This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DPE-MVScopyleft97.83 498.13 497.48 598.83 2299.19 498.99 196.70 196.05 1894.39 998.30 199.47 497.02 697.75 797.02 1498.98 399.10 9
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
APDe-MVScopyleft97.79 597.96 697.60 299.20 299.10 698.88 296.68 296.81 794.64 697.84 398.02 1197.24 397.74 897.02 1498.97 599.16 6
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
SED-MVS97.98 298.36 297.54 498.94 1699.29 298.81 496.64 397.14 395.16 497.96 299.61 296.92 1298.00 197.24 898.75 1799.25 3
DVP-MVS++98.07 198.46 197.62 199.08 399.29 298.84 396.63 497.89 195.35 397.83 499.48 396.98 997.99 297.14 1198.82 1199.60 1
DVP-MVScopyleft97.93 398.23 397.58 399.05 699.31 198.64 696.62 597.56 295.08 596.61 1399.64 197.32 197.91 497.31 698.77 1599.26 2
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
APD-MVScopyleft97.12 1397.05 1897.19 799.04 798.63 1998.45 896.54 694.81 3693.50 1696.10 1997.40 2296.81 1397.05 2296.82 1998.80 1298.56 24
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
SF-MVS97.20 1297.29 1497.10 998.95 1598.51 2997.51 2996.48 796.17 1694.64 697.32 697.57 1996.23 2696.78 2996.15 4398.79 1498.55 29
HPM-MVS++copyleft97.22 1197.40 1297.01 1199.08 398.55 2498.19 1496.48 796.02 1993.28 2096.26 1798.71 896.76 1797.30 1696.25 3998.30 5498.68 17
MSP-MVS97.70 698.09 597.24 699.00 1199.17 598.76 596.41 996.91 593.88 1497.72 599.04 796.93 1197.29 1797.31 698.45 3799.23 4
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
NCCC96.75 1996.67 2496.85 1699.03 998.44 3498.15 1696.28 1096.32 1392.39 2592.16 3597.55 2096.68 1997.32 1496.65 2298.55 2598.26 40
SMA-MVScopyleft97.53 797.93 797.07 1099.21 199.02 898.08 1996.25 1196.36 1293.57 1596.56 1499.27 596.78 1697.91 497.43 398.51 2698.94 12
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
SD-MVS97.35 897.73 896.90 1497.35 4498.66 1497.85 2596.25 1196.86 694.54 896.75 1199.13 696.99 796.94 2696.58 2398.39 4499.20 5
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
CNVR-MVS97.30 1097.41 1197.18 899.02 1098.60 2198.15 1696.24 1396.12 1794.10 1195.54 2597.99 1296.99 797.97 397.17 998.57 2498.50 31
MCST-MVS96.83 1897.06 1796.57 1998.88 2098.47 3298.02 2196.16 1495.58 2390.96 3295.78 2397.84 1496.46 2297.00 2596.17 4198.94 798.55 29
ACMMP_NAP96.93 1697.27 1596.53 2399.06 598.95 998.24 1396.06 1595.66 2190.96 3295.63 2497.71 1696.53 2097.66 1096.68 2098.30 5498.61 22
SR-MVS98.93 1896.00 1697.75 15
SteuartSystems-ACMMP97.10 1597.49 1096.65 1898.97 1398.95 998.43 995.96 1795.12 2891.46 2896.85 997.60 1896.37 2497.76 697.16 1098.68 1898.97 11
Skip Steuart: Steuart Systems R&D Blog.
DeepC-MVS92.10 395.22 3494.77 4195.75 3097.77 3898.54 2597.63 2895.96 1795.07 3188.85 4885.35 7691.85 5495.82 3096.88 2897.10 1298.44 3898.63 19
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
AdaColmapbinary95.02 3793.71 5096.54 2298.51 2697.76 5996.69 4095.94 1993.72 4893.50 1689.01 5390.53 6696.49 2194.51 8593.76 8598.07 7996.69 98
DeepC-MVS_fast93.32 196.48 2296.42 2796.56 2098.70 2598.31 3897.97 2295.76 2096.31 1492.01 2791.43 4095.42 4096.46 2297.65 1197.69 198.49 3198.12 49
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
HFP-MVS97.11 1497.19 1697.00 1298.97 1398.73 1298.37 1195.69 2196.60 993.28 2096.87 896.64 2997.27 296.64 3596.33 3698.44 3898.56 24
LS3D91.97 6990.98 8993.12 6097.03 5197.09 8195.33 6095.59 2292.47 5879.26 12081.60 10682.77 10094.39 4694.28 8794.23 7497.14 13394.45 154
MP-MVScopyleft96.56 2196.72 2396.37 2498.93 1898.48 3098.04 2095.55 2394.32 4090.95 3495.88 2297.02 2696.29 2596.77 3096.01 4998.47 3298.56 24
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
DPM-MVS95.07 3594.84 4095.34 3497.44 4397.49 6897.76 2695.52 2494.88 3488.92 4787.25 6196.44 3094.41 4495.78 5596.11 4597.99 8895.95 126
ACMMPR96.92 1796.96 1996.87 1598.99 1298.78 1198.38 1095.52 2496.57 1092.81 2496.06 2095.90 3697.07 596.60 3796.34 3598.46 3498.42 35
CP-MVS96.68 2096.59 2696.77 1798.85 2198.58 2298.18 1595.51 2695.34 2592.94 2395.21 2896.25 3196.79 1596.44 4295.77 5198.35 4698.56 24
TSAR-MVS + ACMM96.19 2397.39 1394.78 3797.70 4098.41 3597.72 2795.49 2796.47 1186.66 6996.35 1597.85 1393.99 5297.19 2096.37 3197.12 13499.13 7
TSAR-MVS + MP.97.31 997.64 996.92 1397.28 4698.56 2398.61 795.48 2896.72 894.03 1396.73 1298.29 997.15 497.61 1296.42 2698.96 699.13 7
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
PCF-MVS90.19 892.98 5792.07 7394.04 4396.39 5897.87 5196.03 4895.47 2987.16 11885.09 9384.81 8093.21 4993.46 6291.98 13591.98 13197.78 10097.51 73
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
X-MVS96.07 2696.33 2895.77 2998.94 1698.66 1497.94 2395.41 3095.12 2888.03 5493.00 3396.06 3295.85 2996.65 3496.35 3298.47 3298.48 32
train_agg96.15 2596.64 2595.58 3398.44 2798.03 4898.14 1895.40 3193.90 4687.72 5996.26 1798.10 1095.75 3196.25 4795.45 5798.01 8698.47 33
CPTT-MVS95.54 3195.07 3796.10 2597.88 3697.98 5097.92 2494.86 3294.56 3992.16 2691.01 4195.71 3796.97 1094.56 8393.50 9296.81 15798.14 47
ACMMPcopyleft95.54 3195.49 3495.61 3298.27 3198.53 2697.16 3494.86 3294.88 3489.34 4395.36 2791.74 5595.50 3595.51 5994.16 7698.50 2998.22 42
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
MSLP-MVS++96.05 2795.63 3196.55 2198.33 2998.17 4496.94 3794.61 3494.70 3894.37 1089.20 5295.96 3596.81 1395.57 5897.33 598.24 6398.47 33
PLCcopyleft90.69 494.32 4692.99 5895.87 2897.91 3496.49 9495.95 5194.12 3594.94 3294.09 1285.90 7290.77 6395.58 3394.52 8493.32 9997.55 11795.00 148
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
DeepPCF-MVS92.65 295.50 3396.96 1993.79 5196.44 5798.21 4293.51 9894.08 3696.94 489.29 4493.08 3296.77 2893.82 5697.68 997.40 495.59 18098.65 18
CSCG95.68 3095.46 3595.93 2798.71 2499.07 797.13 3593.55 3795.48 2493.35 1990.61 4593.82 4695.16 3794.60 8295.57 5597.70 10899.08 10
CNLPA93.69 5392.50 6595.06 3697.11 4997.36 7093.88 8893.30 3895.64 2293.44 1880.32 11290.73 6494.99 4093.58 10393.33 9797.67 11296.57 103
CDPH-MVS94.80 4195.50 3393.98 4698.34 2898.06 4797.41 3093.23 3992.81 5482.98 10092.51 3494.82 4293.53 6096.08 5096.30 3898.42 4097.94 56
PHI-MVS95.86 2896.93 2294.61 4097.60 4298.65 1896.49 4193.13 4094.07 4387.91 5897.12 797.17 2493.90 5596.46 4096.93 1798.64 2098.10 51
MSDG90.42 9688.25 11692.94 6596.67 5594.41 12193.96 8392.91 4189.59 9886.26 7276.74 13080.92 11790.43 9892.60 12292.08 12897.44 12291.41 180
PGM-MVS96.16 2496.33 2895.95 2699.04 798.63 1998.32 1292.76 4293.42 4990.49 3796.30 1695.31 4196.71 1896.46 4096.02 4898.38 4598.19 44
OPM-MVS91.08 8289.34 10293.11 6196.18 6196.13 10396.39 4392.39 4382.97 15781.74 10382.55 10080.20 12093.97 5494.62 8093.23 10098.00 8795.73 132
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
OMC-MVS94.49 4594.36 4794.64 3997.17 4897.73 6195.49 5592.25 4496.18 1590.34 3888.51 5592.88 5194.90 4194.92 7094.17 7597.69 11096.15 118
EPNet93.92 5094.40 4693.36 5497.89 3596.55 9296.08 4792.14 4591.65 6689.16 4594.07 3090.17 7087.78 12695.24 6494.97 6597.09 13698.15 46
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
HQP-MVS92.39 6592.49 6692.29 7595.65 6695.94 10695.64 5492.12 4692.46 5979.65 11891.97 3782.68 10192.92 7093.47 10892.77 11497.74 10498.12 49
TSAR-MVS + COLMAP92.39 6592.31 7092.47 7195.35 7496.46 9696.13 4692.04 4795.33 2680.11 11694.95 2977.35 13994.05 5194.49 8693.08 10797.15 13194.53 152
CANet94.85 3894.92 3994.78 3797.25 4798.52 2897.20 3291.81 4893.25 5191.06 3186.29 6894.46 4492.99 6797.02 2496.68 2098.34 4898.20 43
TSAR-MVS + GP.95.86 2896.95 2194.60 4194.07 8898.11 4696.30 4491.76 4995.67 2091.07 3096.82 1097.69 1795.71 3295.96 5295.75 5298.68 1898.63 19
TAPA-MVS90.35 693.69 5393.52 5193.90 4796.89 5297.62 6596.15 4591.67 5094.94 3285.97 7487.72 6091.96 5394.40 4593.76 10193.06 10998.30 5495.58 136
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
3Dnovator+90.56 595.06 3694.56 4595.65 3198.11 3298.15 4597.19 3391.59 5195.11 3093.23 2281.99 10394.71 4395.43 3696.48 3996.88 1898.35 4698.63 19
ACMM88.76 1091.70 7790.43 9293.19 5795.56 6795.14 11293.35 10291.48 5292.26 6087.12 6484.02 8479.34 12393.99 5294.07 9392.68 11597.62 11695.50 137
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MVS_030494.30 4794.68 4393.86 5096.33 5998.48 3097.41 3091.20 5392.75 5586.96 6686.03 7193.81 4792.64 7296.89 2796.54 2598.61 2298.24 41
MVS_111021_HR94.84 3995.91 3093.60 5297.35 4498.46 3395.08 6291.19 5494.18 4285.97 7495.38 2692.56 5293.61 5996.61 3696.25 3998.40 4297.92 58
MVS_111021_LR94.84 3995.57 3294.00 4497.11 4997.72 6394.88 6691.16 5595.24 2788.74 4996.03 2191.52 5994.33 4895.96 5295.01 6497.79 9897.49 74
DELS-MVS93.71 5293.47 5294.00 4496.82 5398.39 3696.80 3991.07 5689.51 10089.94 4183.80 8689.29 7290.95 9097.32 1497.65 298.42 4098.32 38
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
3Dnovator90.28 794.70 4294.34 4895.11 3598.06 3398.21 4296.89 3891.03 5794.72 3791.45 2982.87 9493.10 5094.61 4296.24 4897.08 1398.63 2198.16 45
QAPM94.13 4994.33 4993.90 4797.82 3798.37 3796.47 4290.89 5892.73 5785.63 8285.35 7693.87 4594.17 4995.71 5795.90 5098.40 4298.42 35
PVSNet_BlendedMVS92.80 5892.44 6793.23 5596.02 6297.83 5693.74 9290.58 5991.86 6390.69 3585.87 7482.04 11090.01 10096.39 4395.26 6098.34 4897.81 63
PVSNet_Blended92.80 5892.44 6793.23 5596.02 6297.83 5693.74 9290.58 5991.86 6390.69 3585.87 7482.04 11090.01 10096.39 4395.26 6098.34 4897.81 63
OpenMVScopyleft88.18 1192.51 6391.61 8093.55 5397.74 3998.02 4995.66 5390.46 6189.14 10386.50 7075.80 13790.38 6992.69 7194.99 6795.30 5998.27 5897.63 67
EPNet_dtu88.32 11990.61 9185.64 14896.79 5492.27 17792.03 12490.31 6289.05 10465.44 19289.43 5085.90 8474.22 20192.76 11792.09 12795.02 19092.76 174
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test111190.47 9589.10 10792.07 7794.92 7798.30 3994.17 8190.30 6389.56 9983.92 9673.25 15473.66 14990.26 9996.77 3096.14 4498.87 896.04 122
test250690.93 8689.20 10592.95 6494.97 7598.30 3994.53 6890.25 6489.91 9288.39 5383.23 9064.17 19490.69 9396.75 3296.10 4698.87 895.97 125
ECVR-MVScopyleft90.77 9089.27 10392.52 6994.97 7598.30 3994.53 6890.25 6489.91 9285.80 7973.64 14774.31 14890.69 9396.75 3296.10 4698.87 895.91 129
COLMAP_ROBcopyleft84.39 1587.61 12386.03 14389.46 10795.54 6994.48 11891.77 12890.14 6687.16 11875.50 13273.41 15276.86 14287.33 13390.05 16789.76 17796.48 16190.46 189
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
ACMP89.13 992.03 6891.70 7992.41 7394.92 7796.44 9893.95 8489.96 6791.81 6585.48 8790.97 4279.12 12492.42 7493.28 11492.55 11897.76 10297.74 66
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
LGP-MVS_train91.83 7392.04 7491.58 8295.46 7096.18 10295.97 5089.85 6890.45 7977.76 12391.92 3880.07 12192.34 7694.27 8893.47 9398.11 7697.90 61
thres40089.40 10987.58 12991.53 8494.06 8997.21 7694.19 8089.83 6985.69 13281.08 11075.50 13969.76 16491.80 7994.79 7793.51 8998.20 6796.60 101
casdiffmvs_mvgpermissive91.94 7091.25 8592.75 6893.41 10697.19 7795.48 5689.77 7089.86 9486.41 7181.02 11082.23 10892.93 6895.44 6195.61 5498.51 2697.40 77
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
tfpn200view989.55 10787.86 12291.53 8493.90 9597.26 7294.31 7689.74 7185.87 13081.15 10876.46 13270.38 16091.76 8194.92 7093.51 8998.28 5796.61 100
thres600view789.28 11387.47 13291.39 8794.12 8697.25 7393.94 8689.74 7185.62 13580.63 11475.24 14169.33 16691.66 8394.92 7093.23 10098.27 5896.72 97
thres20089.49 10887.72 12491.55 8393.95 9297.25 7394.34 7489.74 7185.66 13381.18 10776.12 13670.19 16391.80 7994.92 7093.51 8998.27 5896.40 108
baseline190.81 8790.29 9391.42 8693.67 10295.86 10793.94 8689.69 7489.29 10282.85 10182.91 9380.30 11989.60 10395.05 6694.79 6898.80 1293.82 163
thres100view90089.36 11087.61 12791.39 8793.90 9596.86 8894.35 7389.66 7585.87 13081.15 10876.46 13270.38 16091.17 8694.09 9293.43 9598.13 7396.16 117
PVSNet_Blended_VisFu91.92 7192.39 6991.36 9095.45 7297.85 5492.25 11789.54 7688.53 11087.47 6179.82 11490.53 6685.47 15296.31 4695.16 6397.99 8898.56 24
casdiffmvspermissive91.72 7691.16 8792.38 7493.16 10997.15 7893.95 8489.49 7791.58 6886.03 7380.75 11180.95 11693.16 6495.25 6395.22 6298.50 2997.23 83
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
dmvs_re87.31 12686.10 14188.74 11589.84 14994.28 12492.66 11089.41 7882.61 15974.69 13474.69 14369.47 16587.78 12692.38 12693.23 10098.03 8396.02 124
Anonymous20240521188.00 11993.16 10996.38 9993.58 9689.34 7987.92 11465.04 19183.03 9792.07 7792.67 11993.33 9796.96 14497.63 67
CS-MVS-test94.63 4395.28 3693.88 4996.56 5698.67 1393.41 10089.31 8094.27 4189.64 4290.84 4391.64 5795.58 3397.04 2396.17 4198.77 1598.32 38
Anonymous2023121189.82 10388.18 11791.74 8092.52 12296.09 10493.38 10189.30 8188.95 10585.90 7764.55 19684.39 9092.41 7592.24 13093.06 10996.93 14997.95 55
CS-MVS94.53 4494.73 4294.31 4296.30 6098.53 2694.98 6389.24 8293.37 5090.24 3988.96 5489.76 7196.09 2897.48 1396.42 2698.99 298.59 23
UGNet91.52 7893.41 5389.32 10994.13 8597.15 7891.83 12789.01 8390.62 7585.86 7886.83 6291.73 5677.40 19294.68 7994.43 7197.71 10698.40 37
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
FC-MVSNet-train90.55 9390.19 9590.97 9393.78 9995.16 11192.11 12288.85 8487.64 11583.38 9984.36 8378.41 13089.53 10494.69 7893.15 10698.15 7197.92 58
diffmvspermissive91.37 7991.09 8891.70 8192.71 12096.47 9594.03 8288.78 8592.74 5685.43 8983.63 8880.37 11891.76 8193.39 11093.78 8497.50 11997.23 83
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CLD-MVS92.50 6491.96 7593.13 5993.93 9496.24 10095.69 5288.77 8692.92 5289.01 4688.19 5881.74 11393.13 6593.63 10293.08 10798.23 6497.91 60
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
ETV-MVS93.80 5194.57 4492.91 6693.98 9097.50 6793.62 9588.70 8791.95 6287.57 6090.21 4790.79 6294.56 4397.20 1996.35 3299.02 197.98 53
PatchMatch-RL90.30 9788.93 10991.89 7895.41 7395.68 10890.94 13088.67 8889.80 9586.95 6785.90 7272.51 15192.46 7393.56 10592.18 12496.93 14992.89 173
EIA-MVS92.72 6192.96 6092.44 7293.86 9797.76 5993.13 10488.65 8989.78 9686.68 6886.69 6587.57 7393.74 5796.07 5195.32 5898.58 2397.53 72
UniMVSNet_NR-MVSNet86.80 13085.86 14887.89 12788.17 16894.07 12890.15 14288.51 9084.20 14773.45 14172.38 15870.30 16288.95 11790.25 16192.21 12398.12 7497.62 69
DI_MVS_plusplus_trai91.05 8390.15 9692.11 7692.67 12196.61 9096.03 4888.44 9190.25 8285.92 7673.73 14684.89 8991.92 7894.17 9194.07 8097.68 11197.31 81
TranMVSNet+NR-MVSNet85.57 14684.41 15986.92 13587.67 17893.34 14690.31 13888.43 9283.07 15670.11 16269.99 16965.28 18686.96 13689.73 17092.27 12198.06 8197.17 87
UA-Net90.81 8792.58 6488.74 11594.87 7997.44 6992.61 11188.22 9382.35 16178.93 12185.20 7895.61 3879.56 18796.52 3896.57 2498.23 6494.37 155
IB-MVS85.10 1487.98 12087.97 12187.99 12494.55 8096.86 8884.52 19688.21 9486.48 12888.54 5274.41 14577.74 13674.10 20389.65 17392.85 11398.06 8197.80 65
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
IS_MVSNet91.87 7293.35 5490.14 10394.09 8797.73 6193.09 10588.12 9588.71 10779.98 11784.49 8190.63 6587.49 13197.07 2196.96 1698.07 7997.88 62
ACMH85.51 1387.31 12686.59 13688.14 12293.96 9194.51 11789.00 16687.99 9681.58 16470.15 16178.41 12171.78 15690.60 9691.30 14491.99 13097.17 13096.58 102
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MAR-MVS92.71 6292.63 6392.79 6797.70 4097.15 7893.75 9187.98 9790.71 7285.76 8086.28 6986.38 7994.35 4794.95 6895.49 5697.22 12797.44 75
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
Vis-MVSNet (Re-imp)90.54 9492.76 6287.94 12593.73 10196.94 8692.17 12087.91 9888.77 10676.12 13183.68 8790.80 6179.49 18896.34 4596.35 3298.21 6696.46 105
MVSTER91.73 7591.61 8091.86 7993.18 10894.56 11594.37 7287.90 9990.16 8788.69 5189.23 5181.28 11588.92 11995.75 5693.95 8298.12 7496.37 109
EPP-MVSNet92.13 6793.06 5791.05 9293.66 10397.30 7192.18 11887.90 9990.24 8383.63 9786.14 7090.52 6890.76 9294.82 7594.38 7298.18 7097.98 53
DU-MVS86.12 13884.81 15687.66 12887.77 17593.78 13390.15 14287.87 10184.40 14173.45 14170.59 16364.82 19188.95 11790.14 16292.33 12097.76 10297.62 69
NR-MVSNet85.46 14884.54 15886.52 14188.33 16793.78 13390.45 13587.87 10184.40 14171.61 14970.59 16362.09 20182.79 17191.75 13791.75 13598.10 7797.44 75
sasdasda93.08 5593.09 5593.07 6294.24 8297.86 5295.45 5787.86 10394.00 4487.47 6188.32 5682.37 10595.13 3893.96 9896.41 2998.27 5898.73 13
canonicalmvs93.08 5593.09 5593.07 6294.24 8297.86 5295.45 5787.86 10394.00 4487.47 6188.32 5682.37 10595.13 3893.96 9896.41 2998.27 5898.73 13
MGCFI-Net92.75 6092.98 5992.48 7094.18 8497.77 5895.28 6187.77 10593.88 4785.28 9188.19 5882.17 10994.14 5093.86 10096.32 3798.20 6798.69 16
TDRefinement84.97 15483.39 16986.81 13792.97 11394.12 12692.18 11887.77 10582.78 15871.31 15368.43 17268.07 17281.10 18389.70 17289.03 18495.55 18291.62 178
Baseline_NR-MVSNet85.28 15083.42 16887.46 13287.77 17590.80 20089.90 15287.69 10783.93 15174.16 13764.72 19466.43 18187.48 13290.14 16290.83 14697.73 10597.11 88
RPSCF89.68 10589.24 10490.20 9992.97 11392.93 16192.30 11587.69 10790.44 8085.12 9291.68 3985.84 8590.69 9387.34 19086.07 19292.46 20290.37 190
ACMH+85.75 1287.19 12886.02 14488.56 11793.42 10594.41 12189.91 15087.66 10983.45 15472.25 14876.42 13471.99 15590.78 9189.86 16890.94 14597.32 12395.11 147
thisisatest053091.04 8491.74 7790.21 9892.93 11597.00 8392.06 12387.63 11090.74 7181.51 10486.81 6382.48 10289.23 11194.81 7693.03 11197.90 9397.33 80
tttt051791.01 8591.71 7890.19 10092.98 11197.07 8291.96 12687.63 11090.61 7681.42 10586.76 6482.26 10789.23 11194.86 7493.03 11197.90 9397.36 78
tfpnnormal83.80 17181.26 19386.77 13889.60 15393.26 15189.72 15587.60 11272.78 20470.44 15960.53 20561.15 20685.55 15092.72 11891.44 14097.71 10696.92 93
TransMVSNet (Re)82.67 18580.93 19684.69 15988.71 16091.50 19287.90 17587.15 11371.54 20968.24 17563.69 19864.67 19378.51 19191.65 13990.73 15297.64 11492.73 176
UniMVSNet (Re)86.22 13685.46 15387.11 13388.34 16694.42 12089.65 15687.10 11484.39 14374.61 13570.41 16668.10 17185.10 15591.17 14791.79 13497.84 9697.94 56
DCV-MVSNet91.24 8091.26 8491.22 9192.84 11693.44 14393.82 8986.75 11591.33 7085.61 8384.00 8585.46 8691.27 8492.91 11693.62 8797.02 14098.05 52
ET-MVSNet_ETH3D89.93 10190.84 9088.87 11379.60 21596.19 10194.43 7086.56 11690.63 7480.75 11390.71 4477.78 13593.73 5891.36 14393.45 9498.15 7195.77 131
UniMVSNet_ETH3D84.57 15781.40 19188.28 12089.34 15694.38 12390.33 13686.50 11774.74 20277.52 12559.90 20662.04 20288.78 12288.82 18392.65 11697.22 12797.24 82
EC-MVSNet94.19 4895.05 3893.18 5893.56 10497.65 6495.34 5986.37 11892.05 6188.71 5089.91 4893.32 4896.14 2797.29 1796.42 2698.98 398.70 15
MVS_Test91.81 7492.19 7191.37 8993.24 10796.95 8594.43 7086.25 11991.45 6983.45 9886.31 6785.15 8792.93 6893.99 9494.71 6997.92 9296.77 96
CDS-MVSNet88.34 11888.71 11087.90 12690.70 14594.54 11692.38 11386.02 12080.37 17079.42 11979.30 11583.43 9482.04 17593.39 11094.01 8196.86 15595.93 128
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
Vis-MVSNetpermissive89.36 11091.49 8286.88 13692.10 12597.60 6692.16 12185.89 12184.21 14675.20 13382.58 9887.13 7577.40 19295.90 5495.63 5398.51 2697.36 78
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
CHOSEN 1792x268888.57 11687.82 12389.44 10895.46 7096.89 8793.74 9285.87 12289.63 9777.42 12661.38 20283.31 9588.80 12193.44 10993.16 10595.37 18596.95 92
GBi-Net90.21 9890.11 9790.32 9688.66 16293.65 13994.25 7785.78 12390.03 8885.56 8477.38 12386.13 8089.38 10793.97 9594.16 7698.31 5195.47 138
test190.21 9890.11 9790.32 9688.66 16293.65 13994.25 7785.78 12390.03 8885.56 8477.38 12386.13 8089.38 10793.97 9594.16 7698.31 5195.47 138
FMVSNet390.19 10090.06 9990.34 9588.69 16193.85 13194.58 6785.78 12390.03 8885.56 8477.38 12386.13 8089.22 11393.29 11394.36 7398.20 6795.40 142
v14883.61 17382.10 18285.37 14987.34 18292.94 16087.48 17885.72 12678.92 17973.87 13965.71 18764.69 19281.78 17987.82 18689.35 18196.01 16995.26 144
FMVSNet289.61 10689.14 10690.16 10288.66 16293.65 13994.25 7785.44 12788.57 10984.96 9473.53 14983.82 9289.38 10794.23 8994.68 7098.31 5195.47 138
v2v48284.51 15983.05 17586.20 14387.25 18493.28 14990.22 14085.40 12879.94 17669.78 16467.74 17465.15 18887.57 12989.12 17990.55 15696.97 14295.60 135
pm-mvs184.55 15883.46 16585.82 14488.16 16993.39 14589.05 16585.36 12974.03 20372.43 14765.08 19071.11 15782.30 17493.48 10791.70 13697.64 11495.43 141
baseline288.97 11489.50 10188.36 11891.14 13795.30 10990.13 14485.17 13087.24 11780.80 11284.46 8278.44 12985.60 14993.54 10691.87 13297.31 12495.66 133
pmmvs486.00 14184.28 16088.00 12387.80 17392.01 18489.94 14984.91 13186.79 12280.98 11173.41 15266.34 18288.12 12489.31 17688.90 18596.24 16793.20 171
FC-MVSNet-test86.15 13789.10 10782.71 18689.83 15093.18 15387.88 17684.69 13286.54 12562.18 20282.39 10183.31 9574.18 20292.52 12491.86 13397.50 11993.88 162
CANet_DTU90.74 9292.93 6188.19 12194.36 8196.61 9094.34 7484.66 13390.66 7368.75 17190.41 4686.89 7789.78 10295.46 6094.87 6697.25 12695.62 134
GA-MVS85.08 15285.65 15084.42 16389.77 15194.25 12589.26 16084.62 13481.19 16762.25 20175.72 13868.44 17084.14 16393.57 10491.68 13896.49 16094.71 151
USDC86.73 13285.96 14687.63 13091.64 12993.97 12992.76 10884.58 13588.19 11170.67 15880.10 11367.86 17389.43 10591.81 13689.77 17696.69 15990.05 193
baseline91.19 8191.89 7690.38 9492.76 11795.04 11393.55 9784.54 13692.92 5285.71 8186.68 6686.96 7689.28 11092.00 13492.62 11796.46 16296.99 90
FMVSNet187.33 12586.00 14588.89 11287.13 18892.83 16493.08 10684.46 13781.35 16682.20 10266.33 18277.96 13388.96 11693.97 9594.16 7697.54 11895.38 143
Effi-MVS+89.79 10489.83 10089.74 10592.98 11196.45 9793.48 9984.24 13887.62 11676.45 12981.76 10477.56 13893.48 6194.61 8193.59 8897.82 9797.22 85
WR-MVS83.14 17983.38 17082.87 18487.55 17993.29 14886.36 18984.21 13980.05 17466.41 18666.91 17866.92 17875.66 19988.96 18190.56 15597.05 13896.96 91
HyFIR lowres test87.87 12186.42 13889.57 10695.56 6796.99 8492.37 11484.15 14086.64 12377.17 12757.65 20883.97 9191.08 8892.09 13392.44 11997.09 13695.16 145
thisisatest051585.70 14387.00 13384.19 16688.16 16993.67 13884.20 19884.14 14183.39 15572.91 14376.79 12974.75 14778.82 19092.57 12391.26 14396.94 14696.56 104
TinyColmap84.04 16782.01 18486.42 14290.87 14191.84 18688.89 16884.07 14282.11 16369.89 16371.08 16160.81 20789.04 11590.52 15889.19 18295.76 17288.50 201
V4284.48 16183.36 17185.79 14687.14 18793.28 14990.03 14583.98 14380.30 17171.20 15466.90 17967.17 17585.55 15089.35 17490.27 16196.82 15696.27 115
PEN-MVS82.49 18781.58 18883.56 17486.93 19192.05 18386.71 18683.84 14476.94 19164.68 19567.24 17560.11 21081.17 18287.78 18790.70 15398.02 8596.21 116
GeoE89.29 11288.68 11189.99 10492.75 11996.03 10593.07 10783.79 14586.98 12081.34 10674.72 14278.92 12591.22 8593.31 11293.21 10397.78 10097.60 71
DTE-MVSNet81.76 19281.04 19482.60 18886.63 19591.48 19485.97 19283.70 14676.45 19562.44 20067.16 17659.98 21178.98 18987.15 19189.93 17397.88 9595.12 146
test-LLR86.88 12988.28 11485.24 15291.22 13592.07 18187.41 17983.62 14784.58 13969.33 16783.00 9182.79 9884.24 16092.26 12889.81 17495.64 17893.44 166
test0.0.03 185.58 14587.69 12683.11 17991.22 13592.54 17285.60 19583.62 14785.66 13367.84 17882.79 9679.70 12273.51 20591.15 14890.79 14796.88 15391.23 183
IterMVS-LS88.60 11588.45 11288.78 11492.02 12692.44 17592.00 12583.57 14986.52 12678.90 12278.61 12081.34 11489.12 11490.68 15693.18 10497.10 13596.35 110
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CP-MVSNet83.11 18182.15 18184.23 16587.20 18592.70 16686.42 18883.53 15077.83 18667.67 17966.89 18060.53 20982.47 17289.23 17890.65 15498.08 7897.20 86
PS-CasMVS82.53 18681.54 18983.68 17287.08 19092.54 17286.20 19083.46 15176.46 19465.73 19165.71 18759.41 21481.61 18089.06 18090.55 15698.03 8397.07 89
v114484.03 16882.88 17685.37 14987.17 18693.15 15690.18 14183.31 15278.83 18067.85 17765.99 18464.99 18986.79 13890.75 15390.33 16096.90 15196.15 118
CVMVSNet83.83 17085.53 15181.85 19389.60 15390.92 19687.81 17783.21 15380.11 17360.16 20676.47 13178.57 12876.79 19489.76 16990.13 16493.51 19392.75 175
WR-MVS_H82.86 18482.66 17883.10 18087.44 18193.33 14785.71 19483.20 15477.36 18868.20 17666.37 18165.23 18776.05 19889.35 17490.13 16497.99 8896.89 94
v119283.56 17482.35 17984.98 15486.84 19392.84 16290.01 14782.70 15578.54 18166.48 18564.88 19262.91 19686.91 13790.72 15490.25 16296.94 14696.32 112
Fast-Effi-MVS+88.56 11787.99 12089.22 11091.56 13295.21 11092.29 11682.69 15686.82 12177.73 12476.24 13573.39 15093.36 6394.22 9093.64 8697.65 11396.43 107
Effi-MVS+-dtu87.51 12488.13 11886.77 13891.10 13894.90 11490.91 13182.67 15783.47 15371.55 15081.11 10977.04 14089.41 10692.65 12191.68 13895.00 19196.09 120
MDA-MVSNet-bldmvs73.81 20672.56 21075.28 20572.52 22088.87 20574.95 21482.67 15771.57 20755.02 21365.96 18542.84 22676.11 19770.61 21881.47 20890.38 21386.59 205
pmmvs680.90 19478.77 20083.38 17785.84 20091.61 19086.01 19182.54 15964.17 21670.43 16054.14 21567.06 17780.73 18490.50 15989.17 18394.74 19294.75 150
v14419283.48 17582.23 18084.94 15586.65 19492.84 16289.63 15782.48 16077.87 18567.36 18165.33 18963.50 19586.51 14089.72 17189.99 17297.03 13996.35 110
v884.45 16383.30 17285.80 14587.53 18092.95 15990.31 13882.46 16180.46 16971.43 15166.99 17767.16 17686.14 14689.26 17790.22 16396.94 14696.06 121
SixPastTwentyTwo83.12 18083.44 16782.74 18587.71 17793.11 15782.30 20382.33 16279.24 17864.33 19678.77 11962.75 19784.11 16488.11 18587.89 18795.70 17694.21 158
LTVRE_ROB81.71 1682.44 18881.84 18683.13 17889.01 15792.99 15888.90 16782.32 16366.26 21554.02 21674.68 14459.62 21388.87 12090.71 15592.02 12995.68 17796.62 99
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
v192192083.30 17782.09 18384.70 15886.59 19792.67 16889.82 15382.23 16478.32 18265.76 19064.64 19562.35 19986.78 13990.34 16090.02 17097.02 14096.31 113
pmnet_mix0280.14 19780.21 19880.06 19686.61 19689.66 20380.40 20782.20 16582.29 16261.35 20371.52 15966.67 18076.75 19582.55 20880.18 21193.05 19788.62 199
pmmvs583.37 17682.68 17784.18 16787.13 18893.18 15386.74 18582.08 16676.48 19367.28 18271.26 16062.70 19884.71 15790.77 15290.12 16797.15 13194.24 156
WB-MVS60.76 21466.86 21553.64 21482.24 21072.70 22048.70 22682.04 16763.91 21812.91 22964.77 19349.00 22322.74 22475.95 21575.36 21573.22 22366.33 221
PMMVS89.88 10291.19 8688.35 11989.73 15291.97 18590.62 13381.92 16890.57 7880.58 11592.16 3586.85 7891.17 8692.31 12791.35 14296.11 16893.11 172
N_pmnet77.55 20476.68 20778.56 20185.43 20487.30 21178.84 20981.88 16978.30 18360.61 20461.46 20162.15 20074.03 20482.04 20980.69 21090.59 21284.81 211
v124082.88 18381.66 18784.29 16486.46 19892.52 17489.06 16481.82 17077.16 18965.09 19464.17 19761.50 20486.36 14190.12 16490.13 16496.95 14596.04 122
testgi81.94 19084.09 16179.43 19989.53 15590.83 19982.49 20281.75 17180.59 16859.46 20882.82 9565.75 18367.97 20790.10 16589.52 17995.39 18489.03 196
CMPMVSbinary61.19 1779.86 19877.46 20682.66 18791.54 13391.82 18783.25 19981.57 17270.51 21168.64 17259.89 20766.77 17979.63 18684.00 20584.30 20191.34 20784.89 210
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
MS-PatchMatch87.63 12287.61 12787.65 12993.95 9294.09 12792.60 11281.52 17386.64 12376.41 13073.46 15185.94 8385.01 15692.23 13190.00 17196.43 16490.93 186
v1084.18 16483.17 17485.37 14987.34 18292.68 16790.32 13781.33 17479.93 17769.23 16966.33 18265.74 18487.03 13590.84 15190.38 15896.97 14296.29 114
pmmvs-eth3d79.78 19977.58 20482.34 19081.57 21387.46 21082.92 20081.28 17575.33 20171.34 15261.88 20052.41 21881.59 18187.56 18886.90 19095.36 18691.48 179
TAMVS84.94 15584.95 15484.93 15688.82 15893.18 15388.44 17281.28 17577.16 18973.76 14075.43 14076.57 14382.04 17590.59 15790.79 14795.22 18790.94 185
Anonymous2023120678.09 20278.11 20378.07 20285.19 20589.17 20480.99 20581.24 17775.46 20058.25 21054.78 21459.90 21266.73 21088.94 18288.26 18696.01 16990.25 191
v7n82.25 18981.54 18983.07 18185.55 20392.58 17086.68 18781.10 17876.54 19265.97 18962.91 19960.56 20882.36 17391.07 14990.35 15996.77 15896.80 95
test20.0376.41 20578.49 20273.98 20685.64 20287.50 20975.89 21280.71 17970.84 21051.07 22068.06 17361.40 20554.99 21688.28 18487.20 18995.58 18186.15 206
anonymousdsp84.51 15985.85 14982.95 18386.30 19993.51 14285.77 19380.38 18078.25 18463.42 19973.51 15072.20 15384.64 15893.21 11592.16 12597.19 12998.14 47
CHOSEN 280x42090.77 9092.14 7289.17 11193.86 9792.81 16593.16 10380.22 18190.21 8484.67 9589.89 4991.38 6090.57 9794.94 6992.11 12692.52 20193.65 165
MIMVSNet173.19 20773.70 20872.60 20965.42 22386.69 21375.56 21379.65 18267.87 21455.30 21245.24 21956.41 21663.79 21286.98 19287.66 18895.85 17185.04 209
EU-MVSNet78.43 20080.25 19776.30 20483.81 20887.27 21280.99 20579.52 18376.01 19654.12 21570.44 16564.87 19067.40 20986.23 19685.54 19691.95 20691.41 180
FMVSNet584.47 16284.72 15784.18 16783.30 20988.43 20688.09 17479.42 18484.25 14574.14 13873.15 15578.74 12683.65 16691.19 14691.19 14496.46 16286.07 207
PM-MVS80.29 19679.30 19981.45 19581.91 21288.23 20782.61 20179.01 18579.99 17567.15 18369.07 17051.39 21982.92 17087.55 18985.59 19495.08 18893.28 169
EG-PatchMatch MVS81.70 19381.31 19282.15 19188.75 15993.81 13287.14 18278.89 18671.57 20764.12 19861.20 20468.46 16976.73 19691.48 14090.77 14997.28 12591.90 177
IterMVS-SCA-FT85.44 14986.71 13483.97 17090.59 14690.84 19889.73 15478.34 18784.07 15066.40 18777.27 12878.66 12783.06 16891.20 14590.10 16995.72 17594.78 149
Fast-Effi-MVS+-dtu86.25 13487.70 12584.56 16190.37 14893.70 13690.54 13478.14 18883.50 15265.37 19381.59 10775.83 14686.09 14891.70 13891.70 13696.88 15395.84 130
IterMVS85.25 15186.49 13783.80 17190.42 14790.77 20190.02 14678.04 18984.10 14866.27 18877.28 12778.41 13083.01 16990.88 15089.72 17895.04 18994.24 156
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MDTV_nov1_ep1386.64 13387.50 13185.65 14790.73 14393.69 13789.96 14878.03 19089.48 10176.85 12884.92 7982.42 10486.14 14686.85 19486.15 19192.17 20388.97 198
FA-MVS(training)90.79 8991.33 8390.17 10193.76 10097.22 7592.74 10977.79 19190.60 7788.03 5478.80 11887.41 7491.00 8995.40 6293.43 9597.70 10896.46 105
new-patchmatchnet72.32 20871.09 21173.74 20781.17 21484.86 21572.21 21777.48 19268.32 21354.89 21455.10 21249.31 22263.68 21379.30 21376.46 21493.03 19884.32 212
TESTMET0.1,186.11 13988.28 11483.59 17387.80 17392.07 18187.41 17977.12 19384.58 13969.33 16783.00 9182.79 9884.24 16092.26 12889.81 17495.64 17893.44 166
test-mter86.09 14088.38 11383.43 17687.89 17292.61 16986.89 18477.11 19484.30 14468.62 17382.57 9982.45 10384.34 15992.40 12590.11 16895.74 17394.21 158
FPMVS69.87 21167.10 21473.10 20884.09 20778.35 21979.40 20876.41 19571.92 20557.71 21154.06 21650.04 22056.72 21471.19 21768.70 21784.25 21775.43 217
CostFormer86.78 13186.05 14287.62 13192.15 12493.20 15291.55 12975.83 19688.11 11385.29 9081.76 10476.22 14487.80 12584.45 20285.21 19893.12 19693.42 168
tpm cat184.13 16581.99 18586.63 14091.74 12891.50 19290.68 13275.69 19786.12 12985.44 8872.39 15770.72 15885.16 15480.89 21181.56 20791.07 20990.71 187
dps85.00 15383.21 17387.08 13490.73 14392.55 17189.34 15875.29 19884.94 13687.01 6579.27 11667.69 17487.27 13484.22 20383.56 20392.83 19990.25 191
gm-plane-assit77.65 20378.50 20176.66 20387.96 17185.43 21464.70 22074.50 19964.15 21751.26 21961.32 20358.17 21584.11 16495.16 6593.83 8397.45 12191.41 180
PMVScopyleft56.77 1861.27 21358.64 21764.35 21275.66 21654.60 22453.62 22374.23 20053.69 22158.37 20944.27 22049.38 22144.16 22069.51 21965.35 21980.07 21973.66 218
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
tpm83.16 17883.64 16382.60 18890.75 14291.05 19588.49 17173.99 20182.36 16067.08 18478.10 12268.79 16784.17 16285.95 19885.96 19391.09 20893.23 170
MDTV_nov1_ep13_2view80.43 19580.94 19579.84 19784.82 20690.87 19784.23 19773.80 20280.28 17264.33 19670.05 16868.77 16879.67 18584.83 20183.50 20492.17 20388.25 204
PatchmatchNetpermissive85.70 14386.65 13584.60 16091.79 12793.40 14489.27 15973.62 20390.19 8572.63 14682.74 9781.93 11287.64 12884.99 20084.29 20292.64 20089.00 197
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
EPMVS85.77 14286.24 14085.23 15392.76 11793.78 13389.91 15073.60 20490.19 8574.22 13682.18 10278.06 13287.55 13085.61 19985.38 19793.32 19588.48 202
tpmrst83.72 17283.45 16684.03 16992.21 12391.66 18988.74 16973.58 20588.14 11272.67 14577.37 12672.11 15486.34 14282.94 20782.05 20690.63 21189.86 194
CR-MVSNet85.48 14786.29 13984.53 16291.08 14092.10 17989.18 16173.30 20684.75 13771.08 15573.12 15677.91 13486.27 14491.48 14090.75 15096.27 16693.94 160
Patchmtry92.39 17689.18 16173.30 20671.08 155
SCA86.25 13487.52 13084.77 15791.59 13093.90 13089.11 16373.25 20890.38 8172.84 14483.26 8983.79 9388.49 12386.07 19785.56 19593.33 19489.67 195
MIMVSNet82.97 18284.00 16281.77 19482.23 21192.25 17887.40 18172.73 20981.48 16569.55 16568.79 17172.42 15281.82 17892.23 13192.25 12296.89 15288.61 200
PatchT83.86 16985.51 15281.94 19288.41 16591.56 19178.79 21071.57 21084.08 14971.08 15570.62 16276.13 14586.27 14491.48 14090.75 15095.52 18393.94 160
RPMNet84.82 15685.90 14783.56 17491.10 13892.10 17988.73 17071.11 21184.75 13768.79 17073.56 14877.62 13785.33 15390.08 16689.43 18096.32 16593.77 164
ADS-MVSNet84.08 16684.95 15483.05 18291.53 13491.75 18888.16 17370.70 21289.96 9169.51 16678.83 11776.97 14186.29 14384.08 20484.60 20092.13 20588.48 202
MVS-HIRNet78.16 20177.57 20578.83 20085.83 20187.76 20876.67 21170.22 21375.82 19967.39 18055.61 21070.52 15981.96 17786.67 19585.06 19990.93 21081.58 213
new_pmnet72.29 20973.25 20971.16 21175.35 21781.38 21673.72 21669.27 21475.97 19749.84 22156.27 20956.12 21769.08 20681.73 21080.86 20989.72 21580.44 215
gg-mvs-nofinetune81.83 19183.58 16479.80 19891.57 13196.54 9393.79 9068.80 21562.71 21943.01 22455.28 21185.06 8883.65 16696.13 4994.86 6797.98 9194.46 153
Gipumacopyleft58.52 21556.17 21861.27 21367.14 22258.06 22352.16 22468.40 21669.00 21245.02 22322.79 22220.57 22955.11 21576.27 21479.33 21379.80 22067.16 220
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
pmmvs371.13 21071.06 21271.21 21073.54 21980.19 21771.69 21864.86 21762.04 22052.10 21754.92 21348.00 22475.03 20083.75 20683.24 20590.04 21485.27 208
E-PMN40.00 21835.74 22144.98 21857.69 22639.15 22928.05 22762.70 21835.52 22417.78 22720.90 22314.36 23144.47 21935.89 22347.86 22259.15 22556.47 223
EMVS39.04 22034.32 22244.54 21958.25 22539.35 22827.61 22862.55 21935.99 22316.40 22820.04 22514.77 23044.80 21833.12 22444.10 22357.61 22652.89 224
PMMVS253.68 21755.72 21951.30 21558.84 22467.02 22254.23 22260.97 22047.50 22219.42 22634.81 22131.97 22730.88 22265.84 22069.99 21683.47 21872.92 219
MVEpermissive39.81 1939.52 21941.58 22037.11 22033.93 22749.06 22526.45 22954.22 22129.46 22524.15 22520.77 22410.60 23234.42 22151.12 22265.27 22049.49 22764.81 222
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
DeepMVS_CXcopyleft71.82 22168.37 21948.05 22277.38 18746.88 22265.77 18647.03 22567.48 20864.27 22176.89 22276.72 216
test_method58.10 21664.61 21650.51 21628.26 22841.71 22761.28 22132.07 22375.92 19852.04 21847.94 21761.83 20351.80 21779.83 21263.95 22177.60 22181.05 214
tmp_tt50.24 21768.55 22146.86 22648.90 22518.28 22486.51 12768.32 17470.19 16765.33 18526.69 22374.37 21666.80 21870.72 224
testmvs4.35 2216.54 2231.79 2220.60 2291.82 2303.06 2310.95 2257.22 2260.88 23112.38 2261.25 2333.87 2266.09 2255.58 2241.40 22811.42 226
test1233.48 2225.31 2241.34 2230.20 2311.52 2312.17 2320.58 2266.13 2270.31 2329.85 2270.31 2343.90 2252.65 2265.28 2250.87 22911.46 225
GG-mvs-BLEND62.84 21290.21 9430.91 2210.57 23094.45 11986.99 1830.34 22788.71 1070.98 23081.55 10891.58 580.86 22792.66 12091.43 14195.73 17491.11 184
uanet_test0.00 2230.00 2250.00 2240.00 2320.00 2320.00 2330.00 2280.00 2280.00 2330.00 2280.00 2350.00 2280.00 2270.00 2260.00 2300.00 227
sosnet-low-res0.00 2230.00 2250.00 2240.00 2320.00 2320.00 2330.00 2280.00 2280.00 2330.00 2280.00 2350.00 2280.00 2270.00 2260.00 2300.00 227
sosnet0.00 2230.00 2250.00 2240.00 2320.00 2320.00 2330.00 2280.00 2280.00 2330.00 2280.00 2350.00 2280.00 2270.00 2260.00 2300.00 227
TPM-MVS98.33 2997.85 5497.06 3689.97 4093.26 3197.16 2593.12 6697.79 9895.95 126
Ray Leroy Khuboni and Hongjun Xu: Textureless Resilient Propagation Matching in Multiple View Stereosis (TPM-MVS). SATNAC 2025
RE-MVS-def60.19 205
9.1497.28 23
our_test_386.93 19189.77 20281.61 204
ambc67.96 21373.69 21879.79 21873.82 21571.61 20659.80 20746.00 21820.79 22866.15 21186.92 19380.11 21289.13 21690.50 188
MTAPA95.36 297.46 21
MTMP95.70 196.90 27
Patchmatch-RL test18.47 230
XVS95.68 6498.66 1494.96 6488.03 5496.06 3298.46 34
X-MVStestdata95.68 6498.66 1494.96 6488.03 5496.06 3298.46 34
mPP-MVS98.76 2395.49 39
NP-MVS91.63 67