This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
TDRefinement93.16 195.57 190.36 188.79 5293.57 197.27 178.23 2195.55 193.00 193.98 1796.01 3887.53 197.69 196.81 197.33 195.34 4
COLMAP_ROBcopyleft85.66 291.85 295.01 288.16 1188.98 5192.86 295.51 1972.17 6294.95 491.27 394.11 1697.77 1184.22 896.49 495.27 596.79 293.60 12
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
LTVRE_ROB86.82 191.55 394.43 388.19 1083.19 11286.35 6593.60 3778.79 1895.48 391.79 293.08 2697.21 2086.34 397.06 296.27 395.46 2395.56 3
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
ACMMPR91.30 492.88 1189.46 491.92 1191.61 596.60 579.46 1490.08 3088.53 1389.54 6595.57 4784.25 795.24 2094.27 1295.97 1193.85 8
CP-MVS91.09 592.33 2589.65 292.16 1090.41 2796.46 1080.38 888.26 4489.17 1087.00 9796.34 3083.95 1095.77 1194.72 795.81 1793.78 10
MP-MVScopyleft90.84 691.95 3489.55 392.92 490.90 1996.56 679.60 1186.83 5888.75 1289.00 7394.38 7784.01 994.94 2494.34 1095.45 2493.24 23
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
ACMM80.67 790.67 792.46 1988.57 791.35 2289.93 3296.34 1177.36 3090.17 2886.88 2987.32 9296.63 2383.32 1395.79 1094.49 996.19 992.91 26
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMMPcopyleft90.63 892.40 2088.56 891.24 2891.60 696.49 977.53 2687.89 4786.87 3087.24 9496.46 2582.87 1695.59 1594.50 896.35 693.51 18
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
LGP-MVS_train90.56 992.38 2188.43 990.88 3291.15 1195.35 2177.65 2586.26 6387.23 2390.45 5597.35 1783.20 1495.44 1693.41 2096.28 892.63 27
DVP-MVS++90.50 1094.18 486.21 2792.52 790.29 2895.29 2276.02 4194.24 582.82 5595.84 597.56 1576.82 5593.13 3891.20 4493.78 4597.01 1
PGM-MVS90.42 1191.58 3789.05 591.77 1491.06 1396.51 778.94 1685.41 7087.67 1887.02 9695.26 5683.62 1295.01 2393.94 1595.79 1993.40 20
DeepC-MVS83.59 490.37 1292.56 1887.82 1491.26 2792.33 394.72 3080.04 990.01 3184.61 4293.33 2294.22 7880.59 2792.90 4392.52 2895.69 2192.57 28
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
HFP-MVS90.32 1392.37 2287.94 1391.46 2190.91 1895.69 1779.49 1289.94 3383.50 5089.06 7294.44 7581.68 2294.17 3094.19 1395.81 1793.87 7
PMVScopyleft79.51 990.23 1492.67 1487.39 2090.16 3988.75 4293.64 3675.78 4490.00 3283.70 4792.97 2892.22 10386.13 497.01 396.79 294.94 2890.96 45
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
SMA-MVScopyleft90.13 1592.26 2787.64 1791.68 1690.44 2695.22 2477.34 3290.79 2287.80 1690.42 5692.05 10879.05 3593.89 3293.59 1894.77 3294.62 5
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
ACMP80.00 890.12 1692.30 2687.58 1890.83 3491.10 1294.96 2876.06 4087.47 5185.33 3988.91 7697.65 1482.13 1995.31 1793.44 1996.14 1092.22 33
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
SteuartSystems-ACMMP90.00 1791.73 3587.97 1291.21 2990.29 2896.51 778.00 2386.33 6185.32 4088.23 8294.67 6982.08 2095.13 2293.88 1694.72 3593.59 13
Skip Steuart: Steuart Systems R&D Blog.
SD-MVS89.91 1892.23 3087.19 2191.31 2489.79 3594.31 3275.34 4789.26 3681.79 6792.68 3195.08 6283.88 1193.10 3992.69 2596.54 493.02 24
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
ACMMP_NAP89.86 1991.96 3387.42 1991.00 3090.08 3096.00 1576.61 3689.28 3487.73 1790.04 5891.80 11278.71 3894.36 2893.82 1794.48 3794.32 6
APDe-MVS89.85 2092.91 1086.29 2690.47 3891.34 796.04 1476.41 3991.11 1778.50 8993.44 2195.82 4281.55 2393.16 3791.90 3894.77 3293.58 15
OPM-MVS89.82 2192.24 2986.99 2290.86 3389.35 3895.07 2775.91 4391.16 1686.87 3091.07 5197.29 1879.13 3493.32 3591.99 3794.12 4091.49 40
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
DPE-MVScopyleft89.81 2292.34 2486.86 2389.69 4491.00 1695.53 1876.91 3388.18 4583.43 5393.48 2095.19 5781.07 2692.75 4592.07 3694.55 3693.74 11
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
WR-MVS89.79 2393.66 585.27 3791.32 2388.27 4693.49 3879.86 1092.75 975.37 10296.86 198.38 575.10 7195.93 894.07 1496.46 589.39 56
TSAR-MVS + MP.89.67 2492.25 2886.65 2591.53 1890.98 1796.15 1373.30 5687.88 4881.83 6692.92 2995.15 6082.23 1893.58 3492.25 3394.87 2993.01 25
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
CPTT-MVS89.63 2590.52 4788.59 690.95 3190.74 2195.71 1679.13 1587.70 4985.68 3880.05 14195.74 4584.77 694.28 2992.68 2695.28 2692.45 31
ACMH+79.05 1189.62 2693.08 885.58 3288.58 5589.26 3992.18 4574.23 5293.55 882.66 5892.32 3698.35 780.29 2995.28 1892.34 3195.52 2290.43 48
DVP-MVScopyleft89.40 2792.69 1385.56 3489.01 5089.85 3393.72 3575.42 4592.28 1180.49 7294.36 1394.87 6581.46 2492.49 4991.42 4193.27 5393.54 17
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
X-MVS89.36 2890.73 4587.77 1691.50 2091.23 896.76 478.88 1787.29 5387.14 2578.98 14694.53 7176.47 5795.25 1994.28 1195.85 1493.55 16
TSAR-MVS + ACMM89.14 2992.11 3285.67 3189.27 4790.61 2490.98 5279.48 1388.86 3979.80 7993.01 2793.53 8783.17 1592.75 4592.45 2991.32 8293.59 13
SixPastTwentyTwo89.14 2992.19 3185.58 3284.62 8982.56 9190.53 6371.93 6491.95 1285.89 3594.22 1497.25 1985.42 595.73 1291.71 4095.08 2791.89 36
APD-MVScopyleft89.14 2991.25 4286.67 2491.73 1591.02 1595.50 2077.74 2484.04 8279.47 8291.48 4594.85 6681.14 2592.94 4192.20 3594.47 3892.24 32
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
PS-CasMVS89.07 3293.23 784.21 5092.44 888.23 4890.54 6282.95 390.50 2575.31 10395.80 698.37 671.16 10096.30 593.32 2192.88 6190.11 50
UA-Net89.02 3391.44 3986.20 2894.88 189.84 3494.76 2977.45 2885.41 7074.79 10688.83 7788.90 13678.67 4096.06 795.45 496.66 395.58 2
LS3D89.02 3391.69 3685.91 3089.72 4390.81 2092.56 4471.69 6690.83 2187.24 2289.71 6392.07 10678.37 4294.43 2792.59 2795.86 1391.35 41
DTE-MVSNet88.99 3592.77 1284.59 4393.31 288.10 4990.96 5383.09 291.38 1476.21 9696.03 298.04 870.78 10695.65 1492.32 3293.18 5687.84 71
WR-MVS_H88.99 3593.28 683.99 5391.92 1189.13 4091.95 4683.23 190.14 2971.92 12595.85 498.01 1071.83 9795.82 993.19 2293.07 5990.83 47
SED-MVS88.96 3792.37 2284.99 4088.64 5489.65 3795.11 2575.98 4290.73 2380.15 7794.21 1594.51 7476.59 5692.94 4191.17 4593.46 5093.37 22
ACMH78.40 1288.94 3892.62 1684.65 4286.45 7487.16 5991.47 4968.79 8795.49 289.74 693.55 1998.50 277.96 4694.14 3189.57 6193.49 4789.94 52
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
PEN-MVS88.86 3992.92 984.11 5292.92 488.05 5190.83 5582.67 591.04 1874.83 10595.97 398.47 370.38 10795.70 1392.43 3093.05 6088.78 62
HPM-MVS++copyleft88.74 4089.54 5287.80 1592.58 685.69 6995.10 2678.01 2287.08 5587.66 1987.89 8592.07 10680.28 3090.97 6991.41 4393.17 5791.69 37
CP-MVSNet88.71 4192.63 1584.13 5192.39 988.09 5090.47 6682.86 488.79 4175.16 10494.87 997.68 1371.05 10296.16 693.18 2392.85 6289.64 54
MSP-MVS88.51 4291.36 4085.19 3990.63 3692.01 495.29 2277.52 2790.48 2680.21 7690.21 5796.08 3476.38 5988.30 9691.42 4191.12 8791.01 44
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
OMC-MVS88.16 4391.34 4184.46 4686.85 7090.63 2393.01 4167.00 10390.35 2787.40 2186.86 9996.35 2977.66 4992.63 4790.84 4694.84 3091.68 38
3Dnovator+83.71 388.13 4490.00 5085.94 2986.82 7191.06 1394.26 3375.39 4688.85 4085.76 3785.74 10986.92 14578.02 4593.03 4092.21 3495.39 2592.21 34
CSCG88.12 4591.45 3884.23 4888.12 6190.59 2590.57 6068.60 8991.37 1583.45 5289.94 5995.14 6178.71 3891.45 5888.21 7295.96 1293.44 19
RPSCF88.05 4692.61 1782.73 6584.24 9688.40 4490.04 7266.29 10791.46 1382.29 6088.93 7596.01 3879.38 3295.15 2194.90 694.15 3993.40 20
DeepPCF-MVS81.61 687.95 4790.29 4985.22 3887.48 6590.01 3193.79 3473.54 5488.93 3883.89 4589.40 6790.84 12180.26 3190.62 7290.19 5392.36 7092.03 35
SF-MVS87.85 4890.95 4484.22 4988.17 6087.90 5390.80 5671.80 6589.28 3482.70 5789.90 6095.37 5477.91 4791.69 5490.04 5493.95 4492.47 29
DeepC-MVS_fast81.78 587.38 4989.64 5184.75 4189.89 4290.70 2292.74 4374.45 5086.02 6482.16 6486.05 10691.99 11075.84 6591.16 6390.44 4993.41 5191.09 43
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
v7n87.11 5090.46 4883.19 5685.22 8583.69 8090.03 7368.20 9591.01 1986.71 3394.80 1098.46 477.69 4891.10 6585.98 9291.30 8388.19 66
CNVR-MVS86.93 5188.98 5684.54 4490.11 4087.41 5793.23 4073.47 5586.31 6282.25 6182.96 12992.15 10476.04 6291.69 5490.69 4792.17 7391.64 39
NCCC86.74 5287.97 6885.31 3690.64 3587.25 5893.27 3974.59 4986.50 5983.72 4675.92 17292.39 10077.08 5391.72 5390.68 4892.57 6791.30 42
train_agg86.67 5387.73 6985.43 3591.51 1982.72 8894.47 3174.22 5381.71 10081.54 7089.20 7192.87 9478.33 4390.12 7988.47 6892.51 6989.04 59
CDPH-MVS86.66 5488.52 5984.48 4589.61 4588.27 4692.86 4272.69 6180.55 11882.71 5686.92 9893.32 8975.55 6791.00 6889.85 5693.47 4989.71 53
Gipumacopyleft86.47 5589.25 5483.23 5583.88 10378.78 12485.35 11668.42 9192.69 1089.03 1191.94 3896.32 3281.80 2194.45 2686.86 8290.91 8883.69 100
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PHI-MVS86.37 5688.14 6584.30 4786.65 7387.56 5590.76 5770.16 7382.55 9289.65 784.89 11792.40 9975.97 6390.88 7089.70 5892.58 6589.03 60
MSLP-MVS++86.29 5789.10 5583.01 5885.71 8289.79 3587.04 10474.39 5185.17 7278.92 8677.59 15593.57 8582.60 1793.23 3691.88 3989.42 10792.46 30
TAPA-MVS78.00 1385.88 5888.37 6182.96 6084.69 8788.62 4390.62 5864.22 12989.15 3788.05 1478.83 14893.71 8276.20 6190.11 8088.22 7194.00 4189.97 51
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
anonymousdsp85.62 5990.53 4679.88 9264.64 20876.35 14396.28 1253.53 19285.63 6781.59 6992.81 3097.71 1286.88 294.56 2592.83 2496.35 693.84 9
TSAR-MVS + COLMAP85.51 6088.36 6282.19 6786.05 7987.69 5490.50 6570.60 7286.40 6082.33 5989.69 6492.52 9874.01 8187.53 10086.84 8389.63 10287.80 72
CNLPA85.50 6188.58 5781.91 7184.55 9187.52 5690.89 5463.56 13988.18 4584.06 4483.85 12691.34 11876.46 5891.27 6089.00 6691.96 7488.88 61
UniMVSNet_ETH3D85.39 6291.12 4378.71 9990.48 3783.72 7981.76 14082.41 693.84 664.43 15995.41 798.76 163.72 14193.63 3389.74 5789.47 10682.74 112
PLCcopyleft76.06 1585.38 6387.46 7182.95 6185.79 8188.84 4188.86 8368.70 8887.06 5683.60 4879.02 14490.05 12777.37 5290.88 7089.66 5993.37 5286.74 77
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
TSAR-MVS + GP.85.32 6487.41 7382.89 6290.07 4185.69 6989.07 8172.99 6082.45 9374.52 10985.09 11487.67 14279.24 3391.11 6490.41 5091.45 7989.45 55
TranMVSNet+NR-MVSNet85.23 6589.38 5380.39 9088.78 5383.77 7887.40 9676.75 3485.47 6868.99 14195.18 897.55 1667.13 12491.61 5689.13 6593.26 5482.95 109
HQP-MVS85.02 6686.41 7983.40 5489.19 4886.59 6391.28 5071.60 6782.79 8983.48 5178.65 15093.54 8672.55 8986.49 11185.89 9592.28 7290.95 46
UniMVSNet (Re)84.95 6788.53 5880.78 8187.82 6384.21 7588.03 8876.50 3781.18 11169.29 13992.63 3496.83 2269.07 11491.23 6289.60 6093.97 4384.00 98
DU-MVS84.88 6888.27 6480.92 7988.30 5783.59 8187.06 10278.35 1980.64 11670.49 13392.67 3296.91 2168.13 11791.79 5189.29 6493.20 5583.02 106
MCST-MVS84.79 6986.48 7782.83 6387.30 6787.03 6190.46 6769.33 8183.14 8682.21 6381.69 13792.14 10575.09 7287.27 10384.78 10692.58 6589.30 57
MVS_030484.73 7086.19 8183.02 5788.32 5686.71 6291.55 4870.87 7073.79 14782.88 5485.13 11393.35 8872.55 8988.62 9187.69 7491.93 7588.05 70
UniMVSNet_NR-MVSNet84.62 7188.00 6780.68 8588.18 5983.83 7787.06 10276.47 3881.46 10770.49 13393.24 2395.56 4868.13 11790.43 7388.47 6893.78 4583.02 106
EG-PatchMatch MVS84.35 7287.55 7080.62 8686.38 7582.24 9386.75 10564.02 13484.24 7878.17 9289.38 6895.03 6478.78 3789.95 8186.33 8989.59 10385.65 85
AdaColmapbinary84.15 7385.14 9583.00 5989.08 4987.14 6090.56 6170.90 6982.40 9480.41 7373.82 18384.69 15675.19 7091.58 5789.90 5591.87 7686.48 78
PCF-MVS76.59 1484.11 7485.27 9282.76 6486.12 7888.30 4591.24 5169.10 8282.36 9584.45 4377.56 15690.40 12672.91 8885.88 11683.88 11392.72 6488.53 63
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
MVS_111021_HR83.95 7586.10 8381.44 7684.62 8980.29 11190.51 6468.05 9684.07 8180.38 7484.74 12091.37 11774.23 7790.37 7587.25 7890.86 8984.59 90
TinyColmap83.79 7686.12 8281.07 7883.42 10981.44 9985.42 11468.55 9088.71 4289.46 887.60 8792.72 9570.34 10889.29 8681.94 13189.20 10881.12 125
EC-MVSNet83.70 7784.77 10482.46 6687.47 6682.79 8785.50 11272.00 6369.81 16577.66 9385.02 11689.63 12878.14 4490.40 7487.56 7594.00 4188.16 67
v119283.61 7885.23 9381.72 7384.05 9882.15 9489.54 7666.20 10881.38 10986.76 3291.79 4296.03 3674.88 7481.81 15180.92 13988.91 11482.50 114
CS-MVS-test83.59 7984.86 10182.10 6983.04 11481.05 10591.58 4767.48 10272.52 15478.42 9084.75 11991.82 11178.62 4191.98 5087.54 7693.48 4884.35 93
CS-MVS83.57 8084.79 10382.14 6883.83 10481.48 9887.29 9766.54 10572.73 15380.05 7884.04 12493.12 9380.35 2889.50 8386.34 8894.76 3486.32 81
v124083.57 8084.94 9981.97 7084.05 9881.27 10189.46 7866.06 11081.31 11087.50 2091.88 4195.46 5176.25 6081.16 15680.51 14388.52 12482.98 108
v192192083.49 8284.94 9981.80 7283.78 10581.20 10389.50 7765.91 11381.64 10287.18 2491.70 4395.39 5375.85 6481.56 15480.27 14588.60 11982.80 110
v14419283.43 8384.97 9881.63 7583.43 10881.23 10289.42 7966.04 11281.45 10886.40 3491.46 4695.70 4675.76 6682.14 14780.23 14688.74 11682.57 113
Vis-MVSNetpermissive83.32 8488.12 6677.71 10677.91 15883.44 8390.58 5969.49 7881.11 11267.10 15389.85 6191.48 11671.71 9891.34 5989.37 6289.48 10590.26 49
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
v114483.22 8585.01 9681.14 7783.76 10681.60 9788.95 8265.58 11881.89 9985.80 3691.68 4495.84 4174.04 8082.12 14880.56 14288.70 11881.41 123
MVS_111021_LR83.20 8685.33 9180.73 8482.88 11778.23 12889.61 7565.23 12082.08 9781.19 7185.31 11192.04 10975.22 6989.50 8385.90 9490.24 9284.23 94
v1083.17 8785.22 9480.78 8183.26 11182.99 8688.66 8566.49 10679.24 12783.60 4891.46 4695.47 5074.12 7882.60 14680.66 14088.53 12384.11 97
PVSNet_Blended_VisFu83.00 8884.16 11581.65 7482.17 12486.01 6688.03 8871.23 6876.05 14079.54 8183.88 12583.44 15877.49 5187.38 10184.93 10491.41 8087.40 75
NR-MVSNet82.89 8987.43 7277.59 10883.91 10283.59 8187.10 10178.35 1980.64 11668.85 14292.67 3296.50 2454.19 18087.19 10688.68 6793.16 5882.75 111
CANet82.84 9084.60 10680.78 8187.30 6785.20 7290.23 6969.00 8372.16 15778.73 8884.49 12290.70 12469.54 11287.65 9986.17 9089.87 9985.84 83
Baseline_NR-MVSNet82.79 9186.51 7678.44 10388.30 5775.62 15187.81 9074.97 4881.53 10466.84 15494.71 1296.46 2566.90 12591.79 5183.37 12285.83 15382.09 117
EPP-MVSNet82.76 9286.47 7878.45 10286.00 8084.47 7485.39 11568.42 9184.17 7962.97 16389.26 7076.84 18372.13 9492.56 4890.40 5195.76 2087.56 74
CLD-MVS82.75 9387.22 7477.54 10988.01 6285.76 6890.23 6954.52 18682.28 9682.11 6588.48 8095.27 5563.95 13989.41 8588.29 7086.45 14481.01 126
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
Effi-MVS+82.33 9483.87 11880.52 8884.51 9481.32 10087.53 9468.05 9674.94 14579.67 8082.37 13492.31 10172.21 9185.06 12386.91 8191.18 8584.20 95
3Dnovator79.41 1082.21 9586.07 8477.71 10679.31 14384.61 7387.18 9961.02 16085.65 6676.11 9785.07 11585.38 15470.96 10487.22 10486.47 8591.66 7788.12 69
v882.20 9684.56 10779.45 9582.42 12181.65 9687.26 9864.27 12879.36 12681.70 6891.04 5295.75 4473.30 8782.82 14279.18 15387.74 13182.09 117
v2v48282.20 9684.26 11179.81 9382.67 12080.18 11287.67 9263.96 13681.69 10184.73 4191.27 4996.33 3172.05 9581.94 15079.56 15087.79 13078.84 143
Effi-MVS+-dtu82.04 9883.39 12580.48 8985.48 8386.57 6488.40 8668.28 9369.04 17273.13 11876.26 16791.11 12074.74 7588.40 9487.76 7392.84 6384.57 91
MAR-MVS81.98 9982.92 12780.88 8085.18 8685.85 6789.13 8069.52 7671.21 16182.25 6171.28 19388.89 13769.69 10988.71 8986.96 7989.52 10487.57 73
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
GeoE81.92 10083.87 11879.66 9484.64 8879.87 11389.75 7465.90 11476.12 13975.87 9984.62 12192.23 10271.96 9686.83 10883.60 11689.83 10083.81 99
IS_MVSNet81.72 10185.01 9677.90 10586.19 7682.64 9085.56 11170.02 7480.11 12163.52 16187.28 9381.18 16867.26 12291.08 6789.33 6394.82 3183.42 103
FPMVS81.56 10284.04 11778.66 10082.92 11575.96 14786.48 10865.66 11784.67 7671.47 12877.78 15383.22 16177.57 5091.24 6190.21 5287.84 12985.21 87
casdiffmvs_mvgpermissive81.50 10385.70 8876.60 11582.68 11980.54 10883.50 12764.49 12783.40 8372.53 11992.15 3795.40 5265.84 13284.69 13081.89 13290.59 9081.86 121
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
DPM-MVS81.42 10482.11 13180.62 8687.54 6485.30 7190.18 7168.96 8481.00 11479.15 8470.45 19983.29 16067.67 12182.81 14383.46 11790.19 9388.48 64
Fast-Effi-MVS+81.42 10483.82 12078.62 10182.24 12380.62 10787.72 9163.51 14073.01 14974.75 10783.80 12792.70 9673.44 8688.15 9885.26 10090.05 9483.17 104
USDC81.39 10683.07 12679.43 9681.48 12878.95 12382.62 13566.17 10987.45 5290.73 482.40 13393.65 8466.57 12783.63 13877.97 15689.00 11277.45 151
MSDG81.39 10684.23 11378.09 10482.40 12282.47 9285.31 11860.91 16179.73 12480.26 7586.30 10288.27 14069.67 11087.20 10584.98 10389.97 9680.67 128
canonicalmvs81.22 10886.04 8575.60 11983.17 11383.18 8580.29 15065.82 11685.97 6567.98 14977.74 15491.51 11565.17 13588.62 9186.15 9191.17 8689.09 58
thisisatest051581.18 10984.32 11077.52 11076.73 16974.84 15885.06 11961.37 15781.05 11373.95 11188.79 7889.25 13375.49 6885.98 11584.78 10692.53 6885.56 86
pmmvs680.46 11088.34 6371.26 14681.96 12577.51 13277.54 16768.83 8693.72 755.92 18093.94 1898.03 955.94 17089.21 8785.61 9687.36 13580.38 130
QAPM80.43 11184.34 10975.86 11779.40 14282.06 9579.86 15561.94 15483.28 8574.73 10881.74 13685.44 15370.97 10384.99 12884.71 10888.29 12588.14 68
PM-MVS80.42 11283.63 12276.67 11378.04 15572.37 16887.14 10060.18 16680.13 12071.75 12686.12 10593.92 8177.08 5386.56 11085.12 10285.83 15381.18 124
DCV-MVSNet80.04 11385.67 9073.48 13782.91 11681.11 10480.44 14966.06 11085.01 7362.53 16678.84 14794.43 7658.51 16188.66 9085.91 9390.41 9185.73 84
casdiffmvspermissive79.93 11484.11 11675.05 12481.41 13078.99 12282.95 13262.90 14781.53 10468.60 14691.94 3896.03 3665.84 13282.89 14177.07 16488.59 12080.34 134
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
IterMVS-LS79.79 11582.56 12976.56 11681.83 12677.85 13079.90 15469.42 8078.93 12971.21 12990.47 5485.20 15570.86 10580.54 16180.57 14186.15 14684.36 92
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DELS-MVS79.71 11683.74 12175.01 12679.31 14382.68 8984.79 12160.06 16775.43 14369.09 14086.13 10489.38 13167.16 12385.12 12283.87 11489.65 10183.57 101
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
test111179.67 11784.40 10874.16 13285.29 8479.56 11881.16 14473.13 5984.65 7756.08 17888.38 8186.14 14960.49 15289.78 8285.59 9788.79 11576.68 152
pmmvs-eth3d79.64 11882.06 13276.83 11280.05 13672.64 16687.47 9566.59 10480.83 11573.50 11489.32 6993.20 9067.78 11980.78 15981.64 13585.58 15676.01 154
UGNet79.62 11985.91 8672.28 14373.52 17983.91 7686.64 10669.51 7779.85 12362.57 16585.82 10889.63 12853.18 18488.39 9587.35 7788.28 12686.43 79
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
V4279.59 12083.59 12374.93 12969.61 19277.05 13986.59 10755.84 18178.42 13177.29 9489.84 6295.08 6274.12 7883.05 13980.11 14886.12 14781.59 122
Anonymous2023121179.37 12185.78 8771.89 14482.87 11879.66 11778.77 16463.93 13783.36 8459.39 17090.54 5394.66 7056.46 16887.38 10184.12 11189.92 9780.74 127
EPNet79.36 12279.44 14179.27 9889.51 4677.20 13788.35 8777.35 3168.27 17474.29 11076.31 16579.22 17359.63 15585.02 12785.45 9986.49 14384.61 89
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
v14879.33 12382.32 13075.84 11880.14 13575.74 14881.98 13957.06 17881.51 10679.36 8389.42 6696.42 2771.32 9981.54 15575.29 17385.20 15876.32 153
ECVR-MVScopyleft79.31 12484.20 11473.60 13484.55 9180.37 10979.63 15873.23 5782.64 9055.98 17987.50 8886.85 14659.61 15690.35 7686.46 8688.58 12175.26 161
FC-MVSNet-train79.20 12586.29 8070.94 15084.06 9777.67 13185.68 11064.11 13182.90 8852.22 19592.57 3593.69 8349.52 19588.30 9686.93 8090.03 9581.95 119
TransMVSNet (Re)79.05 12686.66 7570.18 15683.32 11075.99 14677.54 16763.98 13590.68 2455.84 18194.80 1096.06 3553.73 18386.27 11383.22 12386.65 13979.61 140
ETV-MVS79.01 12777.98 14880.22 9186.69 7279.73 11688.80 8468.27 9463.22 19571.56 12770.25 20173.63 19373.66 8490.30 7886.77 8492.33 7181.95 119
FA-MVS(training)78.93 12880.63 13776.93 11179.79 13975.57 15285.44 11361.95 15377.19 13578.97 8584.82 11882.47 16366.43 13084.09 13580.13 14789.02 11180.15 137
EIA-MVS78.57 12977.90 14979.35 9787.24 6980.71 10686.16 10964.03 13362.63 20073.49 11573.60 18476.12 18773.83 8288.49 9384.93 10491.36 8178.78 144
OpenMVScopyleft75.38 1678.44 13081.39 13574.99 12780.46 13379.85 11479.99 15258.31 17577.34 13473.85 11277.19 15982.33 16668.60 11684.67 13181.95 13088.72 11786.40 80
pm-mvs178.21 13185.68 8969.50 16180.38 13475.73 14976.25 17565.04 12187.59 5054.47 18693.16 2595.99 4054.20 17986.37 11282.98 12686.64 14077.96 149
FMVSNet178.20 13284.83 10270.46 15478.62 15079.03 12177.90 16667.53 10183.02 8755.10 18487.19 9593.18 9155.65 17385.57 11783.39 11987.98 12882.40 115
DI_MVS_plusplus_trai77.64 13379.64 14075.31 12279.87 13876.89 14081.55 14363.64 13876.21 13872.03 12485.59 11082.97 16266.63 12679.27 16777.78 15888.14 12778.76 145
IterMVS-SCA-FT77.23 13479.18 14374.96 12876.67 17079.85 11475.58 18461.34 15873.10 14873.79 11386.23 10379.61 17279.00 3680.28 16375.50 17283.41 17079.70 139
tfpnnormal77.16 13584.26 11168.88 16481.02 13175.02 15576.52 17463.30 14287.29 5352.40 19391.24 5093.97 7954.85 17785.46 12081.08 13785.18 15975.76 158
Fast-Effi-MVS+-dtu76.92 13677.18 15476.62 11479.55 14079.17 12084.80 12077.40 2964.46 19068.75 14470.81 19786.57 14763.36 14681.74 15281.76 13385.86 15275.78 157
diffmvspermissive76.74 13781.61 13471.06 14875.64 17474.45 16180.68 14857.57 17777.48 13267.62 15288.95 7493.94 8061.98 14979.74 16476.18 16882.85 17180.50 129
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MVS_Test76.72 13879.40 14273.60 13478.85 14974.99 15679.91 15361.56 15669.67 16672.44 12085.98 10790.78 12263.50 14478.30 16975.74 17185.33 15780.31 135
MDA-MVSNet-bldmvs76.51 13982.87 12869.09 16350.71 21974.72 16084.05 12560.27 16581.62 10371.16 13088.21 8391.58 11369.62 11192.78 4477.48 16178.75 18173.69 167
EU-MVSNet76.48 14080.53 13871.75 14567.62 19870.30 17381.74 14154.06 18975.47 14271.01 13180.10 13993.17 9273.67 8383.73 13777.85 15782.40 17283.07 105
PVSNet_BlendedMVS76.45 14178.12 14674.49 13076.76 16378.46 12579.65 15663.26 14365.42 18673.15 11675.05 17788.96 13466.51 12882.73 14477.66 15987.61 13278.60 146
PVSNet_Blended76.45 14178.12 14674.49 13076.76 16378.46 12579.65 15663.26 14365.42 18673.15 11675.05 17788.96 13466.51 12882.73 14477.66 15987.61 13278.60 146
Vis-MVSNet (Re-imp)76.15 14380.84 13670.68 15183.66 10774.80 15981.66 14269.59 7580.48 11946.94 20487.44 9080.63 17053.14 18586.87 10784.56 10989.12 10971.12 172
PatchMatch-RL76.05 14476.64 15975.36 12177.84 15969.87 17681.09 14663.43 14171.66 15968.34 14871.70 18981.76 16774.98 7384.83 12983.44 11886.45 14473.22 169
pmmvs475.92 14577.48 15374.10 13378.21 15470.94 17084.06 12464.78 12375.13 14468.47 14784.12 12383.32 15964.74 13875.93 18179.14 15484.31 16373.77 166
FC-MVSNet-test75.91 14683.59 12366.95 17576.63 17169.07 17885.33 11764.97 12284.87 7541.95 20993.17 2487.04 14447.78 19891.09 6685.56 9885.06 16074.34 162
tttt051775.86 14776.23 16375.42 12075.55 17574.06 16282.73 13360.31 16369.24 16870.24 13579.18 14358.79 21172.17 9284.49 13283.08 12491.54 7884.80 88
CVMVSNet75.65 14877.62 15273.35 14071.95 18569.89 17583.04 13160.84 16269.12 17068.76 14379.92 14278.93 17573.64 8581.02 15781.01 13881.86 17583.43 102
thisisatest053075.54 14975.95 16775.05 12475.08 17673.56 16382.15 13860.31 16369.17 16969.32 13879.02 14458.78 21272.17 9283.88 13683.08 12491.30 8384.20 95
test250675.32 15076.87 15873.50 13684.55 9180.37 10979.63 15873.23 5782.64 9055.41 18276.87 16245.42 22559.61 15690.35 7686.46 8688.58 12175.98 155
IB-MVS71.28 1775.21 15177.00 15673.12 14176.76 16377.45 13383.05 13058.92 17263.01 19664.31 16059.99 21587.57 14368.64 11586.26 11482.34 12987.05 13882.36 116
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
CANet_DTU75.04 15278.45 14471.07 14777.27 16077.96 12983.88 12658.00 17664.11 19168.67 14575.65 17488.37 13953.92 18282.05 14981.11 13684.67 16179.88 138
GA-MVS75.01 15376.39 16173.39 13878.37 15175.66 15080.03 15158.40 17470.51 16375.85 10083.24 12876.14 18663.75 14077.28 17376.62 16783.97 16575.30 160
ET-MVSNet_ETH3D74.71 15474.19 17475.31 12279.22 14575.29 15382.70 13464.05 13265.45 18570.96 13277.15 16057.70 21365.89 13184.40 13381.65 13489.03 11077.67 150
FMVSNet274.43 15579.70 13968.27 16776.76 16377.36 13475.77 17965.36 11972.28 15552.97 19081.92 13585.61 15252.73 18880.66 16079.73 14986.04 14880.37 131
thres600view774.34 15678.43 14569.56 16080.47 13276.28 14478.65 16562.56 14977.39 13352.53 19174.03 18176.78 18455.90 17285.06 12385.19 10187.25 13674.29 163
IterMVS73.62 15776.53 16070.23 15571.83 18677.18 13880.69 14753.22 19372.23 15666.62 15585.21 11278.96 17469.54 11276.28 18071.63 18379.45 17874.25 164
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MIMVSNet173.40 15881.85 13363.55 18772.90 18264.37 19284.58 12253.60 19190.84 2053.92 18787.75 8696.10 3345.31 20185.37 12179.32 15270.98 19669.18 181
HyFIR lowres test73.29 15974.14 17572.30 14273.08 18178.33 12783.12 12962.41 15163.81 19262.13 16776.67 16478.50 17671.09 10174.13 18577.47 16281.98 17470.10 176
GBi-Net73.17 16077.64 15067.95 17076.76 16377.36 13475.77 17964.57 12462.99 19751.83 19676.05 16877.76 17952.73 18885.57 11783.39 11986.04 14880.37 131
test173.17 16077.64 15067.95 17076.76 16377.36 13475.77 17964.57 12462.99 19751.83 19676.05 16877.76 17952.73 18885.57 11783.39 11986.04 14880.37 131
thres40073.13 16276.99 15768.62 16579.46 14174.93 15777.23 16961.23 15975.54 14152.31 19472.20 18877.10 18254.89 17582.92 14082.62 12886.57 14273.66 168
CDS-MVSNet73.07 16377.02 15568.46 16681.62 12772.89 16579.56 16070.78 7169.56 16752.52 19277.37 15881.12 16942.60 20384.20 13483.93 11283.65 16670.07 177
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MDTV_nov1_ep13_2view72.96 16475.59 16869.88 15771.15 18964.86 19182.31 13754.45 18776.30 13778.32 9186.52 10091.58 11361.35 15076.80 17466.83 19471.70 18966.26 185
gg-mvs-nofinetune72.68 16575.21 17169.73 15881.48 12869.04 17970.48 19676.67 3586.92 5767.80 15188.06 8464.67 20142.12 20577.60 17173.65 17679.81 17766.57 184
thres20072.41 16676.00 16668.21 16878.28 15276.28 14474.94 18562.56 14972.14 15851.35 19969.59 20476.51 18554.89 17585.06 12380.51 14387.25 13671.92 171
tfpn200view972.01 16775.40 16968.06 16977.97 15676.44 14277.04 17162.67 14866.81 17750.82 20067.30 20675.67 18952.46 19185.06 12382.64 12787.41 13473.86 165
EPNet_dtu71.90 16873.03 18070.59 15278.28 15261.64 19782.44 13664.12 13063.26 19469.74 13671.47 19182.41 16451.89 19278.83 16878.01 15577.07 18275.60 159
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
gm-plane-assit71.56 16969.99 18473.39 13884.43 9573.21 16490.42 6851.36 19984.08 8076.00 9891.30 4837.09 22659.01 15973.65 18870.24 18779.09 18060.37 201
CMPMVSbinary55.74 1871.56 16976.26 16266.08 18068.11 19663.91 19463.17 21050.52 20168.79 17375.49 10170.78 19885.67 15163.54 14381.58 15377.20 16375.63 18385.86 82
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
FMVSNet371.40 17175.20 17266.97 17475.00 17776.59 14174.29 18664.57 12462.99 19751.83 19676.05 16877.76 17951.49 19376.58 17777.03 16584.62 16279.43 141
MS-PatchMatch71.18 17273.99 17667.89 17277.16 16171.76 16977.18 17056.38 18067.35 17555.04 18574.63 17975.70 18862.38 14776.62 17675.97 17079.22 17975.90 156
test20.0369.91 17376.20 16462.58 18884.01 10067.34 18475.67 18365.88 11579.98 12240.28 21382.65 13089.31 13239.63 20877.41 17273.28 17769.98 19763.40 192
thres100view90069.86 17472.97 18166.24 17777.97 15672.49 16773.29 18959.12 17066.81 17750.82 20067.30 20675.67 18950.54 19478.24 17079.40 15185.71 15570.88 173
baseline169.62 17573.55 17865.02 18678.95 14870.39 17271.38 19562.03 15270.97 16247.95 20378.47 15168.19 19947.77 19979.65 16676.94 16682.05 17370.27 175
CR-MVSNet69.56 17668.34 18970.99 14972.78 18467.63 18264.47 20867.74 9959.93 20672.30 12180.10 13956.77 21565.04 13671.64 19372.91 17983.61 16869.40 179
baseline69.33 17775.37 17062.28 19066.54 20466.67 18773.95 18848.07 20266.10 18059.26 17182.45 13186.30 14854.44 17874.42 18473.25 17871.42 19278.43 148
pmmvs568.91 17874.35 17362.56 18967.45 20066.78 18671.70 19251.47 19867.17 17656.25 17782.41 13288.59 13847.21 20073.21 19174.23 17481.30 17668.03 183
CHOSEN 1792x268868.80 17971.09 18266.13 17969.11 19468.89 18078.98 16354.68 18461.63 20256.69 17571.56 19078.39 17767.69 12072.13 19272.01 18269.63 19973.02 170
baseline268.71 18068.34 18969.14 16275.69 17369.70 17776.60 17355.53 18360.13 20562.07 16866.76 20860.35 20660.77 15176.53 17974.03 17584.19 16470.88 173
SCA68.54 18167.52 19169.73 15867.79 19775.04 15476.96 17268.94 8566.41 17967.86 15074.03 18160.96 20465.55 13468.99 20165.67 19571.30 19461.54 200
testgi68.20 18276.05 16559.04 19479.99 13767.32 18581.16 14451.78 19784.91 7439.36 21473.42 18595.19 5732.79 21476.54 17870.40 18669.14 20064.55 188
MVSTER68.08 18369.73 18566.16 17866.33 20670.06 17475.71 18252.36 19555.18 21458.64 17270.23 20256.72 21657.34 16579.68 16576.03 16986.61 14180.20 136
Anonymous2023120667.28 18473.41 17960.12 19376.45 17263.61 19574.21 18756.52 17976.35 13642.23 20875.81 17390.47 12541.51 20674.52 18269.97 18869.83 19863.17 193
RPMNet67.02 18563.99 20070.56 15371.55 18767.63 18275.81 17769.44 7959.93 20663.24 16264.32 21047.51 22459.68 15470.37 19869.64 18983.64 16768.49 182
CostFormer66.81 18666.94 19266.67 17672.79 18368.25 18179.55 16155.57 18265.52 18462.77 16476.98 16160.09 20756.73 16765.69 20962.35 19872.59 18869.71 178
PatchT66.25 18766.76 19365.67 18355.87 21460.75 19870.17 19759.00 17159.80 20872.30 12178.68 14954.12 22065.04 13671.64 19372.91 17971.63 19169.40 179
dps65.14 18864.50 19865.89 18271.41 18865.81 19071.44 19461.59 15558.56 20961.43 16975.45 17552.70 22258.06 16369.57 20064.65 19671.39 19364.77 187
MDTV_nov1_ep1364.96 18964.77 19765.18 18567.08 20162.46 19675.80 17851.10 20062.27 20169.74 13674.12 18062.65 20255.64 17468.19 20362.16 20271.70 18961.57 199
PatchmatchNetpermissive64.81 19063.74 20166.06 18169.21 19358.62 20173.16 19060.01 16865.92 18166.19 15776.27 16659.09 20860.45 15366.58 20661.47 20467.33 20358.24 206
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
tpm cat164.79 19162.74 20567.17 17374.61 17865.91 18976.18 17659.32 16964.88 18966.41 15671.21 19453.56 22159.17 15861.53 21358.16 20767.33 20363.95 189
MIMVSNet63.02 19269.02 18756.01 19968.20 19559.26 20070.01 19953.79 19071.56 16041.26 21271.38 19282.38 16536.38 21071.43 19567.32 19366.45 20559.83 203
TAMVS63.02 19269.30 18655.70 20170.12 19056.89 20369.63 20045.13 20570.23 16438.00 21577.79 15275.15 19142.60 20374.48 18372.81 18168.70 20157.75 208
tpm62.79 19463.25 20262.26 19170.09 19153.78 20671.65 19347.31 20365.72 18376.70 9580.62 13856.40 21848.11 19764.20 21158.54 20559.70 20963.47 191
pmmvs362.72 19568.71 18855.74 20050.74 21857.10 20270.05 19828.82 21561.57 20457.39 17471.19 19585.73 15053.96 18173.36 19069.43 19073.47 18762.55 195
pmnet_mix0262.60 19670.81 18353.02 20666.56 20350.44 21362.81 21146.84 20479.13 12843.76 20787.45 8990.75 12339.85 20770.48 19757.09 20858.27 21160.32 202
new-patchmatchnet62.59 19773.79 17749.53 21076.98 16253.57 20753.46 21954.64 18585.43 6928.81 21891.94 3896.41 2825.28 21676.80 17453.66 21457.99 21258.69 205
test-LLR62.15 19859.46 21465.29 18479.07 14652.66 20969.46 20262.93 14550.76 21753.81 18863.11 21258.91 20952.87 18666.54 20762.34 19973.59 18561.87 197
PMMVS61.98 19965.61 19557.74 19645.03 22051.76 21169.54 20135.05 21255.49 21355.32 18368.23 20578.39 17758.09 16270.21 19971.56 18483.42 16963.66 190
test0.0.03 161.79 20065.33 19657.65 19779.07 14664.09 19368.51 20562.93 14561.59 20333.71 21761.58 21471.58 19733.43 21370.95 19668.68 19168.26 20258.82 204
MVS-HIRNet59.74 20158.74 21760.92 19257.74 21345.81 21756.02 21758.69 17355.69 21265.17 15870.86 19671.66 19556.75 16661.11 21453.74 21371.17 19552.28 212
tpmrst59.42 20260.02 21258.71 19567.56 19953.10 20866.99 20651.88 19663.80 19357.68 17376.73 16356.49 21748.73 19656.47 21755.55 21059.43 21058.02 207
test-mter59.39 20361.59 20756.82 19853.21 21554.82 20573.12 19126.57 21753.19 21556.31 17664.71 20960.47 20556.36 16968.69 20264.27 19775.38 18465.00 186
E-PMN59.07 20462.79 20454.72 20267.01 20247.81 21660.44 21443.40 20672.95 15044.63 20670.42 20073.17 19458.73 16080.97 15851.98 21554.14 21542.26 217
EMVS58.97 20562.63 20654.70 20366.26 20748.71 21461.74 21242.71 20772.80 15246.00 20573.01 18771.66 19557.91 16480.41 16250.68 21753.55 21641.11 218
TESTMET0.1,157.21 20659.46 21454.60 20450.95 21752.66 20969.46 20226.91 21650.76 21753.81 18863.11 21258.91 20952.87 18666.54 20762.34 19973.59 18561.87 197
ADS-MVSNet56.89 20761.09 20852.00 20859.48 21148.10 21558.02 21554.37 18872.82 15149.19 20275.32 17665.97 20037.96 20959.34 21654.66 21252.99 21751.42 213
EPMVS56.62 20859.77 21352.94 20762.41 20950.55 21260.66 21352.83 19465.15 18841.80 21077.46 15757.28 21442.68 20259.81 21554.82 21157.23 21353.35 211
FMVSNet556.37 20960.14 21151.98 20960.83 21059.58 19966.85 20742.37 20852.68 21641.33 21147.09 21854.68 21935.28 21173.88 18670.77 18565.24 20662.26 196
CHOSEN 280x42056.32 21058.85 21653.36 20551.63 21639.91 22069.12 20438.61 21156.29 21136.79 21648.84 21762.59 20363.39 14573.61 18967.66 19260.61 20763.07 194
N_pmnet54.95 21165.90 19442.18 21166.37 20543.86 21957.92 21639.79 21079.54 12517.24 22386.31 10187.91 14125.44 21564.68 21051.76 21646.33 21847.23 215
new_pmnet52.29 21263.16 20339.61 21358.89 21244.70 21848.78 22134.73 21365.88 18217.85 22273.42 18580.00 17123.06 21767.00 20562.28 20154.36 21448.81 214
MVEpermissive41.12 1951.80 21360.92 20941.16 21235.21 22234.14 22248.45 22241.39 20969.11 17119.53 22163.33 21173.80 19263.56 14267.19 20461.51 20338.85 21957.38 209
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMMVS248.13 21464.06 19929.55 21444.06 22136.69 22151.95 22029.97 21474.75 1468.90 22576.02 17191.24 1197.53 21973.78 18755.91 20934.87 22040.01 219
GG-mvs-BLEND41.63 21560.36 21019.78 2150.14 22766.04 18855.66 2180.17 22357.64 2102.42 22651.82 21669.42 1980.28 22364.11 21258.29 20660.02 20855.18 210
test_method22.69 21626.99 21817.67 2162.13 2244.31 22527.50 2234.53 21937.94 21924.52 22036.20 22051.40 22315.26 21829.86 21917.09 21932.07 22112.16 220
test1231.06 2171.41 2190.64 2180.39 2250.48 2260.52 2280.25 2221.11 2231.37 2272.01 2231.98 2290.87 2211.43 2211.27 2200.46 2251.62 222
testmvs0.93 2181.37 2200.41 2190.36 2260.36 2270.62 2270.39 2211.48 2220.18 2282.41 2221.31 2300.41 2221.25 2221.08 2210.48 2241.68 221
uanet_test0.00 2190.00 2210.00 2200.00 2280.00 2280.00 2290.00 2240.00 2240.00 2290.00 2240.00 2310.00 2240.00 2230.00 2220.00 2260.00 223
sosnet-low-res0.00 2190.00 2210.00 2200.00 2280.00 2280.00 2290.00 2240.00 2240.00 2290.00 2240.00 2310.00 2240.00 2230.00 2220.00 2260.00 223
sosnet0.00 2190.00 2210.00 2200.00 2280.00 2280.00 2290.00 2240.00 2240.00 2290.00 2240.00 2310.00 2240.00 2230.00 2220.00 2260.00 223
TPM-MVS86.18 7783.43 8487.57 9378.77 8769.75 20384.63 15762.24 14889.88 9888.48 64
RE-MVS-def87.10 28
9.1489.43 130
SR-MVS91.82 1380.80 795.53 49
Anonymous20240521184.68 10583.92 10179.45 11979.03 16267.79 9882.01 9888.77 7992.58 9755.93 17186.68 10984.26 11088.92 11378.98 142
our_test_373.27 18070.91 17183.26 128
ambc88.38 6091.62 1787.97 5284.48 12388.64 4387.93 1587.38 9194.82 6874.53 7689.14 8883.86 11585.94 15186.84 76
MTAPA89.37 994.85 66
MTMP90.54 595.16 59
Patchmatch-RL test4.13 226
tmp_tt13.54 21716.73 2236.42 2248.49 2252.36 22028.69 22127.44 21918.40 22113.51 2283.70 22033.23 21836.26 21822.54 223
XVS91.28 2591.23 896.89 287.14 2594.53 7195.84 15
X-MVStestdata91.28 2591.23 896.89 287.14 2594.53 7195.84 15
mPP-MVS93.05 395.77 43
NP-MVS78.65 130
Patchmtry56.88 20464.47 20867.74 9972.30 121
DeepMVS_CXcopyleft17.78 22320.40 2246.69 21831.41 2209.80 22438.61 21934.88 22733.78 21228.41 22023.59 22245.77 216