This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort by
DPE-MVScopyleft95.53 496.13 494.82 296.81 2298.05 497.42 193.09 194.31 991.49 697.12 195.03 393.27 395.55 694.58 1296.86 698.25 4
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
APDe-MVS95.23 595.69 694.70 597.12 1097.81 697.19 292.83 495.06 690.98 996.47 292.77 1093.38 295.34 994.21 1696.68 998.17 5
MSP-MVS95.12 695.83 594.30 696.82 2197.94 596.98 592.37 1195.40 490.59 1296.16 393.71 692.70 894.80 1794.77 896.37 1497.99 8
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
SED-MVS95.61 296.36 294.73 396.84 1998.15 397.08 392.92 295.64 391.84 495.98 495.33 192.83 796.00 194.94 396.90 498.45 3
DVP-MVS++95.79 196.42 195.06 197.84 298.17 297.03 492.84 396.68 192.83 395.90 594.38 492.90 595.98 294.85 596.93 398.99 1
SF-MVS94.61 894.96 1094.20 996.75 2497.07 1295.82 1892.60 793.98 1291.09 895.89 692.54 1291.93 1594.40 2793.56 2997.04 297.27 17
DVP-MVScopyleft95.56 396.26 394.73 396.93 1698.19 196.62 792.81 596.15 291.73 595.01 795.31 293.41 195.95 394.77 896.90 498.46 2
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
TSAR-MVS + MP.94.48 1194.97 993.90 1295.53 3797.01 1596.69 690.71 2394.24 1090.92 1094.97 892.19 1593.03 494.83 1693.60 2796.51 1397.97 9
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SD-MVS94.53 1095.22 893.73 1495.69 3697.03 1495.77 2191.95 1294.41 891.35 794.97 893.34 891.80 1994.72 2093.99 2095.82 3898.07 7
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
TSAR-MVS + ACMM92.97 2394.51 1491.16 3695.88 3496.59 3095.09 2890.45 2993.42 1683.01 5594.68 1090.74 2688.74 4294.75 1993.78 2493.82 13697.63 12
APD-MVScopyleft94.37 1294.47 1694.26 797.18 896.99 1696.53 892.68 692.45 2389.96 1694.53 1191.63 2192.89 694.58 2293.82 2396.31 1897.26 18
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
SteuartSystems-ACMMP94.06 1494.65 1293.38 1896.97 1597.36 996.12 1091.78 1492.05 2787.34 2994.42 1290.87 2591.87 1895.47 894.59 1196.21 2397.77 11
Skip Steuart: Steuart Systems R&D Blog.
train_agg92.87 2493.53 2592.09 2996.88 1895.38 5095.94 1590.59 2790.65 3783.65 5294.31 1391.87 2090.30 3293.38 4392.42 5095.17 7596.73 30
HFP-MVS94.02 1594.22 1893.78 1397.25 796.85 2095.81 1990.94 2294.12 1190.29 1594.09 1489.98 3192.52 1193.94 3393.49 3295.87 3397.10 23
TSAR-MVS + GP.92.71 2793.91 2191.30 3491.96 7396.00 4093.43 4187.94 4092.53 2186.27 3993.57 1591.94 1991.44 2493.29 4492.89 4496.78 797.15 21
ACMMPR93.72 1893.94 2093.48 1797.07 1196.93 1795.78 2090.66 2593.88 1389.24 2093.53 1689.08 3892.24 1293.89 3593.50 3095.88 3196.73 30
SMA-MVScopyleft94.70 795.35 793.93 1197.57 397.57 895.98 1291.91 1394.50 790.35 1393.46 1792.72 1191.89 1795.89 495.22 195.88 3198.10 6
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
HPM-MVS++copyleft94.60 994.91 1194.24 897.86 196.53 3296.14 992.51 893.87 1490.76 1193.45 1893.84 592.62 995.11 1294.08 1995.58 5497.48 14
ACMMP_NAP93.94 1694.49 1593.30 1997.03 1397.31 1095.96 1391.30 1893.41 1788.55 2393.00 1990.33 2891.43 2595.53 794.41 1495.53 5897.47 15
PGM-MVS92.76 2593.03 2892.45 2797.03 1396.67 2895.73 2287.92 4190.15 4186.53 3592.97 2088.33 4491.69 2093.62 4193.03 4095.83 3796.41 37
MP-MVScopyleft93.35 2093.59 2493.08 2297.39 496.82 2295.38 2490.71 2390.82 3588.07 2692.83 2190.29 2991.32 2794.03 3093.19 3995.61 5297.16 20
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PHI-MVS92.05 3193.74 2290.08 4294.96 4197.06 1393.11 4587.71 4390.71 3680.78 7092.40 2291.03 2387.68 5394.32 2894.48 1396.21 2396.16 41
TSAR-MVS + COLMAP88.40 5889.09 5387.60 7192.72 6893.92 7792.21 5085.57 5491.73 2973.72 10291.75 2373.22 12187.64 5491.49 6989.71 9693.73 13991.82 126
ACMMPcopyleft92.03 3292.16 3191.87 3395.88 3496.55 3194.47 3589.49 3291.71 3085.26 4291.52 2484.48 5790.21 3492.82 5291.63 5795.92 3096.42 36
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CNVR-MVS94.37 1294.65 1294.04 1097.29 697.11 1196.00 1192.43 1093.45 1589.85 1890.92 2593.04 992.59 1095.77 594.82 696.11 2597.42 16
CP-MVS93.25 2193.26 2693.24 2096.84 1996.51 3395.52 2390.61 2692.37 2488.88 2190.91 2689.52 3491.91 1693.64 4092.78 4595.69 4597.09 24
MCST-MVS93.81 1794.06 1993.53 1696.79 2396.85 2095.95 1491.69 1692.20 2587.17 3190.83 2793.41 791.96 1494.49 2593.50 3097.61 197.12 22
MVS_111021_LR90.14 4690.89 4189.26 5393.23 5894.05 7590.43 6784.65 6190.16 4084.52 4890.14 2883.80 6087.99 4992.50 5690.92 6694.74 9494.70 66
DeepPCF-MVS88.51 292.64 2894.42 1790.56 3994.84 4496.92 1891.31 6289.61 3195.16 584.55 4789.91 2991.45 2290.15 3595.12 1194.81 792.90 15597.58 13
CDPH-MVS91.14 3892.01 3290.11 4196.18 2996.18 3794.89 3088.80 3788.76 4677.88 8689.18 3087.71 4787.29 6093.13 4693.31 3795.62 5095.84 46
X-MVS92.36 2992.75 3091.90 3296.89 1796.70 2595.25 2690.48 2891.50 3283.95 4988.20 3188.82 4089.11 3893.75 3893.43 3395.75 4396.83 28
MVS_111021_HR90.56 4091.29 3889.70 4894.71 4695.63 4891.81 5786.38 4987.53 5181.29 6587.96 3285.43 5387.69 5293.90 3492.93 4296.33 1695.69 49
HQP-MVS89.13 5389.58 5188.60 6193.53 5593.67 7893.29 4387.58 4488.53 4775.50 9187.60 3380.32 7687.07 6190.66 9389.95 8994.62 10296.35 40
NCCC93.69 1993.66 2393.72 1597.37 596.66 2995.93 1792.50 993.40 1888.35 2487.36 3492.33 1492.18 1394.89 1594.09 1896.00 2796.91 26
EPNet89.60 4989.91 4789.24 5496.45 2693.61 8092.95 4788.03 3985.74 5983.36 5387.29 3583.05 6480.98 9992.22 6091.85 5593.69 14195.58 53
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
TPM-MVS96.31 2796.02 3894.89 3086.52 3687.18 3692.17 1686.76 6495.56 5593.85 82
CSCG92.76 2593.16 2792.29 2896.30 2897.74 794.67 3388.98 3592.46 2289.73 1986.67 3792.15 1888.69 4392.26 5992.92 4395.40 6397.89 10
LGP-MVS_train88.25 6288.55 5587.89 6792.84 6793.66 7993.35 4285.22 5785.77 5874.03 10186.60 3876.29 10286.62 6691.20 7390.58 7695.29 7095.75 47
ACMP83.90 888.32 6188.06 6188.62 6092.18 7193.98 7691.28 6385.24 5686.69 5481.23 6685.62 3975.13 10687.01 6389.83 10089.77 9494.79 9095.43 55
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
DeepC-MVS_fast88.76 193.10 2293.02 2993.19 2197.13 996.51 3395.35 2591.19 1993.14 2088.14 2585.26 4089.49 3591.45 2295.17 1095.07 295.85 3696.48 34
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PMMVS81.65 12184.05 9978.86 15478.56 20382.63 19783.10 16167.22 19881.39 8970.11 12084.91 4179.74 8282.12 8987.31 12885.70 15992.03 16486.67 176
CS-MVS-test90.29 4390.96 3989.51 5193.18 5995.87 4489.18 8483.72 7588.32 4884.82 4684.89 4285.23 5490.25 3394.04 2992.66 4995.94 2995.69 49
CPTT-MVS91.39 3690.95 4091.91 3195.06 3995.24 5495.02 2988.98 3591.02 3486.71 3384.89 4288.58 4391.60 2190.82 8789.67 9794.08 12396.45 35
ET-MVSNet_ETH3D84.65 9285.58 8783.56 10974.99 21292.62 10090.29 6980.38 11482.16 8273.01 10983.41 4471.10 12887.05 6287.77 12590.17 8295.62 5091.82 126
CANet_DTU85.43 8387.72 6982.76 11690.95 8693.01 9189.99 7175.46 16782.67 7464.91 14983.14 4580.09 7880.68 10392.03 6591.03 6394.57 10592.08 120
CS-MVS90.34 4290.58 4490.07 4393.11 6095.82 4590.57 6583.62 7687.07 5385.35 4182.98 4683.47 6191.37 2694.94 1393.37 3696.37 1496.41 37
EC-MVSNet89.96 4790.77 4389.01 5590.54 9195.15 5691.34 6181.43 10785.27 6183.08 5482.83 4787.22 4990.97 2994.79 1893.38 3496.73 896.71 32
ETV-MVS89.22 5289.76 4988.60 6191.60 7794.61 6789.48 8183.46 8585.20 6381.58 6382.75 4882.59 6688.80 4094.57 2393.28 3896.68 995.31 56
RPSCF83.46 10483.36 10383.59 10887.75 12087.35 16684.82 15079.46 13183.84 7078.12 8282.69 4979.87 7982.60 8782.47 18681.13 18988.78 19186.13 178
canonicalmvs89.36 5189.92 4688.70 5991.38 7995.92 4291.81 5782.61 9990.37 3982.73 5882.09 5079.28 8688.30 4791.17 7593.59 2895.36 6597.04 25
CLD-MVS88.66 5588.52 5688.82 5791.37 8094.22 7192.82 4882.08 10288.27 4985.14 4381.86 5178.53 9185.93 7091.17 7590.61 7495.55 5695.00 58
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
DeepC-MVS87.86 392.26 3091.86 3392.73 2496.18 2996.87 1995.19 2791.76 1592.17 2686.58 3481.79 5285.85 5190.88 3094.57 2394.61 1095.80 3997.18 19
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CANet91.33 3791.46 3591.18 3595.01 4096.71 2493.77 3887.39 4587.72 5087.26 3081.77 5389.73 3287.32 5994.43 2693.86 2296.31 1896.02 44
OMC-MVS90.23 4590.40 4590.03 4493.45 5695.29 5191.89 5586.34 5093.25 1984.94 4581.72 5486.65 5088.90 3991.69 6790.27 8094.65 10093.95 80
MVS_030490.88 3991.35 3790.34 4093.91 5196.79 2394.49 3486.54 4886.57 5582.85 5681.68 5589.70 3387.57 5594.64 2193.93 2196.67 1196.15 42
DPM-MVS91.72 3491.48 3492.00 3095.53 3795.75 4695.94 1591.07 2091.20 3385.58 4081.63 5690.74 2688.40 4693.40 4293.75 2595.45 6293.85 82
EPNet_dtu81.98 11683.82 10179.83 14994.10 5085.97 17587.29 11784.08 7080.61 10059.96 18281.62 5777.19 9962.91 19887.21 12986.38 14890.66 18087.77 168
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MSLP-MVS++92.02 3391.40 3692.75 2396.01 3295.88 4393.73 4089.00 3389.89 4290.31 1481.28 5888.85 3991.45 2292.88 5194.24 1596.00 2796.76 29
MVSTER86.03 7886.12 8085.93 8088.62 11489.93 12989.33 8379.91 12681.87 8681.35 6481.07 5974.91 10780.66 10492.13 6490.10 8395.68 4692.80 102
UGNet85.90 8088.23 5983.18 11288.96 11294.10 7387.52 11283.60 7881.66 8877.90 8580.76 6083.19 6366.70 19191.13 8090.71 7294.39 11696.06 43
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
baseline84.89 9086.06 8283.52 11087.25 12889.67 13887.76 10975.68 16684.92 6578.40 8080.10 6180.98 7280.20 11386.69 14187.05 13591.86 16692.99 96
EIA-MVS87.94 6688.05 6287.81 6891.46 7895.00 6188.67 9682.81 9182.53 7780.81 6980.04 6280.20 7787.48 5692.58 5591.61 5895.63 4994.36 72
UA-Net86.07 7787.78 6684.06 10292.85 6695.11 5887.73 11084.38 6573.22 15273.18 10679.99 6389.22 3771.47 17493.22 4593.03 4094.76 9390.69 143
TAPA-MVS84.37 788.91 5488.93 5488.89 5693.00 6494.85 6392.00 5284.84 5991.68 3180.05 7379.77 6484.56 5688.17 4890.11 9789.00 11595.30 6992.57 112
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
MVS_Test86.93 7287.24 7186.56 7590.10 10393.47 8290.31 6880.12 12183.55 7178.12 8279.58 6579.80 8185.45 7390.17 9690.59 7595.29 7093.53 90
PVSNet_BlendedMVS88.19 6388.00 6388.42 6392.71 6994.82 6489.08 8983.81 7284.91 6686.38 3779.14 6678.11 9382.66 8593.05 4891.10 6195.86 3494.86 62
PVSNet_Blended88.19 6388.00 6388.42 6392.71 6994.82 6489.08 8983.81 7284.91 6686.38 3779.14 6678.11 9382.66 8593.05 4891.10 6195.86 3494.86 62
diffmvspermissive86.52 7486.76 7786.23 7788.31 11792.63 9889.58 7881.61 10686.14 5680.26 7279.00 6877.27 9883.58 7888.94 11289.06 11294.05 12594.29 73
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
DELS-MVS89.71 4889.68 5089.74 4693.75 5396.22 3693.76 3985.84 5182.53 7785.05 4478.96 6984.24 5884.25 7794.91 1494.91 495.78 4296.02 44
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
FC-MVSNet-train85.18 8785.31 8985.03 8890.67 8791.62 10887.66 11183.61 7779.75 10674.37 9978.69 7071.21 12778.91 13091.23 7189.96 8894.96 8394.69 68
EPP-MVSNet86.55 7387.76 6785.15 8790.52 9294.41 6987.24 11982.32 10181.79 8773.60 10378.57 7182.41 6782.07 9091.23 7190.39 7895.14 7895.48 54
AdaColmapbinary90.29 4388.38 5892.53 2596.10 3195.19 5592.98 4691.40 1789.08 4588.65 2278.35 7281.44 7191.30 2890.81 8890.21 8194.72 9693.59 89
thisisatest053085.15 8885.86 8384.33 9589.19 11092.57 10187.22 12080.11 12282.15 8374.41 9878.15 7373.80 11579.90 11790.99 8389.58 9895.13 7993.75 86
tttt051785.11 8985.81 8484.30 9689.24 10892.68 9787.12 12480.11 12281.98 8474.31 10078.08 7473.57 11779.90 11791.01 8189.58 9895.11 8193.77 85
PCF-MVS84.60 688.66 5587.75 6889.73 4793.06 6396.02 3893.22 4490.00 3082.44 8080.02 7577.96 7585.16 5587.36 5888.54 11788.54 12094.72 9695.61 52
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
Vis-MVSNetpermissive84.38 9986.68 7881.70 12787.65 12494.89 6288.14 10580.90 11174.48 13868.23 13077.53 7680.72 7469.98 17892.68 5391.90 5495.33 6894.58 69
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
MAR-MVS88.39 6088.44 5788.33 6694.90 4295.06 5990.51 6683.59 7985.27 6179.07 7877.13 7782.89 6587.70 5192.19 6292.32 5194.23 12094.20 78
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
IS_MVSNet86.18 7688.18 6083.85 10591.02 8394.72 6687.48 11382.46 10081.05 9570.28 11876.98 7882.20 6976.65 14693.97 3293.38 3495.18 7494.97 59
QAPM89.49 5089.58 5189.38 5294.73 4595.94 4192.35 4985.00 5885.69 6080.03 7476.97 7987.81 4687.87 5092.18 6392.10 5396.33 1696.40 39
casdiffmvs_mvgpermissive87.97 6587.63 7088.37 6590.55 9094.42 6891.82 5684.69 6084.05 6982.08 6276.57 8079.00 8785.49 7292.35 5792.29 5295.55 5694.70 66
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
OPM-MVS87.56 6985.80 8589.62 4993.90 5294.09 7494.12 3688.18 3875.40 13277.30 8976.41 8177.93 9588.79 4192.20 6190.82 6895.40 6393.72 87
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
Vis-MVSNet (Re-imp)83.65 10386.81 7679.96 14790.46 9592.71 9584.84 14982.00 10380.93 9762.44 16476.29 8282.32 6865.54 19492.29 5891.66 5694.49 11091.47 137
DCV-MVSNet85.88 8186.17 7985.54 8489.10 11189.85 13189.34 8280.70 11283.04 7378.08 8476.19 8379.00 8782.42 8889.67 10390.30 7993.63 14495.12 57
FC-MVSNet-test76.53 17481.62 11470.58 19884.99 15685.73 17874.81 20178.85 13977.00 12339.13 21775.90 8473.50 11854.08 20686.54 14485.99 15691.65 16886.68 174
casdiffmvspermissive87.45 7087.15 7287.79 7090.15 10294.22 7189.96 7283.93 7185.08 6480.91 6775.81 8577.88 9686.08 6891.86 6690.86 6795.74 4494.37 71
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
ACMM83.27 1087.68 6886.09 8189.54 5093.26 5792.19 10491.43 6086.74 4786.02 5782.85 5675.63 8675.14 10588.41 4590.68 9289.99 8694.59 10392.97 97
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
PLCcopyleft83.76 988.61 5786.83 7590.70 3894.22 4892.63 9891.50 5987.19 4689.16 4486.87 3275.51 8780.87 7389.98 3690.01 9889.20 10994.41 11590.45 148
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
MDTV_nov1_ep1379.14 14879.49 14478.74 15785.40 14886.89 17084.32 15570.29 18678.85 11369.42 12475.37 8873.29 12075.64 15180.61 19279.48 19387.36 19781.91 194
baseline184.54 9484.43 9584.67 9090.62 8891.16 11188.63 9983.75 7479.78 10571.16 11475.14 8974.10 11177.84 13891.56 6890.67 7396.04 2688.58 157
baseline282.80 10882.86 10782.73 11787.68 12390.50 11784.92 14878.93 13778.07 11973.06 10775.08 9069.77 13377.31 14188.90 11486.94 13794.50 10890.74 142
CHOSEN 280x42080.28 13281.66 11378.67 15882.92 18279.24 20985.36 14466.79 20078.11 11770.32 11675.03 9179.87 7981.09 9889.07 11083.16 17985.54 20687.17 170
3Dnovator+86.06 491.60 3590.86 4292.47 2696.00 3396.50 3594.70 3287.83 4290.49 3889.92 1774.68 9289.35 3690.66 3194.02 3194.14 1795.67 4796.85 27
test250685.20 8684.11 9886.47 7691.84 7495.28 5289.18 8484.49 6382.59 7575.34 9574.66 9358.07 18881.68 9293.76 3692.71 4696.28 2191.71 128
PVSNet_Blended_VisFu87.40 7187.80 6586.92 7492.86 6595.40 4988.56 10283.45 8679.55 10882.26 5974.49 9484.03 5979.24 12992.97 5091.53 5995.15 7796.65 33
3Dnovator85.17 590.48 4189.90 4891.16 3694.88 4395.74 4793.82 3785.36 5589.28 4387.81 2774.34 9587.40 4888.56 4493.07 4793.74 2696.53 1295.71 48
PatchMatch-RL83.34 10581.36 11785.65 8190.33 9989.52 14184.36 15381.82 10480.87 9979.29 7674.04 9662.85 16286.05 6988.40 12087.04 13692.04 16386.77 173
SCA79.51 14380.15 13378.75 15686.58 13587.70 16283.07 16268.53 19381.31 9066.40 13773.83 9775.38 10379.30 12880.49 19379.39 19488.63 19382.96 192
test-LLR79.47 14479.84 13979.03 15387.47 12582.40 20081.24 17778.05 14673.72 14762.69 16173.76 9874.42 10973.49 16584.61 17182.99 18191.25 17487.01 171
TESTMET0.1,177.78 16279.84 13975.38 18280.86 19882.40 20081.24 17762.72 21173.72 14762.69 16173.76 9874.42 10973.49 16584.61 17182.99 18191.25 17487.01 171
test-mter77.79 16180.02 13575.18 18381.18 19782.85 19580.52 18362.03 21273.62 14962.16 16673.55 10073.83 11473.81 16384.67 17083.34 17891.37 17288.31 160
Effi-MVS+85.33 8485.08 9085.63 8289.69 10593.42 8489.90 7380.31 11979.32 10972.48 11273.52 10174.03 11286.55 6790.99 8389.98 8794.83 8894.27 77
CostFormer80.94 12880.21 13181.79 12687.69 12288.58 15787.47 11470.66 18480.02 10277.88 8673.03 10271.40 12678.24 13479.96 19579.63 19188.82 19088.84 155
USDC80.69 12979.89 13881.62 12986.48 13689.11 15086.53 13078.86 13881.15 9463.48 15772.98 10359.12 18681.16 9787.10 13085.01 16593.23 15084.77 185
PatchmatchNetpermissive78.67 15478.85 14878.46 16186.85 13386.03 17483.77 15868.11 19680.88 9866.19 13872.90 10473.40 11978.06 13579.25 19977.71 19987.75 19681.75 195
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
EPMVS77.53 16478.07 15776.90 17186.89 13284.91 18782.18 17266.64 20181.00 9664.11 15372.75 10569.68 13474.42 16279.36 19878.13 19787.14 19980.68 201
IterMVS-LS83.28 10682.95 10683.65 10688.39 11688.63 15686.80 12878.64 14176.56 12473.43 10572.52 10675.35 10480.81 10186.43 14788.51 12193.84 13592.66 107
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
FA-MVS(training)85.65 8285.79 8685.48 8590.44 9693.47 8288.66 9873.11 17583.34 7282.26 5971.79 10778.39 9283.14 8291.00 8289.47 10395.28 7293.06 95
LS3D85.96 7984.37 9687.81 6894.13 4993.27 8690.26 7089.00 3384.91 6672.84 11071.74 10872.47 12387.45 5789.53 10689.09 11193.20 15189.60 151
CDS-MVSNet81.63 12382.09 11181.09 13687.21 12990.28 12087.46 11580.33 11869.06 17370.66 11571.30 10973.87 11367.99 18489.58 10489.87 9192.87 15690.69 143
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
Effi-MVS+-dtu82.05 11581.76 11282.38 12187.72 12190.56 11686.90 12778.05 14673.85 14666.85 13571.29 11071.90 12582.00 9186.64 14285.48 16192.76 15792.58 111
GG-mvs-BLEND57.56 21082.61 10928.34 2170.22 22690.10 12579.37 1880.14 22379.56 1070.40 22771.25 11183.40 620.30 22486.27 14883.87 17489.59 18783.83 187
test0.0.03 176.03 18078.51 14973.12 19487.47 12585.13 18676.32 19878.05 14673.19 15450.98 20470.64 11269.28 13655.53 20285.33 16084.38 17390.39 18281.63 196
SixPastTwentyTwo76.02 18175.72 18376.36 17583.38 17387.54 16475.50 20076.22 16165.50 19057.05 19170.64 11253.97 20674.54 15980.96 19182.12 18691.44 17089.35 153
IterMVS78.79 15279.71 14277.71 16485.26 15185.91 17684.54 15269.84 19073.38 15161.25 17670.53 11470.35 13074.43 16185.21 16483.80 17690.95 17888.77 156
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-SCA-FT79.41 14580.20 13278.49 16085.88 14086.26 17383.95 15671.94 17973.55 15061.94 16870.48 11570.50 12975.23 15285.81 15484.61 17191.99 16590.18 149
Fast-Effi-MVS+-dtu79.95 13580.69 12679.08 15286.36 13789.14 14985.85 13672.28 17872.85 15659.32 18570.43 11668.42 14277.57 13986.14 14986.44 14793.11 15391.39 138
CVMVSNet76.70 17078.46 15174.64 18883.34 17484.48 18881.83 17374.58 16968.88 17451.23 20369.77 11770.05 13167.49 18784.27 17483.81 17589.38 18887.96 165
GBi-Net84.51 9584.80 9184.17 9984.20 16489.95 12689.70 7580.37 11581.17 9175.50 9169.63 11879.69 8379.75 12190.73 8990.72 6995.52 5991.71 128
test184.51 9584.80 9184.17 9984.20 16489.95 12689.70 7580.37 11581.17 9175.50 9169.63 11879.69 8379.75 12190.73 8990.72 6995.52 5991.71 128
FMVSNet384.44 9784.64 9384.21 9884.32 16390.13 12489.85 7480.37 11581.17 9175.50 9169.63 11879.69 8379.62 12489.72 10290.52 7795.59 5391.58 135
tpm76.30 17976.05 17976.59 17386.97 13183.01 19483.83 15767.06 19971.83 15863.87 15569.56 12162.88 16173.41 16779.79 19678.59 19584.41 20886.68 174
CNLPA88.40 5887.00 7390.03 4493.73 5494.28 7089.56 7985.81 5291.87 2887.55 2869.53 12281.49 7089.23 3789.45 10788.59 11994.31 11993.82 84
tpmrst76.55 17375.99 18077.20 16787.32 12783.05 19382.86 16365.62 20378.61 11667.22 13469.19 12365.71 14875.87 15076.75 20575.33 20484.31 20983.28 190
Fast-Effi-MVS+83.77 10282.98 10584.69 8987.98 11891.87 10688.10 10677.70 15078.10 11873.04 10869.13 12468.51 14086.66 6590.49 9589.85 9294.67 9992.88 99
dps78.02 15975.94 18180.44 14486.06 13986.62 17282.58 16469.98 18875.14 13377.76 8869.08 12559.93 17778.47 13279.47 19777.96 19887.78 19583.40 189
ACMH78.52 1481.86 11880.45 12983.51 11190.51 9491.22 11085.62 14184.23 6770.29 16962.21 16569.04 12664.05 15484.48 7687.57 12788.45 12294.01 12792.54 114
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
testgi71.92 19774.20 19269.27 20084.58 16183.06 19273.40 20474.39 17064.04 19546.17 20968.90 12757.15 19348.89 21084.07 17683.08 18088.18 19479.09 205
GA-MVS79.52 14279.71 14279.30 15185.68 14490.36 11984.55 15178.44 14270.47 16857.87 19068.52 12861.38 16976.21 14889.40 10887.89 12493.04 15489.96 150
DI_MVS_plusplus_trai86.41 7585.54 8887.42 7289.24 10893.13 8792.16 5182.65 9782.30 8180.75 7168.30 12980.41 7585.01 7490.56 9490.07 8494.70 9894.01 79
GeoE84.62 9383.98 10085.35 8689.34 10792.83 9488.34 10378.95 13679.29 11077.16 9068.10 13074.56 10883.40 8089.31 10989.23 10894.92 8494.57 70
ADS-MVSNet74.53 19175.69 18473.17 19381.57 19580.71 20579.27 18963.03 21079.27 11159.94 18367.86 13168.32 14471.08 17577.33 20376.83 20184.12 21179.53 202
thisisatest051579.76 13980.59 12878.80 15584.40 16288.91 15479.48 18676.94 15672.29 15767.33 13367.82 13265.99 14770.80 17688.50 11887.84 12593.86 13492.75 105
OpenMVScopyleft82.53 1187.71 6786.84 7488.73 5894.42 4795.06 5991.02 6483.49 8282.50 7982.24 6167.62 13385.48 5285.56 7191.19 7491.30 6095.67 4794.75 64
TAMVS76.42 17577.16 16775.56 18083.05 17885.55 18180.58 18271.43 18165.40 19261.04 17967.27 13469.22 13867.99 18484.88 16984.78 16889.28 18983.01 191
UniMVSNet_NR-MVSNet81.87 11781.33 11882.50 11885.31 15091.30 10985.70 13884.25 6675.89 12864.21 15166.95 13564.65 15280.22 11187.07 13189.18 11095.27 7394.29 73
MSDG83.87 10081.02 12287.19 7392.17 7289.80 13389.15 8785.72 5380.61 10079.24 7766.66 13668.75 13982.69 8487.95 12487.44 12994.19 12185.92 180
ACMH+79.08 1381.84 11980.06 13483.91 10489.92 10490.62 11586.21 13383.48 8473.88 14565.75 14166.38 13765.30 15084.63 7585.90 15287.25 13293.45 14791.13 141
ECVR-MVScopyleft85.25 8584.47 9486.16 7891.84 7495.28 5289.18 8484.49 6382.59 7573.49 10466.12 13869.28 13681.68 9293.76 3692.71 4696.28 2191.58 135
FMVSNet283.87 10083.73 10284.05 10384.20 16489.95 12689.70 7580.21 12079.17 11274.89 9665.91 13977.49 9779.75 12190.87 8691.00 6595.52 5991.71 128
anonymousdsp77.94 16079.00 14676.71 17279.03 20187.83 16179.58 18572.87 17665.80 18858.86 18965.82 14062.48 16575.99 14986.77 13888.66 11893.92 13095.68 51
dmvs_re81.08 12779.92 13782.44 12086.66 13487.70 16287.91 10883.30 8972.86 15565.29 14765.76 14163.43 15676.69 14588.93 11389.50 10194.80 8991.23 140
thres100view90082.55 11281.01 12484.34 9490.30 10092.27 10289.04 9282.77 9275.14 13369.56 12165.72 14263.13 15779.62 12489.97 9989.26 10794.73 9591.61 134
tfpn200view982.86 10781.46 11584.48 9290.30 10093.09 8889.05 9182.71 9375.14 13369.56 12165.72 14263.13 15780.38 11091.15 7789.51 10094.91 8592.50 116
thres20082.77 10981.25 11984.54 9190.38 9793.05 8989.13 8882.67 9574.40 13969.53 12365.69 14463.03 16080.63 10591.15 7789.42 10494.88 8692.04 122
test111184.86 9184.21 9785.61 8391.75 7695.14 5788.63 9984.57 6281.88 8571.21 11365.66 14568.51 14081.19 9693.74 3992.68 4896.31 1891.86 125
LTVRE_ROB74.41 1675.78 18574.72 19177.02 17085.88 14089.22 14682.44 16777.17 15350.57 21545.45 21065.44 14652.29 20981.25 9585.50 15887.42 13089.94 18692.62 108
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
thres40082.68 11081.15 12084.47 9390.52 9292.89 9388.95 9482.71 9374.33 14069.22 12665.31 14762.61 16380.63 10590.96 8589.50 10194.79 9092.45 118
DU-MVS81.20 12680.30 13082.25 12284.98 15790.94 11385.70 13883.58 8075.74 12964.21 15165.30 14859.60 18180.22 11186.89 13489.31 10594.77 9294.29 73
NR-MVSNet80.25 13379.98 13680.56 14285.20 15290.94 11385.65 14083.58 8075.74 12961.36 17565.30 14856.75 19572.38 17088.46 11988.80 11795.16 7693.87 81
thres600view782.53 11381.02 12284.28 9790.61 8993.05 8988.57 10182.67 9574.12 14368.56 12965.09 15062.13 16880.40 10991.15 7789.02 11494.88 8692.59 110
UniMVSNet (Re)81.22 12581.08 12181.39 13185.35 14991.76 10784.93 14782.88 9076.13 12765.02 14864.94 15163.09 15975.17 15487.71 12689.04 11394.97 8294.88 61
TranMVSNet+NR-MVSNet80.52 13079.84 13981.33 13384.92 15990.39 11885.53 14384.22 6874.27 14160.68 18064.93 15259.96 17677.48 14086.75 13989.28 10695.12 8093.29 91
IB-MVS79.09 1282.60 11182.19 11083.07 11391.08 8293.55 8180.90 18081.35 10876.56 12480.87 6864.81 15369.97 13268.87 18185.64 15590.06 8595.36 6594.74 65
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
pmmvs479.99 13478.08 15682.22 12383.04 17987.16 16984.95 14678.80 14078.64 11574.53 9764.61 15459.41 18279.45 12684.13 17584.54 17292.53 15988.08 163
CR-MVSNet78.71 15378.86 14778.55 15985.85 14385.15 18482.30 16968.23 19474.71 13665.37 14464.39 15569.59 13577.18 14285.10 16784.87 16692.34 16188.21 161
MS-PatchMatch81.79 12081.44 11682.19 12490.35 9889.29 14588.08 10775.36 16877.60 12069.00 12764.37 15678.87 9077.14 14488.03 12385.70 15993.19 15286.24 177
tpm cat177.78 16275.28 18880.70 13987.14 13085.84 17785.81 13770.40 18577.44 12178.80 7963.72 15764.01 15576.55 14775.60 20775.21 20585.51 20785.12 182
RPMNet77.07 16777.63 16376.42 17485.56 14785.15 18481.37 17465.27 20574.71 13660.29 18163.71 15866.59 14673.64 16482.71 18482.12 18692.38 16088.39 159
pmmvs576.93 16876.33 17577.62 16581.97 19188.40 15981.32 17674.35 17165.42 19161.42 17463.07 15957.95 18973.23 16885.60 15685.35 16393.41 14888.55 158
EU-MVSNet69.98 20072.30 19767.28 20375.67 21179.39 20873.12 20569.94 18963.59 19642.80 21362.93 16056.71 19655.07 20479.13 20078.55 19687.06 20085.82 181
COLMAP_ROBcopyleft76.78 1580.50 13178.49 15082.85 11490.96 8589.65 13986.20 13483.40 8777.15 12266.54 13662.27 16165.62 14977.89 13785.23 16284.70 16992.11 16284.83 184
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
pmnet_mix0271.95 19671.83 19972.10 19581.40 19680.63 20673.78 20372.85 17770.90 16354.89 19362.17 16257.42 19262.92 19776.80 20473.98 20886.74 20280.87 200
v2v48279.84 13778.07 15781.90 12583.75 16990.21 12387.17 12179.85 12770.65 16565.93 14061.93 16360.07 17580.82 10085.25 16186.71 14093.88 13391.70 132
PatchT76.42 17577.81 16174.80 18678.46 20484.30 18971.82 20765.03 20773.89 14465.37 14461.58 16466.70 14577.18 14285.10 16784.87 16690.94 17988.21 161
WR-MVS76.63 17178.02 15975.02 18484.14 16789.76 13578.34 19380.64 11369.56 17052.32 19961.26 16561.24 17060.66 19984.45 17387.07 13493.99 12892.77 103
v879.90 13678.39 15381.66 12883.97 16889.81 13287.16 12277.40 15271.49 15967.71 13161.24 16662.49 16479.83 12085.48 15986.17 15193.89 13292.02 124
PM-MVS74.17 19373.10 19475.41 18176.07 20982.53 19877.56 19671.69 18071.04 16161.92 16961.23 16747.30 21574.82 15881.78 18979.80 19090.42 18188.05 164
V4279.59 14178.43 15280.94 13782.79 18589.71 13686.66 12976.73 15971.38 16067.42 13261.01 16862.30 16678.39 13385.56 15786.48 14593.65 14392.60 109
PEN-MVS76.02 18176.07 17775.95 17983.17 17787.97 16079.65 18480.07 12566.57 18351.45 20160.94 16955.47 20066.81 19082.72 18386.80 13994.59 10392.03 123
DTE-MVSNet75.14 18875.44 18774.80 18683.18 17687.19 16878.25 19580.11 12266.05 18548.31 20660.88 17054.67 20264.54 19582.57 18586.17 15194.43 11490.53 147
CP-MVSNet76.36 17876.41 17476.32 17682.73 18688.64 15579.39 18779.62 12867.21 17953.70 19560.72 17155.22 20167.91 18683.52 17986.34 14994.55 10693.19 92
TinyColmap76.73 16973.95 19379.96 14785.16 15485.64 18082.34 16878.19 14470.63 16662.06 16760.69 17249.61 21280.81 10185.12 16683.69 17791.22 17682.27 193
v1079.62 14078.19 15581.28 13483.73 17089.69 13787.27 11876.86 15770.50 16765.46 14260.58 17360.47 17380.44 10886.91 13386.63 14393.93 12992.55 113
MDTV_nov1_ep13_2view73.21 19572.91 19573.56 19280.01 19984.28 19078.62 19166.43 20268.64 17559.12 18660.39 17459.69 18069.81 17978.82 20177.43 20087.36 19781.11 199
v114479.38 14677.83 16081.18 13583.62 17190.23 12187.15 12378.35 14369.13 17264.02 15460.20 17559.41 18280.14 11586.78 13786.57 14493.81 13792.53 115
WR-MVS_H75.84 18476.93 17074.57 18982.86 18389.50 14278.34 19379.36 13366.90 18152.51 19860.20 17559.71 17859.73 20083.61 17885.77 15894.65 10092.84 100
v14878.59 15576.84 17180.62 14183.61 17289.16 14883.65 15979.24 13469.38 17169.34 12559.88 17760.41 17475.19 15383.81 17784.63 17092.70 15890.63 145
v14419278.81 15177.22 16680.67 14082.95 18089.79 13486.40 13177.42 15168.26 17863.13 15959.50 17858.13 18780.08 11685.93 15186.08 15394.06 12492.83 101
PS-CasMVS75.90 18375.86 18275.96 17882.59 18788.46 15879.23 19079.56 13066.00 18652.77 19759.48 17954.35 20567.14 18983.37 18086.23 15094.47 11193.10 94
v119278.94 15077.33 16480.82 13883.25 17589.90 13086.91 12677.72 14968.63 17662.61 16359.17 18057.53 19180.62 10786.89 13486.47 14693.79 13892.75 105
TDRefinement79.05 14977.05 16881.39 13188.45 11589.00 15286.92 12582.65 9774.21 14264.41 15059.17 18059.16 18474.52 16085.23 16285.09 16491.37 17287.51 169
FMVSNet575.50 18776.07 17774.83 18576.16 20881.19 20381.34 17570.21 18773.20 15361.59 17358.97 18268.33 14368.50 18285.87 15385.85 15791.18 17779.11 204
FMVSNet181.64 12280.61 12782.84 11582.36 18989.20 14788.67 9679.58 12970.79 16472.63 11158.95 18372.26 12479.34 12790.73 8990.72 6994.47 11191.62 133
v192192078.57 15676.99 16980.41 14582.93 18189.63 14086.38 13277.14 15468.31 17761.80 17158.89 18456.79 19480.19 11486.50 14686.05 15594.02 12692.76 104
pm-mvs178.51 15777.75 16279.40 15084.83 16089.30 14483.55 16079.38 13262.64 19763.68 15658.73 18564.68 15170.78 17789.79 10187.84 12594.17 12291.28 139
v124078.15 15876.53 17280.04 14682.85 18489.48 14385.61 14276.77 15867.05 18061.18 17858.37 18656.16 19879.89 11986.11 15086.08 15393.92 13092.47 117
Baseline_NR-MVSNet79.84 13778.37 15481.55 13084.98 15786.66 17185.06 14583.49 8275.57 13163.31 15858.22 18760.97 17178.00 13686.89 13487.13 13394.47 11193.15 93
Anonymous20240521182.75 10889.58 10692.97 9289.04 9284.13 6978.72 11457.18 18876.64 10183.13 8389.55 10589.92 9093.38 14994.28 76
TransMVSNet (Re)76.57 17275.16 18978.22 16385.60 14687.24 16782.46 16581.23 11059.80 20559.05 18857.07 18959.14 18566.60 19288.09 12286.82 13894.37 11787.95 166
v7n77.22 16676.23 17678.38 16281.89 19289.10 15182.24 17176.36 16065.96 18761.21 17756.56 19055.79 19975.07 15686.55 14386.68 14193.52 14592.95 98
tmp_tt32.73 21643.96 22321.15 22526.71 2238.99 22165.67 18951.39 20256.01 19142.64 21811.76 22156.60 21650.81 21753.55 221
Anonymous2023121184.42 9883.02 10486.05 7988.85 11392.70 9688.92 9583.40 8779.99 10378.31 8155.83 19278.92 8983.33 8189.06 11189.76 9593.50 14694.90 60
MIMVSNet74.69 19075.60 18573.62 19176.02 21085.31 18381.21 17967.43 19771.02 16259.07 18754.48 19364.07 15366.14 19386.52 14586.64 14291.83 16781.17 198
UniMVSNet_ETH3D79.24 14776.47 17382.48 11985.66 14590.97 11286.08 13581.63 10564.48 19368.94 12854.47 19457.65 19078.83 13185.20 16588.91 11693.72 14093.60 88
MDA-MVSNet-bldmvs66.22 20464.49 20768.24 20161.67 21682.11 20270.07 20976.16 16259.14 20747.94 20754.35 19535.82 22267.33 18864.94 21475.68 20386.30 20479.36 203
pmmvs-eth3d74.32 19271.96 19877.08 16977.33 20682.71 19678.41 19276.02 16466.65 18265.98 13954.23 19649.02 21473.14 16982.37 18782.69 18391.61 16986.05 179
test20.0368.31 20270.05 20366.28 20582.41 18880.84 20467.35 21176.11 16358.44 20840.80 21653.77 19754.54 20342.28 21383.07 18181.96 18888.73 19277.76 207
CMPMVSbinary56.49 1773.84 19471.73 20076.31 17785.20 15285.67 17975.80 19973.23 17462.26 19865.40 14353.40 19859.70 17971.77 17380.25 19479.56 19286.45 20381.28 197
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
EG-PatchMatch MVS76.40 17775.47 18677.48 16685.86 14290.22 12282.45 16673.96 17359.64 20659.60 18452.75 19962.20 16768.44 18388.23 12187.50 12894.55 10687.78 167
CHOSEN 1792x268882.16 11480.91 12583.61 10791.14 8192.01 10589.55 8079.15 13579.87 10470.29 11752.51 20072.56 12281.39 9488.87 11588.17 12390.15 18492.37 119
tfpnnormal77.46 16574.86 19080.49 14386.34 13888.92 15384.33 15481.26 10961.39 20161.70 17251.99 20153.66 20774.84 15788.63 11687.38 13194.50 10892.08 120
N_pmnet66.85 20366.63 20467.11 20478.73 20274.66 21370.53 20871.07 18266.46 18446.54 20851.68 20251.91 21055.48 20374.68 20872.38 20980.29 21474.65 210
gm-plane-assit70.29 19970.65 20169.88 19985.03 15578.50 21058.41 21765.47 20450.39 21640.88 21549.60 20350.11 21175.14 15591.43 7089.78 9394.32 11884.73 186
HyFIR lowres test81.62 12479.45 14584.14 10191.00 8493.38 8588.27 10478.19 14476.28 12670.18 11948.78 20473.69 11683.52 7987.05 13287.83 12793.68 14289.15 154
DeepMVS_CXcopyleft48.31 22148.03 21926.08 21956.42 21025.77 22247.51 20531.31 22351.30 20748.49 21853.61 22061.52 215
pmmvs674.83 18972.89 19677.09 16882.11 19087.50 16580.88 18176.97 15552.79 21361.91 17046.66 20660.49 17269.28 18086.74 14085.46 16291.39 17190.56 146
gg-mvs-nofinetune75.64 18677.26 16573.76 19087.92 11992.20 10387.32 11664.67 20851.92 21435.35 21946.44 20777.05 10071.97 17192.64 5491.02 6495.34 6789.53 152
new-patchmatchnet63.80 20663.31 20864.37 20676.49 20775.99 21163.73 21470.99 18357.27 20943.08 21245.86 20843.80 21645.13 21273.20 20970.68 21286.80 20176.34 209
FPMVS63.63 20760.08 21267.78 20280.01 19971.50 21572.88 20669.41 19261.82 20053.11 19645.12 20942.11 21950.86 20866.69 21263.84 21380.41 21369.46 213
Anonymous2023120670.80 19870.59 20271.04 19781.60 19482.49 19974.64 20275.87 16564.17 19449.27 20544.85 21053.59 20854.68 20583.07 18182.34 18590.17 18383.65 188
MVS-HIRNet68.83 20166.39 20571.68 19677.58 20575.52 21266.45 21265.05 20662.16 19962.84 16044.76 21156.60 19771.96 17278.04 20275.06 20686.18 20572.56 211
new_pmnet59.28 20961.47 21156.73 21061.66 21768.29 21759.57 21654.91 21360.83 20234.38 22044.66 21243.65 21749.90 20971.66 21071.56 21179.94 21569.67 212
pmmvs361.89 20861.74 21062.06 20864.30 21570.83 21664.22 21352.14 21648.78 21744.47 21141.67 21341.70 22063.03 19676.06 20676.02 20284.18 21077.14 208
ambc61.92 20970.98 21473.54 21463.64 21560.06 20352.23 20038.44 21419.17 22557.12 20182.33 18875.03 20783.21 21284.89 183
MIMVSNet165.00 20566.24 20663.55 20758.41 21980.01 20769.00 21074.03 17255.81 21141.88 21436.81 21549.48 21347.89 21181.32 19082.40 18490.08 18577.88 206
PMVScopyleft50.48 1855.81 21151.93 21360.33 20972.90 21349.34 21948.78 21869.51 19143.49 21854.25 19436.26 21641.04 22139.71 21565.07 21360.70 21476.85 21667.58 214
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
test_method41.78 21348.10 21434.42 21510.74 22519.78 22644.64 22017.73 22059.83 20438.67 21835.82 21754.41 20434.94 21662.87 21543.13 21859.81 21960.82 216
PMMVS241.68 21444.74 21638.10 21246.97 22252.32 21840.63 22248.08 21735.51 2197.36 22626.86 21824.64 22416.72 22055.24 21759.03 21568.85 21859.59 217
Gipumacopyleft49.17 21247.05 21551.65 21159.67 21848.39 22041.98 22163.47 20955.64 21233.33 22114.90 21913.78 22641.34 21469.31 21172.30 21070.11 21755.00 218
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
E-PMN31.40 21526.80 21836.78 21351.39 22129.96 22320.20 22454.17 21425.93 22112.75 22414.73 2208.58 22834.10 21827.36 22037.83 21948.07 22243.18 220
MVEpermissive30.17 1930.88 21633.52 21727.80 21823.78 22439.16 22218.69 22646.90 21821.88 22215.39 22314.37 2217.31 22924.41 21941.63 21956.22 21637.64 22454.07 219
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
EMVS30.49 21725.44 21936.39 21451.47 22029.89 22420.17 22554.00 21526.49 22012.02 22513.94 2228.84 22734.37 21725.04 22134.37 22046.29 22339.53 221
testmvs1.03 2181.63 2200.34 2190.09 2270.35 2270.61 2280.16 2221.49 2230.10 2283.15 2230.15 2300.86 2231.32 2221.18 2210.20 2253.76 223
test1230.87 2191.40 2210.25 2200.03 2280.25 2280.35 2290.08 2241.21 2240.05 2292.84 2240.03 2310.89 2220.43 2231.16 2220.13 2263.87 222
uanet_test0.00 2200.00 2220.00 2210.00 2290.00 2290.00 2300.00 2250.00 2250.00 2300.00 2250.00 2320.00 2250.00 2240.00 2230.00 2270.00 224
sosnet-low-res0.00 2200.00 2220.00 2210.00 2290.00 2290.00 2300.00 2250.00 2250.00 2300.00 2250.00 2320.00 2250.00 2240.00 2230.00 2270.00 224
sosnet0.00 2200.00 2220.00 2210.00 2290.00 2290.00 2300.00 2250.00 2250.00 2300.00 2250.00 2320.00 2250.00 2240.00 2230.00 2270.00 224
RE-MVS-def56.08 192
9.1492.16 17
SR-MVS96.58 2590.99 2192.40 13
our_test_381.81 19383.96 19176.61 197
MTAPA92.97 291.03 23
MTMP93.14 190.21 30
Patchmatch-RL test8.55 227
XVS93.11 6096.70 2591.91 5383.95 4988.82 4095.79 40
X-MVStestdata93.11 6096.70 2591.91 5383.95 4988.82 4095.79 40
mPP-MVS97.06 1288.08 45
NP-MVS87.47 52
Patchmtry85.54 18282.30 16968.23 19465.37 144