.28 20082.41 18280.84 19867.35 20576.11 15958.44 20340.80 21053.77 19154.54 19742.28 20783.07 17581.96 18288.73 18677.76 201
SCA79.51 13780.15 12878.75 15186.58 12987.70 15783.07 15668.53 18881.31 8566.40 13273.83 9475.38 9979.30 12380.49 18779.39 18888.63 18782.96 186
testgi71.92 19174.20 18669.27 19584.58 15583.06 18673.40 19874.39 16664.04 19046.17 20368.90 12357.15 18748.89 20484.07 17083.08 17488.18 18879.09 199
dps78.02 15375.94 17580.44 13986.06 13386.62 16682.58 15869.98 18375.14 12877.76 8669.08 12159.93 17278.47 12779.47 19177.96 19287.78 18983.40 183
PatchmatchNetpermissive78.67 14878.85 14278.46 15686.85 12886.03 16883.77 15268.11 19180.88 9366.19 13372.90 10173.40 11678.06 13079.25 19377.71 19387.75 19081.75 189
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
MDTV_nov1_ep13_2view73.21 18972.91 18973.56 18780.01 19384.28 18478.62 18566.43 19768.64 17059.12 18060.39 16759.69 17569.81 17378.82 19577.43 19487.36 19181.11 193
MDTV_nov1_ep1379.14 14279.49 13878.74 15285.40 14286.89 16484.32 14970.29 18178.85 10869.42 11975.37 8673.29 11775.64 14580.61 18679.48 18787.36 19181.91 188
EPMVS77.53 15878.07 15176.90 16686.89 12784.91 18182.18 16666.64 19681.00 9164.11 14772.75 10269.68 13274.42 15679.36 19278.13 19187.14 19380.68 195
EU-MVSNet69.98 19472.30 19167.28 19875.67 20579.39 20273.12 19969.94 18463.59 19142.80 20762.93 15356.71 19055.07 19879.13 19478.55 19087.06 19485.82 175
new-patchmatchnet63.80 20063.31 20264.37 20176.49 20175.99 20563.73 20870.99 17857.27 20443.08 20645.86 20243.80 21045.13 20673.20 20370.68 20686.80 19576.34 203
pmnet_mix0271.95 19071.83 19372.10 19081.40 19080.63 20073.78 19772.85 17270.90 15754.89 18762.17 15557.42 18662.92 19176.80 19873.98 20286.74 19680.87 194
CMPMVSbinary56.49 1773.84 18871.73 19476.31 17285.20 14685.67 17375.80 19373.23 17062.26 19365.40 13853.40 19259.70 17471.77 16780.25 18879.56 18686.45 19781.28 191
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
MDA-MVSNet-bldmvs66.22 19864.49 20168.24 19661.67 21082.11 19670.07 20376.16 15859.14 20247.94 20154.35 18935.82 21667.33 18264.94 20875.68 19786.30 19879.36 197
MVS-HIRNet68.83 19566.39 19971.68 19177.58 19975.52 20666.45 20665.05 20162.16 19462.84 15444.76 20556.60 19171.96 16678.04 19675.06 20086.18 19972.56 205
CHOSEN 280x42080.28 12681.66 10778.67 15382.92 17679.24 20385.36 13866.79 19578.11 11270.32 11175.03 8979.87 7781.09 9389.07 10483.16 17385.54 20087.17 164
tpm cat177.78 15675.28 18280.70 13487.14 12585.84 17185.81 13170.40 18077.44 11678.80 7763.72 15064.01 15176.55 14175.60 20175.21 19985.51 20185.12 176
tpm76.30 17376.05 17376.59 16886.97 12683.01 18883.83 15167.06 19471.83 15263.87 14969.56 11762.88 15673.41 16179.79 19078.59 18984.41 20286.68 168
tpmrst76.55 16775.99 17477.20 16287.32 12283.05 18782.86 15765.62 19878.61 11167.22 12969.19 11965.71 14475.87 14476.75 19975.33 19884.31 20383.28 184
pmmvs361.89 20261.74 20462.06 20364.30 20970.83 21064.22 20752.14 21148.78 21244.47 20541.67 20741.70 21463.03 19076.06 20076.02 19684.18 20477.14 202
ADS-MVSNet74.53 18575.69 17873.17 18881.57 18980.71 19979.27 18363.03 20579.27 10659.94 17767.86 12768.32 14071.08 16977.33 19776.83 19584.12 20579.53 196
ambc61.92 20370.98 20873.54 20863.64 20960.06 19852.23 19438.44 20819.17 21957.12 19582.33 18275.03 20183.21 20684.89 177
FPMVS63.63 20160.08 20667.78 19780.01 19371.50 20972.88 20069.41 18761.82 19553.11 19045.12 20342.11 21350.86 20266.69 20663.84 20780.41 20769.46 207
N_pmnet66.85 19766.63 19867.11 19978.73 19674.66 20770.53 20271.07 17766.46 17946.54 20251.68 19651.91 20455.48 19774.68 20272.38 20380.29 20874.65 204
new_pmnet59.28 20361.47 20556.73 20561.66 21168.29 21159.57 21054.91 20860.83 19734.38 21444.66 20643.65 21149.90 20371.66 20471.56 20579.94 20969.67 206
PMVScopyleft50.48 1855.81 20551.93 20760.33 20472.90 20749.34 21348.78 21269.51 18643.49 21354.25 18836.26 21041.04 21539.71 20965.07 20760.70 20876.85 21067.58 208
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
Gipumacopyleft49.17 20647.05 20951.65 20659.67 21248.39 21441.98 21563.47 20455.64 20733.33 21514.90 21313.78 22041.34 20869.31 20572.30 20470.11 21155.00 212
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMMVS241.68 20844.74 21038.10 20746.97 21652.32 21240.63 21648.08 21235.51 2147.36 22026.86 21224.64 21816.72 21455.24 21159.03 20968.85 21259.59 211
test_method41.78 20748.10 20834.42 21010.74 21919.78 22044.64 21417.73 21559.83 19938.67 21235.82 21154.41 19834.94 21062.87 20943.13 21259.81 21360.82 210
DeepMVS_CXcopyleft48.31 21548.03 21326.08 21456.42 20525.77 21647.51 19931.31 21751.30 20148.49 21253.61 21461.52 209
tmp_tt32.73 21143.96 21721.15 21926.71 2178.99 21665.67 18451.39 19656.01 18442.64 21211.76 21556.60 21050.81 21153.55 215
E-PMN31.40 20926.80 21236.78 20851.39 21529.96 21720.20 21854.17 20925.93 21612.75 21814.73 2148.58 22234.10 21227.36 21437.83 21348.07 21643.18 214
EMVS30.49 21125.44 21336.39 20951.47 21429.89 21820.17 21954.00 21026.49 21512.02 21913.94 2168.84 22134.37 21125.04 21534.37 21446.29 21739.53 215
MVEpermissive30.17 1930.88 21033.52 21127.80 21323.78 21839.16 21618.69 22046.90 21321.88 21715.39 21714.37 2157.31 22324.41 21341.63 21356.22 21037.64 21854.07 213
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
testmvs1.03 2121.63 2140.34 2140.09 2210.35 2210.61 2220.16 2171.49 2180.10 2223.15 2170.15 2240.86 2171.32 2161.18 2150.20 2193.76 217
test1230.87 2131.40 2150.25 2150.03 2220.25 2220.35 2230.08 2191.21 2190.05 2232.84 2180.03 2250.89 2160.43 2171.16 2160.13 2203.87 216
uanet_test0.00 2140.00 2160.00 2160.00 2230.00 2230.00 2240.00 2200.00 2200.00 2240.00 2190.00 2260.00 2190.00 2180.00 2170.00 2210.00 218
sosnet-low-res0.00 2140.00 2160.00 2160.00 2230.00 2230.00 2240.00 2200.00 2200.00 2240.00 2190.00 2260.00 2190.00 2180.00 2170.00 2210.00 218
sosnet0.00 2140.00 2160.00 2160.00 2230.00 2230.00 2240.00 2200.00 2200.00 2240.00 2190.00 2260.00 2190.00 2180.00 2170.00 2210.00 218
RE-MVS-def56.08 186
9.1492.16 16
SR-MVS96.58 2690.99 2292.40 13
our_test_381.81 18783.96 18576.61 191
MTAPA92.97 291.03 22
MTMP93.14 190.21 30
Patchmatch-RL test8.55 221
mPP-MVS97.06 1288.08 45
NP-MVS87.47 53
Patchmtry85.54 17682.30 16368.23 18965.37 139