| SF-MVS | | | 77.13 8 | 81.70 8 | 71.79 3 | 79.32 1 | 80.76 5 | 82.96 2 | 57.49 11 | 82.82 9 | 64.79 5 | 83.69 10 | 84.46 5 | 62.83 13 | 77.13 26 | 75.21 31 | 83.35 7 | 87.85 16 |
|
| SED-MVS | | | 79.21 1 | 84.74 2 | 72.75 1 | 78.66 2 | 81.96 2 | 82.94 4 | 58.16 4 | 86.82 2 | 67.66 1 | 88.29 4 | 86.15 3 | 66.42 2 | 80.41 4 | 78.65 6 | 82.65 16 | 90.92 2 |
|
| DVP-MVS |  | | 78.77 2 | 84.89 1 | 71.62 4 | 78.04 3 | 82.05 1 | 81.64 10 | 57.96 7 | 87.53 1 | 66.64 2 | 88.77 1 | 86.31 1 | 63.16 10 | 79.99 7 | 78.56 7 | 82.31 22 | 91.03 1 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| APDe-MVS |  | | 77.58 6 | 82.93 6 | 71.35 6 | 77.86 4 | 80.55 6 | 83.38 1 | 57.61 10 | 85.57 5 | 61.11 21 | 86.10 7 | 82.98 8 | 64.76 4 | 78.29 15 | 76.78 22 | 83.40 6 | 90.20 5 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| DPE-MVS |  | | 78.11 4 | 83.84 4 | 71.42 5 | 77.82 5 | 81.32 4 | 82.92 5 | 57.81 9 | 84.04 8 | 63.19 12 | 88.63 2 | 86.00 4 | 64.52 5 | 78.71 11 | 77.63 15 | 82.26 23 | 90.57 3 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| SteuartSystems-ACMMP | | | 75.23 13 | 79.60 15 | 70.13 13 | 76.81 6 | 78.92 12 | 81.74 8 | 57.99 6 | 75.30 29 | 59.83 26 | 75.69 18 | 78.45 24 | 60.48 29 | 80.58 2 | 79.77 2 | 83.94 3 | 88.52 10 |
| Skip Steuart: Steuart Systems R&D Blog. |
| DVP-MVS++ | | | 78.76 3 | 84.44 3 | 72.14 2 | 76.63 7 | 81.93 3 | 82.92 5 | 58.10 5 | 85.86 4 | 66.53 3 | 87.86 5 | 86.16 2 | 66.45 1 | 80.46 3 | 78.53 9 | 82.19 27 | 90.29 4 |
|
| HPM-MVS++ |  | | 76.01 10 | 80.47 12 | 70.81 9 | 76.60 8 | 74.96 36 | 80.18 17 | 58.36 2 | 81.96 10 | 63.50 11 | 78.80 14 | 82.53 11 | 64.40 6 | 78.74 10 | 78.84 5 | 81.81 33 | 87.46 18 |
|
| MCST-MVS | | | 73.67 24 | 77.39 25 | 69.33 18 | 76.26 9 | 78.19 17 | 78.77 26 | 54.54 30 | 75.33 27 | 59.99 25 | 67.96 31 | 79.23 22 | 62.43 16 | 78.00 18 | 75.71 29 | 84.02 2 | 87.30 19 |
|
| CNVR-MVS | | | 75.62 12 | 79.91 14 | 70.61 10 | 75.76 10 | 78.82 14 | 81.66 9 | 57.12 13 | 79.77 16 | 63.04 13 | 70.69 24 | 81.15 16 | 62.99 11 | 80.23 5 | 79.54 3 | 83.11 8 | 89.16 8 |
|
| NCCC | | | 74.27 19 | 77.83 24 | 70.13 13 | 75.70 11 | 77.41 22 | 80.51 15 | 57.09 14 | 78.25 20 | 62.28 18 | 65.54 37 | 78.26 25 | 62.18 18 | 79.13 8 | 78.51 10 | 83.01 10 | 87.68 17 |
|
| CSCG | | | 74.68 16 | 79.22 16 | 69.40 17 | 75.69 12 | 80.01 9 | 79.12 24 | 52.83 41 | 79.34 17 | 63.99 9 | 70.49 25 | 82.02 12 | 60.35 32 | 77.48 24 | 77.22 19 | 84.38 1 | 87.97 15 |
|
| DPM-MVS | | | 72.80 26 | 75.90 29 | 69.19 20 | 75.51 13 | 77.68 20 | 81.62 11 | 54.83 26 | 75.96 25 | 62.06 19 | 63.96 49 | 76.58 30 | 58.55 40 | 76.66 32 | 76.77 23 | 82.60 18 | 83.68 40 |
|
| TPM-MVS | | | | | | 75.48 14 | 76.70 29 | 79.31 21 | | | 62.34 17 | 64.71 42 | 77.88 27 | 56.94 53 | | | 81.88 31 | 83.68 40 |
| Ray Leroy Khuboni and Hongjun Xu: Textureless Resilient Propagation Matching in Multiple View Stereosis (TPM-MVS). SATNAC 2025 |
| SMA-MVS |  | | 77.32 7 | 82.51 7 | 71.26 7 | 75.43 15 | 80.19 8 | 82.22 7 | 58.26 3 | 84.83 7 | 64.36 7 | 78.19 15 | 83.46 6 | 63.61 8 | 81.00 1 | 80.28 1 | 83.66 4 | 89.62 6 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| APD-MVS |  | | 75.80 11 | 80.90 11 | 69.86 15 | 75.42 16 | 78.48 16 | 81.43 13 | 57.44 12 | 80.45 14 | 59.32 27 | 85.28 8 | 80.82 18 | 63.96 7 | 76.89 28 | 76.08 27 | 81.58 39 | 88.30 12 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| MSP-MVS | | | 77.82 5 | 83.46 5 | 71.24 8 | 75.26 17 | 80.22 7 | 82.95 3 | 57.85 8 | 85.90 3 | 64.79 5 | 88.54 3 | 83.43 7 | 66.24 3 | 78.21 17 | 78.56 7 | 80.34 46 | 89.39 7 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| train_agg | | | 73.89 21 | 78.25 22 | 68.80 23 | 75.25 18 | 72.27 51 | 79.75 18 | 56.05 20 | 74.87 32 | 58.97 28 | 81.83 11 | 79.76 21 | 61.05 25 | 77.39 25 | 76.01 28 | 81.71 36 | 85.61 29 |
|
| TSAR-MVS + MP. | | | 75.22 14 | 80.06 13 | 69.56 16 | 74.61 19 | 72.74 49 | 80.59 14 | 55.70 23 | 80.80 13 | 62.65 15 | 86.25 6 | 82.92 9 | 62.07 19 | 76.89 28 | 75.66 30 | 81.77 35 | 85.19 32 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| SD-MVS | | | 74.43 17 | 78.87 18 | 69.26 19 | 74.39 20 | 73.70 45 | 79.06 25 | 55.24 25 | 81.04 12 | 62.71 14 | 80.18 12 | 82.61 10 | 61.70 21 | 75.43 40 | 73.92 43 | 82.44 21 | 85.22 31 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| ACMMP_NAP | | | 76.15 9 | 81.17 9 | 70.30 11 | 74.09 21 | 79.47 10 | 81.59 12 | 57.09 14 | 81.38 11 | 63.89 10 | 79.02 13 | 80.48 19 | 62.24 17 | 80.05 6 | 79.12 4 | 82.94 11 | 88.64 9 |
|
| HFP-MVS | | | 74.87 15 | 78.86 20 | 70.21 12 | 73.99 22 | 77.91 18 | 80.36 16 | 56.63 16 | 78.41 19 | 64.27 8 | 74.54 20 | 77.75 28 | 62.96 12 | 78.70 12 | 77.82 13 | 83.02 9 | 86.91 21 |
|
| AdaColmap |  | | 67.89 45 | 68.85 60 | 66.77 29 | 73.73 23 | 74.30 43 | 75.28 40 | 53.58 36 | 70.24 46 | 57.59 35 | 51.19 105 | 59.19 94 | 60.74 28 | 75.33 42 | 73.72 45 | 79.69 54 | 77.96 72 |
|
| MP-MVS |  | | 74.31 18 | 78.87 18 | 68.99 21 | 73.49 24 | 78.56 15 | 79.25 23 | 56.51 17 | 75.33 27 | 60.69 23 | 75.30 19 | 79.12 23 | 61.81 20 | 77.78 21 | 77.93 12 | 82.18 29 | 88.06 14 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| TSAR-MVS + ACMM | | | 72.56 28 | 79.07 17 | 64.96 40 | 73.24 25 | 73.16 48 | 78.50 27 | 48.80 66 | 79.34 17 | 55.32 41 | 85.04 9 | 81.49 15 | 58.57 39 | 75.06 43 | 73.75 44 | 75.35 108 | 85.61 29 |
|
| CDPH-MVS | | | 71.47 31 | 75.82 31 | 66.41 31 | 72.97 26 | 77.15 24 | 78.14 30 | 54.71 27 | 69.88 48 | 53.07 56 | 70.98 23 | 74.83 37 | 56.95 52 | 76.22 33 | 76.57 24 | 82.62 17 | 85.09 33 |
|
| PGM-MVS | | | 72.89 25 | 77.13 26 | 67.94 25 | 72.47 27 | 77.25 23 | 79.27 22 | 54.63 29 | 73.71 36 | 57.95 34 | 72.38 22 | 75.33 35 | 60.75 27 | 78.25 16 | 77.36 18 | 82.57 19 | 85.62 28 |
|
| ACMMPR | | | 73.79 23 | 78.41 21 | 68.40 24 | 72.35 28 | 77.79 19 | 79.32 20 | 56.38 18 | 77.67 23 | 58.30 32 | 74.16 21 | 76.66 29 | 61.40 22 | 78.32 14 | 77.80 14 | 82.68 15 | 86.51 22 |
|
| OPM-MVS | | | 69.33 37 | 71.05 46 | 67.32 27 | 72.34 29 | 75.70 33 | 79.57 19 | 56.34 19 | 55.21 76 | 53.81 53 | 59.51 66 | 68.96 58 | 59.67 34 | 77.61 23 | 76.44 25 | 82.19 27 | 83.88 38 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| X-MVS | | | 71.18 32 | 75.66 32 | 65.96 35 | 71.71 30 | 76.96 25 | 77.26 33 | 55.88 22 | 72.75 39 | 54.48 48 | 64.39 44 | 74.47 38 | 54.19 66 | 77.84 20 | 77.37 17 | 82.21 26 | 85.85 26 |
|
| HQP-MVS | | | 70.88 33 | 75.02 33 | 66.05 34 | 71.69 31 | 74.47 41 | 77.51 32 | 53.17 38 | 72.89 38 | 54.88 45 | 70.03 27 | 70.48 52 | 57.26 48 | 76.02 35 | 75.01 35 | 81.78 34 | 86.21 23 |
|
| MAR-MVS | | | 68.04 44 | 70.74 48 | 64.90 41 | 71.68 32 | 76.33 31 | 74.63 44 | 50.48 55 | 63.81 56 | 55.52 40 | 54.88 85 | 69.90 54 | 57.39 47 | 75.42 41 | 74.79 37 | 79.71 51 | 80.03 57 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| mPP-MVS | | | | | | 71.67 33 | | | | | | | 74.36 41 | | | | | |
|
| SR-MVS | | | | | | 71.46 34 | | | 54.67 28 | | | | 81.54 14 | | | | | |
|
| CLD-MVS | | | 67.02 49 | 71.57 43 | 61.71 51 | 71.01 35 | 74.81 38 | 71.62 51 | 38.91 162 | 71.86 42 | 60.70 22 | 64.97 41 | 67.88 66 | 51.88 92 | 76.77 31 | 74.98 36 | 76.11 96 | 69.75 125 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| CP-MVS | | | 72.63 27 | 76.95 27 | 67.59 26 | 70.67 36 | 75.53 34 | 77.95 31 | 56.01 21 | 75.65 26 | 58.82 29 | 69.16 29 | 76.48 31 | 60.46 30 | 77.66 22 | 77.20 20 | 81.65 37 | 86.97 20 |
|
| ACMM | | 60.30 7 | 67.58 47 | 68.82 61 | 66.13 33 | 70.59 37 | 72.01 53 | 76.54 35 | 54.26 32 | 65.64 54 | 54.78 47 | 50.35 108 | 61.72 83 | 58.74 38 | 75.79 38 | 75.03 33 | 81.88 31 | 81.17 52 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| XVS | | | | | | 70.49 38 | 76.96 25 | 74.36 45 | | | 54.48 48 | | 74.47 38 | | | | 82.24 24 | |
|
| X-MVStestdata | | | | | | 70.49 38 | 76.96 25 | 74.36 45 | | | 54.48 48 | | 74.47 38 | | | | 82.24 24 | |
|
| ACMMP |  | | 71.57 30 | 75.84 30 | 66.59 30 | 70.30 40 | 76.85 28 | 78.46 28 | 53.95 34 | 73.52 37 | 55.56 39 | 70.13 26 | 71.36 50 | 58.55 40 | 77.00 27 | 76.23 26 | 82.71 14 | 85.81 27 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| MVS_111021_HR | | | 67.62 46 | 70.39 50 | 64.39 43 | 69.77 41 | 70.45 59 | 71.44 53 | 51.72 47 | 60.77 65 | 55.06 43 | 62.14 58 | 66.40 69 | 58.13 43 | 76.13 34 | 74.79 37 | 80.19 48 | 82.04 49 |
|
| MSLP-MVS++ | | | 68.17 43 | 70.72 49 | 65.19 38 | 69.41 42 | 70.64 56 | 74.99 41 | 45.76 77 | 70.20 47 | 60.17 24 | 56.42 77 | 73.01 44 | 61.14 23 | 72.80 54 | 70.54 59 | 79.70 52 | 81.42 51 |
|
| LGP-MVS_train | | | 68.87 39 | 72.03 42 | 65.18 39 | 69.33 43 | 74.03 44 | 76.67 34 | 53.88 35 | 68.46 49 | 52.05 60 | 63.21 51 | 63.89 72 | 56.31 56 | 75.99 36 | 74.43 39 | 82.83 13 | 84.18 35 |
|
| ACMP | | 61.42 5 | 68.72 42 | 71.37 44 | 65.64 37 | 69.06 44 | 74.45 42 | 75.88 38 | 53.30 37 | 68.10 50 | 55.74 38 | 61.53 61 | 62.29 79 | 56.97 51 | 74.70 46 | 74.23 41 | 82.88 12 | 84.31 34 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| DeepC-MVS_fast | | 65.08 3 | 72.00 29 | 76.11 28 | 67.21 28 | 68.93 45 | 77.46 21 | 76.54 35 | 54.35 31 | 74.92 31 | 58.64 31 | 65.18 39 | 74.04 43 | 62.62 14 | 77.92 19 | 77.02 21 | 82.16 30 | 86.21 23 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| CANet | | | 68.77 40 | 73.01 37 | 63.83 45 | 68.30 46 | 75.19 35 | 73.73 48 | 47.90 67 | 63.86 55 | 54.84 46 | 67.51 33 | 74.36 41 | 57.62 44 | 74.22 48 | 73.57 47 | 80.56 44 | 82.36 46 |
|
| TSAR-MVS + GP. | | | 69.71 34 | 73.92 36 | 64.80 42 | 68.27 47 | 70.56 57 | 71.90 50 | 50.75 51 | 71.38 43 | 57.46 36 | 68.68 30 | 75.42 34 | 60.10 33 | 73.47 51 | 73.99 42 | 80.32 47 | 83.97 37 |
|
| 3Dnovator+ | | 62.63 4 | 69.51 35 | 72.62 39 | 65.88 36 | 68.21 48 | 76.47 30 | 73.50 49 | 52.74 42 | 70.85 44 | 58.65 30 | 55.97 79 | 69.95 53 | 61.11 24 | 76.80 30 | 75.09 32 | 81.09 42 | 83.23 44 |
|
| MVS_0304 | | | 69.49 36 | 73.96 35 | 64.28 44 | 67.92 49 | 76.13 32 | 74.90 42 | 47.60 68 | 63.29 59 | 54.09 52 | 67.44 34 | 76.35 32 | 59.53 35 | 75.81 37 | 75.03 33 | 81.62 38 | 83.70 39 |
|
| DeepC-MVS | | 66.32 2 | 73.85 22 | 78.10 23 | 68.90 22 | 67.92 49 | 79.31 11 | 78.16 29 | 59.28 1 | 78.24 21 | 61.13 20 | 67.36 35 | 76.10 33 | 63.40 9 | 79.11 9 | 78.41 11 | 83.52 5 | 88.16 13 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| DeepPCF-MVS | | 66.49 1 | 74.25 20 | 80.97 10 | 66.41 31 | 67.75 51 | 78.87 13 | 75.61 39 | 54.16 33 | 84.86 6 | 58.22 33 | 77.94 16 | 81.01 17 | 62.52 15 | 78.34 13 | 77.38 16 | 80.16 49 | 88.40 11 |
|
| EC-MVSNet | | | 67.01 50 | 70.27 53 | 63.21 47 | 67.21 52 | 70.47 58 | 69.01 56 | 46.96 71 | 59.16 68 | 53.23 55 | 64.01 48 | 69.71 56 | 60.37 31 | 74.92 44 | 71.24 55 | 82.50 20 | 82.41 45 |
|
| UA-Net | | | 58.50 92 | 64.68 80 | 51.30 121 | 66.97 53 | 67.13 85 | 53.68 163 | 45.65 80 | 49.51 108 | 31.58 149 | 62.91 53 | 68.47 60 | 35.85 173 | 68.20 101 | 67.28 97 | 74.03 120 | 69.24 135 |
|
| PHI-MVS | | | 69.27 38 | 74.84 34 | 62.76 50 | 66.83 54 | 74.83 37 | 73.88 47 | 49.32 60 | 70.61 45 | 50.93 63 | 69.62 28 | 74.84 36 | 57.25 49 | 75.53 39 | 74.32 40 | 78.35 68 | 84.17 36 |
|
| 3Dnovator | | 60.86 6 | 66.99 51 | 70.32 51 | 63.11 48 | 66.63 55 | 74.52 39 | 71.56 52 | 45.76 77 | 67.37 52 | 55.00 44 | 54.31 90 | 68.19 62 | 58.49 42 | 73.97 49 | 73.63 46 | 81.22 41 | 80.23 56 |
|
| EPNet | | | 65.14 60 | 69.54 57 | 60.00 58 | 66.61 56 | 67.67 77 | 67.53 64 | 55.32 24 | 62.67 61 | 46.22 81 | 67.74 32 | 65.93 70 | 48.07 111 | 72.17 57 | 72.12 49 | 76.28 92 | 78.47 68 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| OpenMVS |  | 57.13 9 | 62.81 66 | 65.75 72 | 59.39 62 | 66.47 57 | 69.52 61 | 64.26 98 | 43.07 130 | 61.34 64 | 50.19 66 | 47.29 126 | 64.41 71 | 54.60 65 | 70.18 78 | 68.62 80 | 77.73 70 | 78.89 64 |
|
| ACMH | | 52.42 13 | 58.24 99 | 59.56 119 | 56.70 85 | 66.34 58 | 69.59 60 | 66.71 73 | 49.12 61 | 46.08 141 | 28.90 162 | 42.67 173 | 41.20 190 | 52.60 84 | 71.39 63 | 70.28 61 | 76.51 88 | 75.72 92 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| MSDG | | | 58.46 94 | 58.97 125 | 57.85 77 | 66.27 59 | 66.23 94 | 67.72 61 | 42.33 134 | 53.43 83 | 43.68 93 | 43.39 164 | 45.35 167 | 49.75 100 | 68.66 92 | 67.77 89 | 77.38 76 | 67.96 140 |
|
| QAPM | | | 65.27 56 | 69.49 58 | 60.35 55 | 65.43 60 | 72.20 52 | 65.69 85 | 47.23 69 | 63.46 57 | 49.14 68 | 53.56 91 | 71.04 51 | 57.01 50 | 72.60 56 | 71.41 53 | 77.62 72 | 82.14 48 |
|
| CPTT-MVS | | | 68.76 41 | 73.01 37 | 63.81 46 | 65.42 61 | 73.66 46 | 76.39 37 | 52.08 43 | 72.61 40 | 50.33 65 | 60.73 62 | 72.65 46 | 59.43 36 | 73.32 52 | 72.12 49 | 79.19 60 | 85.99 25 |
|
| MS-PatchMatch | | | 58.19 101 | 60.20 106 | 55.85 90 | 65.17 62 | 64.16 114 | 64.82 92 | 41.48 142 | 50.95 98 | 42.17 102 | 45.38 147 | 56.42 106 | 48.08 110 | 68.30 97 | 66.70 105 | 73.39 128 | 69.46 133 |
|
| PCF-MVS | | 59.98 8 | 67.32 48 | 71.04 47 | 62.97 49 | 64.77 63 | 74.49 40 | 74.78 43 | 49.54 57 | 67.44 51 | 54.39 51 | 58.35 71 | 72.81 45 | 55.79 62 | 71.54 62 | 69.24 70 | 78.57 62 | 83.41 42 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| EG-PatchMatch MVS | | | 56.98 108 | 58.24 132 | 55.50 92 | 64.66 64 | 68.62 65 | 61.48 107 | 43.63 114 | 38.44 194 | 41.44 104 | 38.05 185 | 46.18 162 | 43.95 129 | 71.71 61 | 70.61 58 | 77.87 69 | 74.08 105 |
|
| Effi-MVS+-dtu | | | 60.34 79 | 62.32 89 | 58.03 72 | 64.31 65 | 67.44 81 | 65.99 80 | 42.26 135 | 49.55 106 | 42.00 103 | 48.92 116 | 59.79 92 | 56.27 57 | 68.07 105 | 67.03 98 | 77.35 77 | 75.45 95 |
|
| FC-MVSNet-train | | | 58.40 95 | 63.15 86 | 52.85 111 | 64.29 66 | 61.84 126 | 55.98 147 | 46.47 73 | 53.06 87 | 34.96 137 | 61.95 60 | 56.37 108 | 39.49 150 | 68.67 91 | 68.36 82 | 75.92 102 | 71.81 113 |
|
| Effi-MVS+ | | | 63.28 63 | 65.96 71 | 60.17 57 | 64.26 67 | 68.06 71 | 68.78 59 | 45.71 79 | 54.08 79 | 46.64 78 | 55.92 80 | 63.13 76 | 55.94 60 | 70.38 76 | 71.43 52 | 79.68 55 | 78.70 65 |
|
| LS3D | | | 60.20 80 | 61.70 90 | 58.45 67 | 64.18 68 | 67.77 74 | 67.19 66 | 48.84 65 | 61.67 63 | 41.27 107 | 45.89 141 | 51.81 125 | 54.18 67 | 68.78 89 | 66.50 112 | 75.03 112 | 69.48 131 |
|
| ACMH+ | | 53.71 12 | 59.26 84 | 60.28 103 | 58.06 70 | 64.17 69 | 68.46 66 | 67.51 65 | 50.93 50 | 52.46 93 | 35.83 133 | 40.83 178 | 45.12 171 | 52.32 87 | 69.88 80 | 69.00 75 | 77.59 74 | 76.21 89 |
|
| GeoE | | | 62.43 69 | 64.79 79 | 59.68 61 | 64.15 70 | 67.17 84 | 68.80 58 | 44.42 96 | 55.65 75 | 47.38 72 | 51.54 102 | 62.51 77 | 54.04 69 | 69.99 79 | 68.07 84 | 79.28 58 | 78.57 66 |
|
| DELS-MVS | | | 65.87 53 | 70.30 52 | 60.71 54 | 64.05 71 | 72.68 50 | 70.90 54 | 45.43 81 | 57.49 71 | 49.05 70 | 64.43 43 | 68.66 59 | 55.11 64 | 74.31 47 | 73.02 48 | 79.70 52 | 81.51 50 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| sasdasda | | | 65.62 54 | 72.06 40 | 58.11 68 | 63.94 72 | 71.05 54 | 64.49 95 | 43.18 126 | 74.08 33 | 47.35 73 | 64.17 46 | 71.97 47 | 51.17 95 | 71.87 58 | 70.74 56 | 78.51 65 | 80.56 54 |
|
| canonicalmvs | | | 65.62 54 | 72.06 40 | 58.11 68 | 63.94 72 | 71.05 54 | 64.49 95 | 43.18 126 | 74.08 33 | 47.35 73 | 64.17 46 | 71.97 47 | 51.17 95 | 71.87 58 | 70.74 56 | 78.51 65 | 80.56 54 |
|
| EIA-MVS | | | 61.53 75 | 63.79 84 | 58.89 65 | 63.82 74 | 67.61 78 | 65.35 88 | 42.15 138 | 49.98 103 | 45.66 84 | 57.47 75 | 56.62 104 | 56.59 55 | 70.91 70 | 69.15 71 | 79.78 50 | 74.80 99 |
|
| Anonymous202405211 | | | | 60.60 99 | | 63.44 75 | 66.71 91 | 61.00 112 | 47.23 69 | 50.62 101 | | 36.85 188 | 60.63 89 | 43.03 137 | 69.17 85 | 67.72 91 | 75.41 105 | 72.54 110 |
|
| ETV-MVS | | | 63.23 64 | 66.08 70 | 59.91 59 | 63.13 76 | 68.13 70 | 67.62 63 | 44.62 92 | 53.39 84 | 46.23 80 | 58.74 68 | 58.19 97 | 57.45 46 | 73.60 50 | 71.38 54 | 80.39 45 | 79.13 61 |
|
| casdiffmvs_mvg |  | | 65.26 57 | 69.48 59 | 60.33 56 | 62.99 77 | 69.34 62 | 69.80 55 | 45.27 83 | 63.38 58 | 51.11 62 | 65.12 40 | 69.75 55 | 53.51 74 | 71.74 60 | 68.86 76 | 79.33 56 | 78.19 71 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| gg-mvs-nofinetune | | | 49.07 169 | 52.56 169 | 45.00 169 | 61.99 78 | 59.78 145 | 53.55 165 | 41.63 140 | 31.62 210 | 12.08 206 | 29.56 206 | 53.28 119 | 29.57 188 | 66.27 136 | 64.49 139 | 71.19 157 | 62.92 174 |
|
| CS-MVS-test | | | 65.18 58 | 68.70 62 | 61.07 53 | 61.92 79 | 68.06 71 | 67.09 70 | 45.18 85 | 58.47 70 | 52.02 61 | 65.76 36 | 66.44 68 | 59.24 37 | 72.71 55 | 70.05 64 | 80.98 43 | 79.40 60 |
|
| DCV-MVSNet | | | 59.49 82 | 64.00 83 | 54.23 97 | 61.81 80 | 64.33 112 | 61.42 108 | 43.77 108 | 52.85 90 | 38.94 121 | 55.62 82 | 62.15 81 | 43.24 136 | 69.39 83 | 67.66 93 | 76.22 94 | 75.97 90 |
|
| casdiffmvs |  | | 64.09 61 | 68.13 63 | 59.37 63 | 61.81 80 | 68.32 68 | 68.48 60 | 44.45 95 | 61.95 62 | 49.12 69 | 63.04 52 | 69.67 57 | 53.83 70 | 70.46 73 | 66.06 117 | 78.55 63 | 77.43 74 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| CS-MVS | | | 65.88 52 | 69.71 56 | 61.41 52 | 61.76 82 | 68.14 69 | 67.65 62 | 44.00 105 | 59.14 69 | 52.69 57 | 65.19 38 | 68.13 63 | 60.90 26 | 74.74 45 | 71.58 51 | 81.46 40 | 81.04 53 |
|
| Anonymous20231211 | | | 57.71 104 | 60.79 96 | 54.13 99 | 61.68 83 | 65.81 98 | 60.81 113 | 43.70 112 | 51.97 96 | 39.67 116 | 34.82 193 | 63.59 73 | 43.31 134 | 68.55 95 | 66.63 108 | 75.59 103 | 74.13 104 |
|
| IS_MVSNet | | | 57.95 102 | 64.26 82 | 50.60 123 | 61.62 84 | 65.25 104 | 57.18 133 | 45.42 82 | 50.79 99 | 26.49 176 | 57.81 73 | 60.05 91 | 34.51 177 | 71.24 66 | 70.20 63 | 78.36 67 | 74.44 101 |
|
| NR-MVSNet | | | 55.35 125 | 59.46 120 | 50.56 124 | 61.33 85 | 62.97 120 | 57.91 129 | 51.80 45 | 48.62 123 | 20.59 190 | 51.99 100 | 44.73 177 | 34.10 180 | 68.58 93 | 68.64 79 | 77.66 71 | 70.67 122 |
|
| MVS_111021_LR | | | 63.05 65 | 66.43 67 | 59.10 64 | 61.33 85 | 63.77 117 | 65.87 82 | 43.58 115 | 60.20 66 | 53.70 54 | 62.09 59 | 62.38 78 | 55.84 61 | 70.24 77 | 68.08 83 | 74.30 117 | 78.28 70 |
|
| MGCFI-Net | | | 61.46 76 | 69.72 55 | 51.83 118 | 61.00 87 | 66.16 95 | 56.50 140 | 40.73 149 | 73.98 35 | 35.18 134 | 64.23 45 | 71.42 49 | 42.45 139 | 69.22 84 | 64.01 143 | 75.09 111 | 79.03 63 |
|
| EPP-MVSNet | | | 59.39 83 | 65.45 74 | 52.32 115 | 60.96 88 | 67.70 76 | 58.42 126 | 44.75 90 | 49.71 105 | 27.23 170 | 59.03 67 | 62.20 80 | 43.34 133 | 70.71 71 | 69.13 72 | 79.25 59 | 79.63 59 |
|
| TransMVSNet (Re) | | | 51.92 151 | 55.38 149 | 47.88 155 | 60.95 89 | 59.90 144 | 53.95 160 | 45.14 86 | 39.47 188 | 24.85 180 | 43.87 159 | 46.51 158 | 29.15 189 | 67.55 115 | 65.23 130 | 73.26 133 | 65.16 165 |
|
| gm-plane-assit | | | 44.74 189 | 45.95 197 | 43.33 177 | 60.88 90 | 46.79 203 | 36.97 212 | 32.24 202 | 24.15 217 | 11.79 207 | 29.26 207 | 32.97 212 | 46.64 116 | 65.09 150 | 62.95 153 | 71.45 154 | 60.42 185 |
|
| baseline1 | | | 54.48 134 | 58.69 126 | 49.57 130 | 60.63 91 | 58.29 160 | 55.70 149 | 44.95 88 | 49.20 111 | 29.62 158 | 54.77 86 | 54.75 113 | 35.29 174 | 67.15 123 | 64.08 141 | 71.21 156 | 62.58 178 |
|
| test2506 | | | 55.82 120 | 59.57 118 | 51.46 119 | 60.39 92 | 64.55 110 | 58.69 124 | 48.87 63 | 53.91 80 | 26.99 171 | 48.97 114 | 41.72 189 | 37.71 160 | 70.96 68 | 69.49 67 | 76.08 97 | 67.37 145 |
|
| ECVR-MVS |  | | 56.44 115 | 60.74 97 | 51.42 120 | 60.39 92 | 64.55 110 | 58.69 124 | 48.87 63 | 53.91 80 | 26.76 173 | 45.55 146 | 53.43 118 | 37.71 160 | 70.96 68 | 69.49 67 | 76.08 97 | 67.32 147 |
|
| DI_MVS_plusplus_trai | | | 61.88 71 | 65.17 76 | 58.06 70 | 60.05 94 | 65.26 102 | 66.03 79 | 44.22 97 | 55.75 74 | 46.73 76 | 54.64 88 | 68.12 64 | 54.13 68 | 69.13 86 | 66.66 106 | 77.18 79 | 76.61 82 |
|
| PVSNet_Blended_VisFu | | | 63.65 62 | 66.92 64 | 59.83 60 | 60.03 95 | 73.44 47 | 66.33 76 | 48.95 62 | 52.20 95 | 50.81 64 | 56.07 78 | 60.25 90 | 53.56 72 | 73.23 53 | 70.01 65 | 79.30 57 | 83.24 43 |
|
| UniMVSNet_NR-MVSNet | | | 56.94 110 | 61.14 93 | 52.05 117 | 60.02 96 | 65.21 105 | 57.44 131 | 52.93 40 | 49.37 109 | 24.31 183 | 54.62 89 | 50.54 131 | 39.04 152 | 68.69 90 | 68.84 77 | 78.53 64 | 70.72 118 |
|
| IterMVS-LS | | | 58.30 98 | 61.39 92 | 54.71 95 | 59.92 97 | 58.40 157 | 59.42 118 | 43.64 113 | 48.71 120 | 40.25 114 | 57.53 74 | 58.55 96 | 52.15 89 | 65.42 148 | 65.34 127 | 72.85 135 | 75.77 91 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| test1111 | | | 55.24 126 | 59.98 111 | 49.71 129 | 59.80 98 | 64.10 115 | 56.48 141 | 49.34 59 | 52.27 94 | 21.56 188 | 44.49 154 | 51.96 124 | 35.93 172 | 70.59 72 | 69.07 73 | 75.13 110 | 67.40 143 |
|
| MVS_Test | | | 62.40 70 | 66.23 69 | 57.94 73 | 59.77 99 | 64.77 108 | 66.50 75 | 41.76 139 | 57.26 72 | 49.33 67 | 62.68 55 | 67.47 67 | 53.50 76 | 68.57 94 | 66.25 114 | 76.77 84 | 76.58 83 |
|
| FA-MVS(training) | | | 60.00 81 | 63.14 87 | 56.33 87 | 59.50 100 | 64.30 113 | 65.15 90 | 38.75 167 | 56.20 73 | 45.77 82 | 53.08 92 | 56.45 105 | 52.10 90 | 69.04 88 | 67.67 92 | 76.69 85 | 75.27 98 |
|
| TranMVSNet+NR-MVSNet | | | 55.87 118 | 60.14 108 | 50.88 122 | 59.46 101 | 63.82 116 | 57.93 128 | 52.98 39 | 48.94 115 | 20.52 191 | 52.87 94 | 47.33 149 | 36.81 168 | 69.12 87 | 69.03 74 | 77.56 75 | 69.89 124 |
|
| Fast-Effi-MVS+ | | | 60.36 78 | 63.35 85 | 56.87 83 | 58.70 102 | 65.86 97 | 65.08 91 | 37.11 176 | 53.00 89 | 45.36 86 | 52.12 99 | 56.07 110 | 56.27 57 | 71.28 65 | 69.42 69 | 78.71 61 | 75.69 93 |
|
| IB-MVS | | 54.11 11 | 58.36 97 | 60.70 98 | 55.62 91 | 58.67 103 | 68.02 73 | 61.56 105 | 43.15 128 | 46.09 140 | 44.06 92 | 44.24 156 | 50.99 130 | 48.71 105 | 66.70 129 | 70.33 60 | 77.60 73 | 78.50 67 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| Fast-Effi-MVS+-dtu | | | 56.30 116 | 59.29 122 | 52.82 112 | 58.64 104 | 64.89 106 | 65.56 86 | 32.89 199 | 45.80 143 | 35.04 136 | 45.89 141 | 54.14 115 | 49.41 101 | 67.16 122 | 66.45 113 | 75.37 107 | 70.69 120 |
|
| CNLPA | | | 62.78 67 | 66.31 68 | 58.65 66 | 58.47 105 | 68.41 67 | 65.98 81 | 41.22 145 | 78.02 22 | 56.04 37 | 46.65 129 | 59.50 93 | 57.50 45 | 69.67 81 | 65.27 129 | 72.70 141 | 76.67 81 |
|
| tpm cat1 | | | 53.30 139 | 53.41 162 | 53.17 108 | 58.16 106 | 59.15 151 | 63.73 101 | 38.27 171 | 50.73 100 | 46.98 75 | 45.57 145 | 44.00 183 | 49.20 102 | 55.90 196 | 54.02 195 | 62.65 187 | 64.50 169 |
|
| v1144 | | | 58.88 87 | 60.16 107 | 57.39 79 | 58.03 107 | 67.26 82 | 67.14 68 | 44.46 94 | 45.17 146 | 44.33 91 | 47.81 123 | 49.92 136 | 53.20 82 | 67.77 111 | 66.62 109 | 77.15 80 | 76.58 83 |
|
| v10 | | | 59.17 86 | 60.60 99 | 57.50 78 | 57.95 108 | 66.73 88 | 67.09 70 | 44.11 98 | 46.85 134 | 45.42 85 | 48.18 122 | 51.07 127 | 53.63 71 | 67.84 109 | 66.59 110 | 76.79 83 | 76.92 79 |
|
| v1192 | | | 58.51 91 | 59.66 114 | 57.17 80 | 57.82 109 | 67.72 75 | 66.21 78 | 44.83 89 | 44.15 154 | 43.49 94 | 46.68 128 | 47.94 140 | 53.55 73 | 67.39 118 | 66.51 111 | 77.13 81 | 77.20 77 |
|
| v144192 | | | 58.23 100 | 59.40 121 | 56.87 83 | 57.56 110 | 66.89 86 | 65.70 83 | 45.01 87 | 44.06 155 | 42.88 96 | 46.61 130 | 48.09 139 | 53.49 77 | 66.94 127 | 65.90 121 | 76.61 86 | 77.29 75 |
|
| v1921920 | | | 57.89 103 | 59.02 124 | 56.58 86 | 57.55 111 | 66.66 92 | 64.72 94 | 44.70 91 | 43.55 159 | 42.73 97 | 46.17 138 | 46.93 153 | 53.51 74 | 66.78 128 | 65.75 123 | 76.29 91 | 77.28 76 |
|
| Vis-MVSNet (Re-imp) | | | 50.37 159 | 57.73 138 | 41.80 184 | 57.53 112 | 54.35 174 | 45.70 193 | 45.24 84 | 49.80 104 | 13.43 204 | 58.23 72 | 56.42 106 | 20.11 205 | 62.96 156 | 63.36 149 | 68.76 166 | 58.96 190 |
|
| CostFormer | | | 56.57 113 | 59.13 123 | 53.60 102 | 57.52 113 | 61.12 133 | 66.94 72 | 35.95 181 | 53.44 82 | 44.68 89 | 55.87 81 | 54.44 114 | 48.21 108 | 60.37 169 | 58.33 176 | 68.27 168 | 70.33 123 |
|
| thres400 | | | 52.38 145 | 55.51 147 | 48.74 141 | 57.49 114 | 60.10 143 | 55.45 152 | 43.54 116 | 42.90 166 | 26.72 174 | 43.34 166 | 45.03 175 | 36.61 169 | 66.20 138 | 64.53 138 | 72.66 142 | 66.43 151 |
|
| thres600view7 | | | 51.91 152 | 55.14 151 | 48.14 151 | 57.43 115 | 60.18 141 | 54.60 158 | 43.73 110 | 42.61 170 | 25.20 179 | 43.10 169 | 44.47 180 | 35.19 175 | 66.36 133 | 63.28 150 | 72.66 142 | 66.01 158 |
|
| thres200 | | | 52.39 144 | 55.37 150 | 48.90 139 | 57.39 116 | 60.18 141 | 55.60 150 | 43.73 110 | 42.93 165 | 27.41 168 | 43.35 165 | 45.09 172 | 36.61 169 | 66.36 133 | 63.92 145 | 72.66 142 | 65.78 160 |
|
| baseline2 | | | 55.89 117 | 57.82 135 | 53.64 101 | 57.36 117 | 61.09 134 | 59.75 117 | 40.45 153 | 47.38 132 | 41.26 108 | 51.23 104 | 46.90 154 | 48.11 109 | 65.63 145 | 64.38 140 | 74.90 113 | 68.16 139 |
|
| v8 | | | 58.88 87 | 60.57 101 | 56.92 82 | 57.35 118 | 65.69 99 | 66.69 74 | 42.64 132 | 47.89 129 | 45.77 82 | 49.04 113 | 52.98 120 | 52.77 83 | 67.51 116 | 65.57 124 | 76.26 93 | 75.30 97 |
|
| thres100view900 | | | 52.04 149 | 54.81 155 | 48.80 140 | 57.31 119 | 59.33 148 | 55.30 154 | 42.92 131 | 42.85 167 | 27.81 166 | 43.00 170 | 45.06 173 | 36.99 166 | 64.74 151 | 63.51 147 | 72.47 145 | 65.21 164 |
|
| tfpn200view9 | | | 52.53 142 | 55.51 147 | 49.06 137 | 57.31 119 | 60.24 140 | 55.42 153 | 43.77 108 | 42.85 167 | 27.81 166 | 43.00 170 | 45.06 173 | 37.32 164 | 66.38 132 | 64.54 137 | 72.71 140 | 66.54 150 |
|
| v1240 | | | 57.55 105 | 58.63 128 | 56.29 88 | 57.30 121 | 66.48 93 | 63.77 100 | 44.56 93 | 42.77 169 | 42.48 99 | 45.64 144 | 46.28 160 | 53.46 78 | 66.32 135 | 65.80 122 | 76.16 95 | 77.13 78 |
|
| dmvs_re | | | 52.07 147 | 55.11 152 | 48.54 146 | 57.27 122 | 51.93 183 | 57.73 130 | 43.13 129 | 43.65 157 | 26.57 175 | 44.52 153 | 50.00 135 | 36.53 171 | 66.58 131 | 62.15 160 | 69.97 162 | 66.91 148 |
|
| CHOSEN 1792x2688 | | | 55.85 119 | 58.01 133 | 53.33 104 | 57.26 123 | 62.82 122 | 63.29 104 | 41.55 141 | 46.65 136 | 38.34 122 | 34.55 194 | 53.50 116 | 52.43 86 | 67.10 124 | 67.56 95 | 67.13 172 | 73.92 107 |
|
| PVSNet_BlendedMVS | | | 61.63 73 | 64.82 77 | 57.91 75 | 57.21 124 | 67.55 79 | 63.47 102 | 46.08 75 | 54.72 77 | 52.46 58 | 58.59 69 | 60.73 86 | 51.82 93 | 70.46 73 | 65.20 131 | 76.44 89 | 76.50 86 |
|
| PVSNet_Blended | | | 61.63 73 | 64.82 77 | 57.91 75 | 57.21 124 | 67.55 79 | 63.47 102 | 46.08 75 | 54.72 77 | 52.46 58 | 58.59 69 | 60.73 86 | 51.82 93 | 70.46 73 | 65.20 131 | 76.44 89 | 76.50 86 |
|
| v2v482 | | | 58.69 90 | 60.12 110 | 57.03 81 | 57.16 126 | 66.05 96 | 67.17 67 | 43.52 117 | 46.33 138 | 45.19 87 | 49.46 112 | 51.02 128 | 52.51 85 | 67.30 119 | 66.03 118 | 76.61 86 | 74.62 100 |
|
| tfpnnormal | | | 50.16 161 | 52.19 173 | 47.78 157 | 56.86 127 | 58.37 158 | 54.15 159 | 44.01 104 | 38.35 196 | 25.94 177 | 36.10 189 | 37.89 203 | 34.50 178 | 65.93 140 | 63.42 148 | 71.26 155 | 65.28 163 |
|
| diffmvs |  | | 61.64 72 | 66.55 66 | 55.90 89 | 56.63 128 | 63.71 118 | 67.13 69 | 41.27 144 | 59.49 67 | 46.70 77 | 63.93 50 | 68.01 65 | 50.46 97 | 67.30 119 | 65.51 125 | 73.24 134 | 77.87 73 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| HyFIR lowres test | | | 56.87 111 | 58.60 129 | 54.84 94 | 56.62 129 | 69.27 63 | 64.77 93 | 42.21 136 | 45.66 144 | 37.50 128 | 33.08 197 | 57.47 102 | 53.33 79 | 65.46 147 | 67.94 85 | 74.60 114 | 71.35 115 |
|
| v7n | | | 55.67 121 | 57.46 140 | 53.59 103 | 56.06 130 | 65.29 101 | 61.06 111 | 43.26 125 | 40.17 185 | 37.99 125 | 40.79 179 | 45.27 170 | 47.09 115 | 67.67 113 | 66.21 115 | 76.08 97 | 76.82 80 |
|
| dps | | | 50.42 158 | 51.20 179 | 49.51 131 | 55.88 131 | 56.07 170 | 53.73 161 | 38.89 163 | 43.66 156 | 40.36 113 | 45.66 143 | 37.63 205 | 45.23 124 | 59.05 172 | 56.18 180 | 62.94 186 | 60.16 186 |
|
| CANet_DTU | | | 58.88 87 | 64.68 80 | 52.12 116 | 55.77 132 | 66.75 87 | 63.92 99 | 37.04 177 | 53.32 85 | 37.45 129 | 59.81 64 | 61.81 82 | 44.43 128 | 68.25 98 | 67.47 96 | 74.12 119 | 75.33 96 |
|
| WR-MVS | | | 48.78 171 | 55.06 153 | 41.45 185 | 55.50 133 | 60.40 139 | 43.77 201 | 49.99 56 | 41.92 173 | 8.10 217 | 45.24 150 | 45.56 165 | 17.47 206 | 61.57 164 | 64.60 136 | 73.85 121 | 66.14 157 |
|
| UniMVSNet (Re) | | | 55.15 130 | 60.39 102 | 49.03 138 | 55.31 134 | 64.59 109 | 55.77 148 | 50.63 52 | 48.66 122 | 20.95 189 | 51.47 103 | 50.40 132 | 34.41 179 | 67.81 110 | 67.89 86 | 77.11 82 | 71.88 112 |
|
| test-LLR | | | 49.28 165 | 50.29 183 | 48.10 152 | 55.26 135 | 47.16 198 | 49.52 174 | 43.48 120 | 39.22 189 | 31.98 145 | 43.65 162 | 47.93 141 | 41.29 145 | 56.80 187 | 55.36 186 | 67.08 173 | 61.94 179 |
|
| test0.0.03 1 | | | 43.15 194 | 46.95 196 | 38.72 193 | 55.26 135 | 50.56 187 | 42.48 204 | 43.48 120 | 38.16 198 | 15.11 200 | 35.07 192 | 44.69 178 | 16.47 208 | 55.95 195 | 54.34 194 | 59.54 194 | 49.87 208 |
|
| GA-MVS | | | 55.67 121 | 58.33 130 | 52.58 114 | 55.23 137 | 63.09 119 | 61.08 110 | 40.15 158 | 42.95 164 | 37.02 131 | 52.61 96 | 47.68 144 | 47.51 113 | 65.92 141 | 65.35 126 | 74.49 116 | 70.68 121 |
|
| DTE-MVSNet | | | 48.03 177 | 53.28 164 | 41.91 183 | 54.64 138 | 57.50 166 | 44.63 200 | 51.66 48 | 41.02 179 | 7.97 218 | 46.26 135 | 40.90 191 | 20.24 204 | 60.45 168 | 62.89 154 | 72.33 148 | 63.97 170 |
|
| pmmvs4 | | | 54.66 133 | 56.07 144 | 53.00 109 | 54.63 139 | 57.08 168 | 60.43 115 | 44.10 99 | 51.69 97 | 40.55 111 | 46.55 133 | 44.79 176 | 45.95 121 | 62.54 158 | 63.66 146 | 72.36 147 | 66.20 155 |
|
| DU-MVS | | | 55.41 124 | 59.59 115 | 50.54 125 | 54.60 140 | 62.97 120 | 57.44 131 | 51.80 45 | 48.62 123 | 24.31 183 | 51.99 100 | 47.00 152 | 39.04 152 | 68.11 103 | 67.75 90 | 76.03 101 | 70.72 118 |
|
| Baseline_NR-MVSNet | | | 53.50 137 | 57.89 134 | 48.37 149 | 54.60 140 | 59.25 150 | 56.10 143 | 51.84 44 | 49.32 110 | 17.92 198 | 45.38 147 | 47.68 144 | 36.93 167 | 68.11 103 | 65.95 119 | 72.84 136 | 69.57 129 |
|
| v148 | | | 55.58 123 | 57.61 139 | 53.20 106 | 54.59 142 | 61.86 125 | 61.18 109 | 38.70 168 | 44.30 153 | 42.25 101 | 47.53 124 | 50.24 134 | 48.73 104 | 65.15 149 | 62.61 158 | 73.79 122 | 71.61 114 |
|
| PEN-MVS | | | 49.21 167 | 54.32 157 | 43.24 179 | 54.33 143 | 59.26 149 | 47.04 187 | 51.37 49 | 41.67 175 | 9.97 212 | 46.22 136 | 41.80 188 | 22.97 202 | 60.52 167 | 64.03 142 | 73.73 123 | 66.75 149 |
|
| pm-mvs1 | | | 51.02 155 | 55.55 146 | 45.73 164 | 54.16 144 | 58.52 155 | 50.92 170 | 42.56 133 | 40.32 183 | 25.67 178 | 43.66 161 | 50.34 133 | 30.06 187 | 65.85 142 | 63.97 144 | 70.99 158 | 66.21 154 |
|
| EPNet_dtu | | | 52.05 148 | 58.26 131 | 44.81 170 | 54.10 145 | 50.09 190 | 52.01 168 | 40.82 148 | 53.03 88 | 27.41 168 | 54.90 84 | 57.96 101 | 26.72 194 | 62.97 155 | 62.70 157 | 67.78 170 | 66.19 156 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| tpm | | | 48.82 170 | 51.27 178 | 45.96 163 | 54.10 145 | 47.35 197 | 56.05 144 | 30.23 203 | 46.70 135 | 43.21 95 | 52.54 97 | 47.55 147 | 37.28 165 | 54.11 201 | 50.50 204 | 54.90 204 | 60.12 187 |
|
| CDS-MVSNet | | | 52.42 143 | 57.06 142 | 47.02 160 | 53.92 147 | 58.30 159 | 55.50 151 | 46.47 73 | 42.52 171 | 29.38 160 | 49.50 111 | 52.85 121 | 28.49 192 | 66.70 129 | 66.89 102 | 68.34 167 | 62.63 177 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| test20.03 | | | 40.38 203 | 44.20 203 | 35.92 201 | 53.73 148 | 49.05 191 | 38.54 210 | 43.49 119 | 32.55 207 | 9.54 213 | 27.88 209 | 39.12 199 | 12.24 213 | 56.28 192 | 54.69 191 | 57.96 199 | 49.83 209 |
|
| Vis-MVSNet |  | | 58.48 93 | 65.70 73 | 50.06 128 | 53.40 149 | 67.20 83 | 60.24 116 | 43.32 123 | 48.83 117 | 30.23 155 | 62.38 57 | 61.61 84 | 40.35 148 | 71.03 67 | 69.77 66 | 72.82 137 | 79.11 62 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| PLC |  | 52.09 14 | 59.21 85 | 62.47 88 | 55.41 93 | 53.24 150 | 64.84 107 | 64.47 97 | 40.41 155 | 65.92 53 | 44.53 90 | 46.19 137 | 55.69 111 | 55.33 63 | 68.24 100 | 65.30 128 | 74.50 115 | 71.09 116 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| thisisatest0530 | | | 56.68 112 | 59.68 113 | 53.19 107 | 52.97 151 | 60.96 136 | 59.41 119 | 40.51 151 | 48.26 126 | 41.06 109 | 52.67 95 | 46.30 159 | 49.78 98 | 67.66 114 | 67.83 87 | 75.39 106 | 74.07 106 |
|
| OMC-MVS | | | 65.16 59 | 71.35 45 | 57.94 73 | 52.95 152 | 68.82 64 | 69.00 57 | 38.28 170 | 79.89 15 | 55.20 42 | 62.76 54 | 68.31 61 | 56.14 59 | 71.30 64 | 68.70 78 | 76.06 100 | 79.67 58 |
|
| tpmrst | | | 48.08 175 | 49.88 187 | 45.98 162 | 52.71 153 | 48.11 195 | 53.62 164 | 33.70 194 | 48.70 121 | 39.74 115 | 48.96 115 | 46.23 161 | 40.29 149 | 50.14 210 | 49.28 206 | 55.80 201 | 57.71 193 |
|
| tttt0517 | | | 56.53 114 | 59.59 115 | 52.95 110 | 52.66 154 | 60.99 135 | 59.21 121 | 40.51 151 | 47.89 129 | 40.40 112 | 52.50 98 | 46.04 163 | 49.78 98 | 67.75 112 | 67.83 87 | 75.15 109 | 74.17 103 |
|
| GBi-Net | | | 55.20 127 | 60.25 104 | 49.31 132 | 52.42 155 | 61.44 128 | 57.03 134 | 44.04 101 | 49.18 112 | 30.47 151 | 48.28 118 | 58.19 97 | 38.22 155 | 68.05 106 | 66.96 99 | 73.69 124 | 69.65 126 |
|
| test1 | | | 55.20 127 | 60.25 104 | 49.31 132 | 52.42 155 | 61.44 128 | 57.03 134 | 44.04 101 | 49.18 112 | 30.47 151 | 48.28 118 | 58.19 97 | 38.22 155 | 68.05 106 | 66.96 99 | 73.69 124 | 69.65 126 |
|
| FMVSNet2 | | | 55.04 131 | 59.95 112 | 49.31 132 | 52.42 155 | 61.44 128 | 57.03 134 | 44.08 100 | 49.55 106 | 30.40 154 | 46.89 127 | 58.84 95 | 38.22 155 | 67.07 125 | 66.21 115 | 73.69 124 | 69.65 126 |
|
| FMVSNet3 | | | 54.78 132 | 59.58 117 | 49.17 135 | 52.37 158 | 61.31 132 | 56.72 139 | 44.04 101 | 49.18 112 | 30.47 151 | 48.28 118 | 58.19 97 | 38.09 158 | 65.48 146 | 65.20 131 | 73.31 131 | 69.45 134 |
|
| testgi | | | 38.71 205 | 43.64 205 | 32.95 205 | 52.30 159 | 48.63 194 | 35.59 215 | 35.05 184 | 31.58 211 | 9.03 216 | 30.29 202 | 40.75 193 | 11.19 219 | 55.30 197 | 53.47 200 | 54.53 206 | 45.48 212 |
|
| Anonymous20231206 | | | 42.28 195 | 45.89 198 | 38.07 195 | 51.96 160 | 48.98 192 | 43.66 202 | 38.81 166 | 38.74 193 | 14.32 203 | 26.74 210 | 40.90 191 | 20.94 203 | 56.64 190 | 54.67 192 | 58.71 195 | 54.59 197 |
|
| pmmvs6 | | | 48.35 173 | 51.64 175 | 44.51 172 | 51.92 161 | 57.94 164 | 49.44 176 | 42.17 137 | 34.45 203 | 24.62 182 | 28.87 208 | 46.90 154 | 29.07 191 | 64.60 152 | 63.08 151 | 69.83 163 | 65.68 161 |
|
| PatchmatchNet |  | | 49.92 163 | 51.29 177 | 48.32 150 | 51.83 162 | 51.86 184 | 53.38 166 | 37.63 175 | 47.90 128 | 40.83 110 | 48.54 117 | 45.30 168 | 45.19 125 | 56.86 186 | 53.99 197 | 61.08 192 | 54.57 198 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| WR-MVS_H | | | 47.65 178 | 53.67 160 | 40.63 188 | 51.45 163 | 59.74 146 | 44.71 199 | 49.37 58 | 40.69 181 | 7.61 219 | 46.04 139 | 44.34 182 | 17.32 207 | 57.79 183 | 61.18 164 | 73.30 132 | 65.86 159 |
|
| LTVRE_ROB | | 44.17 16 | 47.06 183 | 50.15 186 | 43.44 176 | 51.39 164 | 58.42 156 | 42.90 203 | 43.51 118 | 22.27 219 | 14.85 202 | 41.94 177 | 34.57 209 | 45.43 122 | 62.28 161 | 62.77 156 | 62.56 189 | 68.83 137 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| CP-MVSNet | | | 48.37 172 | 53.53 161 | 42.34 181 | 51.35 165 | 58.01 163 | 46.56 188 | 50.54 53 | 41.62 176 | 10.61 208 | 46.53 134 | 40.68 194 | 23.18 200 | 58.71 177 | 61.83 161 | 71.81 151 | 67.36 146 |
|
| PS-CasMVS | | | 48.18 174 | 53.25 165 | 42.27 182 | 51.26 166 | 57.94 164 | 46.51 189 | 50.52 54 | 41.30 177 | 10.56 209 | 45.35 149 | 40.34 196 | 23.04 201 | 58.66 178 | 61.79 162 | 71.74 153 | 67.38 144 |
|
| our_test_3 | | | | | | 51.15 167 | 57.31 167 | 55.12 155 | | | | | | | | | | |
|
| SCA | | | 50.99 156 | 53.22 166 | 48.40 148 | 51.07 168 | 56.78 169 | 50.25 172 | 39.05 161 | 48.31 125 | 41.38 105 | 49.54 110 | 46.70 157 | 46.00 120 | 58.31 179 | 56.28 179 | 62.65 187 | 56.60 195 |
|
| UniMVSNet_ETH3D | | | 52.62 141 | 55.98 145 | 48.70 143 | 51.04 169 | 60.71 138 | 56.87 137 | 46.74 72 | 42.52 171 | 26.96 172 | 42.50 174 | 45.95 164 | 37.87 159 | 66.22 137 | 65.15 134 | 72.74 138 | 68.78 138 |
|
| IterMVS-SCA-FT | | | 52.18 146 | 57.75 137 | 45.68 165 | 51.01 170 | 62.06 124 | 55.10 156 | 34.75 185 | 44.85 147 | 32.86 143 | 51.13 106 | 51.22 126 | 48.74 103 | 62.47 159 | 61.51 163 | 51.61 211 | 71.02 117 |
|
| FMVSNet1 | | | 54.08 135 | 58.68 127 | 48.71 142 | 50.90 171 | 61.35 131 | 56.73 138 | 43.94 106 | 45.91 142 | 29.32 161 | 42.72 172 | 56.26 109 | 37.70 162 | 68.05 106 | 66.96 99 | 73.69 124 | 69.50 130 |
|
| pmmvs-eth3d | | | 51.33 153 | 52.25 172 | 50.26 127 | 50.82 172 | 54.65 173 | 56.03 145 | 43.45 122 | 43.51 160 | 37.20 130 | 39.20 182 | 39.04 200 | 42.28 140 | 61.85 163 | 62.78 155 | 71.78 152 | 64.72 167 |
|
| MVSTER | | | 57.19 106 | 61.11 94 | 52.62 113 | 50.82 172 | 58.79 153 | 61.55 106 | 37.86 173 | 48.81 118 | 41.31 106 | 57.43 76 | 52.10 123 | 48.60 106 | 68.19 102 | 66.75 104 | 75.56 104 | 75.68 94 |
|
| ambc | | | | 45.54 201 | | 50.66 174 | 52.63 181 | 40.99 207 | | 38.36 195 | 24.67 181 | 22.62 215 | 13.94 225 | 29.14 190 | 65.71 144 | 58.06 177 | 58.60 197 | 67.43 142 |
|
| thisisatest0515 | | | 53.85 136 | 56.84 143 | 50.37 126 | 50.25 175 | 58.17 161 | 55.99 146 | 39.90 159 | 41.88 174 | 38.16 124 | 45.91 140 | 45.30 168 | 44.58 127 | 66.15 139 | 66.89 102 | 73.36 130 | 73.57 109 |
|
| baseline | | | 55.19 129 | 60.88 95 | 48.55 145 | 49.87 176 | 58.10 162 | 58.70 123 | 34.75 185 | 52.82 91 | 39.48 120 | 60.18 63 | 60.86 85 | 45.41 123 | 61.05 165 | 60.74 168 | 63.10 185 | 72.41 111 |
|
| MDTV_nov1_ep13 | | | 50.32 160 | 52.43 171 | 47.86 156 | 49.87 176 | 54.70 172 | 58.10 127 | 34.29 189 | 45.59 145 | 37.71 126 | 47.44 125 | 47.42 148 | 41.86 142 | 58.07 182 | 55.21 188 | 65.34 179 | 58.56 191 |
|
| IterMVS | | | 53.45 138 | 57.12 141 | 49.17 135 | 49.23 178 | 60.93 137 | 59.05 122 | 34.63 187 | 44.53 149 | 33.22 139 | 51.09 107 | 51.01 129 | 48.38 107 | 62.43 160 | 60.79 167 | 70.54 160 | 69.05 136 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| COLMAP_ROB |  | 46.52 15 | 51.99 150 | 54.86 154 | 48.63 144 | 49.13 179 | 61.73 127 | 60.53 114 | 36.57 178 | 53.14 86 | 32.95 142 | 37.10 186 | 38.68 201 | 40.49 147 | 65.72 143 | 63.08 151 | 72.11 150 | 64.60 168 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| CR-MVSNet | | | 50.47 157 | 52.61 168 | 47.98 154 | 49.03 180 | 52.94 178 | 48.27 179 | 38.86 164 | 44.41 150 | 39.59 117 | 44.34 155 | 44.65 179 | 46.63 117 | 58.97 174 | 60.31 169 | 65.48 177 | 62.66 175 |
|
| V42 | | | 56.97 109 | 60.14 108 | 53.28 105 | 48.16 181 | 62.78 123 | 66.30 77 | 37.93 172 | 47.44 131 | 42.68 98 | 48.19 121 | 52.59 122 | 51.90 91 | 67.46 117 | 65.94 120 | 72.72 139 | 76.55 85 |
|
| MDTV_nov1_ep13_2view | | | 47.62 179 | 49.72 188 | 45.18 168 | 48.05 182 | 53.70 176 | 54.90 157 | 33.80 193 | 39.90 187 | 29.79 157 | 38.85 183 | 41.89 187 | 39.17 151 | 58.99 173 | 55.55 185 | 65.34 179 | 59.17 189 |
|
| EPMVS | | | 44.66 190 | 47.86 194 | 40.92 187 | 47.97 183 | 44.70 207 | 47.58 184 | 33.27 196 | 48.11 127 | 29.58 159 | 49.65 109 | 44.38 181 | 34.65 176 | 51.71 205 | 47.90 208 | 52.49 209 | 48.57 210 |
|
| RPMNet | | | 46.41 184 | 48.72 190 | 43.72 174 | 47.77 184 | 52.94 178 | 46.02 192 | 33.92 191 | 44.41 150 | 31.82 148 | 36.89 187 | 37.42 206 | 37.41 163 | 53.88 202 | 54.02 195 | 65.37 178 | 61.47 181 |
|
| TAPA-MVS | | 54.74 10 | 60.85 77 | 66.61 65 | 54.12 100 | 47.38 185 | 65.33 100 | 65.35 88 | 36.51 179 | 75.16 30 | 48.82 71 | 54.70 87 | 63.51 74 | 53.31 80 | 68.36 96 | 64.97 135 | 73.37 129 | 74.27 102 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| SixPastTwentyTwo | | | 47.55 180 | 50.25 185 | 44.41 173 | 47.30 186 | 54.31 175 | 47.81 182 | 40.36 156 | 33.76 204 | 19.93 193 | 43.75 160 | 32.77 213 | 42.07 141 | 59.82 170 | 60.94 166 | 68.98 164 | 66.37 153 |
|
| TAMVS | | | 44.02 192 | 49.18 189 | 37.99 196 | 47.03 187 | 45.97 204 | 45.04 196 | 28.47 207 | 39.11 191 | 20.23 192 | 43.22 168 | 48.52 137 | 28.49 192 | 58.15 181 | 57.95 178 | 58.71 195 | 51.36 201 |
|
| UGNet | | | 57.03 107 | 65.25 75 | 47.44 158 | 46.54 188 | 66.73 88 | 56.30 142 | 43.28 124 | 50.06 102 | 32.99 141 | 62.57 56 | 63.26 75 | 33.31 182 | 68.25 98 | 67.58 94 | 72.20 149 | 78.29 69 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| TSAR-MVS + COLMAP | | | 62.65 68 | 69.90 54 | 54.19 98 | 46.31 189 | 66.73 88 | 65.49 87 | 41.36 143 | 76.57 24 | 46.31 79 | 76.80 17 | 56.68 103 | 53.27 81 | 69.50 82 | 66.65 107 | 72.40 146 | 76.36 88 |
|
| PatchMatch-RL | | | 50.11 162 | 51.56 176 | 48.43 147 | 46.23 190 | 51.94 182 | 50.21 173 | 38.62 169 | 46.62 137 | 37.51 127 | 42.43 175 | 39.38 198 | 52.24 88 | 60.98 166 | 59.56 172 | 65.76 176 | 60.01 188 |
|
| CMPMVS |  | 37.70 17 | 49.24 166 | 52.71 167 | 45.19 167 | 45.97 191 | 51.23 186 | 47.44 185 | 29.31 204 | 43.04 163 | 44.69 88 | 34.45 195 | 48.35 138 | 43.64 130 | 62.59 157 | 59.82 171 | 60.08 193 | 69.48 131 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| pmnet_mix02 | | | 40.48 202 | 43.80 204 | 36.61 199 | 45.79 192 | 40.45 212 | 42.12 205 | 33.18 197 | 40.30 184 | 24.11 185 | 38.76 184 | 37.11 207 | 24.30 198 | 52.97 203 | 46.66 212 | 50.17 212 | 50.33 205 |
|
| pmmvs5 | | | 47.07 182 | 51.02 181 | 42.46 180 | 45.18 193 | 51.47 185 | 48.23 181 | 33.09 198 | 38.17 197 | 28.62 164 | 46.60 131 | 43.48 184 | 30.74 185 | 58.28 180 | 58.63 175 | 68.92 165 | 60.48 184 |
|
| USDC | | | 51.11 154 | 53.71 159 | 48.08 153 | 44.76 194 | 55.99 171 | 53.01 167 | 40.90 146 | 52.49 92 | 36.14 132 | 44.67 152 | 33.66 211 | 43.27 135 | 63.23 154 | 61.10 165 | 70.39 161 | 64.82 166 |
|
| FC-MVSNet-test | | | 39.65 204 | 48.35 192 | 29.49 208 | 44.43 195 | 39.28 216 | 30.23 218 | 40.44 154 | 43.59 158 | 3.12 225 | 53.00 93 | 42.03 186 | 10.02 221 | 55.09 198 | 54.77 190 | 48.66 213 | 50.71 203 |
|
| ADS-MVSNet | | | 40.67 200 | 43.38 206 | 37.50 197 | 44.36 196 | 39.79 214 | 42.09 206 | 32.67 201 | 44.34 152 | 28.87 163 | 40.76 180 | 40.37 195 | 30.22 186 | 48.34 215 | 45.87 213 | 46.81 215 | 44.21 214 |
|
| new-patchmatchnet | | | 33.24 211 | 37.20 212 | 28.62 210 | 44.32 197 | 38.26 217 | 29.68 219 | 36.05 180 | 31.97 209 | 6.33 221 | 26.59 211 | 27.33 216 | 11.12 220 | 50.08 211 | 41.05 216 | 44.23 216 | 45.15 213 |
|
| MVS-HIRNet | | | 42.24 196 | 41.15 209 | 43.51 175 | 44.06 198 | 40.74 210 | 35.77 214 | 35.35 182 | 35.38 202 | 38.34 122 | 25.63 212 | 38.55 202 | 43.48 132 | 50.77 207 | 47.03 210 | 64.07 181 | 49.98 206 |
|
| PatchT | | | 48.08 175 | 51.03 180 | 44.64 171 | 42.96 199 | 50.12 189 | 40.36 208 | 35.09 183 | 43.17 162 | 39.59 117 | 42.00 176 | 39.96 197 | 46.63 117 | 58.97 174 | 60.31 169 | 63.21 184 | 62.66 175 |
|
| CVMVSNet | | | 46.38 186 | 52.01 174 | 39.81 190 | 42.40 200 | 50.26 188 | 46.15 190 | 37.68 174 | 40.03 186 | 15.09 201 | 46.56 132 | 47.56 146 | 33.72 181 | 56.50 191 | 55.65 184 | 63.80 183 | 67.53 141 |
|
| TinyColmap | | | 47.08 181 | 47.56 195 | 46.52 161 | 42.35 201 | 53.44 177 | 51.77 169 | 40.70 150 | 43.44 161 | 31.92 147 | 29.78 205 | 23.72 221 | 45.04 126 | 61.99 162 | 59.54 173 | 67.35 171 | 61.03 182 |
|
| ET-MVSNet_ETH3D | | | 58.38 96 | 61.57 91 | 54.67 96 | 42.15 202 | 65.26 102 | 65.70 83 | 43.82 107 | 48.84 116 | 42.34 100 | 59.76 65 | 47.76 143 | 56.68 54 | 67.02 126 | 68.60 81 | 77.33 78 | 73.73 108 |
|
| MIMVSNet | | | 43.79 193 | 48.53 191 | 38.27 194 | 41.46 203 | 48.97 193 | 50.81 171 | 32.88 200 | 44.55 148 | 22.07 186 | 32.05 198 | 47.15 150 | 24.76 197 | 58.73 176 | 56.09 182 | 57.63 200 | 52.14 199 |
|
| WB-MVS | | | 29.70 213 | 35.40 214 | 23.05 213 | 40.96 204 | 39.59 215 | 18.79 222 | 40.20 157 | 25.26 215 | 1.88 228 | 33.33 196 | 21.97 223 | 3.36 222 | 48.69 214 | 44.60 214 | 33.11 220 | 34.39 216 |
|
| N_pmnet | | | 32.67 212 | 36.85 213 | 27.79 211 | 40.55 205 | 32.13 218 | 35.80 213 | 26.79 210 | 37.24 200 | 9.10 214 | 32.02 199 | 30.94 214 | 16.30 209 | 47.22 216 | 41.21 215 | 38.21 218 | 37.21 215 |
|
| anonymousdsp | | | 52.84 140 | 57.78 136 | 47.06 159 | 40.24 206 | 58.95 152 | 53.70 162 | 33.54 195 | 36.51 201 | 32.69 144 | 43.88 158 | 45.40 166 | 47.97 112 | 67.17 121 | 70.28 61 | 74.22 118 | 82.29 47 |
|
| EU-MVSNet | | | 40.63 201 | 45.65 200 | 34.78 204 | 39.11 207 | 46.94 201 | 40.02 209 | 34.03 190 | 33.50 205 | 10.37 210 | 35.57 191 | 37.80 204 | 23.65 199 | 51.90 204 | 50.21 205 | 61.49 191 | 63.62 173 |
|
| FPMVS | | | 38.36 206 | 40.41 210 | 35.97 200 | 38.92 208 | 39.85 213 | 45.50 194 | 25.79 213 | 41.13 178 | 18.70 195 | 30.10 203 | 24.56 219 | 31.86 184 | 49.42 212 | 46.80 211 | 55.04 202 | 51.03 202 |
|
| TESTMET0.1,1 | | | 46.09 187 | 50.29 183 | 41.18 186 | 36.91 209 | 47.16 198 | 49.52 174 | 20.32 217 | 39.22 189 | 31.98 145 | 43.65 162 | 47.93 141 | 41.29 145 | 56.80 187 | 55.36 186 | 67.08 173 | 61.94 179 |
|
| FMVSNet5 | | | 40.96 198 | 45.81 199 | 35.29 203 | 34.30 210 | 44.55 208 | 47.28 186 | 28.84 206 | 40.76 180 | 21.62 187 | 29.85 204 | 42.44 185 | 24.77 196 | 57.53 184 | 55.00 189 | 54.93 203 | 50.56 204 |
|
| PMMVS | | | 49.20 168 | 54.28 158 | 43.28 178 | 34.13 211 | 45.70 205 | 48.98 177 | 26.09 212 | 46.31 139 | 34.92 138 | 55.22 83 | 53.47 117 | 47.48 114 | 59.43 171 | 59.04 174 | 68.05 169 | 60.77 183 |
|
| PMVS |  | 27.84 18 | 33.81 210 | 35.28 215 | 32.09 206 | 34.13 211 | 24.81 221 | 32.51 217 | 26.48 211 | 26.41 214 | 19.37 194 | 23.76 213 | 24.02 220 | 25.18 195 | 50.78 206 | 47.24 209 | 54.89 205 | 49.95 207 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| test-mter | | | 45.30 188 | 50.37 182 | 39.38 191 | 33.65 213 | 46.99 200 | 47.59 183 | 18.59 218 | 38.75 192 | 28.00 165 | 43.28 167 | 46.82 156 | 41.50 144 | 57.28 185 | 55.78 183 | 66.93 175 | 63.70 172 |
|
| CHOSEN 280x420 | | | 40.80 199 | 45.05 202 | 35.84 202 | 32.95 214 | 29.57 219 | 44.98 197 | 23.71 215 | 37.54 199 | 18.42 196 | 31.36 201 | 47.07 151 | 46.41 119 | 56.71 189 | 54.65 193 | 48.55 214 | 58.47 192 |
|
| PM-MVS | | | 44.55 191 | 48.13 193 | 40.37 189 | 32.85 215 | 46.82 202 | 46.11 191 | 29.28 205 | 40.48 182 | 29.99 156 | 39.98 181 | 34.39 210 | 41.80 143 | 56.08 194 | 53.88 199 | 62.19 190 | 65.31 162 |
|
| TDRefinement | | | 49.31 164 | 52.44 170 | 45.67 166 | 30.44 216 | 59.42 147 | 59.24 120 | 39.78 160 | 48.76 119 | 31.20 150 | 35.73 190 | 29.90 215 | 42.81 138 | 64.24 153 | 62.59 159 | 70.55 159 | 66.43 151 |
|
| Gipuma |  | | 25.87 214 | 26.91 217 | 24.66 212 | 28.98 217 | 20.17 222 | 20.46 220 | 34.62 188 | 29.55 212 | 9.10 214 | 4.91 225 | 5.31 229 | 15.76 210 | 49.37 213 | 49.10 207 | 39.03 217 | 29.95 218 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| MDA-MVSNet-bldmvs | | | 41.36 197 | 43.15 207 | 39.27 192 | 28.74 218 | 52.68 180 | 44.95 198 | 40.84 147 | 32.89 206 | 18.13 197 | 31.61 200 | 22.09 222 | 38.97 154 | 50.45 209 | 56.11 181 | 64.01 182 | 56.23 196 |
|
| E-PMN | | | 15.09 217 | 13.19 221 | 17.30 215 | 27.80 219 | 12.62 225 | 7.81 226 | 27.54 208 | 14.62 223 | 3.19 223 | 6.89 222 | 2.52 232 | 15.09 211 | 15.93 221 | 20.22 220 | 22.38 221 | 19.53 221 |
|
| MIMVSNet1 | | | 35.51 208 | 41.41 208 | 28.63 209 | 27.53 220 | 43.36 209 | 38.09 211 | 33.82 192 | 32.01 208 | 6.77 220 | 21.63 216 | 35.43 208 | 11.97 215 | 55.05 199 | 53.99 197 | 53.59 208 | 48.36 211 |
|
| EMVS | | | 14.49 218 | 12.45 222 | 16.87 217 | 27.02 221 | 12.56 226 | 8.13 225 | 27.19 209 | 15.05 222 | 3.14 224 | 6.69 223 | 2.67 231 | 15.08 212 | 14.60 223 | 18.05 221 | 20.67 222 | 17.56 223 |
|
| pmmvs3 | | | 35.10 209 | 38.47 211 | 31.17 207 | 26.37 222 | 40.47 211 | 34.51 216 | 18.09 219 | 24.75 216 | 16.88 199 | 23.05 214 | 26.69 217 | 32.69 183 | 50.73 208 | 51.60 202 | 58.46 198 | 51.98 200 |
|
| RPSCF | | | 46.41 184 | 54.42 156 | 37.06 198 | 25.70 223 | 45.14 206 | 45.39 195 | 20.81 216 | 62.79 60 | 35.10 135 | 44.92 151 | 55.60 112 | 43.56 131 | 56.12 193 | 52.45 201 | 51.80 210 | 63.91 171 |
|
| new_pmnet | | | 23.19 215 | 28.17 216 | 17.37 214 | 17.03 224 | 24.92 220 | 19.66 221 | 16.16 221 | 27.05 213 | 4.42 222 | 20.77 217 | 19.20 224 | 12.19 214 | 37.71 217 | 36.38 217 | 34.77 219 | 31.17 217 |
|
| PMMVS2 | | | 15.84 216 | 19.68 218 | 11.35 218 | 15.74 225 | 16.95 223 | 13.31 223 | 17.64 220 | 16.08 221 | 0.36 229 | 13.12 219 | 11.47 226 | 1.69 224 | 28.82 218 | 27.24 219 | 19.38 224 | 24.09 220 |
|
| MVE |  | 12.28 19 | 13.53 219 | 15.72 219 | 10.96 219 | 7.39 226 | 15.71 224 | 6.05 227 | 23.73 214 | 10.29 225 | 3.01 226 | 5.77 224 | 3.41 230 | 11.91 216 | 20.11 219 | 29.79 218 | 13.67 225 | 24.98 219 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| tmp_tt | | | | | 5.40 221 | 3.97 227 | 2.35 229 | 3.26 229 | 0.44 224 | 17.56 220 | 12.09 205 | 11.48 221 | 7.14 227 | 1.98 223 | 15.68 222 | 15.49 222 | 10.69 226 | |
|
| test_method | | | 12.44 220 | 14.66 220 | 9.85 220 | 1.30 228 | 3.32 228 | 13.00 224 | 3.21 222 | 22.42 218 | 10.22 211 | 14.13 218 | 25.64 218 | 11.43 218 | 19.75 220 | 11.61 223 | 19.96 223 | 5.79 224 |
|
| GG-mvs-BLEND | | | 36.62 207 | 53.39 163 | 17.06 216 | 0.01 229 | 58.61 154 | 48.63 178 | 0.01 225 | 47.13 133 | 0.02 230 | 43.98 157 | 60.64 88 | 0.03 225 | 54.92 200 | 51.47 203 | 53.64 207 | 56.99 194 |
|
| uanet_test | | | 0.00 223 | 0.00 225 | 0.00 222 | 0.00 230 | 0.00 230 | 0.00 232 | 0.00 226 | 0.00 228 | 0.00 231 | 0.00 228 | 0.00 233 | 0.00 228 | 0.00 226 | 0.00 226 | 0.00 228 | 0.00 227 |
|
| sosnet-low-res | | | 0.00 223 | 0.00 225 | 0.00 222 | 0.00 230 | 0.00 230 | 0.00 232 | 0.00 226 | 0.00 228 | 0.00 231 | 0.00 228 | 0.00 233 | 0.00 228 | 0.00 226 | 0.00 226 | 0.00 228 | 0.00 227 |
|
| sosnet | | | 0.00 223 | 0.00 225 | 0.00 222 | 0.00 230 | 0.00 230 | 0.00 232 | 0.00 226 | 0.00 228 | 0.00 231 | 0.00 228 | 0.00 233 | 0.00 228 | 0.00 226 | 0.00 226 | 0.00 228 | 0.00 227 |
|
| testmvs | | | 0.01 221 | 0.02 223 | 0.00 222 | 0.00 230 | 0.00 230 | 0.01 231 | 0.00 226 | 0.01 226 | 0.00 231 | 0.03 227 | 0.00 233 | 0.01 226 | 0.01 225 | 0.01 224 | 0.00 228 | 0.06 226 |
|
| test123 | | | 0.01 221 | 0.02 223 | 0.00 222 | 0.00 230 | 0.00 230 | 0.00 232 | 0.00 226 | 0.01 226 | 0.00 231 | 0.04 226 | 0.00 233 | 0.01 226 | 0.00 226 | 0.01 224 | 0.00 228 | 0.07 225 |
|
| RE-MVS-def | | | | | | | | | | | 33.01 140 | | | | | | | |
|
| 9.14 | | | | | | | | | | | | | 81.81 13 | | | | | |
|
| MTAPA | | | | | | | | | | | 65.14 4 | | 80.20 20 | | | | | |
|
| MTMP | | | | | | | | | | | 62.63 16 | | 78.04 26 | | | | | |
|
| Patchmatch-RL test | | | | | | | | 1.04 230 | | | | | | | | | | |
|
| NP-MVS | | | | | | | | | | 72.00 41 | | | | | | | | |
|
| Patchmtry | | | | | | | 47.61 196 | 48.27 179 | 38.86 164 | | 39.59 117 | | | | | | | |
|
| DeepMVS_CX |  | | | | | | 6.95 227 | 5.98 228 | 2.25 223 | 11.73 224 | 2.07 227 | 11.85 220 | 5.43 228 | 11.75 217 | 11.40 224 | | 8.10 227 | 18.38 222 |
|