DVP-MVS++. | | | 89.14 1 | 91.86 1 | 85.97 1 | 92.55 2 | 92.38 1 | 91.69 4 | 76.31 3 | 93.31 1 | 83.11 3 | 92.44 4 | 91.18 1 | 81.17 2 | 89.55 2 | 87.93 8 | 91.01 8 | 96.21 1 |
|
DVP-MVS |  | | 88.67 3 | 91.62 2 | 85.22 4 | 90.47 18 | 92.36 2 | 90.69 10 | 76.15 4 | 93.08 2 | 82.75 5 | 92.19 6 | 90.71 3 | 80.45 6 | 89.27 6 | 87.91 9 | 90.82 12 | 95.84 2 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
SED-MVS | | | 88.85 2 | 91.59 3 | 85.67 2 | 90.54 16 | 92.29 3 | 91.71 3 | 76.40 2 | 92.41 3 | 83.24 2 | 92.50 3 | 90.64 4 | 81.10 3 | 89.53 3 | 88.02 7 | 91.00 9 | 95.73 3 |
|
DPE-MVS |  | | 88.63 4 | 91.29 4 | 85.53 3 | 90.87 9 | 92.20 4 | 91.98 2 | 76.00 6 | 90.55 8 | 82.09 7 | 93.85 1 | 90.75 2 | 81.25 1 | 88.62 8 | 87.59 14 | 90.96 10 | 95.48 4 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
CSCG | | | 85.28 23 | 87.68 19 | 82.49 26 | 89.95 25 | 91.99 5 | 88.82 26 | 71.20 39 | 86.41 23 | 79.63 18 | 79.26 30 | 88.36 10 | 73.94 43 | 86.64 33 | 86.67 26 | 91.40 2 | 94.41 8 |
|
MSP-MVS | | | 88.09 5 | 90.84 5 | 84.88 7 | 90.00 24 | 91.80 6 | 91.63 5 | 75.80 7 | 91.99 4 | 81.23 10 | 92.54 2 | 89.18 6 | 80.89 4 | 87.99 15 | 87.91 9 | 89.70 46 | 94.51 7 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
APDe-MVS | | | 88.00 6 | 90.50 6 | 85.08 5 | 90.95 8 | 91.58 7 | 92.03 1 | 75.53 13 | 91.15 5 | 80.10 16 | 92.27 5 | 88.34 11 | 80.80 5 | 88.00 14 | 86.99 19 | 91.09 6 | 95.16 6 |
|
xxxxxxxxxxxxxcwj | | | 85.35 20 | 85.76 31 | 84.86 8 | 91.26 6 | 91.10 8 | 90.90 6 | 75.65 8 | 89.21 9 | 81.25 8 | 91.12 8 | 61.35 120 | 78.82 10 | 87.42 20 | 86.23 31 | 91.28 3 | 93.90 13 |
|
SF-MVS | | | 87.47 8 | 89.70 8 | 84.86 8 | 91.26 6 | 91.10 8 | 90.90 6 | 75.65 8 | 89.21 9 | 81.25 8 | 91.12 8 | 88.93 7 | 78.82 10 | 87.42 20 | 86.23 31 | 91.28 3 | 93.90 13 |
|
SMA-MVS |  | | 87.56 7 | 90.17 7 | 84.52 10 | 91.71 3 | 90.57 10 | 90.77 9 | 75.19 14 | 90.67 7 | 80.50 15 | 86.59 18 | 88.86 8 | 78.09 17 | 89.92 1 | 89.41 1 | 90.84 11 | 95.19 5 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
DeepPCF-MVS | | 79.04 1 | 85.30 22 | 88.93 12 | 81.06 33 | 88.77 37 | 90.48 11 | 85.46 47 | 73.08 30 | 90.97 6 | 73.77 38 | 84.81 23 | 85.95 21 | 77.43 24 | 88.22 11 | 87.73 11 | 87.85 84 | 94.34 9 |
|
DeepC-MVS | | 78.47 2 | 84.81 27 | 86.03 29 | 83.37 20 | 89.29 33 | 90.38 12 | 88.61 28 | 76.50 1 | 86.25 24 | 77.22 25 | 75.12 40 | 80.28 46 | 77.59 23 | 88.39 10 | 88.17 6 | 91.02 7 | 93.66 19 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
APD-MVS |  | | 86.84 12 | 88.91 14 | 84.41 11 | 90.66 12 | 90.10 13 | 90.78 8 | 75.64 10 | 87.38 18 | 78.72 20 | 90.68 11 | 86.82 17 | 80.15 7 | 87.13 26 | 86.45 29 | 90.51 22 | 93.83 15 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
ACMMP_NAP | | | 86.52 13 | 89.01 11 | 83.62 18 | 90.28 20 | 90.09 14 | 90.32 14 | 74.05 21 | 88.32 15 | 79.74 17 | 87.04 16 | 85.59 24 | 76.97 30 | 89.35 4 | 88.44 4 | 90.35 31 | 94.27 11 |
|
CNVR-MVS | | | 86.36 14 | 88.19 17 | 84.23 13 | 91.33 5 | 89.84 15 | 90.34 12 | 75.56 11 | 87.36 19 | 78.97 19 | 81.19 29 | 86.76 18 | 78.74 12 | 89.30 5 | 88.58 2 | 90.45 28 | 94.33 10 |
|
SteuartSystems-ACMMP | | | 85.99 16 | 88.31 16 | 83.27 22 | 90.73 11 | 89.84 15 | 90.27 15 | 74.31 16 | 84.56 31 | 75.88 31 | 87.32 15 | 85.04 25 | 77.31 25 | 89.01 7 | 88.46 3 | 91.14 5 | 93.96 12 |
Skip Steuart: Steuart Systems R&D Blog. |
MCST-MVS | | | 85.13 24 | 86.62 24 | 83.39 19 | 90.55 15 | 89.82 17 | 89.29 23 | 73.89 24 | 84.38 32 | 76.03 30 | 79.01 32 | 85.90 22 | 78.47 13 | 87.81 16 | 86.11 35 | 92.11 1 | 93.29 23 |
|
3Dnovator+ | | 75.73 4 | 82.40 36 | 82.76 41 | 81.97 30 | 88.02 39 | 89.67 18 | 86.60 38 | 71.48 38 | 81.28 44 | 78.18 22 | 64.78 86 | 77.96 53 | 77.13 28 | 87.32 24 | 86.83 22 | 90.41 29 | 91.48 37 |
|
PHI-MVS | | | 82.36 37 | 85.89 30 | 78.24 50 | 86.40 49 | 89.52 19 | 85.52 45 | 69.52 50 | 82.38 41 | 65.67 70 | 81.35 28 | 82.36 35 | 73.07 49 | 87.31 25 | 86.76 24 | 89.24 53 | 91.56 36 |
|
MP-MVS |  | | 85.50 19 | 87.40 21 | 83.28 21 | 90.65 13 | 89.51 20 | 89.16 25 | 74.11 20 | 83.70 35 | 78.06 23 | 85.54 21 | 84.89 28 | 77.31 25 | 87.40 23 | 87.14 18 | 90.41 29 | 93.65 20 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
ACMMPR | | | 85.52 18 | 87.53 20 | 83.17 23 | 90.13 21 | 89.27 21 | 89.30 22 | 73.97 22 | 86.89 21 | 77.14 26 | 86.09 19 | 83.18 33 | 77.74 21 | 87.42 20 | 87.20 16 | 90.77 14 | 92.63 26 |
|
DeepC-MVS_fast | | 78.24 3 | 84.27 30 | 85.50 32 | 82.85 24 | 90.46 19 | 89.24 22 | 87.83 34 | 74.24 18 | 84.88 27 | 76.23 29 | 75.26 39 | 81.05 44 | 77.62 22 | 88.02 13 | 87.62 13 | 90.69 17 | 92.41 29 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
SD-MVS | | | 86.96 10 | 89.45 9 | 84.05 16 | 90.13 21 | 89.23 23 | 89.77 19 | 74.59 15 | 89.17 11 | 80.70 12 | 89.93 12 | 89.67 5 | 78.47 13 | 87.57 19 | 86.79 23 | 90.67 18 | 93.76 17 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
HFP-MVS | | | 86.15 15 | 87.95 18 | 84.06 15 | 90.80 10 | 89.20 24 | 89.62 21 | 74.26 17 | 87.52 16 | 80.63 13 | 86.82 17 | 84.19 30 | 78.22 15 | 87.58 18 | 87.19 17 | 90.81 13 | 93.13 25 |
|
MVS_0304 | | | 81.73 40 | 83.86 37 | 79.26 43 | 86.22 51 | 89.18 25 | 86.41 39 | 67.15 66 | 75.28 56 | 70.75 54 | 74.59 42 | 83.49 32 | 74.42 40 | 87.05 29 | 86.34 30 | 90.58 21 | 91.08 41 |
|
NCCC | | | 85.34 21 | 86.59 25 | 83.88 17 | 91.48 4 | 88.88 26 | 89.79 18 | 75.54 12 | 86.67 22 | 77.94 24 | 76.55 36 | 84.99 26 | 78.07 18 | 88.04 12 | 87.68 12 | 90.46 27 | 93.31 22 |
|
abl_6 | | | | | 79.05 44 | 87.27 43 | 88.85 27 | 83.62 57 | 68.25 56 | 81.68 42 | 72.94 41 | 73.79 46 | 84.45 29 | 72.55 53 | | | 89.66 48 | 90.64 45 |
|
PGM-MVS | | | 84.42 29 | 86.29 28 | 82.23 27 | 90.04 23 | 88.82 28 | 89.23 24 | 71.74 37 | 82.82 38 | 74.61 34 | 84.41 24 | 82.09 36 | 77.03 29 | 87.13 26 | 86.73 25 | 90.73 16 | 92.06 33 |
|
XVS | | | | | | 86.63 47 | 88.68 29 | 85.00 48 | | | 71.81 47 | | 81.92 38 | | | | 90.47 24 | |
|
X-MVStestdata | | | | | | 86.63 47 | 88.68 29 | 85.00 48 | | | 71.81 47 | | 81.92 38 | | | | 90.47 24 | |
|
X-MVS | | | 83.23 34 | 85.20 34 | 80.92 35 | 89.71 28 | 88.68 29 | 88.21 33 | 73.60 25 | 82.57 39 | 71.81 47 | 77.07 34 | 81.92 38 | 71.72 61 | 86.98 30 | 86.86 21 | 90.47 24 | 92.36 30 |
|
TSAR-MVS + MP. | | | 86.88 11 | 89.23 10 | 84.14 14 | 89.78 27 | 88.67 32 | 90.59 11 | 73.46 28 | 88.99 12 | 80.52 14 | 91.26 7 | 88.65 9 | 79.91 8 | 86.96 31 | 86.22 33 | 90.59 20 | 93.83 15 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
CANet | | | 81.62 41 | 83.41 38 | 79.53 42 | 87.06 44 | 88.59 33 | 85.47 46 | 67.96 60 | 76.59 54 | 74.05 35 | 74.69 41 | 81.98 37 | 72.98 51 | 86.14 40 | 85.47 39 | 89.68 47 | 90.42 48 |
|
TSAR-MVS + ACMM | | | 85.10 25 | 88.81 15 | 80.77 36 | 89.55 30 | 88.53 34 | 88.59 29 | 72.55 32 | 87.39 17 | 71.90 44 | 90.95 10 | 87.55 13 | 74.57 38 | 87.08 28 | 86.54 27 | 87.47 91 | 93.67 18 |
|
DPM-MVS | | | 83.30 33 | 84.33 36 | 82.11 28 | 89.56 29 | 88.49 35 | 90.33 13 | 73.24 29 | 83.85 34 | 76.46 28 | 72.43 52 | 82.65 34 | 73.02 50 | 86.37 37 | 86.91 20 | 90.03 39 | 89.62 55 |
|
ACMMP |  | | 83.42 32 | 85.27 33 | 81.26 32 | 88.47 38 | 88.49 35 | 88.31 32 | 72.09 34 | 83.42 36 | 72.77 42 | 82.65 25 | 78.22 51 | 75.18 37 | 86.24 39 | 85.76 37 | 90.74 15 | 92.13 32 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
CDPH-MVS | | | 82.64 35 | 85.03 35 | 79.86 40 | 89.41 32 | 88.31 37 | 88.32 31 | 71.84 36 | 80.11 46 | 67.47 64 | 82.09 26 | 81.44 42 | 71.85 59 | 85.89 43 | 86.15 34 | 90.24 34 | 91.25 39 |
|
PCF-MVS | | 73.28 6 | 79.42 51 | 80.41 55 | 78.26 49 | 84.88 62 | 88.17 38 | 86.08 40 | 69.85 45 | 75.23 58 | 68.43 59 | 68.03 74 | 78.38 49 | 71.76 60 | 81.26 87 | 80.65 88 | 88.56 67 | 91.18 40 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
MAR-MVS | | | 79.21 53 | 80.32 56 | 77.92 52 | 87.46 41 | 88.15 39 | 83.95 54 | 67.48 65 | 74.28 60 | 68.25 60 | 64.70 87 | 77.04 55 | 72.17 55 | 85.42 45 | 85.00 44 | 88.22 71 | 87.62 68 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
CP-MVS | | | 84.74 28 | 86.43 27 | 82.77 25 | 89.48 31 | 88.13 40 | 88.64 27 | 73.93 23 | 84.92 26 | 76.77 27 | 81.94 27 | 83.50 31 | 77.29 27 | 86.92 32 | 86.49 28 | 90.49 23 | 93.14 24 |
|
HPM-MVS++ |  | | 87.09 9 | 88.92 13 | 84.95 6 | 92.61 1 | 87.91 41 | 90.23 16 | 76.06 5 | 88.85 13 | 81.20 11 | 87.33 14 | 87.93 12 | 79.47 9 | 88.59 9 | 88.23 5 | 90.15 37 | 93.60 21 |
|
3Dnovator | | 73.76 5 | 79.75 47 | 80.52 54 | 78.84 46 | 84.94 61 | 87.35 42 | 84.43 53 | 65.54 77 | 78.29 50 | 73.97 36 | 63.00 94 | 75.62 61 | 74.07 42 | 85.00 50 | 85.34 41 | 90.11 38 | 89.04 57 |
|
DELS-MVS | | | 79.15 55 | 81.07 50 | 76.91 57 | 83.54 63 | 87.31 43 | 84.45 52 | 64.92 82 | 69.98 70 | 69.34 56 | 71.62 56 | 76.26 57 | 69.84 70 | 86.57 34 | 85.90 36 | 89.39 51 | 89.88 52 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
MSLP-MVS++ | | | 82.09 38 | 82.66 42 | 81.42 31 | 87.03 45 | 87.22 44 | 85.82 43 | 70.04 44 | 80.30 45 | 78.66 21 | 68.67 71 | 81.04 45 | 77.81 20 | 85.19 48 | 84.88 45 | 89.19 56 | 91.31 38 |
|
zzz-MVS | | | 85.71 17 | 86.88 23 | 84.34 12 | 90.54 16 | 87.11 45 | 89.77 19 | 74.17 19 | 88.54 14 | 83.08 4 | 78.60 33 | 86.10 20 | 78.11 16 | 87.80 17 | 87.46 15 | 90.35 31 | 92.56 27 |
|
TSAR-MVS + GP. | | | 83.69 31 | 86.58 26 | 80.32 37 | 85.14 56 | 86.96 46 | 84.91 51 | 70.25 43 | 84.71 30 | 73.91 37 | 85.16 22 | 85.63 23 | 77.92 19 | 85.44 44 | 85.71 38 | 89.77 43 | 92.45 28 |
|
CLD-MVS | | | 79.35 52 | 81.23 48 | 77.16 56 | 85.01 59 | 86.92 47 | 85.87 42 | 60.89 131 | 80.07 48 | 75.35 33 | 72.96 49 | 73.21 69 | 68.43 79 | 85.41 46 | 84.63 46 | 87.41 92 | 85.44 89 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
OPM-MVS | | | 79.68 49 | 79.28 61 | 80.15 39 | 87.99 40 | 86.77 48 | 88.52 30 | 72.72 31 | 64.55 98 | 67.65 63 | 67.87 75 | 74.33 65 | 74.31 41 | 86.37 37 | 85.25 42 | 89.73 45 | 89.81 53 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
QAPM | | | 78.47 58 | 80.22 57 | 76.43 59 | 85.03 58 | 86.75 49 | 80.62 68 | 66.00 74 | 73.77 63 | 65.35 71 | 65.54 82 | 78.02 52 | 72.69 52 | 83.71 60 | 83.36 58 | 88.87 62 | 90.41 49 |
|
PVSNet_Blended_VisFu | | | 76.57 67 | 77.90 66 | 75.02 67 | 80.56 85 | 86.58 50 | 79.24 80 | 66.18 71 | 64.81 95 | 68.18 61 | 65.61 80 | 71.45 74 | 67.05 82 | 84.16 56 | 81.80 67 | 88.90 60 | 90.92 42 |
|
CPTT-MVS | | | 81.77 39 | 83.10 40 | 80.21 38 | 85.93 52 | 86.45 51 | 87.72 35 | 70.98 40 | 82.54 40 | 71.53 50 | 74.23 45 | 81.49 41 | 76.31 32 | 82.85 69 | 81.87 66 | 88.79 64 | 92.26 31 |
|
canonicalmvs | | | 79.16 54 | 82.37 44 | 75.41 64 | 82.33 71 | 86.38 52 | 80.80 66 | 63.18 97 | 82.90 37 | 67.34 65 | 72.79 50 | 76.07 59 | 69.62 71 | 83.46 65 | 84.41 47 | 89.20 55 | 90.60 46 |
|
AdaColmap |  | | 79.74 48 | 78.62 63 | 81.05 34 | 89.23 34 | 86.06 53 | 84.95 50 | 71.96 35 | 79.39 49 | 75.51 32 | 63.16 92 | 68.84 96 | 76.51 31 | 83.55 62 | 82.85 60 | 88.13 75 | 86.46 78 |
|
ACMP | | 73.23 7 | 79.79 46 | 80.53 53 | 78.94 45 | 85.61 54 | 85.68 54 | 85.61 44 | 69.59 48 | 77.33 52 | 71.00 53 | 74.45 43 | 69.16 91 | 71.88 57 | 83.15 66 | 83.37 57 | 89.92 40 | 90.57 47 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
OMC-MVS | | | 80.26 43 | 82.59 43 | 77.54 53 | 83.04 64 | 85.54 55 | 83.25 59 | 65.05 81 | 87.32 20 | 72.42 43 | 72.04 54 | 78.97 48 | 73.30 47 | 83.86 58 | 81.60 70 | 88.15 74 | 88.83 59 |
|
train_agg | | | 84.86 26 | 87.21 22 | 82.11 28 | 90.59 14 | 85.47 56 | 89.81 17 | 73.55 27 | 83.95 33 | 73.30 39 | 89.84 13 | 87.23 15 | 75.61 36 | 86.47 35 | 85.46 40 | 89.78 42 | 92.06 33 |
|
HQP-MVS | | | 81.19 42 | 83.27 39 | 78.76 47 | 87.40 42 | 85.45 57 | 86.95 36 | 70.47 42 | 81.31 43 | 66.91 67 | 79.24 31 | 76.63 56 | 71.67 62 | 84.43 55 | 83.78 52 | 89.19 56 | 92.05 35 |
|
UA-Net | | | 74.47 77 | 77.80 67 | 70.59 93 | 85.33 55 | 85.40 58 | 73.54 142 | 65.98 75 | 60.65 130 | 56.00 110 | 72.11 53 | 79.15 47 | 54.63 167 | 83.13 67 | 82.25 63 | 88.04 78 | 81.92 126 |
|
LGP-MVS_train | | | 79.83 45 | 81.22 49 | 78.22 51 | 86.28 50 | 85.36 59 | 86.76 37 | 69.59 48 | 77.34 51 | 65.14 72 | 75.68 38 | 70.79 79 | 71.37 65 | 84.60 52 | 84.01 48 | 90.18 36 | 90.74 44 |
|
MVS_111021_HR | | | 80.13 44 | 81.46 46 | 78.58 48 | 85.77 53 | 85.17 60 | 83.45 58 | 69.28 51 | 74.08 62 | 70.31 55 | 74.31 44 | 75.26 62 | 73.13 48 | 86.46 36 | 85.15 43 | 89.53 49 | 89.81 53 |
|
TSAR-MVS + COLMAP | | | 78.34 59 | 81.64 45 | 74.48 75 | 80.13 92 | 85.01 61 | 81.73 60 | 65.93 76 | 84.75 29 | 61.68 85 | 85.79 20 | 66.27 105 | 71.39 64 | 82.91 68 | 80.78 79 | 86.01 132 | 85.98 80 |
|
OpenMVS |  | 70.44 10 | 76.15 70 | 76.82 78 | 75.37 65 | 85.01 59 | 84.79 62 | 78.99 84 | 62.07 120 | 71.27 69 | 67.88 62 | 57.91 121 | 72.36 72 | 70.15 69 | 82.23 74 | 81.41 71 | 88.12 76 | 87.78 67 |
|
DROMVSNet | | | 79.44 50 | 81.35 47 | 77.22 55 | 82.95 65 | 84.67 63 | 81.31 62 | 63.65 91 | 72.47 68 | 68.75 57 | 73.15 48 | 78.33 50 | 75.99 33 | 86.06 41 | 83.96 50 | 90.67 18 | 90.79 43 |
|
TAPA-MVS | | 71.42 9 | 77.69 63 | 80.05 58 | 74.94 68 | 80.68 83 | 84.52 64 | 81.36 61 | 63.14 98 | 84.77 28 | 64.82 75 | 68.72 69 | 75.91 60 | 71.86 58 | 81.62 76 | 79.55 104 | 87.80 86 | 85.24 92 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
CNLPA | | | 77.20 65 | 77.54 69 | 76.80 58 | 82.63 67 | 84.31 65 | 79.77 74 | 64.64 83 | 85.17 25 | 73.18 40 | 56.37 128 | 69.81 86 | 74.53 39 | 81.12 91 | 78.69 115 | 86.04 131 | 87.29 71 |
|
Vis-MVSNet |  | | 72.77 87 | 77.20 75 | 67.59 127 | 74.19 140 | 84.01 66 | 76.61 108 | 61.69 125 | 60.62 131 | 50.61 141 | 70.25 63 | 71.31 77 | 55.57 163 | 83.85 59 | 82.28 62 | 86.90 104 | 88.08 64 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
EPP-MVSNet | | | 74.00 81 | 77.41 72 | 70.02 100 | 80.53 86 | 83.91 67 | 74.99 119 | 62.68 111 | 65.06 93 | 49.77 145 | 68.68 70 | 72.09 73 | 63.06 107 | 82.49 73 | 80.73 80 | 89.12 58 | 88.91 58 |
|
EIA-MVS | | | 75.64 72 | 76.60 79 | 74.53 74 | 82.43 70 | 83.84 68 | 78.32 91 | 62.28 119 | 65.96 88 | 63.28 82 | 68.95 67 | 67.54 101 | 71.61 63 | 82.55 71 | 81.63 69 | 89.24 53 | 85.72 83 |
|
PVSNet_BlendedMVS | | | 76.21 68 | 77.52 70 | 74.69 71 | 79.46 96 | 83.79 69 | 77.50 98 | 64.34 87 | 69.88 71 | 71.88 45 | 68.54 72 | 70.42 81 | 67.05 82 | 83.48 63 | 79.63 100 | 87.89 82 | 86.87 74 |
|
PVSNet_Blended | | | 76.21 68 | 77.52 70 | 74.69 71 | 79.46 96 | 83.79 69 | 77.50 98 | 64.34 87 | 69.88 71 | 71.88 45 | 68.54 72 | 70.42 81 | 67.05 82 | 83.48 63 | 79.63 100 | 87.89 82 | 86.87 74 |
|
casdiffmvs | | | 76.76 66 | 78.46 64 | 74.77 70 | 80.32 89 | 83.73 71 | 80.65 67 | 63.24 96 | 73.58 64 | 66.11 69 | 69.39 66 | 74.09 66 | 69.49 73 | 82.52 72 | 79.35 109 | 88.84 63 | 86.52 77 |
|
ETV-MVS | | | 77.32 64 | 78.81 62 | 75.58 63 | 82.24 72 | 83.64 72 | 79.98 70 | 64.02 89 | 69.64 74 | 63.90 78 | 70.89 60 | 69.94 85 | 73.41 46 | 85.39 47 | 83.91 51 | 89.92 40 | 88.31 62 |
|
IS_MVSNet | | | 73.33 83 | 77.34 74 | 68.65 115 | 81.29 76 | 83.47 73 | 74.45 124 | 63.58 94 | 65.75 90 | 48.49 150 | 67.11 79 | 70.61 80 | 54.63 167 | 84.51 54 | 83.58 54 | 89.48 50 | 86.34 79 |
|
ACMM | | 72.26 8 | 78.86 57 | 78.13 65 | 79.71 41 | 86.89 46 | 83.40 74 | 86.02 41 | 70.50 41 | 75.28 56 | 71.49 51 | 63.01 93 | 69.26 90 | 73.57 45 | 84.11 57 | 83.98 49 | 89.76 44 | 87.84 66 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
ECVR-MVS |  | | 72.20 90 | 73.91 89 | 70.20 97 | 81.49 75 | 83.27 75 | 75.74 109 | 67.59 64 | 68.19 78 | 49.31 148 | 55.77 130 | 62.00 118 | 58.82 135 | 84.76 51 | 82.94 59 | 88.27 70 | 80.41 140 |
|
Effi-MVS+ | | | 75.28 74 | 76.20 80 | 74.20 76 | 81.15 78 | 83.24 76 | 81.11 64 | 63.13 99 | 66.37 84 | 60.27 89 | 64.30 90 | 68.88 95 | 70.93 68 | 81.56 78 | 81.69 68 | 88.61 65 | 87.35 69 |
|
UGNet | | | 72.78 86 | 77.67 68 | 67.07 137 | 71.65 164 | 83.24 76 | 75.20 113 | 63.62 93 | 64.93 94 | 56.72 106 | 71.82 55 | 73.30 67 | 49.02 180 | 81.02 92 | 80.70 86 | 86.22 123 | 88.67 60 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
EPNet | | | 79.08 56 | 80.62 52 | 77.28 54 | 88.90 36 | 83.17 78 | 83.65 56 | 72.41 33 | 74.41 59 | 67.15 66 | 76.78 35 | 74.37 64 | 64.43 99 | 83.70 61 | 83.69 53 | 87.15 95 | 88.19 63 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
ECVR-MVS11 | | | 71.56 95 | 73.44 92 | 69.38 108 | 81.16 77 | 82.95 79 | 74.99 119 | 67.68 62 | 66.89 82 | 46.33 164 | 55.19 136 | 60.91 122 | 57.99 142 | 84.59 53 | 82.70 61 | 88.12 76 | 80.85 134 |
|
HyFIR lowres test | | | 69.47 118 | 68.94 132 | 70.09 99 | 76.77 118 | 82.93 80 | 76.63 107 | 60.17 140 | 59.00 138 | 54.03 119 | 40.54 200 | 65.23 108 | 67.89 81 | 76.54 148 | 78.30 120 | 85.03 149 | 80.07 143 |
|
IB-MVS | | 66.94 12 | 71.21 100 | 71.66 108 | 70.68 90 | 79.18 98 | 82.83 81 | 72.61 148 | 61.77 124 | 59.66 135 | 63.44 81 | 53.26 152 | 59.65 129 | 59.16 134 | 76.78 145 | 82.11 64 | 87.90 81 | 87.33 70 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
LS3D | | | 74.08 80 | 73.39 94 | 74.88 69 | 85.05 57 | 82.62 82 | 79.71 76 | 68.66 54 | 72.82 65 | 58.80 93 | 57.61 122 | 61.31 121 | 71.07 67 | 80.32 101 | 78.87 114 | 86.00 133 | 80.18 142 |
|
ACMH | | 65.37 14 | 70.71 103 | 70.00 118 | 71.54 85 | 82.51 69 | 82.47 83 | 77.78 95 | 68.13 57 | 56.19 157 | 46.06 167 | 54.30 140 | 51.20 183 | 68.68 77 | 80.66 96 | 80.72 81 | 86.07 127 | 84.45 105 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
test_part1 | | | 74.24 78 | 73.44 92 | 75.18 66 | 82.02 74 | 82.34 84 | 83.88 55 | 62.40 117 | 60.93 128 | 68.68 58 | 49.25 180 | 69.71 87 | 65.73 97 | 81.26 87 | 81.98 65 | 88.35 68 | 88.60 61 |
|
CS-MVS | | | 77.88 62 | 80.66 51 | 74.64 73 | 79.87 93 | 82.07 85 | 78.63 86 | 59.93 145 | 72.57 67 | 63.22 83 | 73.66 47 | 77.72 54 | 75.97 35 | 85.12 49 | 83.58 54 | 90.23 35 | 89.93 51 |
|
CANet_DTU | | | 73.29 84 | 76.96 77 | 69.00 112 | 77.04 116 | 82.06 86 | 79.49 78 | 56.30 168 | 67.85 79 | 53.29 126 | 71.12 59 | 70.37 83 | 61.81 121 | 81.59 77 | 80.96 77 | 86.09 126 | 84.73 100 |
|
Anonymous202405211 | | | | 72.16 105 | | 80.85 82 | 81.85 87 | 76.88 105 | 65.40 78 | 62.89 113 | | 46.35 187 | 67.99 100 | 62.05 114 | 81.15 90 | 80.38 92 | 85.97 134 | 84.50 103 |
|
CS-MVS-test | | | 78.10 61 | 79.79 60 | 76.13 60 | 80.59 84 | 81.68 88 | 81.31 62 | 63.65 91 | 68.34 76 | 64.91 74 | 72.52 51 | 76.25 58 | 75.99 33 | 86.06 41 | 83.55 56 | 90.31 33 | 90.16 50 |
|
DI_MVS_plusplus_trai | | | 75.13 75 | 76.12 81 | 73.96 77 | 78.18 104 | 81.55 89 | 80.97 65 | 62.54 113 | 68.59 75 | 65.13 73 | 61.43 96 | 74.81 63 | 69.32 74 | 81.01 93 | 79.59 102 | 87.64 89 | 85.89 81 |
|
Anonymous20231211 | | | 71.90 92 | 72.48 102 | 71.21 86 | 80.14 91 | 81.53 90 | 76.92 103 | 62.89 102 | 64.46 100 | 58.94 91 | 43.80 191 | 70.98 78 | 62.22 111 | 80.70 95 | 80.19 95 | 86.18 124 | 85.73 82 |
|
MVS_111021_LR | | | 78.13 60 | 79.85 59 | 76.13 60 | 81.12 79 | 81.50 91 | 80.28 69 | 65.25 79 | 76.09 55 | 71.32 52 | 76.49 37 | 72.87 71 | 72.21 54 | 82.79 70 | 81.29 72 | 86.59 117 | 87.91 65 |
|
GeoE | | | 74.23 79 | 74.84 85 | 73.52 78 | 80.42 88 | 81.46 92 | 79.77 74 | 61.06 129 | 67.23 81 | 63.67 79 | 59.56 108 | 68.74 97 | 67.90 80 | 80.25 105 | 79.37 108 | 88.31 69 | 87.26 72 |
|
EG-PatchMatch MVS | | | 67.24 146 | 66.94 153 | 67.60 126 | 78.73 101 | 81.35 93 | 73.28 146 | 59.49 148 | 46.89 199 | 51.42 137 | 43.65 192 | 53.49 164 | 55.50 164 | 81.38 82 | 80.66 87 | 87.15 95 | 81.17 132 |
|
MVS_Test | | | 75.37 73 | 77.13 76 | 73.31 80 | 79.07 99 | 81.32 94 | 79.98 70 | 60.12 142 | 69.72 73 | 64.11 77 | 70.53 61 | 73.22 68 | 68.90 75 | 80.14 107 | 79.48 106 | 87.67 88 | 85.50 87 |
|
PLC |  | 68.99 11 | 75.68 71 | 75.31 83 | 76.12 62 | 82.94 66 | 81.26 95 | 79.94 72 | 66.10 72 | 77.15 53 | 66.86 68 | 59.13 111 | 68.53 98 | 73.73 44 | 80.38 100 | 79.04 110 | 87.13 99 | 81.68 128 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
ET-MVSNet_ETH3D | | | 72.46 89 | 74.19 87 | 70.44 94 | 62.50 199 | 81.17 96 | 79.90 73 | 62.46 116 | 64.52 99 | 57.52 102 | 71.49 58 | 59.15 131 | 72.08 56 | 78.61 125 | 81.11 74 | 88.16 73 | 83.29 114 |
|
ACMH+ | | 66.54 13 | 71.36 99 | 70.09 117 | 72.85 81 | 82.59 68 | 81.13 97 | 78.56 87 | 68.04 58 | 61.55 122 | 52.52 132 | 51.50 169 | 54.14 156 | 68.56 78 | 78.85 122 | 79.50 105 | 86.82 107 | 83.94 108 |
|
v1144 | | | 69.93 113 | 69.36 127 | 70.61 92 | 74.89 133 | 80.93 98 | 79.11 82 | 60.64 133 | 55.97 159 | 55.31 113 | 53.85 147 | 54.14 156 | 66.54 91 | 78.10 130 | 77.44 133 | 87.14 98 | 85.09 94 |
|
UniMVSNet (Re) | | | 69.53 116 | 71.90 106 | 66.76 142 | 76.42 119 | 80.93 98 | 72.59 149 | 68.03 59 | 61.75 121 | 41.68 181 | 58.34 119 | 57.23 140 | 53.27 172 | 79.53 114 | 80.62 89 | 88.57 66 | 84.90 98 |
|
v1192 | | | 69.50 117 | 68.83 133 | 70.29 96 | 74.49 137 | 80.92 100 | 78.55 88 | 60.54 135 | 55.04 165 | 54.21 116 | 52.79 161 | 52.33 176 | 66.92 86 | 77.88 132 | 77.35 136 | 87.04 102 | 85.51 86 |
|
Fast-Effi-MVS+ | | | 73.11 85 | 73.66 90 | 72.48 82 | 77.72 110 | 80.88 101 | 78.55 88 | 58.83 158 | 65.19 92 | 60.36 88 | 59.98 105 | 62.42 117 | 71.22 66 | 81.66 75 | 80.61 90 | 88.20 72 | 84.88 99 |
|
UniMVSNet_NR-MVSNet | | | 70.59 104 | 72.19 103 | 68.72 113 | 77.72 110 | 80.72 102 | 73.81 139 | 69.65 47 | 61.99 118 | 43.23 176 | 60.54 101 | 57.50 138 | 58.57 136 | 79.56 113 | 81.07 75 | 89.34 52 | 83.97 106 |
|
v144192 | | | 69.34 119 | 68.68 137 | 70.12 98 | 74.06 141 | 80.54 103 | 78.08 94 | 60.54 135 | 54.99 167 | 54.13 118 | 52.92 159 | 52.80 174 | 66.73 89 | 77.13 140 | 76.72 143 | 87.15 95 | 85.63 84 |
|
Effi-MVS+-dtu | | | 71.82 93 | 71.86 107 | 71.78 84 | 78.77 100 | 80.47 104 | 78.55 88 | 61.67 127 | 60.68 129 | 55.49 111 | 58.48 115 | 65.48 107 | 68.85 76 | 76.92 142 | 75.55 154 | 87.35 93 | 85.46 88 |
|
v1921920 | | | 69.03 122 | 68.32 141 | 69.86 101 | 74.03 142 | 80.37 105 | 77.55 96 | 60.25 139 | 54.62 169 | 53.59 124 | 52.36 165 | 51.50 182 | 66.75 88 | 77.17 139 | 76.69 145 | 86.96 103 | 85.56 85 |
|
diffmvs | | | 74.86 76 | 77.37 73 | 71.93 83 | 75.62 126 | 80.35 106 | 79.42 79 | 60.15 141 | 72.81 66 | 64.63 76 | 71.51 57 | 73.11 70 | 66.53 92 | 79.02 120 | 77.98 123 | 85.25 146 | 86.83 76 |
|
v2v482 | | | 70.05 112 | 69.46 126 | 70.74 88 | 74.62 136 | 80.32 107 | 79.00 83 | 60.62 134 | 57.41 148 | 56.89 105 | 55.43 135 | 55.14 151 | 66.39 93 | 77.25 138 | 77.14 138 | 86.90 104 | 83.57 113 |
|
v10 | | | 70.22 109 | 69.76 122 | 70.74 88 | 74.79 134 | 80.30 108 | 79.22 81 | 59.81 146 | 57.71 146 | 56.58 108 | 54.22 145 | 55.31 149 | 66.95 85 | 78.28 128 | 77.47 132 | 87.12 101 | 85.07 95 |
|
v1240 | | | 68.64 127 | 67.89 146 | 69.51 106 | 73.89 144 | 80.26 109 | 76.73 106 | 59.97 144 | 53.43 177 | 53.08 127 | 51.82 168 | 50.84 185 | 66.62 90 | 76.79 144 | 76.77 142 | 86.78 109 | 85.34 90 |
|
v8 | | | 70.23 108 | 69.86 120 | 70.67 91 | 74.69 135 | 79.82 110 | 78.79 85 | 59.18 151 | 58.80 139 | 58.20 99 | 55.00 137 | 57.33 139 | 66.31 94 | 77.51 135 | 76.71 144 | 86.82 107 | 83.88 109 |
|
DU-MVS | | | 69.63 115 | 70.91 111 | 68.13 119 | 75.99 121 | 79.54 111 | 73.81 139 | 69.20 52 | 61.20 126 | 43.23 176 | 58.52 113 | 53.50 163 | 58.57 136 | 79.22 117 | 80.45 91 | 87.97 79 | 83.97 106 |
|
NR-MVSNet | | | 68.79 125 | 70.56 113 | 66.71 144 | 77.48 113 | 79.54 111 | 73.52 143 | 69.20 52 | 61.20 126 | 39.76 183 | 58.52 113 | 50.11 189 | 51.37 176 | 80.26 104 | 80.71 85 | 88.97 59 | 83.59 112 |
|
TranMVSNet+NR-MVSNet | | | 69.25 120 | 70.81 112 | 67.43 128 | 77.23 115 | 79.46 113 | 73.48 144 | 69.66 46 | 60.43 132 | 39.56 184 | 58.82 112 | 53.48 165 | 55.74 161 | 79.59 111 | 81.21 73 | 88.89 61 | 82.70 116 |
|
MSDG | | | 71.52 96 | 69.87 119 | 73.44 79 | 82.21 73 | 79.35 114 | 79.52 77 | 64.59 84 | 66.15 86 | 61.87 84 | 53.21 154 | 56.09 146 | 65.85 96 | 78.94 121 | 78.50 117 | 86.60 116 | 76.85 164 |
|
DCV-MVSNet | | | 73.65 82 | 75.78 82 | 71.16 87 | 80.19 90 | 79.27 115 | 77.45 100 | 61.68 126 | 66.73 83 | 58.72 94 | 65.31 83 | 69.96 84 | 62.19 112 | 81.29 86 | 80.97 76 | 86.74 110 | 86.91 73 |
|
v7n | | | 67.05 148 | 66.94 153 | 67.17 134 | 72.35 157 | 78.97 116 | 73.26 147 | 58.88 157 | 51.16 188 | 50.90 139 | 48.21 183 | 50.11 189 | 60.96 126 | 77.70 133 | 77.38 134 | 86.68 114 | 85.05 96 |
|
tfpn200view9 | | | 68.11 130 | 68.72 136 | 67.40 129 | 77.83 108 | 78.93 117 | 74.28 129 | 62.81 103 | 56.64 152 | 46.82 160 | 52.65 162 | 53.47 166 | 56.59 153 | 80.41 97 | 78.43 118 | 86.11 125 | 80.52 138 |
|
CHOSEN 1792x2688 | | | 69.20 121 | 69.26 128 | 69.13 109 | 76.86 117 | 78.93 117 | 77.27 101 | 60.12 142 | 61.86 120 | 54.42 115 | 42.54 195 | 61.61 119 | 66.91 87 | 78.55 126 | 78.14 122 | 79.23 176 | 83.23 115 |
|
thres600view7 | | | 67.68 138 | 68.43 140 | 66.80 141 | 77.90 105 | 78.86 119 | 73.84 137 | 62.75 104 | 56.07 158 | 44.70 174 | 52.85 160 | 52.81 173 | 55.58 162 | 80.41 97 | 77.77 126 | 86.05 129 | 80.28 141 |
|
thres200 | | | 67.98 132 | 68.55 139 | 67.30 132 | 77.89 107 | 78.86 119 | 74.18 133 | 62.75 104 | 56.35 155 | 46.48 163 | 52.98 158 | 53.54 162 | 56.46 154 | 80.41 97 | 77.97 124 | 86.05 129 | 79.78 146 |
|
FC-MVSNet-train | | | 72.60 88 | 75.07 84 | 69.71 103 | 81.10 80 | 78.79 121 | 73.74 141 | 65.23 80 | 66.10 87 | 53.34 125 | 70.36 62 | 63.40 114 | 56.92 152 | 81.44 80 | 80.96 77 | 87.93 80 | 84.46 104 |
|
tttt0517 | | | 71.41 98 | 72.95 98 | 69.60 105 | 73.70 147 | 78.70 122 | 74.42 127 | 59.12 152 | 63.89 105 | 58.35 98 | 64.56 89 | 58.39 135 | 64.27 100 | 80.29 102 | 80.17 96 | 87.74 87 | 84.69 101 |
|
thisisatest0530 | | | 71.48 97 | 73.01 97 | 69.70 104 | 73.83 145 | 78.62 123 | 74.53 123 | 59.12 152 | 64.13 101 | 58.63 95 | 64.60 88 | 58.63 133 | 64.27 100 | 80.28 103 | 80.17 96 | 87.82 85 | 84.64 102 |
|
thres400 | | | 67.95 133 | 68.62 138 | 67.17 134 | 77.90 105 | 78.59 124 | 74.27 130 | 62.72 106 | 56.34 156 | 45.77 169 | 53.00 157 | 53.35 169 | 56.46 154 | 80.21 106 | 78.43 118 | 85.91 136 | 80.43 139 |
|
GA-MVS | | | 68.14 129 | 69.17 130 | 66.93 140 | 73.77 146 | 78.50 125 | 74.45 124 | 58.28 160 | 55.11 164 | 48.44 151 | 60.08 103 | 53.99 159 | 61.50 123 | 78.43 127 | 77.57 130 | 85.13 147 | 80.54 137 |
|
UniMVSNet_ETH3D | | | 67.18 147 | 67.03 152 | 67.36 130 | 74.44 138 | 78.12 126 | 74.07 134 | 66.38 69 | 52.22 182 | 46.87 159 | 48.64 181 | 51.84 180 | 56.96 150 | 77.29 137 | 78.53 116 | 85.42 143 | 82.59 117 |
|
V42 | | | 68.76 126 | 69.63 123 | 67.74 122 | 64.93 195 | 78.01 127 | 78.30 92 | 56.48 167 | 58.65 140 | 56.30 109 | 54.26 143 | 57.03 142 | 64.85 98 | 77.47 136 | 77.01 140 | 85.60 140 | 84.96 97 |
|
GBi-Net | | | 70.78 101 | 73.37 95 | 67.76 120 | 72.95 152 | 78.00 128 | 75.15 114 | 62.72 106 | 64.13 101 | 51.44 134 | 58.37 116 | 69.02 92 | 57.59 144 | 81.33 83 | 80.72 81 | 86.70 111 | 82.02 120 |
|
test1 | | | 70.78 101 | 73.37 95 | 67.76 120 | 72.95 152 | 78.00 128 | 75.15 114 | 62.72 106 | 64.13 101 | 51.44 134 | 58.37 116 | 69.02 92 | 57.59 144 | 81.33 83 | 80.72 81 | 86.70 111 | 82.02 120 |
|
FMVSNet2 | | | 70.39 107 | 72.67 101 | 67.72 123 | 72.95 152 | 78.00 128 | 75.15 114 | 62.69 110 | 63.29 109 | 51.25 138 | 55.64 131 | 68.49 99 | 57.59 144 | 80.91 94 | 80.35 93 | 86.70 111 | 82.02 120 |
|
FMVSNet3 | | | 70.49 105 | 72.90 99 | 67.67 125 | 72.88 155 | 77.98 131 | 74.96 121 | 62.72 106 | 64.13 101 | 51.44 134 | 58.37 116 | 69.02 92 | 57.43 147 | 79.43 115 | 79.57 103 | 86.59 117 | 81.81 127 |
|
COLMAP_ROB |  | 62.73 15 | 67.66 139 | 66.76 155 | 68.70 114 | 80.49 87 | 77.98 131 | 75.29 112 | 62.95 101 | 63.62 107 | 49.96 143 | 47.32 186 | 50.72 186 | 58.57 136 | 76.87 143 | 75.50 155 | 84.94 151 | 75.33 175 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
Fast-Effi-MVS+-dtu | | | 68.34 128 | 69.47 125 | 67.01 138 | 75.15 129 | 77.97 133 | 77.12 102 | 55.40 170 | 57.87 141 | 46.68 162 | 56.17 129 | 60.39 123 | 62.36 110 | 76.32 149 | 76.25 150 | 85.35 145 | 81.34 130 |
|
MS-PatchMatch | | | 70.17 110 | 70.49 114 | 69.79 102 | 80.98 81 | 77.97 133 | 77.51 97 | 58.95 155 | 62.33 116 | 55.22 114 | 53.14 155 | 65.90 106 | 62.03 115 | 79.08 119 | 77.11 139 | 84.08 156 | 77.91 156 |
|
thres100view900 | | | 67.60 142 | 68.02 143 | 67.12 136 | 77.83 108 | 77.75 135 | 73.90 136 | 62.52 114 | 56.64 152 | 46.82 160 | 52.65 162 | 53.47 166 | 55.92 158 | 78.77 123 | 77.62 129 | 85.72 137 | 79.23 149 |
|
FMVSNet1 | | | 68.84 124 | 70.47 115 | 66.94 139 | 71.35 169 | 77.68 136 | 74.71 122 | 62.35 118 | 56.93 150 | 49.94 144 | 50.01 175 | 64.59 109 | 57.07 149 | 81.33 83 | 80.72 81 | 86.25 122 | 82.00 123 |
|
gg-mvs-nofinetune | | | 62.55 169 | 65.05 167 | 59.62 178 | 78.72 102 | 77.61 137 | 70.83 156 | 53.63 171 | 39.71 211 | 22.04 212 | 36.36 204 | 64.32 110 | 47.53 182 | 81.16 89 | 79.03 111 | 85.00 150 | 77.17 161 |
|
WR-MVS | | | 63.03 165 | 67.40 150 | 57.92 184 | 75.14 130 | 77.60 138 | 60.56 197 | 66.10 72 | 54.11 174 | 23.88 206 | 53.94 146 | 53.58 161 | 34.50 202 | 73.93 161 | 77.71 127 | 87.35 93 | 80.94 133 |
|
v148 | | | 67.85 135 | 67.53 147 | 68.23 117 | 73.25 150 | 77.57 139 | 74.26 131 | 57.36 165 | 55.70 160 | 57.45 103 | 53.53 148 | 55.42 148 | 61.96 117 | 75.23 153 | 73.92 162 | 85.08 148 | 81.32 131 |
|
LTVRE_ROB | | 59.44 16 | 61.82 181 | 62.64 183 | 60.87 171 | 72.83 156 | 77.19 140 | 64.37 186 | 58.97 154 | 33.56 216 | 28.00 202 | 52.59 164 | 42.21 207 | 63.93 103 | 74.52 157 | 76.28 148 | 77.15 183 | 82.13 119 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
baseline2 | | | 69.69 114 | 70.27 116 | 69.01 111 | 75.72 125 | 77.13 141 | 73.82 138 | 58.94 156 | 61.35 124 | 57.09 104 | 61.68 95 | 57.17 141 | 61.99 116 | 78.10 130 | 76.58 146 | 86.48 120 | 79.85 144 |
|
WR-MVS_H | | | 61.83 180 | 65.87 159 | 57.12 187 | 71.72 162 | 76.87 142 | 61.45 195 | 66.19 70 | 51.97 185 | 22.92 210 | 53.13 156 | 52.30 178 | 33.80 203 | 71.03 180 | 75.00 157 | 86.65 115 | 80.78 135 |
|
baseline1 | | | 70.10 111 | 72.17 104 | 67.69 124 | 79.74 94 | 76.80 143 | 73.91 135 | 64.38 86 | 62.74 114 | 48.30 152 | 64.94 84 | 64.08 111 | 54.17 169 | 81.46 79 | 78.92 112 | 85.66 139 | 76.22 166 |
|
TDRefinement | | | 66.09 151 | 65.03 168 | 67.31 131 | 69.73 179 | 76.75 144 | 75.33 110 | 64.55 85 | 60.28 133 | 49.72 146 | 45.63 189 | 42.83 206 | 60.46 131 | 75.75 150 | 75.95 151 | 84.08 156 | 78.04 155 |
|
Vis-MVSNet (Re-imp) | | | 67.83 136 | 73.52 91 | 61.19 169 | 78.37 103 | 76.72 145 | 66.80 174 | 62.96 100 | 65.50 91 | 34.17 195 | 67.19 78 | 69.68 88 | 39.20 198 | 79.39 116 | 79.44 107 | 85.68 138 | 76.73 165 |
|
CDS-MVSNet | | | 67.65 140 | 69.83 121 | 65.09 149 | 75.39 128 | 76.55 146 | 74.42 127 | 63.75 90 | 53.55 175 | 49.37 147 | 59.41 109 | 62.45 116 | 44.44 187 | 79.71 110 | 79.82 98 | 83.17 162 | 77.36 160 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
pm-mvs1 | | | 65.62 152 | 67.42 149 | 63.53 161 | 73.66 148 | 76.39 147 | 69.66 158 | 60.87 132 | 49.73 192 | 43.97 175 | 51.24 171 | 57.00 143 | 48.16 181 | 79.89 108 | 77.84 125 | 84.85 153 | 79.82 145 |
|
IterMVS-LS | | | 71.69 94 | 72.82 100 | 70.37 95 | 77.54 112 | 76.34 148 | 75.13 117 | 60.46 137 | 61.53 123 | 57.57 101 | 64.89 85 | 67.33 102 | 66.04 95 | 77.09 141 | 77.37 135 | 85.48 142 | 85.18 93 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
GG-mvs-BLEND | | | 46.86 208 | 67.51 148 | 22.75 214 | 0.05 225 | 76.21 149 | 64.69 184 | 0.04 222 | 61.90 119 | 0.09 226 | 55.57 132 | 71.32 76 | 0.08 221 | 70.54 184 | 67.19 193 | 71.58 203 | 69.86 190 |
|
CostFormer | | | 68.92 123 | 69.58 124 | 68.15 118 | 75.98 123 | 76.17 150 | 78.22 93 | 51.86 184 | 65.80 89 | 61.56 86 | 63.57 91 | 62.83 115 | 61.85 119 | 70.40 188 | 68.67 185 | 79.42 174 | 79.62 147 |
|
MVSTER | | | 72.06 91 | 74.24 86 | 69.51 106 | 70.39 175 | 75.97 151 | 76.91 104 | 57.36 165 | 64.64 97 | 61.39 87 | 68.86 68 | 63.76 112 | 63.46 104 | 81.44 80 | 79.70 99 | 87.56 90 | 85.31 91 |
|
baseline | | | 70.45 106 | 74.09 88 | 66.20 145 | 70.95 172 | 75.67 152 | 74.26 131 | 53.57 172 | 68.33 77 | 58.42 96 | 69.87 64 | 71.45 74 | 61.55 122 | 74.84 156 | 74.76 159 | 78.42 178 | 83.72 111 |
|
IterMVS-SCA-FT | | | 66.89 149 | 69.22 129 | 64.17 155 | 71.30 170 | 75.64 153 | 71.33 153 | 53.17 176 | 57.63 147 | 49.08 149 | 60.72 99 | 60.05 127 | 63.09 106 | 74.99 155 | 73.92 162 | 77.07 184 | 81.57 129 |
|
tfpnnormal | | | 64.27 161 | 63.64 177 | 65.02 150 | 75.84 124 | 75.61 154 | 71.24 155 | 62.52 114 | 47.79 196 | 42.97 178 | 42.65 194 | 44.49 204 | 52.66 174 | 78.77 123 | 76.86 141 | 84.88 152 | 79.29 148 |
|
PEN-MVS | | | 62.96 166 | 65.77 160 | 59.70 177 | 73.98 143 | 75.45 155 | 63.39 190 | 67.61 63 | 52.49 180 | 25.49 205 | 53.39 149 | 49.12 192 | 40.85 195 | 71.94 173 | 77.26 137 | 86.86 106 | 80.72 136 |
|
CP-MVSNet | | | 62.68 168 | 65.49 163 | 59.40 180 | 71.84 160 | 75.34 156 | 62.87 192 | 67.04 67 | 52.64 179 | 27.19 203 | 53.38 150 | 48.15 194 | 41.40 193 | 71.26 176 | 75.68 152 | 86.07 127 | 82.00 123 |
|
TransMVSNet (Re) | | | 64.74 158 | 65.66 161 | 63.66 160 | 77.40 114 | 75.33 157 | 69.86 157 | 62.67 112 | 47.63 197 | 41.21 182 | 50.01 175 | 52.33 176 | 45.31 186 | 79.57 112 | 77.69 128 | 85.49 141 | 77.07 163 |
|
thisisatest0515 | | | 67.40 144 | 68.78 134 | 65.80 147 | 70.02 177 | 75.24 158 | 69.36 161 | 57.37 164 | 54.94 168 | 53.67 123 | 55.53 134 | 54.85 152 | 58.00 141 | 78.19 129 | 78.91 113 | 86.39 121 | 83.78 110 |
|
USDC | | | 67.36 145 | 67.90 145 | 66.74 143 | 71.72 162 | 75.23 159 | 71.58 152 | 60.28 138 | 67.45 80 | 50.54 142 | 60.93 97 | 45.20 203 | 62.08 113 | 76.56 147 | 74.50 160 | 84.25 155 | 75.38 174 |
|
PS-CasMVS | | | 62.38 174 | 65.06 166 | 59.25 181 | 71.73 161 | 75.21 160 | 62.77 193 | 66.99 68 | 51.94 186 | 26.96 204 | 52.00 167 | 47.52 197 | 41.06 194 | 71.16 179 | 75.60 153 | 85.97 134 | 81.97 125 |
|
pmmvs6 | | | 62.41 172 | 62.88 180 | 61.87 166 | 71.38 168 | 75.18 161 | 67.76 167 | 59.45 150 | 41.64 207 | 42.52 180 | 37.33 202 | 52.91 172 | 46.87 183 | 77.67 134 | 76.26 149 | 83.23 161 | 79.18 150 |
|
Baseline_NR-MVSNet | | | 67.53 143 | 68.77 135 | 66.09 146 | 75.99 121 | 74.75 162 | 72.43 150 | 68.41 55 | 61.33 125 | 38.33 188 | 51.31 170 | 54.13 158 | 56.03 157 | 79.22 117 | 78.19 121 | 85.37 144 | 82.45 118 |
|
IterMVS | | | 66.36 150 | 68.30 142 | 64.10 156 | 69.48 182 | 74.61 163 | 73.41 145 | 50.79 190 | 57.30 149 | 48.28 153 | 60.64 100 | 59.92 128 | 60.85 130 | 74.14 160 | 72.66 169 | 81.80 165 | 78.82 152 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
DTE-MVSNet | | | 61.85 178 | 64.96 169 | 58.22 183 | 74.32 139 | 74.39 164 | 61.01 196 | 67.85 61 | 51.76 187 | 21.91 213 | 53.28 151 | 48.17 193 | 37.74 199 | 72.22 170 | 76.44 147 | 86.52 119 | 78.49 153 |
|
anonymousdsp | | | 65.28 155 | 67.98 144 | 62.13 165 | 58.73 207 | 73.98 165 | 67.10 171 | 50.69 191 | 48.41 195 | 47.66 158 | 54.27 141 | 52.75 175 | 61.45 125 | 76.71 146 | 80.20 94 | 87.13 99 | 89.53 56 |
|
pmmvs4 | | | 67.89 134 | 67.39 151 | 68.48 116 | 71.60 166 | 73.57 166 | 74.45 124 | 60.98 130 | 64.65 96 | 57.97 100 | 54.95 138 | 51.73 181 | 61.88 118 | 73.78 162 | 75.11 156 | 83.99 158 | 77.91 156 |
|
SCA | | | 65.40 154 | 66.58 157 | 64.02 157 | 70.65 173 | 73.37 167 | 67.35 168 | 53.46 174 | 63.66 106 | 54.14 117 | 60.84 98 | 60.20 126 | 61.50 123 | 69.96 189 | 68.14 190 | 77.01 185 | 69.91 189 |
|
tpm cat1 | | | 65.41 153 | 63.81 176 | 67.28 133 | 75.61 127 | 72.88 168 | 75.32 111 | 52.85 178 | 62.97 111 | 63.66 80 | 53.24 153 | 53.29 171 | 61.83 120 | 65.54 199 | 64.14 201 | 74.43 196 | 74.60 177 |
|
PatchMatch-RL | | | 67.78 137 | 66.65 156 | 69.10 110 | 73.01 151 | 72.69 169 | 68.49 164 | 61.85 123 | 62.93 112 | 60.20 90 | 56.83 127 | 50.42 187 | 69.52 72 | 75.62 151 | 74.46 161 | 81.51 166 | 73.62 183 |
|
SixPastTwentyTwo | | | 61.84 179 | 62.45 185 | 61.12 170 | 69.20 183 | 72.20 170 | 62.03 194 | 57.40 163 | 46.54 200 | 38.03 190 | 57.14 126 | 41.72 208 | 58.12 140 | 69.67 190 | 71.58 173 | 81.94 164 | 78.30 154 |
|
dps | | | 64.00 163 | 62.99 179 | 65.18 148 | 73.29 149 | 72.07 171 | 68.98 163 | 53.07 177 | 57.74 145 | 58.41 97 | 55.55 133 | 47.74 196 | 60.89 129 | 69.53 191 | 67.14 194 | 76.44 188 | 71.19 187 |
|
TinyColmap | | | 62.84 167 | 61.03 192 | 64.96 151 | 69.61 180 | 71.69 172 | 68.48 165 | 59.76 147 | 55.41 161 | 47.69 157 | 47.33 185 | 34.20 215 | 62.76 109 | 74.52 157 | 72.59 170 | 81.44 167 | 71.47 186 |
|
pmmvs5 | | | 62.37 175 | 64.04 174 | 60.42 172 | 65.03 193 | 71.67 173 | 67.17 170 | 52.70 181 | 50.30 189 | 44.80 172 | 54.23 144 | 51.19 184 | 49.37 179 | 72.88 165 | 73.48 166 | 83.45 159 | 74.55 178 |
|
our_test_3 | | | | | | 67.93 186 | 70.99 174 | 66.89 172 | | | | | | | | | | |
|
MDTV_nov1_ep13 | | | 64.37 160 | 65.24 164 | 63.37 163 | 68.94 184 | 70.81 175 | 72.40 151 | 50.29 193 | 60.10 134 | 53.91 121 | 60.07 104 | 59.15 131 | 57.21 148 | 69.43 192 | 67.30 192 | 77.47 181 | 69.78 191 |
|
RPSCF | | | 67.64 141 | 71.25 109 | 63.43 162 | 61.86 201 | 70.73 176 | 67.26 169 | 50.86 189 | 74.20 61 | 58.91 92 | 67.49 76 | 69.33 89 | 64.10 102 | 71.41 175 | 68.45 189 | 77.61 180 | 77.17 161 |
|
CMPMVS |  | 47.78 17 | 62.49 171 | 62.52 184 | 62.46 164 | 70.01 178 | 70.66 177 | 62.97 191 | 51.84 185 | 51.98 184 | 56.71 107 | 42.87 193 | 53.62 160 | 57.80 143 | 72.23 169 | 70.37 177 | 75.45 193 | 75.91 168 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
pmmvs-eth3d | | | 63.52 164 | 62.44 186 | 64.77 152 | 66.82 190 | 70.12 178 | 69.41 160 | 59.48 149 | 54.34 173 | 52.71 128 | 46.24 188 | 44.35 205 | 56.93 151 | 72.37 166 | 73.77 164 | 83.30 160 | 75.91 168 |
|
CR-MVSNet | | | 64.83 157 | 65.54 162 | 64.01 158 | 70.64 174 | 69.41 179 | 65.97 179 | 52.74 179 | 57.81 143 | 52.65 129 | 54.27 141 | 56.31 145 | 60.92 127 | 72.20 171 | 73.09 167 | 81.12 169 | 75.69 171 |
|
RPMNet | | | 61.71 182 | 62.88 180 | 60.34 173 | 69.51 181 | 69.41 179 | 63.48 189 | 49.23 195 | 57.81 143 | 45.64 170 | 50.51 173 | 50.12 188 | 53.13 173 | 68.17 197 | 68.49 188 | 81.07 170 | 75.62 173 |
|
CVMVSNet | | | 62.55 169 | 65.89 158 | 58.64 182 | 66.95 188 | 69.15 181 | 66.49 178 | 56.29 169 | 52.46 181 | 32.70 196 | 59.27 110 | 58.21 137 | 50.09 178 | 71.77 174 | 71.39 174 | 79.31 175 | 78.99 151 |
|
MDTV_nov1_ep13_2view | | | 60.16 186 | 60.51 194 | 59.75 176 | 65.39 192 | 69.05 182 | 68.00 166 | 48.29 201 | 51.99 183 | 45.95 168 | 48.01 184 | 49.64 191 | 53.39 171 | 68.83 194 | 66.52 196 | 77.47 181 | 69.55 192 |
|
PatchmatchNet |  | | 64.21 162 | 64.65 170 | 63.69 159 | 71.29 171 | 68.66 183 | 69.63 159 | 51.70 186 | 63.04 110 | 53.77 122 | 59.83 107 | 58.34 136 | 60.23 132 | 68.54 195 | 66.06 197 | 75.56 191 | 68.08 195 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
EPNet_dtu | | | 68.08 131 | 71.00 110 | 64.67 153 | 79.64 95 | 68.62 184 | 75.05 118 | 63.30 95 | 66.36 85 | 45.27 171 | 67.40 77 | 66.84 104 | 43.64 189 | 75.37 152 | 74.98 158 | 81.15 168 | 77.44 159 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
test0.0.03 1 | | | 58.80 189 | 61.58 190 | 55.56 192 | 75.02 131 | 68.45 185 | 59.58 201 | 61.96 121 | 52.74 178 | 29.57 199 | 49.75 178 | 54.56 154 | 31.46 205 | 71.19 177 | 69.77 178 | 75.75 189 | 64.57 200 |
|
MDA-MVSNet-bldmvs | | | 53.37 202 | 53.01 205 | 53.79 198 | 43.67 217 | 67.95 186 | 59.69 200 | 57.92 161 | 43.69 203 | 32.41 197 | 41.47 196 | 27.89 220 | 52.38 175 | 56.97 212 | 65.99 198 | 76.68 186 | 67.13 196 |
|
PatchT | | | 61.97 177 | 64.04 174 | 59.55 179 | 60.49 203 | 67.40 187 | 56.54 204 | 48.65 199 | 56.69 151 | 52.65 129 | 51.10 172 | 52.14 179 | 60.92 127 | 72.20 171 | 73.09 167 | 78.03 179 | 75.69 171 |
|
testgi | | | 54.39 200 | 57.86 198 | 50.35 202 | 71.59 167 | 67.24 188 | 54.95 206 | 53.25 175 | 43.36 204 | 23.78 207 | 44.64 190 | 47.87 195 | 24.96 210 | 70.45 185 | 68.66 186 | 73.60 199 | 62.78 205 |
|
MIMVSNet | | | 58.52 191 | 61.34 191 | 55.22 193 | 60.76 202 | 67.01 189 | 66.81 173 | 49.02 197 | 56.43 154 | 38.90 186 | 40.59 199 | 54.54 155 | 40.57 196 | 73.16 164 | 71.65 172 | 75.30 194 | 66.00 198 |
|
PM-MVS | | | 60.48 185 | 60.94 193 | 59.94 175 | 58.85 206 | 66.83 190 | 64.27 187 | 51.39 187 | 55.03 166 | 48.03 154 | 50.00 177 | 40.79 210 | 58.26 139 | 69.20 193 | 67.13 195 | 78.84 177 | 77.60 158 |
|
Anonymous20231206 | | | 56.36 195 | 57.80 199 | 54.67 195 | 70.08 176 | 66.39 191 | 60.46 198 | 57.54 162 | 49.50 194 | 29.30 200 | 33.86 207 | 46.64 198 | 35.18 201 | 70.44 186 | 68.88 184 | 75.47 192 | 68.88 194 |
|
test20.03 | | | 53.93 201 | 56.28 202 | 51.19 201 | 72.19 159 | 65.83 192 | 53.20 208 | 61.08 128 | 42.74 205 | 22.08 211 | 37.07 203 | 45.76 202 | 24.29 213 | 70.44 186 | 69.04 182 | 74.31 197 | 63.05 204 |
|
Patchmtry | | | | | | | 65.80 193 | 65.97 179 | 52.74 179 | | 52.65 129 | | | | | | | |
|
TAMVS | | | 59.58 188 | 62.81 182 | 55.81 191 | 66.03 191 | 65.64 194 | 63.86 188 | 48.74 198 | 49.95 191 | 37.07 192 | 54.77 139 | 58.54 134 | 44.44 187 | 72.29 168 | 71.79 171 | 74.70 195 | 66.66 197 |
|
test-mter | | | 60.84 184 | 64.62 171 | 56.42 189 | 55.99 211 | 64.18 195 | 65.39 181 | 34.23 214 | 54.39 172 | 46.21 166 | 57.40 125 | 59.49 130 | 55.86 159 | 71.02 181 | 69.65 179 | 80.87 171 | 76.20 167 |
|
tpmrst | | | 62.00 176 | 62.35 187 | 61.58 167 | 71.62 165 | 64.14 196 | 69.07 162 | 48.22 203 | 62.21 117 | 53.93 120 | 58.26 120 | 55.30 150 | 55.81 160 | 63.22 204 | 62.62 203 | 70.85 205 | 70.70 188 |
|
test-LLR | | | 64.42 159 | 64.36 172 | 64.49 154 | 75.02 131 | 63.93 197 | 66.61 176 | 61.96 121 | 54.41 170 | 47.77 155 | 57.46 123 | 60.25 124 | 55.20 165 | 70.80 182 | 69.33 180 | 80.40 172 | 74.38 179 |
|
TESTMET0.1,1 | | | 61.10 183 | 64.36 172 | 57.29 186 | 57.53 208 | 63.93 197 | 66.61 176 | 36.22 213 | 54.41 170 | 47.77 155 | 57.46 123 | 60.25 124 | 55.20 165 | 70.80 182 | 69.33 180 | 80.40 172 | 74.38 179 |
|
tpm | | | 62.41 172 | 63.15 178 | 61.55 168 | 72.24 158 | 63.79 199 | 71.31 154 | 46.12 207 | 57.82 142 | 55.33 112 | 59.90 106 | 54.74 153 | 53.63 170 | 67.24 198 | 64.29 200 | 70.65 206 | 74.25 181 |
|
PMMVS | | | 65.06 156 | 69.17 130 | 60.26 174 | 55.25 213 | 63.43 200 | 66.71 175 | 43.01 209 | 62.41 115 | 50.64 140 | 69.44 65 | 67.04 103 | 63.29 105 | 74.36 159 | 73.54 165 | 82.68 163 | 73.99 182 |
|
ambc | | | | 53.42 203 | | 64.99 194 | 63.36 201 | 49.96 211 | | 47.07 198 | 37.12 191 | 28.97 211 | 16.36 223 | 41.82 191 | 75.10 154 | 67.34 191 | 71.55 204 | 75.72 170 |
|
FC-MVSNet-test | | | 56.90 194 | 65.20 165 | 47.21 205 | 66.98 187 | 63.20 202 | 49.11 213 | 58.60 159 | 59.38 137 | 11.50 220 | 65.60 81 | 56.68 144 | 24.66 212 | 71.17 178 | 71.36 175 | 72.38 202 | 69.02 193 |
|
EPMVS | | | 60.00 187 | 61.97 188 | 57.71 185 | 68.46 185 | 63.17 203 | 64.54 185 | 48.23 202 | 63.30 108 | 44.72 173 | 60.19 102 | 56.05 147 | 50.85 177 | 65.27 202 | 62.02 204 | 69.44 208 | 63.81 202 |
|
FMVSNet5 | | | 57.24 192 | 60.02 195 | 53.99 197 | 56.45 210 | 62.74 204 | 65.27 182 | 47.03 204 | 55.14 163 | 39.55 185 | 40.88 197 | 53.42 168 | 41.83 190 | 72.35 167 | 71.10 176 | 73.79 198 | 64.50 201 |
|
EU-MVSNet | | | 54.63 198 | 58.69 196 | 49.90 203 | 56.99 209 | 62.70 205 | 56.41 205 | 50.64 192 | 45.95 202 | 23.14 209 | 50.42 174 | 46.51 199 | 36.63 200 | 65.51 200 | 64.85 199 | 75.57 190 | 74.91 176 |
|
gm-plane-assit | | | 57.00 193 | 57.62 200 | 56.28 190 | 76.10 120 | 62.43 206 | 47.62 214 | 46.57 205 | 33.84 215 | 23.24 208 | 37.52 201 | 40.19 211 | 59.61 133 | 79.81 109 | 77.55 131 | 84.55 154 | 72.03 185 |
|
MIMVSNet1 | | | 49.27 204 | 53.25 204 | 44.62 207 | 44.61 215 | 61.52 207 | 53.61 207 | 52.18 182 | 41.62 208 | 18.68 216 | 28.14 213 | 41.58 209 | 25.50 208 | 68.46 196 | 69.04 182 | 73.15 200 | 62.37 206 |
|
pmnet_mix02 | | | 55.30 197 | 57.01 201 | 53.30 200 | 64.14 196 | 59.09 208 | 58.39 203 | 50.24 194 | 53.47 176 | 38.68 187 | 49.75 178 | 45.86 201 | 40.14 197 | 65.38 201 | 60.22 206 | 68.19 210 | 65.33 199 |
|
ADS-MVSNet | | | 55.94 196 | 58.01 197 | 53.54 199 | 62.48 200 | 58.48 209 | 59.12 202 | 46.20 206 | 59.65 136 | 42.88 179 | 52.34 166 | 53.31 170 | 46.31 184 | 62.00 206 | 60.02 207 | 64.23 213 | 60.24 209 |
|
FPMVS | | | 51.87 203 | 50.00 208 | 54.07 196 | 66.83 189 | 57.25 210 | 60.25 199 | 50.91 188 | 50.25 190 | 34.36 194 | 36.04 205 | 32.02 217 | 41.49 192 | 58.98 210 | 56.07 209 | 70.56 207 | 59.36 210 |
|
new-patchmatchnet | | | 46.97 207 | 49.47 209 | 44.05 209 | 62.82 198 | 56.55 211 | 45.35 215 | 52.01 183 | 42.47 206 | 17.04 218 | 35.73 206 | 35.21 214 | 21.84 216 | 61.27 207 | 54.83 211 | 65.26 212 | 60.26 207 |
|
MVS-HIRNet | | | 54.41 199 | 52.10 206 | 57.11 188 | 58.99 205 | 56.10 212 | 49.68 212 | 49.10 196 | 46.18 201 | 52.15 133 | 33.18 208 | 46.11 200 | 56.10 156 | 63.19 205 | 59.70 208 | 76.64 187 | 60.25 208 |
|
pmmvs3 | | | 47.65 205 | 49.08 210 | 45.99 206 | 44.61 215 | 54.79 213 | 50.04 210 | 31.95 217 | 33.91 214 | 29.90 198 | 30.37 209 | 33.53 216 | 46.31 184 | 63.50 203 | 63.67 202 | 73.14 201 | 63.77 203 |
|
N_pmnet | | | 47.35 206 | 50.13 207 | 44.11 208 | 59.98 204 | 51.64 214 | 51.86 209 | 44.80 208 | 49.58 193 | 20.76 214 | 40.65 198 | 40.05 212 | 29.64 206 | 59.84 208 | 55.15 210 | 57.63 214 | 54.00 212 |
|
CHOSEN 280x420 | | | 58.70 190 | 61.88 189 | 54.98 194 | 55.45 212 | 50.55 215 | 64.92 183 | 40.36 210 | 55.21 162 | 38.13 189 | 48.31 182 | 63.76 112 | 63.03 108 | 73.73 163 | 68.58 187 | 68.00 211 | 73.04 184 |
|
new_pmnet | | | 38.40 210 | 42.64 212 | 33.44 211 | 37.54 220 | 45.00 216 | 36.60 217 | 32.72 216 | 40.27 209 | 12.72 219 | 29.89 210 | 28.90 219 | 24.78 211 | 53.17 213 | 52.90 213 | 56.31 215 | 48.34 213 |
|
PMVS |  | 39.38 18 | 46.06 209 | 43.30 211 | 49.28 204 | 62.93 197 | 38.75 217 | 41.88 216 | 53.50 173 | 33.33 217 | 35.46 193 | 28.90 212 | 31.01 218 | 33.04 204 | 58.61 211 | 54.63 212 | 68.86 209 | 57.88 211 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
Gipuma |  | | 36.38 211 | 35.80 213 | 37.07 210 | 45.76 214 | 33.90 218 | 29.81 218 | 48.47 200 | 39.91 210 | 18.02 217 | 8.00 221 | 8.14 225 | 25.14 209 | 59.29 209 | 61.02 205 | 55.19 216 | 40.31 214 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
PMMVS2 | | | 25.60 212 | 29.75 214 | 20.76 215 | 28.00 221 | 30.93 219 | 23.10 220 | 29.18 218 | 23.14 219 | 1.46 225 | 18.23 217 | 16.54 222 | 5.08 219 | 40.22 214 | 41.40 215 | 37.76 217 | 37.79 216 |
|
MVE |  | 19.12 19 | 20.47 216 | 23.27 216 | 17.20 217 | 12.66 223 | 25.41 220 | 10.52 224 | 34.14 215 | 14.79 222 | 6.53 224 | 8.79 220 | 4.68 226 | 16.64 218 | 29.49 217 | 41.63 214 | 22.73 222 | 38.11 215 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
E-PMN | | | 21.77 214 | 18.24 217 | 25.89 212 | 40.22 218 | 19.58 221 | 12.46 223 | 39.87 211 | 18.68 221 | 6.71 222 | 9.57 218 | 4.31 228 | 22.36 215 | 19.89 219 | 27.28 217 | 33.73 219 | 28.34 218 |
|
EMVS | | | 20.98 215 | 17.15 218 | 25.44 213 | 39.51 219 | 19.37 222 | 12.66 222 | 39.59 212 | 19.10 220 | 6.62 223 | 9.27 219 | 4.40 227 | 22.43 214 | 17.99 220 | 24.40 218 | 31.81 220 | 25.53 219 |
|
DeepMVS_CX |  | | | | | | 18.74 223 | 18.55 221 | 8.02 219 | 26.96 218 | 7.33 221 | 23.81 215 | 13.05 224 | 25.99 207 | 25.17 218 | | 22.45 223 | 36.25 217 |
|
test_method | | | 22.26 213 | 25.94 215 | 17.95 216 | 3.24 224 | 7.17 224 | 23.83 219 | 7.27 220 | 37.35 213 | 20.44 215 | 21.87 216 | 39.16 213 | 18.67 217 | 34.56 215 | 20.84 219 | 34.28 218 | 20.64 220 |
|
tmp_tt | | | | | 14.50 218 | 14.68 222 | 7.17 224 | 10.46 225 | 2.21 221 | 37.73 212 | 28.71 201 | 25.26 214 | 16.98 221 | 4.37 220 | 31.49 216 | 29.77 216 | 26.56 221 | |
|
testmvs | | | 0.09 217 | 0.15 219 | 0.02 219 | 0.01 226 | 0.02 226 | 0.05 227 | 0.01 223 | 0.11 223 | 0.01 227 | 0.26 223 | 0.01 229 | 0.06 223 | 0.10 221 | 0.10 220 | 0.01 224 | 0.43 222 |
|
test123 | | | 0.09 217 | 0.14 220 | 0.02 219 | 0.00 227 | 0.02 226 | 0.02 228 | 0.01 223 | 0.09 224 | 0.00 228 | 0.30 222 | 0.00 230 | 0.08 221 | 0.03 222 | 0.09 221 | 0.01 224 | 0.45 221 |
|
uanet_test | | | 0.00 219 | 0.00 221 | 0.00 221 | 0.00 227 | 0.00 228 | 0.00 229 | 0.00 225 | 0.00 225 | 0.00 228 | 0.00 224 | 0.00 230 | 0.00 224 | 0.00 223 | 0.00 222 | 0.00 226 | 0.00 223 |
|
sosnet-low-res | | | 0.00 219 | 0.00 221 | 0.00 221 | 0.00 227 | 0.00 228 | 0.00 229 | 0.00 225 | 0.00 225 | 0.00 228 | 0.00 224 | 0.00 230 | 0.00 224 | 0.00 223 | 0.00 222 | 0.00 226 | 0.00 223 |
|
sosnet | | | 0.00 219 | 0.00 221 | 0.00 221 | 0.00 227 | 0.00 228 | 0.00 229 | 0.00 225 | 0.00 225 | 0.00 228 | 0.00 224 | 0.00 230 | 0.00 224 | 0.00 223 | 0.00 222 | 0.00 226 | 0.00 223 |
|
RE-MVS-def | | | | | | | | | | | 46.24 165 | | | | | | | |
|
9.14 | | | | | | | | | | | | | 86.88 16 | | | | | |
|
SR-MVS | | | | | | 88.99 35 | | | 73.57 26 | | | | 87.54 14 | | | | | |
|
MTAPA | | | | | | | | | | | 83.48 1 | | 86.45 19 | | | | | |
|
MTMP | | | | | | | | | | | 82.66 6 | | 84.91 27 | | | | | |
|
Patchmatch-RL test | | | | | | | | 2.85 226 | | | | | | | | | | |
|
mPP-MVS | | | | | | 89.90 26 | | | | | | | 81.29 43 | | | | | |
|
NP-MVS | | | | | | | | | | 80.10 47 | | | | | | | | |
|