This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort by
DVP-MVS95.56 296.26 294.73 296.93 1698.19 196.62 692.81 496.15 191.73 595.01 795.31 293.41 195.95 294.77 796.90 498.46 1
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
SED-MVS95.61 196.36 194.73 296.84 1998.15 297.08 392.92 295.64 291.84 495.98 495.33 192.83 696.00 194.94 396.90 498.45 2
MSP-MVS95.12 595.83 494.30 596.82 2197.94 496.98 492.37 1195.40 390.59 1396.16 393.71 592.70 794.80 1594.77 796.37 1497.99 7
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
DeepPCF-MVS88.51 292.64 2994.42 1690.56 4194.84 4496.92 1891.31 6189.61 3295.16 484.55 4689.91 2991.45 2190.15 3395.12 1094.81 692.90 14897.58 12
APDe-MVS95.23 495.69 594.70 497.12 1097.81 597.19 292.83 395.06 590.98 1096.47 292.77 1093.38 295.34 894.21 1596.68 898.17 4
SMA-MVScopyleft94.70 695.35 693.93 1297.57 297.57 795.98 1191.91 1394.50 690.35 1493.46 1792.72 1191.89 1895.89 395.22 195.88 2798.10 5
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
SD-MVS94.53 995.22 793.73 1595.69 3697.03 1495.77 2291.95 1294.41 791.35 794.97 893.34 791.80 2094.72 1893.99 1995.82 3498.07 6
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DPE-MVScopyleft95.53 396.13 394.82 196.81 2298.05 397.42 193.09 194.31 891.49 697.12 195.03 393.27 395.55 594.58 1196.86 698.25 3
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
TSAR-MVS + MP.94.48 1094.97 893.90 1395.53 3797.01 1596.69 590.71 2494.24 990.92 1194.97 892.19 1593.03 494.83 1493.60 2696.51 1397.97 8
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
HFP-MVS94.02 1494.22 1793.78 1497.25 796.85 2095.81 2090.94 2394.12 1090.29 1694.09 1489.98 3192.52 1093.94 3293.49 3395.87 2997.10 23
zzz-MVS93.80 1793.45 2594.20 897.53 396.43 3695.88 1791.12 2094.09 1192.74 387.68 3390.77 2592.04 1394.74 1793.56 2895.91 2696.85 27
xxxxxxxxxxxxxcwj92.95 2491.88 3394.20 896.75 2497.07 1195.82 1892.60 693.98 1291.09 895.89 571.01 12691.93 1594.40 2593.56 2897.04 297.27 16
SF-MVS94.61 794.96 994.20 896.75 2497.07 1195.82 1892.60 693.98 1291.09 895.89 592.54 1291.93 1594.40 2593.56 2897.04 297.27 16
ACMMPR93.72 1893.94 1993.48 1897.07 1196.93 1795.78 2190.66 2693.88 1489.24 2193.53 1689.08 3892.24 1193.89 3493.50 3195.88 2796.73 31
HPM-MVS++copyleft94.60 894.91 1094.24 797.86 196.53 3296.14 892.51 893.87 1590.76 1293.45 1893.84 492.62 895.11 1194.08 1895.58 5097.48 13
CNVR-MVS94.37 1194.65 1194.04 1197.29 697.11 1096.00 1092.43 1093.45 1689.85 1990.92 2593.04 892.59 995.77 494.82 596.11 2197.42 15
TSAR-MVS + ACMM92.97 2394.51 1391.16 3795.88 3496.59 3095.09 2990.45 3093.42 1783.01 5394.68 1090.74 2688.74 4094.75 1693.78 2393.82 12997.63 11
ACMMP_NAP93.94 1594.49 1493.30 2097.03 1397.31 995.96 1291.30 1893.41 1888.55 2493.00 1990.33 2891.43 2695.53 694.41 1395.53 5297.47 14
NCCC93.69 1993.66 2293.72 1697.37 596.66 2995.93 1692.50 993.40 1988.35 2587.36 3592.33 1492.18 1294.89 1394.09 1796.00 2396.91 26
OMC-MVS90.23 4490.40 4390.03 4593.45 5795.29 5091.89 5686.34 5293.25 2084.94 4581.72 5286.65 4988.90 3791.69 6290.27 7594.65 9393.95 80
DeepC-MVS_fast88.76 193.10 2293.02 2993.19 2297.13 996.51 3395.35 2691.19 1993.14 2188.14 2685.26 4189.49 3591.45 2395.17 995.07 295.85 3296.48 34
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
TSAR-MVS + GP.92.71 2893.91 2091.30 3591.96 7296.00 4193.43 4187.94 4192.53 2286.27 4093.57 1591.94 1891.44 2593.29 4092.89 4396.78 797.15 21
CSCG92.76 2693.16 2792.29 2996.30 2897.74 694.67 3388.98 3692.46 2389.73 2086.67 3792.15 1788.69 4292.26 5492.92 4295.40 5797.89 9
APD-MVScopyleft94.37 1194.47 1594.26 697.18 896.99 1696.53 792.68 592.45 2489.96 1794.53 1191.63 2092.89 594.58 2093.82 2296.31 1797.26 18
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CP-MVS93.25 2193.26 2693.24 2196.84 1996.51 3395.52 2490.61 2792.37 2588.88 2290.91 2689.52 3491.91 1793.64 3692.78 4495.69 4197.09 24
MCST-MVS93.81 1694.06 1893.53 1796.79 2396.85 2095.95 1391.69 1692.20 2687.17 3290.83 2793.41 691.96 1494.49 2393.50 3197.61 197.12 22
DeepC-MVS87.86 392.26 3191.86 3492.73 2596.18 2996.87 1995.19 2891.76 1592.17 2786.58 3581.79 5085.85 5090.88 2994.57 2194.61 995.80 3597.18 19
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SteuartSystems-ACMMP94.06 1394.65 1193.38 1996.97 1597.36 896.12 991.78 1492.05 2887.34 3094.42 1290.87 2491.87 1995.47 794.59 1096.21 1997.77 10
Skip Steuart: Steuart Systems R&D Blog.
CNLPA88.40 5787.00 7190.03 4593.73 5594.28 6589.56 7985.81 5491.87 2987.55 2969.53 11881.49 6889.23 3589.45 10188.59 11394.31 11293.82 83
TSAR-MVS + COLMAP88.40 5789.09 5287.60 7092.72 6793.92 7292.21 5085.57 5691.73 3073.72 9991.75 2373.22 11887.64 5491.49 6489.71 9193.73 13291.82 123
ACMMPcopyleft92.03 3392.16 3191.87 3495.88 3496.55 3194.47 3589.49 3391.71 3185.26 4291.52 2484.48 5590.21 3292.82 4891.63 5295.92 2596.42 36
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
TAPA-MVS84.37 788.91 5388.93 5388.89 5593.00 6394.85 5992.00 5384.84 6191.68 3280.05 7179.77 6384.56 5488.17 4890.11 9189.00 10995.30 6492.57 110
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
X-MVS92.36 3092.75 3091.90 3396.89 1796.70 2595.25 2790.48 2991.50 3383.95 4888.20 3188.82 4089.11 3693.75 3593.43 3495.75 3996.83 29
DPM-MVS91.72 3591.48 3592.00 3195.53 3795.75 4595.94 1491.07 2191.20 3485.58 4181.63 5490.74 2688.40 4593.40 3893.75 2495.45 5693.85 82
CPTT-MVS91.39 3790.95 4091.91 3295.06 3995.24 5195.02 3088.98 3691.02 3586.71 3484.89 4388.58 4391.60 2290.82 8189.67 9294.08 11696.45 35
MP-MVScopyleft93.35 2093.59 2393.08 2397.39 496.82 2295.38 2590.71 2490.82 3688.07 2792.83 2190.29 2991.32 2794.03 2993.19 3895.61 4897.16 20
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PHI-MVS92.05 3293.74 2190.08 4494.96 4197.06 1393.11 4587.71 4490.71 3780.78 6892.40 2291.03 2287.68 5394.32 2794.48 1296.21 1996.16 40
train_agg92.87 2593.53 2492.09 3096.88 1895.38 4995.94 1490.59 2890.65 3883.65 5194.31 1391.87 1990.30 3193.38 3992.42 4695.17 6996.73 31
3Dnovator+86.06 491.60 3690.86 4292.47 2796.00 3396.50 3594.70 3287.83 4390.49 3989.92 1874.68 9089.35 3690.66 3094.02 3094.14 1695.67 4396.85 27
canonicalmvs89.36 4989.92 4488.70 5891.38 7695.92 4391.81 5782.61 9490.37 4082.73 5782.09 4879.28 8488.30 4791.17 7093.59 2795.36 6097.04 25
abl_690.66 4094.65 4796.27 3792.21 5086.94 4890.23 4186.38 3785.50 4092.96 988.37 4695.40 5795.46 53
MVS_111021_LR90.14 4590.89 4189.26 5393.23 5994.05 7090.43 6684.65 6290.16 4284.52 4790.14 2883.80 5987.99 4992.50 5290.92 6194.74 8794.70 67
PGM-MVS92.76 2693.03 2892.45 2897.03 1396.67 2895.73 2387.92 4290.15 4386.53 3692.97 2088.33 4491.69 2193.62 3793.03 3995.83 3396.41 37
MSLP-MVS++92.02 3491.40 3792.75 2496.01 3295.88 4493.73 4089.00 3489.89 4490.31 1581.28 5688.85 3991.45 2392.88 4794.24 1496.00 2396.76 30
3Dnovator85.17 590.48 4289.90 4691.16 3794.88 4395.74 4693.82 3785.36 5789.28 4587.81 2874.34 9287.40 4888.56 4393.07 4393.74 2596.53 1295.71 47
PLCcopyleft83.76 988.61 5686.83 7390.70 3994.22 4992.63 9291.50 5987.19 4789.16 4686.87 3375.51 8580.87 7189.98 3490.01 9289.20 10394.41 10890.45 142
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
AdaColmapbinary90.29 4388.38 5792.53 2696.10 3195.19 5392.98 4691.40 1789.08 4788.65 2378.35 7181.44 6991.30 2890.81 8290.21 7694.72 8993.59 88
CDPH-MVS91.14 3992.01 3290.11 4396.18 2996.18 3994.89 3188.80 3888.76 4877.88 8489.18 3087.71 4787.29 6093.13 4293.31 3695.62 4695.84 45
HQP-MVS89.13 5189.58 4988.60 6093.53 5693.67 7393.29 4387.58 4588.53 4975.50 8987.60 3480.32 7487.07 6190.66 8789.95 8494.62 9596.35 39
CLD-MVS88.66 5488.52 5588.82 5691.37 7794.22 6692.82 4882.08 9888.27 5085.14 4381.86 4978.53 8885.93 6991.17 7090.61 6995.55 5195.00 58
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
CANet91.33 3891.46 3691.18 3695.01 4096.71 2493.77 3887.39 4687.72 5187.26 3181.77 5189.73 3287.32 5994.43 2493.86 2196.31 1796.02 43
MVS_111021_HR90.56 4191.29 3989.70 4994.71 4695.63 4791.81 5786.38 5187.53 5281.29 6287.96 3285.43 5287.69 5293.90 3392.93 4196.33 1595.69 48
NP-MVS87.47 53
ACMP83.90 888.32 6088.06 6088.62 5992.18 7093.98 7191.28 6285.24 5886.69 5481.23 6385.62 3975.13 10287.01 6389.83 9489.77 8994.79 8395.43 54
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
MVS_030490.88 4091.35 3890.34 4293.91 5296.79 2394.49 3486.54 5086.57 5582.85 5581.68 5389.70 3387.57 5594.64 1993.93 2096.67 1096.15 41
diffmvs86.52 7286.76 7586.23 7688.31 11292.63 9289.58 7881.61 10286.14 5680.26 7079.00 6777.27 9483.58 7688.94 10689.06 10694.05 11894.29 73
ACMM83.27 1087.68 6686.09 7989.54 5193.26 5892.19 9891.43 6086.74 4986.02 5782.85 5575.63 8475.14 10188.41 4490.68 8689.99 8194.59 9692.97 95
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
LGP-MVS_train88.25 6188.55 5487.89 6692.84 6693.66 7493.35 4285.22 5985.77 5874.03 9886.60 3876.29 9886.62 6591.20 6890.58 7195.29 6595.75 46
EPNet89.60 4789.91 4589.24 5496.45 2793.61 7592.95 4788.03 4085.74 5983.36 5287.29 3683.05 6280.98 9492.22 5591.85 5093.69 13495.58 51
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
QAPM89.49 4889.58 4989.38 5294.73 4595.94 4292.35 4985.00 6085.69 6080.03 7276.97 7887.81 4687.87 5092.18 5892.10 4896.33 1596.40 38
MAR-MVS88.39 5988.44 5688.33 6594.90 4295.06 5590.51 6583.59 7585.27 6179.07 7677.13 7682.89 6387.70 5192.19 5792.32 4794.23 11394.20 78
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
ETV-MVS89.22 5089.76 4788.60 6091.60 7394.61 6389.48 8183.46 8185.20 6281.58 6082.75 4682.59 6488.80 3894.57 2193.28 3796.68 895.31 55
casdiffmvs87.45 6887.15 7087.79 6990.15 9694.22 6689.96 7283.93 6985.08 6380.91 6575.81 8377.88 9286.08 6791.86 6190.86 6295.74 4094.37 71
baseline84.89 8586.06 8083.52 10687.25 12389.67 13387.76 10375.68 16284.92 6478.40 7880.10 6080.98 7080.20 10886.69 13587.05 12991.86 16092.99 94
PVSNet_BlendedMVS88.19 6288.00 6288.42 6292.71 6894.82 6089.08 8683.81 7084.91 6586.38 3779.14 6578.11 8982.66 8293.05 4491.10 5695.86 3094.86 63
PVSNet_Blended88.19 6288.00 6288.42 6292.71 6894.82 6089.08 8683.81 7084.91 6586.38 3779.14 6578.11 8982.66 8293.05 4491.10 5695.86 3094.86 63
LS3D85.96 7784.37 9287.81 6794.13 5093.27 8090.26 6989.00 3484.91 6572.84 10671.74 10472.47 12087.45 5789.53 10089.09 10593.20 14489.60 145
CS-MVS88.97 5289.44 5188.41 6491.45 7595.24 5190.03 7082.43 9684.08 6881.16 6481.02 5883.83 5888.74 4094.25 2892.73 4596.67 1094.95 60
RPSCF83.46 9883.36 9783.59 10487.75 11587.35 16084.82 14479.46 12783.84 6978.12 8082.69 4779.87 7782.60 8482.47 18081.13 18388.78 18586.13 172
MVS_Test86.93 7087.24 6986.56 7490.10 9793.47 7790.31 6780.12 11783.55 7078.12 8079.58 6479.80 7985.45 7190.17 9090.59 7095.29 6593.53 89
DCV-MVSNet85.88 7986.17 7785.54 8189.10 10589.85 12689.34 8280.70 10883.04 7178.08 8276.19 8179.00 8582.42 8589.67 9790.30 7493.63 13795.12 56
CANet_DTU85.43 8087.72 6882.76 11290.95 8393.01 8589.99 7175.46 16382.67 7264.91 14383.14 4580.09 7680.68 9892.03 6091.03 5894.57 9892.08 118
EIA-MVS87.94 6488.05 6187.81 6791.46 7495.00 5788.67 9382.81 8682.53 7380.81 6780.04 6180.20 7587.48 5692.58 5191.61 5395.63 4594.36 72
DELS-MVS89.71 4689.68 4889.74 4793.75 5496.22 3893.76 3985.84 5382.53 7385.05 4478.96 6884.24 5684.25 7594.91 1294.91 495.78 3896.02 43
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
OpenMVScopyleft82.53 1187.71 6586.84 7288.73 5794.42 4895.06 5591.02 6383.49 7882.50 7582.24 5967.62 12985.48 5185.56 7091.19 6991.30 5595.67 4394.75 65
PCF-MVS84.60 688.66 5487.75 6789.73 4893.06 6296.02 4093.22 4490.00 3182.44 7680.02 7377.96 7485.16 5387.36 5888.54 11088.54 11494.72 8995.61 50
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
DI_MVS_plusplus_trai86.41 7385.54 8587.42 7189.24 10293.13 8192.16 5282.65 9282.30 7780.75 6968.30 12580.41 7385.01 7290.56 8890.07 7994.70 9194.01 79
ET-MVSNet_ETH3D84.65 8685.58 8483.56 10574.99 20692.62 9490.29 6880.38 11082.16 7873.01 10583.41 4471.10 12587.05 6287.77 11990.17 7795.62 4691.82 123
thisisatest053085.15 8385.86 8184.33 9189.19 10492.57 9587.22 11480.11 11882.15 7974.41 9578.15 7273.80 11279.90 11290.99 7789.58 9395.13 7393.75 85
tttt051785.11 8485.81 8284.30 9289.24 10292.68 9187.12 11880.11 11881.98 8074.31 9778.08 7373.57 11479.90 11291.01 7689.58 9395.11 7593.77 84
MVSTER86.03 7686.12 7885.93 7888.62 10889.93 12489.33 8379.91 12281.87 8181.35 6181.07 5774.91 10380.66 9992.13 5990.10 7895.68 4292.80 100
EPP-MVSNet86.55 7187.76 6685.15 8390.52 8794.41 6487.24 11382.32 9781.79 8273.60 10078.57 7082.41 6582.07 8891.23 6690.39 7395.14 7295.48 52
UGNet85.90 7888.23 5883.18 10888.96 10694.10 6887.52 10683.60 7481.66 8377.90 8380.76 5983.19 6166.70 18591.13 7590.71 6794.39 10996.06 42
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
PMMVS81.65 11684.05 9378.86 14978.56 19782.63 19183.10 15567.22 19381.39 8470.11 11584.91 4279.74 8082.12 8787.31 12285.70 15392.03 15886.67 170
SCA79.51 13780.15 12878.75 15186.58 12987.70 15783.07 15668.53 18881.31 8566.40 13273.83 9475.38 9979.30 12380.49 18779.39 18888.63 18782.96 186
GBi-Net84.51 8984.80 8884.17 9584.20 15889.95 12189.70 7580.37 11181.17 8675.50 8969.63 11479.69 8179.75 11690.73 8390.72 6495.52 5391.71 125
test184.51 8984.80 8884.17 9584.20 15889.95 12189.70 7580.37 11181.17 8675.50 8969.63 11479.69 8179.75 11690.73 8390.72 6495.52 5391.71 125
FMVSNet384.44 9184.64 9084.21 9484.32 15790.13 11989.85 7480.37 11181.17 8675.50 8969.63 11479.69 8179.62 11989.72 9690.52 7295.59 4991.58 131
USDC80.69 12379.89 13281.62 12486.48 13089.11 14586.53 12478.86 13481.15 8963.48 15172.98 10059.12 18181.16 9287.10 12485.01 15993.23 14384.77 179
IS_MVSNet86.18 7488.18 5983.85 10191.02 8094.72 6287.48 10782.46 9581.05 9070.28 11376.98 7782.20 6776.65 14093.97 3193.38 3595.18 6894.97 59
EPMVS77.53 15878.07 15176.90 16686.89 12784.91 18182.18 16666.64 19681.00 9164.11 14772.75 10269.68 13274.42 15679.36 19278.13 19187.14 19380.68 195
Vis-MVSNet (Re-imp)83.65 9786.81 7479.96 14290.46 9092.71 8984.84 14382.00 9980.93 9262.44 15876.29 8082.32 6665.54 18892.29 5391.66 5194.49 10391.47 132
PatchmatchNetpermissive78.67 14878.85 14278.46 15686.85 12886.03 16883.77 15268.11 19180.88 9366.19 13372.90 10173.40 11678.06 13079.25 19377.71 19387.75 19081.75 189
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
PatchMatch-RL83.34 9981.36 11185.65 7990.33 9389.52 13684.36 14781.82 10080.87 9479.29 7474.04 9362.85 15786.05 6888.40 11387.04 13092.04 15786.77 167
EPNet_dtu81.98 11183.82 9579.83 14494.10 5185.97 16987.29 11184.08 6880.61 9559.96 17681.62 5577.19 9562.91 19287.21 12386.38 14290.66 17487.77 162
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MSDG83.87 9481.02 11687.19 7292.17 7189.80 12889.15 8485.72 5580.61 9579.24 7566.66 13268.75 13682.69 8187.95 11787.44 12394.19 11485.92 174
CostFormer80.94 12280.21 12681.79 12187.69 11788.58 15287.47 10870.66 17980.02 9777.88 8473.03 9971.40 12378.24 12979.96 18979.63 18588.82 18488.84 149
Anonymous2023121184.42 9283.02 9886.05 7788.85 10792.70 9088.92 9283.40 8379.99 9878.31 7955.83 18578.92 8683.33 7989.06 10589.76 9093.50 13994.90 61
CHOSEN 1792x268882.16 10980.91 11983.61 10391.14 7892.01 9989.55 8079.15 13179.87 9970.29 11252.51 19472.56 11981.39 9088.87 10888.17 11790.15 17892.37 117
baseline184.54 8884.43 9184.67 8690.62 8591.16 10588.63 9583.75 7279.78 10071.16 10975.14 8774.10 10877.84 13391.56 6390.67 6896.04 2288.58 151
FC-MVSNet-train85.18 8285.31 8685.03 8490.67 8491.62 10287.66 10583.61 7379.75 10174.37 9678.69 6971.21 12478.91 12591.23 6689.96 8394.96 7794.69 68
GG-mvs-BLEND57.56 20482.61 10328.34 2120.22 22090.10 12079.37 1820.14 21879.56 1020.40 22171.25 10783.40 600.30 21886.27 14283.87 16889.59 18183.83 181
PVSNet_Blended_VisFu87.40 6987.80 6486.92 7392.86 6495.40 4888.56 9783.45 8279.55 10382.26 5874.49 9184.03 5779.24 12492.97 4691.53 5495.15 7196.65 33
Effi-MVS+85.33 8185.08 8785.63 8089.69 9993.42 7889.90 7380.31 11579.32 10472.48 10873.52 9874.03 10986.55 6690.99 7789.98 8294.83 8294.27 77
GeoE84.62 8783.98 9485.35 8289.34 10192.83 8888.34 9878.95 13279.29 10577.16 8868.10 12674.56 10583.40 7889.31 10389.23 10294.92 7894.57 70
ADS-MVSNet74.53 18575.69 17873.17 18881.57 18980.71 19979.27 18363.03 20579.27 10659.94 17767.86 12768.32 14071.08 16977.33 19776.83 19584.12 20579.53 196
FMVSNet283.87 9483.73 9684.05 9984.20 15889.95 12189.70 7580.21 11679.17 10774.89 9365.91 13477.49 9379.75 11690.87 8091.00 6095.52 5391.71 125
MDTV_nov1_ep1379.14 14279.49 13878.74 15285.40 14286.89 16484.32 14970.29 18178.85 10869.42 11975.37 8673.29 11775.64 14580.61 18679.48 18787.36 19181.91 188
Anonymous20240521182.75 10289.58 10092.97 8689.04 8984.13 6778.72 10957.18 18176.64 9783.13 8089.55 9989.92 8593.38 14294.28 76
pmmvs479.99 12878.08 15082.22 11883.04 17387.16 16384.95 14078.80 13678.64 11074.53 9464.61 14759.41 17779.45 12184.13 16984.54 16692.53 15288.08 157
tpmrst76.55 16775.99 17477.20 16287.32 12283.05 18782.86 15765.62 19878.61 11167.22 12969.19 11965.71 14475.87 14476.75 19975.33 19884.31 20383.28 184
CHOSEN 280x42080.28 12681.66 10778.67 15382.92 17679.24 20385.36 13866.79 19578.11 11270.32 11175.03 8979.87 7781.09 9389.07 10483.16 17385.54 20087.17 164
Fast-Effi-MVS+83.77 9682.98 9984.69 8587.98 11391.87 10088.10 10177.70 14678.10 11373.04 10469.13 12068.51 13786.66 6490.49 8989.85 8794.67 9292.88 97
baseline282.80 10382.86 10182.73 11387.68 11890.50 11284.92 14278.93 13378.07 11473.06 10375.08 8869.77 13177.31 13688.90 10786.94 13194.50 10190.74 136
MS-PatchMatch81.79 11581.44 11082.19 11990.35 9289.29 14088.08 10275.36 16477.60 11569.00 12264.37 14978.87 8777.14 13988.03 11685.70 15393.19 14586.24 171
tpm cat177.78 15675.28 18280.70 13487.14 12585.84 17185.81 13170.40 18077.44 11678.80 7763.72 15064.01 15176.55 14175.60 20175.21 19985.51 20185.12 176
COLMAP_ROBcopyleft76.78 1580.50 12578.49 14482.85 11090.96 8289.65 13486.20 12883.40 8377.15 11766.54 13162.27 15465.62 14577.89 13285.23 15684.70 16392.11 15684.83 178
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
FC-MVSNet-test76.53 16881.62 10870.58 19384.99 15085.73 17274.81 19578.85 13577.00 11839.13 21175.90 8273.50 11554.08 20086.54 13885.99 15091.65 16286.68 168
IterMVS-LS83.28 10082.95 10083.65 10288.39 11188.63 15186.80 12278.64 13776.56 11973.43 10172.52 10375.35 10080.81 9686.43 14188.51 11593.84 12892.66 105
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IB-MVS79.09 1282.60 10682.19 10483.07 10991.08 7993.55 7680.90 17481.35 10376.56 11980.87 6664.81 14669.97 13068.87 17585.64 14990.06 8095.36 6094.74 66
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
HyFIR lowres test81.62 11979.45 13984.14 9791.00 8193.38 7988.27 9978.19 14076.28 12170.18 11448.78 19873.69 11383.52 7787.05 12687.83 12193.68 13589.15 148
UniMVSNet (Re)81.22 12081.08 11581.39 12685.35 14391.76 10184.93 14182.88 8576.13 12265.02 14264.94 14463.09 15475.17 14887.71 12089.04 10794.97 7694.88 62
UniMVSNet_NR-MVSNet81.87 11281.33 11282.50 11485.31 14491.30 10385.70 13284.25 6475.89 12364.21 14566.95 13164.65 14880.22 10687.07 12589.18 10495.27 6794.29 73
DU-MVS81.20 12180.30 12582.25 11784.98 15190.94 10785.70 13283.58 7675.74 12464.21 14565.30 14159.60 17680.22 10686.89 12889.31 9894.77 8594.29 73
NR-MVSNet80.25 12779.98 13180.56 13785.20 14690.94 10785.65 13483.58 7675.74 12461.36 16965.30 14156.75 18972.38 16488.46 11288.80 11195.16 7093.87 81
Baseline_NR-MVSNet79.84 13178.37 14881.55 12584.98 15186.66 16585.06 13983.49 7875.57 12663.31 15258.22 18060.97 16678.00 13186.89 12887.13 12794.47 10493.15 92
OPM-MVS87.56 6785.80 8389.62 5093.90 5394.09 6994.12 3688.18 3975.40 12777.30 8776.41 7977.93 9188.79 3992.20 5690.82 6395.40 5793.72 86
thres100view90082.55 10781.01 11884.34 9090.30 9492.27 9689.04 8982.77 8775.14 12869.56 11665.72 13663.13 15279.62 11989.97 9389.26 10094.73 8891.61 130
tfpn200view982.86 10281.46 10984.48 8890.30 9493.09 8289.05 8882.71 8875.14 12869.56 11665.72 13663.13 15280.38 10591.15 7289.51 9594.91 7992.50 114
dps78.02 15375.94 17580.44 13986.06 13386.62 16682.58 15869.98 18375.14 12877.76 8669.08 12159.93 17278.47 12779.47 19177.96 19287.78 18983.40 183
CR-MVSNet78.71 14778.86 14178.55 15485.85 13785.15 17882.30 16368.23 18974.71 13165.37 13964.39 14869.59 13377.18 13785.10 16184.87 16092.34 15588.21 155
RPMNet77.07 16177.63 15776.42 16985.56 14185.15 17881.37 16865.27 20074.71 13160.29 17563.71 15166.59 14273.64 15882.71 17882.12 18092.38 15488.39 153
Vis-MVSNetpermissive84.38 9386.68 7681.70 12287.65 11994.89 5888.14 10080.90 10774.48 13368.23 12577.53 7580.72 7269.98 17292.68 4991.90 4995.33 6394.58 69
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
thres20082.77 10481.25 11384.54 8790.38 9193.05 8389.13 8582.67 9074.40 13469.53 11865.69 13863.03 15580.63 10091.15 7289.42 9794.88 8092.04 120
thres40082.68 10581.15 11484.47 8990.52 8792.89 8788.95 9182.71 8874.33 13569.22 12165.31 14062.61 15880.63 10090.96 7989.50 9694.79 8392.45 116
TranMVSNet+NR-MVSNet80.52 12479.84 13381.33 12884.92 15390.39 11385.53 13784.22 6674.27 13660.68 17464.93 14559.96 17177.48 13586.75 13389.28 9995.12 7493.29 90
TDRefinement79.05 14377.05 16281.39 12688.45 11089.00 14786.92 11982.65 9274.21 13764.41 14459.17 17359.16 17974.52 15485.23 15685.09 15891.37 16687.51 163
thres600view782.53 10881.02 11684.28 9390.61 8693.05 8388.57 9682.67 9074.12 13868.56 12465.09 14362.13 16380.40 10491.15 7289.02 10894.88 8092.59 108
PatchT76.42 16977.81 15574.80 18178.46 19884.30 18371.82 20165.03 20273.89 13965.37 13961.58 15766.70 14177.18 13785.10 16184.87 16090.94 17388.21 155
ACMH+79.08 1381.84 11480.06 12983.91 10089.92 9890.62 10986.21 12783.48 8073.88 14065.75 13666.38 13365.30 14684.63 7385.90 14687.25 12693.45 14091.13 135
Effi-MVS+-dtu82.05 11081.76 10682.38 11687.72 11690.56 11186.90 12178.05 14273.85 14166.85 13071.29 10671.90 12282.00 8986.64 13685.48 15592.76 15092.58 109
test-LLR79.47 13879.84 13379.03 14887.47 12082.40 19481.24 17178.05 14273.72 14262.69 15573.76 9574.42 10673.49 15984.61 16582.99 17591.25 16887.01 165
TESTMET0.1,177.78 15679.84 13375.38 17780.86 19282.40 19481.24 17162.72 20673.72 14262.69 15573.76 9574.42 10673.49 15984.61 16582.99 17591.25 16887.01 165
test-mter77.79 15580.02 13075.18 17881.18 19182.85 18980.52 17762.03 20773.62 14462.16 16073.55 9773.83 11173.81 15784.67 16483.34 17291.37 16688.31 154
IterMVS-SCA-FT79.41 13980.20 12778.49 15585.88 13486.26 16783.95 15071.94 17473.55 14561.94 16270.48 11170.50 12775.23 14685.81 14884.61 16591.99 15990.18 143
IterMVS78.79 14679.71 13677.71 15985.26 14585.91 17084.54 14669.84 18573.38 14661.25 17070.53 11070.35 12874.43 15585.21 15883.80 17090.95 17288.77 150
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
UA-Net86.07 7587.78 6584.06 9892.85 6595.11 5487.73 10484.38 6373.22 14773.18 10279.99 6289.22 3771.47 16893.22 4193.03 3994.76 8690.69 137
FMVSNet575.50 18176.07 17174.83 18076.16 20281.19 19781.34 16970.21 18273.20 14861.59 16758.97 17568.33 13968.50 17685.87 14785.85 15191.18 17179.11 198
test0.0.03 176.03 17478.51 14373.12 18987.47 12085.13 18076.32 19278.05 14273.19 14950.98 19870.64 10869.28 13455.53 19685.33 15484.38 16790.39 17681.63 190
Fast-Effi-MVS+-dtu79.95 12980.69 12079.08 14786.36 13189.14 14485.85 13072.28 17372.85 15059.32 17970.43 11268.42 13877.57 13486.14 14386.44 14193.11 14691.39 133
thisisatest051579.76 13380.59 12278.80 15084.40 15688.91 14979.48 18076.94 15272.29 15167.33 12867.82 12865.99 14370.80 17088.50 11187.84 11993.86 12792.75 103
tpm76.30 17376.05 17376.59 16886.97 12683.01 18883.83 15167.06 19471.83 15263.87 14969.56 11762.88 15673.41 16179.79 19078.59 18984.41 20286.68 168
v879.90 13078.39 14781.66 12383.97 16289.81 12787.16 11677.40 14871.49 15367.71 12661.24 15962.49 15979.83 11585.48 15386.17 14593.89 12592.02 122
V4279.59 13578.43 14680.94 13282.79 17989.71 13186.66 12376.73 15571.38 15467.42 12761.01 16162.30 16178.39 12885.56 15186.48 13993.65 13692.60 107
PM-MVS74.17 18773.10 18875.41 17676.07 20382.53 19277.56 19071.69 17571.04 15561.92 16361.23 16047.30 20974.82 15281.78 18379.80 18490.42 17588.05 158
MIMVSNet74.69 18475.60 17973.62 18676.02 20485.31 17781.21 17367.43 19271.02 15659.07 18154.48 18764.07 14966.14 18786.52 13986.64 13691.83 16181.17 192
pmnet_mix0271.95 19071.83 19372.10 19081.40 19080.63 20073.78 19772.85 17270.90 15754.89 18762.17 15557.42 18662.92 19176.80 19873.98 20286.74 19680.87 194
test_part183.23 10180.55 12386.35 7588.60 10990.61 11090.78 6481.13 10670.89 15883.01 5355.72 18674.60 10482.19 8687.79 11889.26 10092.39 15395.01 57
FMVSNet181.64 11780.61 12182.84 11182.36 18389.20 14288.67 9379.58 12570.79 15972.63 10758.95 17672.26 12179.34 12290.73 8390.72 6494.47 10491.62 129
v2v48279.84 13178.07 15181.90 12083.75 16390.21 11887.17 11579.85 12370.65 16065.93 13561.93 15660.07 17080.82 9585.25 15586.71 13493.88 12691.70 128
TinyColmap76.73 16373.95 18779.96 14285.16 14885.64 17482.34 16278.19 14070.63 16162.06 16160.69 16549.61 20680.81 9685.12 16083.69 17191.22 17082.27 187
v1079.62 13478.19 14981.28 12983.73 16489.69 13287.27 11276.86 15370.50 16265.46 13760.58 16660.47 16880.44 10386.91 12786.63 13793.93 12292.55 111
GA-MVS79.52 13679.71 13679.30 14685.68 13890.36 11484.55 14578.44 13870.47 16357.87 18468.52 12461.38 16476.21 14289.40 10287.89 11893.04 14789.96 144
ACMH78.52 1481.86 11380.45 12483.51 10790.51 8991.22 10485.62 13584.23 6570.29 16462.21 15969.04 12264.05 15084.48 7487.57 12188.45 11694.01 12092.54 112
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
WR-MVS76.63 16578.02 15375.02 17984.14 16189.76 13078.34 18780.64 10969.56 16552.32 19361.26 15861.24 16560.66 19384.45 16787.07 12893.99 12192.77 101
v14878.59 14976.84 16580.62 13683.61 16689.16 14383.65 15379.24 13069.38 16669.34 12059.88 17060.41 16975.19 14783.81 17184.63 16492.70 15190.63 139
v114479.38 14077.83 15481.18 13083.62 16590.23 11687.15 11778.35 13969.13 16764.02 14860.20 16859.41 17780.14 11086.78 13186.57 13893.81 13092.53 113
CDS-MVSNet81.63 11882.09 10581.09 13187.21 12490.28 11587.46 10980.33 11469.06 16870.66 11071.30 10573.87 11067.99 17889.58 9889.87 8692.87 14990.69 137
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
CVMVSNet76.70 16478.46 14574.64 18383.34 16884.48 18281.83 16774.58 16568.88 16951.23 19769.77 11370.05 12967.49 18184.27 16883.81 16989.38 18287.96 159
MDTV_nov1_ep13_2view73.21 18972.91 18973.56 18780.01 19384.28 18478.62 18566.43 19768.64 17059.12 18060.39 16759.69 17569.81 17378.82 19577.43 19487.36 19181.11 193
v119278.94 14477.33 15880.82 13383.25 16989.90 12586.91 12077.72 14568.63 17162.61 15759.17 17357.53 18580.62 10286.89 12886.47 14093.79 13192.75 103
v192192078.57 15076.99 16380.41 14082.93 17589.63 13586.38 12677.14 15068.31 17261.80 16558.89 17756.79 18880.19 10986.50 14086.05 14994.02 11992.76 102
v14419278.81 14577.22 16080.67 13582.95 17489.79 12986.40 12577.42 14768.26 17363.13 15359.50 17158.13 18280.08 11185.93 14586.08 14794.06 11792.83 99
CP-MVSNet76.36 17276.41 16876.32 17182.73 18088.64 15079.39 18179.62 12467.21 17453.70 18960.72 16455.22 19567.91 18083.52 17386.34 14394.55 9993.19 91
v124078.15 15276.53 16680.04 14182.85 17889.48 13885.61 13676.77 15467.05 17561.18 17258.37 17956.16 19279.89 11486.11 14486.08 14793.92 12392.47 115
WR-MVS_H75.84 17876.93 16474.57 18482.86 17789.50 13778.34 18779.36 12966.90 17652.51 19260.20 16859.71 17359.73 19483.61 17285.77 15294.65 9392.84 98
pmmvs-eth3d74.32 18671.96 19277.08 16477.33 20082.71 19078.41 18676.02 16066.65 17765.98 13454.23 19049.02 20873.14 16382.37 18182.69 17791.61 16386.05 173
PEN-MVS76.02 17576.07 17175.95 17483.17 17187.97 15579.65 17880.07 12166.57 17851.45 19560.94 16255.47 19466.81 18482.72 17786.80 13394.59 9692.03 121
N_pmnet66.85 19766.63 19867.11 19978.73 19674.66 20770.53 20271.07 17766.46 17946.54 20251.68 19651.91 20455.48 19774.68 20272.38 20380.29 20874.65 204
DTE-MVSNet75.14 18275.44 18174.80 18183.18 17087.19 16278.25 18980.11 11866.05 18048.31 20060.88 16354.67 19664.54 18982.57 17986.17 14594.43 10790.53 141
PS-CasMVS75.90 17775.86 17675.96 17382.59 18188.46 15379.23 18479.56 12666.00 18152.77 19159.48 17254.35 19967.14 18383.37 17486.23 14494.47 10493.10 93
v7n77.22 16076.23 17078.38 15781.89 18689.10 14682.24 16576.36 15665.96 18261.21 17156.56 18355.79 19375.07 15086.55 13786.68 13593.52 13892.95 96
anonymousdsp77.94 15479.00 14076.71 16779.03 19587.83 15679.58 17972.87 17165.80 18358.86 18365.82 13562.48 16075.99 14386.77 13288.66 11293.92 12395.68 49
tmp_tt32.73 21143.96 21721.15 21926.71 2178.99 21665.67 18451.39 19656.01 18442.64 21211.76 21556.60 21050.81 21153.55 215
SixPastTwentyTwo76.02 17575.72 17776.36 17083.38 16787.54 15875.50 19476.22 15765.50 18557.05 18570.64 10853.97 20074.54 15380.96 18582.12 18091.44 16489.35 147
pmmvs576.93 16276.33 16977.62 16081.97 18588.40 15481.32 17074.35 16765.42 18661.42 16863.07 15257.95 18373.23 16285.60 15085.35 15793.41 14188.55 152
TAMVS76.42 16977.16 16175.56 17583.05 17285.55 17580.58 17671.43 17665.40 18761.04 17367.27 13069.22 13567.99 17884.88 16384.78 16289.28 18383.01 185
UniMVSNet_ETH3D79.24 14176.47 16782.48 11585.66 13990.97 10686.08 12981.63 10164.48 18868.94 12354.47 18857.65 18478.83 12685.20 15988.91 11093.72 13393.60 87
Anonymous2023120670.80 19270.59 19671.04 19281.60 18882.49 19374.64 19675.87 16164.17 18949.27 19944.85 20453.59 20254.68 19983.07 17582.34 17990.17 17783.65 182
testgi71.92 19174.20 18669.27 19584.58 15583.06 18673.40 19874.39 16664.04 19046.17 20368.90 12357.15 18748.89 20484.07 17083.08 17488.18 18879.09 199
EU-MVSNet69.98 19472.30 19167.28 19875.67 20579.39 20273.12 19969.94 18463.59 19142.80 20762.93 15356.71 19055.07 19879.13 19478.55 19087.06 19485.82 175
pm-mvs178.51 15177.75 15679.40 14584.83 15489.30 13983.55 15479.38 12862.64 19263.68 15058.73 17864.68 14770.78 17189.79 9587.84 11994.17 11591.28 134
CMPMVSbinary56.49 1773.84 18871.73 19476.31 17285.20 14685.67 17375.80 19373.23 17062.26 19365.40 13853.40 19259.70 17471.77 16780.25 18879.56 18686.45 19781.28 191
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
MVS-HIRNet68.83 19566.39 19971.68 19177.58 19975.52 20666.45 20665.05 20162.16 19462.84 15444.76 20556.60 19171.96 16678.04 19675.06 20086.18 19972.56 205
FPMVS63.63 20160.08 20667.78 19780.01 19371.50 20972.88 20069.41 18761.82 19553.11 19045.12 20342.11 21350.86 20266.69 20663.84 20780.41 20769.46 207
tfpnnormal77.46 15974.86 18480.49 13886.34 13288.92 14884.33 14881.26 10461.39 19661.70 16651.99 19553.66 20174.84 15188.63 10987.38 12594.50 10192.08 118
new_pmnet59.28 20361.47 20556.73 20561.66 21168.29 21159.57 21054.91 20860.83 19734.38 21444.66 20643.65 21149.90 20371.66 20471.56 20579.94 20969.67 206
ambc61.92 20370.98 20873.54 20863.64 20960.06 19852.23 19438.44 20819.17 21957.12 19582.33 18275.03 20183.21 20684.89 177
test_method41.78 20748.10 20834.42 21010.74 21919.78 22044.64 21417.73 21559.83 19938.67 21235.82 21154.41 19834.94 21062.87 20943.13 21259.81 21360.82 210
TransMVSNet (Re)76.57 16675.16 18378.22 15885.60 14087.24 16182.46 15981.23 10559.80 20059.05 18257.07 18259.14 18066.60 18688.09 11586.82 13294.37 11087.95 160
EG-PatchMatch MVS76.40 17175.47 18077.48 16185.86 13690.22 11782.45 16073.96 16959.64 20159.60 17852.75 19362.20 16268.44 17788.23 11487.50 12294.55 9987.78 161
MDA-MVSNet-bldmvs66.22 19864.49 20168.24 19661.67 21082.11 19670.07 20376.16 15859.14 20247.94 20154.35 18935.82 21667.33 18264.94 20875.68 19786.30 19879.36 197
test20.0368.31 19670.05 19766.28 20082.41 18280.84 19867.35 20576.11 15958.44 20340.80 21053.77 19154.54 19742.28 20783.07 17581.96 18288.73 18677.76 201
new-patchmatchnet63.80 20063.31 20264.37 20176.49 20175.99 20563.73 20870.99 17857.27 20443.08 20645.86 20243.80 21045.13 20673.20 20370.68 20686.80 19576.34 203
DeepMVS_CXcopyleft48.31 21548.03 21326.08 21456.42 20525.77 21647.51 19931.31 21751.30 20148.49 21253.61 21461.52 209
MIMVSNet165.00 19966.24 20063.55 20258.41 21380.01 20169.00 20474.03 16855.81 20641.88 20836.81 20949.48 20747.89 20581.32 18482.40 17890.08 17977.88 200
Gipumacopyleft49.17 20647.05 20951.65 20659.67 21248.39 21441.98 21563.47 20455.64 20733.33 21514.90 21313.78 22041.34 20869.31 20572.30 20470.11 21155.00 212
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
pmmvs674.83 18372.89 19077.09 16382.11 18487.50 15980.88 17576.97 15152.79 20861.91 16446.66 20060.49 16769.28 17486.74 13485.46 15691.39 16590.56 140
gg-mvs-nofinetune75.64 18077.26 15973.76 18587.92 11492.20 9787.32 11064.67 20351.92 20935.35 21346.44 20177.05 9671.97 16592.64 5091.02 5995.34 6289.53 146
LTVRE_ROB74.41 1675.78 17974.72 18577.02 16585.88 13489.22 14182.44 16177.17 14950.57 21045.45 20465.44 13952.29 20381.25 9185.50 15287.42 12489.94 18092.62 106
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
gm-plane-assit70.29 19370.65 19569.88 19485.03 14978.50 20458.41 21165.47 19950.39 21140.88 20949.60 19750.11 20575.14 14991.43 6589.78 8894.32 11184.73 180
pmmvs361.89 20261.74 20462.06 20364.30 20970.83 21064.22 20752.14 21148.78 21244.47 20541.67 20741.70 21463.03 19076.06 20076.02 19684.18 20477.14 202
PMVScopyleft50.48 1855.81 20551.93 20760.33 20472.90 20749.34 21348.78 21269.51 18643.49 21354.25 18836.26 21041.04 21539.71 20965.07 20760.70 20876.85 21067.58 208
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
PMMVS241.68 20844.74 21038.10 20746.97 21652.32 21240.63 21648.08 21235.51 2147.36 22026.86 21224.64 21816.72 21455.24 21159.03 20968.85 21259.59 211
EMVS30.49 21125.44 21336.39 20951.47 21429.89 21820.17 21954.00 21026.49 21512.02 21913.94 2168.84 22134.37 21125.04 21534.37 21446.29 21739.53 215
E-PMN31.40 20926.80 21236.78 20851.39 21529.96 21720.20 21854.17 20925.93 21612.75 21814.73 2148.58 22234.10 21227.36 21437.83 21348.07 21643.18 214
MVEpermissive30.17 1930.88 21033.52 21127.80 21323.78 21839.16 21618.69 22046.90 21321.88 21715.39 21714.37 2157.31 22324.41 21341.63 21356.22 21037.64 21854.07 213
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
testmvs1.03 2121.63 2140.34 2140.09 2210.35 2210.61 2220.16 2171.49 2180.10 2223.15 2170.15 2240.86 2171.32 2161.18 2150.20 2193.76 217
test1230.87 2131.40 2150.25 2150.03 2220.25 2220.35 2230.08 2191.21 2190.05 2232.84 2180.03 2250.89 2160.43 2171.16 2160.13 2203.87 216
uanet_test0.00 2140.00 2160.00 2160.00 2230.00 2230.00 2240.00 2200.00 2200.00 2240.00 2190.00 2260.00 2190.00 2180.00 2170.00 2210.00 218
sosnet-low-res0.00 2140.00 2160.00 2160.00 2230.00 2230.00 2240.00 2200.00 2200.00 2240.00 2190.00 2260.00 2190.00 2180.00 2170.00 2210.00 218
sosnet0.00 2140.00 2160.00 2160.00 2230.00 2230.00 2240.00 2200.00 2200.00 2240.00 2190.00 2260.00 2190.00 2180.00 2170.00 2210.00 218
RE-MVS-def56.08 186
9.1492.16 16
SR-MVS96.58 2690.99 2292.40 13
our_test_381.81 18783.96 18576.61 191
MTAPA92.97 291.03 22
MTMP93.14 190.21 30
Patchmatch-RL test8.55 221
XVS93.11 6096.70 2591.91 5483.95 4888.82 4095.79 36
X-MVStestdata93.11 6096.70 2591.91 5483.95 4888.82 4095.79 36
mPP-MVS97.06 1288.08 45
Patchmtry85.54 17682.30 16368.23 18965.37 139