This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort by
DVP-MVS++95.79 196.42 195.06 197.84 298.17 297.03 492.84 396.68 192.83 395.90 594.38 492.90 595.98 294.85 596.93 398.99 1
DVP-MVScopyleft95.56 396.26 394.73 396.93 1698.19 196.62 792.81 596.15 291.73 595.01 795.31 293.41 195.95 394.77 896.90 498.46 2
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
SED-MVS95.61 296.36 294.73 396.84 1998.15 397.08 392.92 295.64 391.84 495.98 495.33 192.83 796.00 194.94 396.90 498.45 3
MSP-MVS95.12 695.83 594.30 696.82 2197.94 596.98 592.37 1195.40 490.59 1296.16 393.71 692.70 894.80 1794.77 896.37 1497.99 8
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
DeepPCF-MVS88.51 292.64 2894.42 1790.56 3994.84 4496.92 1891.31 6289.61 3195.16 584.55 4789.91 2991.45 2290.15 3595.12 1194.81 792.90 15597.58 13
APDe-MVS95.23 595.69 694.70 597.12 1097.81 697.19 292.83 495.06 690.98 996.47 292.77 1093.38 295.34 994.21 1696.68 998.17 5
SMA-MVScopyleft94.70 795.35 793.93 1197.57 397.57 895.98 1291.91 1394.50 790.35 1393.46 1792.72 1191.89 1795.89 495.22 195.88 3198.10 6
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
SD-MVS94.53 1095.22 893.73 1495.69 3697.03 1495.77 2191.95 1294.41 891.35 794.97 893.34 891.80 1994.72 2093.99 2095.82 3898.07 7
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DPE-MVScopyleft95.53 496.13 494.82 296.81 2298.05 497.42 193.09 194.31 991.49 697.12 195.03 393.27 395.55 694.58 1296.86 698.25 4
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
TSAR-MVS + MP.94.48 1194.97 993.90 1295.53 3797.01 1596.69 690.71 2394.24 1090.92 1094.97 892.19 1593.03 494.83 1693.60 2796.51 1397.97 9
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
HFP-MVS94.02 1594.22 1893.78 1397.25 796.85 2095.81 1990.94 2294.12 1190.29 1594.09 1489.98 3192.52 1193.94 3393.49 3295.87 3397.10 23
SF-MVS94.61 894.96 1094.20 996.75 2497.07 1295.82 1892.60 793.98 1291.09 895.89 692.54 1291.93 1594.40 2793.56 2997.04 297.27 17
ACMMPR93.72 1893.94 2093.48 1797.07 1196.93 1795.78 2090.66 2593.88 1389.24 2093.53 1689.08 3892.24 1293.89 3593.50 3095.88 3196.73 30
HPM-MVS++copyleft94.60 994.91 1194.24 897.86 196.53 3296.14 992.51 893.87 1490.76 1193.45 1893.84 592.62 995.11 1294.08 1995.58 5497.48 14
CNVR-MVS94.37 1294.65 1294.04 1097.29 697.11 1196.00 1192.43 1093.45 1589.85 1890.92 2593.04 992.59 1095.77 594.82 696.11 2597.42 16
TSAR-MVS + ACMM92.97 2394.51 1491.16 3695.88 3496.59 3095.09 2890.45 2993.42 1683.01 5594.68 1090.74 2688.74 4294.75 1993.78 2493.82 13697.63 12
ACMMP_NAP93.94 1694.49 1593.30 1997.03 1397.31 1095.96 1391.30 1893.41 1788.55 2393.00 1990.33 2891.43 2595.53 794.41 1495.53 5897.47 15
NCCC93.69 1993.66 2393.72 1597.37 596.66 2995.93 1792.50 993.40 1888.35 2487.36 3492.33 1492.18 1394.89 1594.09 1896.00 2796.91 26
OMC-MVS90.23 4590.40 4590.03 4493.45 5695.29 5191.89 5586.34 5093.25 1984.94 4581.72 5486.65 5088.90 3991.69 6790.27 8094.65 10093.95 80
DeepC-MVS_fast88.76 193.10 2293.02 2993.19 2197.13 996.51 3395.35 2591.19 1993.14 2088.14 2585.26 4089.49 3591.45 2295.17 1095.07 295.85 3696.48 34
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
TSAR-MVS + GP.92.71 2793.91 2191.30 3491.96 7396.00 4093.43 4187.94 4092.53 2186.27 3993.57 1591.94 1991.44 2493.29 4492.89 4496.78 797.15 21
CSCG92.76 2593.16 2792.29 2896.30 2897.74 794.67 3388.98 3592.46 2289.73 1986.67 3792.15 1888.69 4392.26 5992.92 4395.40 6397.89 10
APD-MVScopyleft94.37 1294.47 1694.26 797.18 896.99 1696.53 892.68 692.45 2389.96 1694.53 1191.63 2192.89 694.58 2293.82 2396.31 1897.26 18
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CP-MVS93.25 2193.26 2693.24 2096.84 1996.51 3395.52 2390.61 2692.37 2488.88 2190.91 2689.52 3491.91 1693.64 4092.78 4595.69 4597.09 24
MCST-MVS93.81 1794.06 1993.53 1696.79 2396.85 2095.95 1491.69 1692.20 2587.17 3190.83 2793.41 791.96 1494.49 2593.50 3097.61 197.12 22
DeepC-MVS87.86 392.26 3091.86 3392.73 2496.18 2996.87 1995.19 2791.76 1592.17 2686.58 3481.79 5285.85 5190.88 3094.57 2394.61 1095.80 3997.18 19
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SteuartSystems-ACMMP94.06 1494.65 1293.38 1896.97 1597.36 996.12 1091.78 1492.05 2787.34 2994.42 1290.87 2591.87 1895.47 894.59 1196.21 2397.77 11
Skip Steuart: Steuart Systems R&D Blog.
CNLPA88.40 5887.00 7390.03 4493.73 5494.28 7089.56 7985.81 5291.87 2887.55 2869.53 12281.49 7089.23 3789.45 10788.59 11994.31 11993.82 84
TSAR-MVS + COLMAP88.40 5889.09 5387.60 7192.72 6893.92 7792.21 5085.57 5491.73 2973.72 10291.75 2373.22 12187.64 5491.49 6989.71 9693.73 13991.82 126
ACMMPcopyleft92.03 3292.16 3191.87 3395.88 3496.55 3194.47 3589.49 3291.71 3085.26 4291.52 2484.48 5790.21 3492.82 5291.63 5795.92 3096.42 36
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
TAPA-MVS84.37 788.91 5488.93 5488.89 5693.00 6494.85 6392.00 5284.84 5991.68 3180.05 7379.77 6484.56 5688.17 4890.11 9789.00 11595.30 6992.57 112
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
X-MVS92.36 2992.75 3091.90 3296.89 1796.70 2595.25 2690.48 2891.50 3283.95 4988.20 3188.82 4089.11 3893.75 3893.43 3395.75 4396.83 28
DPM-MVS91.72 3491.48 3492.00 3095.53 3795.75 4695.94 1591.07 2091.20 3385.58 4081.63 5690.74 2688.40 4693.40 4293.75 2595.45 6293.85 82
CPTT-MVS91.39 3690.95 4091.91 3195.06 3995.24 5495.02 2988.98 3591.02 3486.71 3384.89 4288.58 4391.60 2190.82 8789.67 9794.08 12396.45 35
MP-MVScopyleft93.35 2093.59 2493.08 2297.39 496.82 2295.38 2490.71 2390.82 3588.07 2692.83 2190.29 2991.32 2794.03 3093.19 3995.61 5297.16 20
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PHI-MVS92.05 3193.74 2290.08 4294.96 4197.06 1393.11 4587.71 4390.71 3680.78 7092.40 2291.03 2387.68 5394.32 2894.48 1396.21 2396.16 41
train_agg92.87 2493.53 2592.09 2996.88 1895.38 5095.94 1590.59 2790.65 3783.65 5294.31 1391.87 2090.30 3293.38 4392.42 5095.17 7596.73 30
3Dnovator+86.06 491.60 3590.86 4292.47 2696.00 3396.50 3594.70 3287.83 4290.49 3889.92 1774.68 9289.35 3690.66 3194.02 3194.14 1795.67 4796.85 27
canonicalmvs89.36 5189.92 4688.70 5991.38 7995.92 4291.81 5782.61 9990.37 3982.73 5882.09 5079.28 8688.30 4791.17 7593.59 2895.36 6597.04 25
MVS_111021_LR90.14 4690.89 4189.26 5393.23 5894.05 7590.43 6784.65 6190.16 4084.52 4890.14 2883.80 6087.99 4992.50 5690.92 6694.74 9494.70 66
PGM-MVS92.76 2593.03 2892.45 2797.03 1396.67 2895.73 2287.92 4190.15 4186.53 3592.97 2088.33 4491.69 2093.62 4193.03 4095.83 3796.41 37
MSLP-MVS++92.02 3391.40 3692.75 2396.01 3295.88 4393.73 4089.00 3389.89 4290.31 1481.28 5888.85 3991.45 2292.88 5194.24 1596.00 2796.76 29
3Dnovator85.17 590.48 4189.90 4891.16 3694.88 4395.74 4793.82 3785.36 5589.28 4387.81 2774.34 9587.40 4888.56 4493.07 4793.74 2696.53 1295.71 48
PLCcopyleft83.76 988.61 5786.83 7590.70 3894.22 4892.63 9891.50 5987.19 4689.16 4486.87 3275.51 8780.87 7389.98 3690.01 9889.20 10994.41 11590.45 148
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
AdaColmapbinary90.29 4388.38 5892.53 2596.10 3195.19 5592.98 4691.40 1789.08 4588.65 2278.35 7281.44 7191.30 2890.81 8890.21 8194.72 9693.59 89
CDPH-MVS91.14 3892.01 3290.11 4196.18 2996.18 3794.89 3088.80 3788.76 4677.88 8689.18 3087.71 4787.29 6093.13 4693.31 3795.62 5095.84 46
HQP-MVS89.13 5389.58 5188.60 6193.53 5593.67 7893.29 4387.58 4488.53 4775.50 9187.60 3380.32 7687.07 6190.66 9389.95 8994.62 10296.35 40
CS-MVS-test90.29 4390.96 3989.51 5193.18 5995.87 4489.18 8483.72 7588.32 4884.82 4684.89 4285.23 5490.25 3394.04 2992.66 4995.94 2995.69 49
CLD-MVS88.66 5588.52 5688.82 5791.37 8094.22 7192.82 4882.08 10288.27 4985.14 4381.86 5178.53 9185.93 7091.17 7590.61 7495.55 5695.00 58
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
CANet91.33 3791.46 3591.18 3595.01 4096.71 2493.77 3887.39 4587.72 5087.26 3081.77 5389.73 3287.32 5994.43 2693.86 2296.31 1896.02 44
MVS_111021_HR90.56 4091.29 3889.70 4894.71 4695.63 4891.81 5786.38 4987.53 5181.29 6587.96 3285.43 5387.69 5293.90 3492.93 4296.33 1695.69 49
NP-MVS87.47 52
CS-MVS90.34 4290.58 4490.07 4393.11 6095.82 4590.57 6583.62 7687.07 5385.35 4182.98 4683.47 6191.37 2694.94 1393.37 3696.37 1496.41 37
ACMP83.90 888.32 6188.06 6188.62 6092.18 7193.98 7691.28 6385.24 5686.69 5481.23 6685.62 3975.13 10687.01 6389.83 10089.77 9494.79 9095.43 55
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
MVS_030490.88 3991.35 3790.34 4093.91 5196.79 2394.49 3486.54 4886.57 5582.85 5681.68 5589.70 3387.57 5594.64 2193.93 2196.67 1196.15 42
diffmvspermissive86.52 7486.76 7786.23 7788.31 11792.63 9889.58 7881.61 10686.14 5680.26 7279.00 6877.27 9883.58 7888.94 11289.06 11294.05 12594.29 73
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
ACMM83.27 1087.68 6886.09 8189.54 5093.26 5792.19 10491.43 6086.74 4786.02 5782.85 5675.63 8675.14 10588.41 4590.68 9289.99 8694.59 10392.97 97
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
LGP-MVS_train88.25 6288.55 5587.89 6792.84 6793.66 7993.35 4285.22 5785.77 5874.03 10186.60 3876.29 10286.62 6691.20 7390.58 7695.29 7095.75 47
EPNet89.60 4989.91 4789.24 5496.45 2693.61 8092.95 4788.03 3985.74 5983.36 5387.29 3583.05 6480.98 9992.22 6091.85 5593.69 14195.58 53
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
QAPM89.49 5089.58 5189.38 5294.73 4595.94 4192.35 4985.00 5885.69 6080.03 7476.97 7987.81 4687.87 5092.18 6392.10 5396.33 1696.40 39
EC-MVSNet89.96 4790.77 4389.01 5590.54 9195.15 5691.34 6181.43 10785.27 6183.08 5482.83 4787.22 4990.97 2994.79 1893.38 3496.73 896.71 32
MAR-MVS88.39 6088.44 5788.33 6694.90 4295.06 5990.51 6683.59 7985.27 6179.07 7877.13 7782.89 6587.70 5192.19 6292.32 5194.23 12094.20 78
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
ETV-MVS89.22 5289.76 4988.60 6191.60 7794.61 6789.48 8183.46 8585.20 6381.58 6382.75 4882.59 6688.80 4094.57 2393.28 3896.68 995.31 56
casdiffmvspermissive87.45 7087.15 7287.79 7090.15 10294.22 7189.96 7283.93 7185.08 6480.91 6775.81 8577.88 9686.08 6891.86 6690.86 6795.74 4494.37 71
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline84.89 9086.06 8283.52 11087.25 12889.67 13887.76 10975.68 16684.92 6578.40 8080.10 6180.98 7280.20 11386.69 14187.05 13591.86 16692.99 96
PVSNet_BlendedMVS88.19 6388.00 6388.42 6392.71 6994.82 6489.08 8983.81 7284.91 6686.38 3779.14 6678.11 9382.66 8593.05 4891.10 6195.86 3494.86 62
PVSNet_Blended88.19 6388.00 6388.42 6392.71 6994.82 6489.08 8983.81 7284.91 6686.38 3779.14 6678.11 9382.66 8593.05 4891.10 6195.86 3494.86 62
LS3D85.96 7984.37 9687.81 6894.13 4993.27 8690.26 7089.00 3384.91 6672.84 11071.74 10872.47 12387.45 5789.53 10689.09 11193.20 15189.60 151
casdiffmvs_mvgpermissive87.97 6587.63 7088.37 6590.55 9094.42 6891.82 5684.69 6084.05 6982.08 6276.57 8079.00 8785.49 7292.35 5792.29 5295.55 5694.70 66
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
RPSCF83.46 10483.36 10383.59 10887.75 12087.35 16684.82 15079.46 13183.84 7078.12 8282.69 4979.87 7982.60 8782.47 18681.13 18988.78 19186.13 178
MVS_Test86.93 7287.24 7186.56 7590.10 10393.47 8290.31 6880.12 12183.55 7178.12 8279.58 6579.80 8185.45 7390.17 9690.59 7595.29 7093.53 90
FA-MVS(training)85.65 8285.79 8685.48 8590.44 9693.47 8288.66 9873.11 17583.34 7282.26 5971.79 10778.39 9283.14 8291.00 8289.47 10395.28 7293.06 95
DCV-MVSNet85.88 8186.17 7985.54 8489.10 11189.85 13189.34 8280.70 11283.04 7378.08 8476.19 8379.00 8782.42 8889.67 10390.30 7993.63 14495.12 57
CANet_DTU85.43 8387.72 6982.76 11690.95 8693.01 9189.99 7175.46 16782.67 7464.91 14983.14 4580.09 7880.68 10392.03 6591.03 6394.57 10592.08 120
test250685.20 8684.11 9886.47 7691.84 7495.28 5289.18 8484.49 6382.59 7575.34 9574.66 9358.07 18881.68 9293.76 3692.71 4696.28 2191.71 128
ECVR-MVScopyleft85.25 8584.47 9486.16 7891.84 7495.28 5289.18 8484.49 6382.59 7573.49 10466.12 13869.28 13681.68 9293.76 3692.71 4696.28 2191.58 135
EIA-MVS87.94 6688.05 6287.81 6891.46 7895.00 6188.67 9682.81 9182.53 7780.81 6980.04 6280.20 7787.48 5692.58 5591.61 5895.63 4994.36 72
DELS-MVS89.71 4889.68 5089.74 4693.75 5396.22 3693.76 3985.84 5182.53 7785.05 4478.96 6984.24 5884.25 7794.91 1494.91 495.78 4296.02 44
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
OpenMVScopyleft82.53 1187.71 6786.84 7488.73 5894.42 4795.06 5991.02 6483.49 8282.50 7982.24 6167.62 13385.48 5285.56 7191.19 7491.30 6095.67 4794.75 64
PCF-MVS84.60 688.66 5587.75 6889.73 4793.06 6396.02 3893.22 4490.00 3082.44 8080.02 7577.96 7585.16 5587.36 5888.54 11788.54 12094.72 9695.61 52
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
DI_MVS_plusplus_trai86.41 7585.54 8887.42 7289.24 10893.13 8792.16 5182.65 9782.30 8180.75 7168.30 12980.41 7585.01 7490.56 9490.07 8494.70 9894.01 79
ET-MVSNet_ETH3D84.65 9285.58 8783.56 10974.99 21292.62 10090.29 6980.38 11482.16 8273.01 10983.41 4471.10 12887.05 6287.77 12590.17 8295.62 5091.82 126
thisisatest053085.15 8885.86 8384.33 9589.19 11092.57 10187.22 12080.11 12282.15 8374.41 9878.15 7373.80 11579.90 11790.99 8389.58 9895.13 7993.75 86
tttt051785.11 8985.81 8484.30 9689.24 10892.68 9787.12 12480.11 12281.98 8474.31 10078.08 7473.57 11779.90 11791.01 8189.58 9895.11 8193.77 85
test111184.86 9184.21 9785.61 8391.75 7695.14 5788.63 9984.57 6281.88 8571.21 11365.66 14568.51 14081.19 9693.74 3992.68 4896.31 1891.86 125
MVSTER86.03 7886.12 8085.93 8088.62 11489.93 12989.33 8379.91 12681.87 8681.35 6481.07 5974.91 10780.66 10492.13 6490.10 8395.68 4692.80 102
EPP-MVSNet86.55 7387.76 6785.15 8790.52 9294.41 6987.24 11982.32 10181.79 8773.60 10378.57 7182.41 6782.07 9091.23 7190.39 7895.14 7895.48 54
UGNet85.90 8088.23 5983.18 11288.96 11294.10 7387.52 11283.60 7881.66 8877.90 8580.76 6083.19 6366.70 19191.13 8090.71 7294.39 11696.06 43
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
PMMVS81.65 12184.05 9978.86 15478.56 20382.63 19783.10 16167.22 19881.39 8970.11 12084.91 4179.74 8282.12 8987.31 12885.70 15992.03 16486.67 176
SCA79.51 14380.15 13378.75 15686.58 13587.70 16283.07 16268.53 19381.31 9066.40 13773.83 9775.38 10379.30 12880.49 19379.39 19488.63 19382.96 192
GBi-Net84.51 9584.80 9184.17 9984.20 16489.95 12689.70 7580.37 11581.17 9175.50 9169.63 11879.69 8379.75 12190.73 8990.72 6995.52 5991.71 128
test184.51 9584.80 9184.17 9984.20 16489.95 12689.70 7580.37 11581.17 9175.50 9169.63 11879.69 8379.75 12190.73 8990.72 6995.52 5991.71 128
FMVSNet384.44 9784.64 9384.21 9884.32 16390.13 12489.85 7480.37 11581.17 9175.50 9169.63 11879.69 8379.62 12489.72 10290.52 7795.59 5391.58 135
USDC80.69 12979.89 13881.62 12986.48 13689.11 15086.53 13078.86 13881.15 9463.48 15772.98 10359.12 18681.16 9787.10 13085.01 16593.23 15084.77 185
IS_MVSNet86.18 7688.18 6083.85 10591.02 8394.72 6687.48 11382.46 10081.05 9570.28 11876.98 7882.20 6976.65 14693.97 3293.38 3495.18 7494.97 59
EPMVS77.53 16478.07 15776.90 17186.89 13284.91 18782.18 17266.64 20181.00 9664.11 15372.75 10569.68 13474.42 16279.36 19878.13 19787.14 19980.68 201
Vis-MVSNet (Re-imp)83.65 10386.81 7679.96 14790.46 9592.71 9584.84 14982.00 10380.93 9762.44 16476.29 8282.32 6865.54 19492.29 5891.66 5694.49 11091.47 137
PatchmatchNetpermissive78.67 15478.85 14878.46 16186.85 13386.03 17483.77 15868.11 19680.88 9866.19 13872.90 10473.40 11978.06 13579.25 19977.71 19987.75 19681.75 195
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
PatchMatch-RL83.34 10581.36 11785.65 8190.33 9989.52 14184.36 15381.82 10480.87 9979.29 7674.04 9662.85 16286.05 6988.40 12087.04 13692.04 16386.77 173
EPNet_dtu81.98 11683.82 10179.83 14994.10 5085.97 17587.29 11784.08 7080.61 10059.96 18281.62 5777.19 9962.91 19887.21 12986.38 14890.66 18087.77 168
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MSDG83.87 10081.02 12287.19 7392.17 7289.80 13389.15 8785.72 5380.61 10079.24 7766.66 13668.75 13982.69 8487.95 12487.44 12994.19 12185.92 180
CostFormer80.94 12880.21 13181.79 12687.69 12288.58 15787.47 11470.66 18480.02 10277.88 8673.03 10271.40 12678.24 13479.96 19579.63 19188.82 19088.84 155
Anonymous2023121184.42 9883.02 10486.05 7988.85 11392.70 9688.92 9583.40 8779.99 10378.31 8155.83 19278.92 8983.33 8189.06 11189.76 9593.50 14694.90 60
CHOSEN 1792x268882.16 11480.91 12583.61 10791.14 8192.01 10589.55 8079.15 13579.87 10470.29 11752.51 20072.56 12281.39 9488.87 11588.17 12390.15 18492.37 119
baseline184.54 9484.43 9584.67 9090.62 8891.16 11188.63 9983.75 7479.78 10571.16 11475.14 8974.10 11177.84 13891.56 6890.67 7396.04 2688.58 157
FC-MVSNet-train85.18 8785.31 8985.03 8890.67 8791.62 10887.66 11183.61 7779.75 10674.37 9978.69 7071.21 12778.91 13091.23 7189.96 8894.96 8394.69 68
GG-mvs-BLEND57.56 21082.61 10928.34 2170.22 22690.10 12579.37 1880.14 22379.56 1070.40 22771.25 11183.40 620.30 22486.27 14883.87 17489.59 18783.83 187
PVSNet_Blended_VisFu87.40 7187.80 6586.92 7492.86 6595.40 4988.56 10283.45 8679.55 10882.26 5974.49 9484.03 5979.24 12992.97 5091.53 5995.15 7796.65 33
Effi-MVS+85.33 8485.08 9085.63 8289.69 10593.42 8489.90 7380.31 11979.32 10972.48 11273.52 10174.03 11286.55 6790.99 8389.98 8794.83 8894.27 77
GeoE84.62 9383.98 10085.35 8689.34 10792.83 9488.34 10378.95 13679.29 11077.16 9068.10 13074.56 10883.40 8089.31 10989.23 10894.92 8494.57 70
ADS-MVSNet74.53 19175.69 18473.17 19381.57 19580.71 20579.27 18963.03 21079.27 11159.94 18367.86 13168.32 14471.08 17577.33 20376.83 20184.12 21179.53 202
FMVSNet283.87 10083.73 10284.05 10384.20 16489.95 12689.70 7580.21 12079.17 11274.89 9665.91 13977.49 9779.75 12190.87 8691.00 6595.52 5991.71 128
MDTV_nov1_ep1379.14 14879.49 14478.74 15785.40 14886.89 17084.32 15570.29 18678.85 11369.42 12475.37 8873.29 12075.64 15180.61 19279.48 19387.36 19781.91 194
Anonymous20240521182.75 10889.58 10692.97 9289.04 9284.13 6978.72 11457.18 18876.64 10183.13 8389.55 10589.92 9093.38 14994.28 76
pmmvs479.99 13478.08 15682.22 12383.04 17987.16 16984.95 14678.80 14078.64 11574.53 9764.61 15459.41 18279.45 12684.13 17584.54 17292.53 15988.08 163
tpmrst76.55 17375.99 18077.20 16787.32 12783.05 19382.86 16365.62 20378.61 11667.22 13469.19 12365.71 14875.87 15076.75 20575.33 20484.31 20983.28 190
CHOSEN 280x42080.28 13281.66 11378.67 15882.92 18279.24 20985.36 14466.79 20078.11 11770.32 11675.03 9179.87 7981.09 9889.07 11083.16 17985.54 20687.17 170
Fast-Effi-MVS+83.77 10282.98 10584.69 8987.98 11891.87 10688.10 10677.70 15078.10 11873.04 10869.13 12468.51 14086.66 6590.49 9589.85 9294.67 9992.88 99
baseline282.80 10882.86 10782.73 11787.68 12390.50 11784.92 14878.93 13778.07 11973.06 10775.08 9069.77 13377.31 14188.90 11486.94 13794.50 10890.74 142
MS-PatchMatch81.79 12081.44 11682.19 12490.35 9889.29 14588.08 10775.36 16877.60 12069.00 12764.37 15678.87 9077.14 14488.03 12385.70 15993.19 15286.24 177
tpm cat177.78 16275.28 18880.70 13987.14 13085.84 17785.81 13770.40 18577.44 12178.80 7963.72 15764.01 15576.55 14775.60 20775.21 20585.51 20785.12 182
COLMAP_ROBcopyleft76.78 1580.50 13178.49 15082.85 11490.96 8589.65 13986.20 13483.40 8777.15 12266.54 13662.27 16165.62 14977.89 13785.23 16284.70 16992.11 16284.83 184
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
FC-MVSNet-test76.53 17481.62 11470.58 19884.99 15685.73 17874.81 20178.85 13977.00 12339.13 21775.90 8473.50 11854.08 20686.54 14485.99 15691.65 16886.68 174
IterMVS-LS83.28 10682.95 10683.65 10688.39 11688.63 15686.80 12878.64 14176.56 12473.43 10572.52 10675.35 10480.81 10186.43 14788.51 12193.84 13592.66 107
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IB-MVS79.09 1282.60 11182.19 11083.07 11391.08 8293.55 8180.90 18081.35 10876.56 12480.87 6864.81 15369.97 13268.87 18185.64 15590.06 8595.36 6594.74 65
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
HyFIR lowres test81.62 12479.45 14584.14 10191.00 8493.38 8588.27 10478.19 14476.28 12670.18 11948.78 20473.69 11683.52 7987.05 13287.83 12793.68 14289.15 154
UniMVSNet (Re)81.22 12581.08 12181.39 13185.35 14991.76 10784.93 14782.88 9076.13 12765.02 14864.94 15163.09 15975.17 15487.71 12689.04 11394.97 8294.88 61
UniMVSNet_NR-MVSNet81.87 11781.33 11882.50 11885.31 15091.30 10985.70 13884.25 6675.89 12864.21 15166.95 13564.65 15280.22 11187.07 13189.18 11095.27 7394.29 73
DU-MVS81.20 12680.30 13082.25 12284.98 15790.94 11385.70 13883.58 8075.74 12964.21 15165.30 14859.60 18180.22 11186.89 13489.31 10594.77 9294.29 73
NR-MVSNet80.25 13379.98 13680.56 14285.20 15290.94 11385.65 14083.58 8075.74 12961.36 17565.30 14856.75 19572.38 17088.46 11988.80 11795.16 7693.87 81
Baseline_NR-MVSNet79.84 13778.37 15481.55 13084.98 15786.66 17185.06 14583.49 8275.57 13163.31 15858.22 18760.97 17178.00 13686.89 13487.13 13394.47 11193.15 93
OPM-MVS87.56 6985.80 8589.62 4993.90 5294.09 7494.12 3688.18 3875.40 13277.30 8976.41 8177.93 9588.79 4192.20 6190.82 6895.40 6393.72 87
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
thres100view90082.55 11281.01 12484.34 9490.30 10092.27 10289.04 9282.77 9275.14 13369.56 12165.72 14263.13 15779.62 12489.97 9989.26 10794.73 9591.61 134
tfpn200view982.86 10781.46 11584.48 9290.30 10093.09 8889.05 9182.71 9375.14 13369.56 12165.72 14263.13 15780.38 11091.15 7789.51 10094.91 8592.50 116
dps78.02 15975.94 18180.44 14486.06 13986.62 17282.58 16469.98 18875.14 13377.76 8869.08 12559.93 17778.47 13279.47 19777.96 19887.78 19583.40 189
CR-MVSNet78.71 15378.86 14778.55 15985.85 14385.15 18482.30 16968.23 19474.71 13665.37 14464.39 15569.59 13577.18 14285.10 16784.87 16692.34 16188.21 161
RPMNet77.07 16777.63 16376.42 17485.56 14785.15 18481.37 17465.27 20574.71 13660.29 18163.71 15866.59 14673.64 16482.71 18482.12 18692.38 16088.39 159
Vis-MVSNetpermissive84.38 9986.68 7881.70 12787.65 12494.89 6288.14 10580.90 11174.48 13868.23 13077.53 7680.72 7469.98 17892.68 5391.90 5495.33 6894.58 69
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
thres20082.77 10981.25 11984.54 9190.38 9793.05 8989.13 8882.67 9574.40 13969.53 12365.69 14463.03 16080.63 10591.15 7789.42 10494.88 8692.04 122
thres40082.68 11081.15 12084.47 9390.52 9292.89 9388.95 9482.71 9374.33 14069.22 12665.31 14762.61 16380.63 10590.96 8589.50 10194.79 9092.45 118
TranMVSNet+NR-MVSNet80.52 13079.84 13981.33 13384.92 15990.39 11885.53 14384.22 6874.27 14160.68 18064.93 15259.96 17677.48 14086.75 13989.28 10695.12 8093.29 91
TDRefinement79.05 14977.05 16881.39 13188.45 11589.00 15286.92 12582.65 9774.21 14264.41 15059.17 18059.16 18474.52 16085.23 16285.09 16491.37 17287.51 169
thres600view782.53 11381.02 12284.28 9790.61 8993.05 8988.57 10182.67 9574.12 14368.56 12965.09 15062.13 16880.40 10991.15 7789.02 11494.88 8692.59 110
PatchT76.42 17577.81 16174.80 18678.46 20484.30 18971.82 20765.03 20773.89 14465.37 14461.58 16466.70 14577.18 14285.10 16784.87 16690.94 17988.21 161
ACMH+79.08 1381.84 11980.06 13483.91 10489.92 10490.62 11586.21 13383.48 8473.88 14565.75 14166.38 13765.30 15084.63 7585.90 15287.25 13293.45 14791.13 141
Effi-MVS+-dtu82.05 11581.76 11282.38 12187.72 12190.56 11686.90 12778.05 14673.85 14666.85 13571.29 11071.90 12582.00 9186.64 14285.48 16192.76 15792.58 111
test-LLR79.47 14479.84 13979.03 15387.47 12582.40 20081.24 17778.05 14673.72 14762.69 16173.76 9874.42 10973.49 16584.61 17182.99 18191.25 17487.01 171
TESTMET0.1,177.78 16279.84 13975.38 18280.86 19882.40 20081.24 17762.72 21173.72 14762.69 16173.76 9874.42 10973.49 16584.61 17182.99 18191.25 17487.01 171
test-mter77.79 16180.02 13575.18 18381.18 19782.85 19580.52 18362.03 21273.62 14962.16 16673.55 10073.83 11473.81 16384.67 17083.34 17891.37 17288.31 160
IterMVS-SCA-FT79.41 14580.20 13278.49 16085.88 14086.26 17383.95 15671.94 17973.55 15061.94 16870.48 11570.50 12975.23 15285.81 15484.61 17191.99 16590.18 149
IterMVS78.79 15279.71 14277.71 16485.26 15185.91 17684.54 15269.84 19073.38 15161.25 17670.53 11470.35 13074.43 16185.21 16483.80 17690.95 17888.77 156
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
UA-Net86.07 7787.78 6684.06 10292.85 6695.11 5887.73 11084.38 6573.22 15273.18 10679.99 6389.22 3771.47 17493.22 4593.03 4094.76 9390.69 143
FMVSNet575.50 18776.07 17774.83 18576.16 20881.19 20381.34 17570.21 18773.20 15361.59 17358.97 18268.33 14368.50 18285.87 15385.85 15791.18 17779.11 204
test0.0.03 176.03 18078.51 14973.12 19487.47 12585.13 18676.32 19878.05 14673.19 15450.98 20470.64 11269.28 13655.53 20285.33 16084.38 17390.39 18281.63 196
dmvs_re81.08 12779.92 13782.44 12086.66 13487.70 16287.91 10883.30 8972.86 15565.29 14765.76 14163.43 15676.69 14588.93 11389.50 10194.80 8991.23 140
Fast-Effi-MVS+-dtu79.95 13580.69 12679.08 15286.36 13789.14 14985.85 13672.28 17872.85 15659.32 18570.43 11668.42 14277.57 13986.14 14986.44 14793.11 15391.39 138
thisisatest051579.76 13980.59 12878.80 15584.40 16288.91 15479.48 18676.94 15672.29 15767.33 13367.82 13265.99 14770.80 17688.50 11887.84 12593.86 13492.75 105
tpm76.30 17976.05 17976.59 17386.97 13183.01 19483.83 15767.06 19971.83 15863.87 15569.56 12162.88 16173.41 16779.79 19678.59 19584.41 20886.68 174
v879.90 13678.39 15381.66 12883.97 16889.81 13287.16 12277.40 15271.49 15967.71 13161.24 16662.49 16479.83 12085.48 15986.17 15193.89 13292.02 124
V4279.59 14178.43 15280.94 13782.79 18589.71 13686.66 12976.73 15971.38 16067.42 13261.01 16862.30 16678.39 13385.56 15786.48 14593.65 14392.60 109
PM-MVS74.17 19373.10 19475.41 18176.07 20982.53 19877.56 19671.69 18071.04 16161.92 16961.23 16747.30 21574.82 15881.78 18979.80 19090.42 18188.05 164
MIMVSNet74.69 19075.60 18573.62 19176.02 21085.31 18381.21 17967.43 19771.02 16259.07 18754.48 19364.07 15366.14 19386.52 14586.64 14291.83 16781.17 198
pmnet_mix0271.95 19671.83 19972.10 19581.40 19680.63 20673.78 20372.85 17770.90 16354.89 19362.17 16257.42 19262.92 19776.80 20473.98 20886.74 20280.87 200
FMVSNet181.64 12280.61 12782.84 11582.36 18989.20 14788.67 9679.58 12970.79 16472.63 11158.95 18372.26 12479.34 12790.73 8990.72 6994.47 11191.62 133
v2v48279.84 13778.07 15781.90 12583.75 16990.21 12387.17 12179.85 12770.65 16565.93 14061.93 16360.07 17580.82 10085.25 16186.71 14093.88 13391.70 132
TinyColmap76.73 16973.95 19379.96 14785.16 15485.64 18082.34 16878.19 14470.63 16662.06 16760.69 17249.61 21280.81 10185.12 16683.69 17791.22 17682.27 193
v1079.62 14078.19 15581.28 13483.73 17089.69 13787.27 11876.86 15770.50 16765.46 14260.58 17360.47 17380.44 10886.91 13386.63 14393.93 12992.55 113
GA-MVS79.52 14279.71 14279.30 15185.68 14490.36 11984.55 15178.44 14270.47 16857.87 19068.52 12861.38 16976.21 14889.40 10887.89 12493.04 15489.96 150
ACMH78.52 1481.86 11880.45 12983.51 11190.51 9491.22 11085.62 14184.23 6770.29 16962.21 16569.04 12664.05 15484.48 7687.57 12788.45 12294.01 12792.54 114
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
WR-MVS76.63 17178.02 15975.02 18484.14 16789.76 13578.34 19380.64 11369.56 17052.32 19961.26 16561.24 17060.66 19984.45 17387.07 13493.99 12892.77 103
v14878.59 15576.84 17180.62 14183.61 17289.16 14883.65 15979.24 13469.38 17169.34 12559.88 17760.41 17475.19 15383.81 17784.63 17092.70 15890.63 145
v114479.38 14677.83 16081.18 13583.62 17190.23 12187.15 12378.35 14369.13 17264.02 15460.20 17559.41 18280.14 11586.78 13786.57 14493.81 13792.53 115
CDS-MVSNet81.63 12382.09 11181.09 13687.21 12990.28 12087.46 11580.33 11869.06 17370.66 11571.30 10973.87 11367.99 18489.58 10489.87 9192.87 15690.69 143
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
CVMVSNet76.70 17078.46 15174.64 18883.34 17484.48 18881.83 17374.58 16968.88 17451.23 20369.77 11770.05 13167.49 18784.27 17483.81 17589.38 18887.96 165
MDTV_nov1_ep13_2view73.21 19572.91 19573.56 19280.01 19984.28 19078.62 19166.43 20268.64 17559.12 18660.39 17459.69 18069.81 17978.82 20177.43 20087.36 19781.11 199
v119278.94 15077.33 16480.82 13883.25 17589.90 13086.91 12677.72 14968.63 17662.61 16359.17 18057.53 19180.62 10786.89 13486.47 14693.79 13892.75 105
v192192078.57 15676.99 16980.41 14582.93 18189.63 14086.38 13277.14 15468.31 17761.80 17158.89 18456.79 19480.19 11486.50 14686.05 15594.02 12692.76 104
v14419278.81 15177.22 16680.67 14082.95 18089.79 13486.40 13177.42 15168.26 17863.13 15959.50 17858.13 18780.08 11685.93 15186.08 15394.06 12492.83 101
CP-MVSNet76.36 17876.41 17476.32 17682.73 18688.64 15579.39 18779.62 12867.21 17953.70 19560.72 17155.22 20167.91 18683.52 17986.34 14994.55 10693.19 92
v124078.15 15876.53 17280.04 14682.85 18489.48 14385.61 14276.77 15867.05 18061.18 17858.37 18656.16 19879.89 11986.11 15086.08 15393.92 13092.47 117
WR-MVS_H75.84 18476.93 17074.57 18982.86 18389.50 14278.34 19379.36 13366.90 18152.51 19860.20 17559.71 17859.73 20083.61 17885.77 15894.65 10092.84 100
pmmvs-eth3d74.32 19271.96 19877.08 16977.33 20682.71 19678.41 19276.02 16466.65 18265.98 13954.23 19649.02 21473.14 16982.37 18782.69 18391.61 16986.05 179
PEN-MVS76.02 18176.07 17775.95 17983.17 17787.97 16079.65 18480.07 12566.57 18351.45 20160.94 16955.47 20066.81 19082.72 18386.80 13994.59 10392.03 123
N_pmnet66.85 20366.63 20467.11 20478.73 20274.66 21370.53 20871.07 18266.46 18446.54 20851.68 20251.91 21055.48 20374.68 20872.38 20980.29 21474.65 210
DTE-MVSNet75.14 18875.44 18774.80 18683.18 17687.19 16878.25 19580.11 12266.05 18548.31 20660.88 17054.67 20264.54 19582.57 18586.17 15194.43 11490.53 147
PS-CasMVS75.90 18375.86 18275.96 17882.59 18788.46 15879.23 19079.56 13066.00 18652.77 19759.48 17954.35 20567.14 18983.37 18086.23 15094.47 11193.10 94
v7n77.22 16676.23 17678.38 16281.89 19289.10 15182.24 17176.36 16065.96 18761.21 17756.56 19055.79 19975.07 15686.55 14386.68 14193.52 14592.95 98
anonymousdsp77.94 16079.00 14676.71 17279.03 20187.83 16179.58 18572.87 17665.80 18858.86 18965.82 14062.48 16575.99 14986.77 13888.66 11893.92 13095.68 51
tmp_tt32.73 21643.96 22321.15 22526.71 2238.99 22165.67 18951.39 20256.01 19142.64 21811.76 22156.60 21650.81 21753.55 221
SixPastTwentyTwo76.02 18175.72 18376.36 17583.38 17387.54 16475.50 20076.22 16165.50 19057.05 19170.64 11253.97 20674.54 15980.96 19182.12 18691.44 17089.35 153
pmmvs576.93 16876.33 17577.62 16581.97 19188.40 15981.32 17674.35 17165.42 19161.42 17463.07 15957.95 18973.23 16885.60 15685.35 16393.41 14888.55 158
TAMVS76.42 17577.16 16775.56 18083.05 17885.55 18180.58 18271.43 18165.40 19261.04 17967.27 13469.22 13867.99 18484.88 16984.78 16889.28 18983.01 191
UniMVSNet_ETH3D79.24 14776.47 17382.48 11985.66 14590.97 11286.08 13581.63 10564.48 19368.94 12854.47 19457.65 19078.83 13185.20 16588.91 11693.72 14093.60 88
Anonymous2023120670.80 19870.59 20271.04 19781.60 19482.49 19974.64 20275.87 16564.17 19449.27 20544.85 21053.59 20854.68 20583.07 18182.34 18590.17 18383.65 188
testgi71.92 19774.20 19269.27 20084.58 16183.06 19273.40 20474.39 17064.04 19546.17 20968.90 12757.15 19348.89 21084.07 17683.08 18088.18 19479.09 205
EU-MVSNet69.98 20072.30 19767.28 20375.67 21179.39 20873.12 20569.94 18963.59 19642.80 21362.93 16056.71 19655.07 20479.13 20078.55 19687.06 20085.82 181
pm-mvs178.51 15777.75 16279.40 15084.83 16089.30 14483.55 16079.38 13262.64 19763.68 15658.73 18564.68 15170.78 17789.79 10187.84 12594.17 12291.28 139
CMPMVSbinary56.49 1773.84 19471.73 20076.31 17785.20 15285.67 17975.80 19973.23 17462.26 19865.40 14353.40 19859.70 17971.77 17380.25 19479.56 19286.45 20381.28 197
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
MVS-HIRNet68.83 20166.39 20571.68 19677.58 20575.52 21266.45 21265.05 20662.16 19962.84 16044.76 21156.60 19771.96 17278.04 20275.06 20686.18 20572.56 211
FPMVS63.63 20760.08 21267.78 20280.01 19971.50 21572.88 20669.41 19261.82 20053.11 19645.12 20942.11 21950.86 20866.69 21263.84 21380.41 21369.46 213
tfpnnormal77.46 16574.86 19080.49 14386.34 13888.92 15384.33 15481.26 10961.39 20161.70 17251.99 20153.66 20774.84 15788.63 11687.38 13194.50 10892.08 120
new_pmnet59.28 20961.47 21156.73 21061.66 21768.29 21759.57 21654.91 21360.83 20234.38 22044.66 21243.65 21749.90 20971.66 21071.56 21179.94 21569.67 212
ambc61.92 20970.98 21473.54 21463.64 21560.06 20352.23 20038.44 21419.17 22557.12 20182.33 18875.03 20783.21 21284.89 183
test_method41.78 21348.10 21434.42 21510.74 22519.78 22644.64 22017.73 22059.83 20438.67 21835.82 21754.41 20434.94 21662.87 21543.13 21859.81 21960.82 216
TransMVSNet (Re)76.57 17275.16 18978.22 16385.60 14687.24 16782.46 16581.23 11059.80 20559.05 18857.07 18959.14 18566.60 19288.09 12286.82 13894.37 11787.95 166
EG-PatchMatch MVS76.40 17775.47 18677.48 16685.86 14290.22 12282.45 16673.96 17359.64 20659.60 18452.75 19962.20 16768.44 18388.23 12187.50 12894.55 10687.78 167
MDA-MVSNet-bldmvs66.22 20464.49 20768.24 20161.67 21682.11 20270.07 20976.16 16259.14 20747.94 20754.35 19535.82 22267.33 18864.94 21475.68 20386.30 20479.36 203
test20.0368.31 20270.05 20366.28 20582.41 18880.84 20467.35 21176.11 16358.44 20840.80 21653.77 19754.54 20342.28 21383.07 18181.96 18888.73 19277.76 207
new-patchmatchnet63.80 20663.31 20864.37 20676.49 20775.99 21163.73 21470.99 18357.27 20943.08 21245.86 20843.80 21645.13 21273.20 20970.68 21286.80 20176.34 209
DeepMVS_CXcopyleft48.31 22148.03 21926.08 21956.42 21025.77 22247.51 20531.31 22351.30 20748.49 21853.61 22061.52 215
MIMVSNet165.00 20566.24 20663.55 20758.41 21980.01 20769.00 21074.03 17255.81 21141.88 21436.81 21549.48 21347.89 21181.32 19082.40 18490.08 18577.88 206
Gipumacopyleft49.17 21247.05 21551.65 21159.67 21848.39 22041.98 22163.47 20955.64 21233.33 22114.90 21913.78 22641.34 21469.31 21172.30 21070.11 21755.00 218
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
pmmvs674.83 18972.89 19677.09 16882.11 19087.50 16580.88 18176.97 15552.79 21361.91 17046.66 20660.49 17269.28 18086.74 14085.46 16291.39 17190.56 146
gg-mvs-nofinetune75.64 18677.26 16573.76 19087.92 11992.20 10387.32 11664.67 20851.92 21435.35 21946.44 20777.05 10071.97 17192.64 5491.02 6495.34 6789.53 152
LTVRE_ROB74.41 1675.78 18574.72 19177.02 17085.88 14089.22 14682.44 16777.17 15350.57 21545.45 21065.44 14652.29 20981.25 9585.50 15887.42 13089.94 18692.62 108
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
gm-plane-assit70.29 19970.65 20169.88 19985.03 15578.50 21058.41 21765.47 20450.39 21640.88 21549.60 20350.11 21175.14 15591.43 7089.78 9394.32 11884.73 186
pmmvs361.89 20861.74 21062.06 20864.30 21570.83 21664.22 21352.14 21648.78 21744.47 21141.67 21341.70 22063.03 19676.06 20676.02 20284.18 21077.14 208
PMVScopyleft50.48 1855.81 21151.93 21360.33 20972.90 21349.34 21948.78 21869.51 19143.49 21854.25 19436.26 21641.04 22139.71 21565.07 21360.70 21476.85 21667.58 214
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
PMMVS241.68 21444.74 21638.10 21246.97 22252.32 21840.63 22248.08 21735.51 2197.36 22626.86 21824.64 22416.72 22055.24 21759.03 21568.85 21859.59 217
EMVS30.49 21725.44 21936.39 21451.47 22029.89 22420.17 22554.00 21526.49 22012.02 22513.94 2228.84 22734.37 21725.04 22134.37 22046.29 22339.53 221
E-PMN31.40 21526.80 21836.78 21351.39 22129.96 22320.20 22454.17 21425.93 22112.75 22414.73 2208.58 22834.10 21827.36 22037.83 21948.07 22243.18 220
MVEpermissive30.17 1930.88 21633.52 21727.80 21823.78 22439.16 22218.69 22646.90 21821.88 22215.39 22314.37 2217.31 22924.41 21941.63 21956.22 21637.64 22454.07 219
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
testmvs1.03 2181.63 2200.34 2190.09 2270.35 2270.61 2280.16 2221.49 2230.10 2283.15 2230.15 2300.86 2231.32 2221.18 2210.20 2253.76 223
test1230.87 2191.40 2210.25 2200.03 2280.25 2280.35 2290.08 2241.21 2240.05 2292.84 2240.03 2310.89 2220.43 2231.16 2220.13 2263.87 222
uanet_test0.00 2200.00 2220.00 2210.00 2290.00 2290.00 2300.00 2250.00 2250.00 2300.00 2250.00 2320.00 2250.00 2240.00 2230.00 2270.00 224
sosnet-low-res0.00 2200.00 2220.00 2210.00 2290.00 2290.00 2300.00 2250.00 2250.00 2300.00 2250.00 2320.00 2250.00 2240.00 2230.00 2270.00 224
sosnet0.00 2200.00 2220.00 2210.00 2290.00 2290.00 2300.00 2250.00 2250.00 2300.00 2250.00 2320.00 2250.00 2240.00 2230.00 2270.00 224
TPM-MVS96.31 2796.02 3894.89 3086.52 3687.18 3692.17 1686.76 6495.56 5593.85 82
RE-MVS-def56.08 192
9.1492.16 17
SR-MVS96.58 2590.99 2192.40 13
our_test_381.81 19383.96 19176.61 197
MTAPA92.97 291.03 23
MTMP93.14 190.21 30
Patchmatch-RL test8.55 227
XVS93.11 6096.70 2591.91 5383.95 4988.82 4095.79 40
X-MVStestdata93.11 6096.70 2591.91 5383.95 4988.82 4095.79 40
mPP-MVS97.06 1288.08 45
Patchmtry85.54 18282.30 16968.23 19465.37 144