This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DeepC-MVS66.32 273.85 2278.10 2368.90 2267.92 4879.31 1178.16 2859.28 178.24 2161.13 1967.36 3576.10 3263.40 979.11 978.41 1183.52 588.16 13
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
HPM-MVS++copyleft76.01 1080.47 1270.81 976.60 874.96 3580.18 1758.36 281.96 1063.50 1178.80 1482.53 1164.40 678.74 1078.84 581.81 3287.46 18
SMA-MVScopyleft77.32 782.51 771.26 775.43 1480.19 882.22 758.26 384.83 764.36 778.19 1583.46 663.61 881.00 180.28 183.66 489.62 6
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
SED-MVS79.21 184.74 272.75 178.66 281.96 282.94 458.16 486.82 267.66 188.29 486.15 366.42 280.41 478.65 682.65 1690.92 2
DVP-MVS++78.76 384.44 372.14 276.63 781.93 382.92 558.10 585.86 466.53 387.86 586.16 266.45 180.46 378.53 982.19 2790.29 4
SteuartSystems-ACMMP75.23 1379.60 1570.13 1376.81 678.92 1281.74 857.99 675.30 2959.83 2575.69 1878.45 2460.48 2980.58 279.77 283.94 388.52 10
Skip Steuart: Steuart Systems R&D Blog.
DVP-MVScopyleft78.77 284.89 171.62 478.04 382.05 181.64 1057.96 787.53 166.64 288.77 186.31 163.16 1079.99 778.56 782.31 2291.03 1
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
MSP-MVS77.82 583.46 571.24 875.26 1680.22 782.95 357.85 885.90 364.79 588.54 383.43 766.24 378.21 1778.56 780.34 4589.39 7
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
DPE-MVScopyleft78.11 483.84 471.42 577.82 581.32 482.92 557.81 984.04 863.19 1288.63 286.00 464.52 578.71 1177.63 1582.26 2390.57 3
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
APDe-MVS77.58 682.93 671.35 677.86 480.55 683.38 157.61 1085.57 561.11 2086.10 782.98 864.76 478.29 1576.78 2283.40 690.20 5
SF-MVS77.13 881.70 871.79 379.32 180.76 582.96 257.49 1182.82 964.79 583.69 1084.46 562.83 1377.13 2675.21 3183.35 787.85 16
APD-MVScopyleft75.80 1180.90 1169.86 1575.42 1578.48 1681.43 1357.44 1280.45 1459.32 2685.28 880.82 1863.96 776.89 2876.08 2781.58 3888.30 12
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CNVR-MVS75.62 1279.91 1470.61 1075.76 1078.82 1481.66 957.12 1379.77 1663.04 1370.69 2481.15 1662.99 1180.23 579.54 383.11 889.16 8
ACMMP_NAP76.15 981.17 970.30 1174.09 2079.47 1081.59 1257.09 1481.38 1163.89 1079.02 1380.48 1962.24 1780.05 679.12 482.94 1188.64 9
NCCC74.27 1977.83 2470.13 1375.70 1177.41 2280.51 1557.09 1478.25 2062.28 1765.54 3778.26 2562.18 1879.13 878.51 1083.01 1087.68 17
HFP-MVS74.87 1578.86 2070.21 1273.99 2177.91 1880.36 1656.63 1678.41 1964.27 874.54 2077.75 2762.96 1278.70 1277.82 1383.02 986.91 21
MP-MVScopyleft74.31 1878.87 1868.99 2173.49 2378.56 1579.25 2256.51 1775.33 2760.69 2275.30 1979.12 2361.81 2077.78 2177.93 1282.18 2988.06 14
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
ACMMPR73.79 2378.41 2168.40 2472.35 2777.79 1979.32 2056.38 1877.67 2358.30 3174.16 2176.66 2861.40 2278.32 1477.80 1482.68 1586.51 22
OPM-MVS69.33 3771.05 4567.32 2772.34 2875.70 3279.57 1956.34 1955.21 7453.81 5259.51 6368.96 5559.67 3477.61 2376.44 2582.19 2783.88 38
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
train_agg73.89 2178.25 2268.80 2375.25 1772.27 5079.75 1856.05 2074.87 3258.97 2781.83 1179.76 2161.05 2577.39 2576.01 2881.71 3585.61 29
CP-MVS72.63 2776.95 2767.59 2670.67 3575.53 3377.95 3056.01 2175.65 2658.82 2869.16 2976.48 3060.46 3077.66 2277.20 2081.65 3686.97 20
X-MVS71.18 3275.66 3265.96 3571.71 2976.96 2577.26 3255.88 2272.75 3754.48 4764.39 4374.47 3754.19 6577.84 2077.37 1782.21 2685.85 26
TSAR-MVS + MP.75.22 1480.06 1369.56 1674.61 1872.74 4880.59 1455.70 2380.80 1362.65 1586.25 682.92 962.07 1976.89 2875.66 3081.77 3485.19 32
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
EPNet65.14 5969.54 5560.00 5866.61 5567.67 7567.53 6355.32 2462.67 5946.22 7967.74 3265.93 6748.07 10972.17 5772.12 4976.28 9078.47 65
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
SD-MVS74.43 1778.87 1869.26 1974.39 1973.70 4479.06 2455.24 2581.04 1262.71 1480.18 1282.61 1061.70 2175.43 4073.92 4382.44 2185.22 31
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DPM-MVS72.80 2675.90 2969.19 2075.51 1377.68 2081.62 1154.83 2675.96 2562.06 1863.96 4676.58 2958.55 4076.66 3276.77 2382.60 1883.68 40
CDPH-MVS71.47 3175.82 3166.41 3172.97 2577.15 2478.14 2954.71 2769.88 4653.07 5570.98 2374.83 3656.95 5276.22 3376.57 2482.62 1785.09 33
SR-MVS71.46 3354.67 2881.54 14
PGM-MVS72.89 2577.13 2667.94 2572.47 2677.25 2379.27 2154.63 2973.71 3457.95 3372.38 2275.33 3460.75 2778.25 1677.36 1882.57 1985.62 28
MCST-MVS73.67 2477.39 2569.33 1876.26 978.19 1778.77 2554.54 3075.33 2759.99 2467.96 3179.23 2262.43 1678.00 1875.71 2984.02 287.30 19
DeepC-MVS_fast65.08 372.00 2976.11 2867.21 2868.93 4477.46 2176.54 3454.35 3174.92 3158.64 3065.18 3974.04 4262.62 1477.92 1977.02 2182.16 3086.21 23
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ACMM60.30 767.58 4768.82 5966.13 3370.59 3672.01 5276.54 3454.26 3265.64 5254.78 4650.35 10561.72 8058.74 3875.79 3875.03 3381.88 3181.17 51
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
DeepPCF-MVS66.49 174.25 2080.97 1066.41 3167.75 5078.87 1375.61 3854.16 3384.86 658.22 3277.94 1681.01 1762.52 1578.34 1377.38 1680.16 4888.40 11
ACMMPcopyleft71.57 3075.84 3066.59 3070.30 3976.85 2878.46 2753.95 3473.52 3555.56 3870.13 2671.36 4758.55 4077.00 2776.23 2682.71 1485.81 27
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
LGP-MVS_train68.87 3972.03 4165.18 3969.33 4274.03 4376.67 3353.88 3568.46 4752.05 5963.21 4863.89 6956.31 5575.99 3674.43 3982.83 1384.18 35
AdaColmapbinary67.89 4568.85 5866.77 2973.73 2274.30 4275.28 3953.58 3670.24 4457.59 3451.19 10259.19 9160.74 2875.33 4273.72 4579.69 5377.96 69
ACMP61.42 568.72 4271.37 4365.64 3769.06 4374.45 4175.88 3753.30 3768.10 4855.74 3761.53 5862.29 7656.97 5174.70 4674.23 4182.88 1284.31 34
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
HQP-MVS70.88 3375.02 3366.05 3471.69 3074.47 4077.51 3153.17 3872.89 3654.88 4470.03 2770.48 4957.26 4876.02 3575.01 3581.78 3386.21 23
TranMVSNet+NR-MVSNet55.87 11660.14 10650.88 12059.46 9863.82 11357.93 12652.98 3948.94 11320.52 18752.87 9147.33 14536.81 16569.12 8569.03 7377.56 7369.89 121
UniMVSNet_NR-MVSNet56.94 10861.14 9152.05 11660.02 9365.21 10257.44 12852.93 4049.37 10724.31 17954.62 8650.54 12839.04 14968.69 8868.84 7678.53 6370.72 115
CSCG74.68 1679.22 1669.40 1775.69 1280.01 979.12 2352.83 4179.34 1763.99 970.49 2582.02 1260.35 3277.48 2477.22 1984.38 187.97 15
3Dnovator+62.63 469.51 3572.62 3965.88 3668.21 4776.47 2973.50 4852.74 4270.85 4258.65 2955.97 7669.95 5061.11 2476.80 3075.09 3281.09 4183.23 43
CPTT-MVS68.76 4173.01 3763.81 4665.42 6073.66 4576.39 3652.08 4372.61 3850.33 6460.73 5972.65 4559.43 3673.32 5272.12 4979.19 5985.99 25
Baseline_NR-MVSNet53.50 13557.89 13248.37 14654.60 13659.25 14756.10 13951.84 4449.32 10817.92 19445.38 14447.68 14036.93 16468.11 10165.95 11872.84 13369.57 126
DU-MVS55.41 12259.59 11350.54 12354.60 13662.97 11757.44 12851.80 4548.62 12124.31 17951.99 9747.00 14839.04 14968.11 10167.75 8976.03 9970.72 115
NR-MVSNet55.35 12359.46 11850.56 12261.33 8362.97 11757.91 12751.80 4548.62 12120.59 18651.99 9744.73 17334.10 17668.58 9168.64 7877.66 6970.67 119
MVS_111021_HR67.62 4670.39 4964.39 4369.77 4070.45 5771.44 5251.72 4760.77 6355.06 4262.14 5566.40 6658.13 4376.13 3474.79 3780.19 4782.04 48
DTE-MVSNet48.03 17453.28 16141.91 18054.64 13457.50 16344.63 19651.66 4841.02 1767.97 21446.26 13240.90 18720.24 20060.45 16562.89 15272.33 14563.97 166
PEN-MVS49.21 16454.32 15443.24 17654.33 13959.26 14647.04 18351.37 4941.67 1729.97 20846.22 13341.80 18422.97 19860.52 16464.03 14173.73 12066.75 145
ACMH+53.71 1259.26 8260.28 10158.06 6964.17 6868.46 6467.51 6450.93 5052.46 9135.83 13140.83 17445.12 16752.32 8669.88 7969.00 7477.59 7276.21 86
TSAR-MVS + GP.69.71 3473.92 3664.80 4268.27 4670.56 5571.90 4950.75 5171.38 4157.46 3568.68 3075.42 3360.10 3373.47 5173.99 4280.32 4683.97 37
UniMVSNet (Re)55.15 12860.39 10049.03 13655.31 13064.59 10655.77 14450.63 5248.66 12020.95 18551.47 10050.40 12934.41 17567.81 10867.89 8577.11 8071.88 109
CP-MVSNet48.37 16953.53 15842.34 17851.35 16158.01 16046.56 18450.54 5341.62 17310.61 20446.53 13140.68 19023.18 19658.71 17461.83 15871.81 14867.36 143
PS-CasMVS48.18 17153.25 16242.27 17951.26 16257.94 16146.51 18550.52 5441.30 17410.56 20545.35 14640.34 19223.04 19758.66 17561.79 15971.74 15067.38 141
MAR-MVS68.04 4470.74 4764.90 4171.68 3176.33 3074.63 4350.48 5563.81 5455.52 3954.88 8269.90 5157.39 4775.42 4174.79 3779.71 5080.03 55
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
WR-MVS48.78 16855.06 15041.45 18255.50 12960.40 13643.77 19749.99 5641.92 1708.10 21345.24 14745.56 16117.47 20261.57 16164.60 13573.85 11866.14 153
PCF-MVS59.98 867.32 4871.04 4662.97 4964.77 6274.49 3974.78 4249.54 5767.44 4954.39 5058.35 6872.81 4455.79 6171.54 6169.24 6978.57 6183.41 41
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
WR-MVS_H47.65 17553.67 15740.63 18551.45 15959.74 14344.71 19549.37 5840.69 1787.61 21546.04 13644.34 17817.32 20357.79 18061.18 16173.30 12965.86 155
test111155.24 12459.98 10949.71 12759.80 9564.10 11256.48 13749.34 5952.27 9221.56 18444.49 15051.96 12135.93 16870.59 7169.07 7275.13 10867.40 140
PHI-MVS69.27 3874.84 3462.76 5066.83 5374.83 3673.88 4649.32 6070.61 4350.93 6269.62 2874.84 3557.25 4975.53 3974.32 4078.35 6684.17 36
ACMH52.42 1358.24 9759.56 11756.70 8466.34 5769.59 5866.71 7249.12 6146.08 13928.90 15942.67 16941.20 18652.60 8371.39 6270.28 6076.51 8675.72 89
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
PVSNet_Blended_VisFu63.65 6166.92 6259.83 6060.03 9273.44 4666.33 7548.95 6252.20 9350.81 6356.07 7560.25 8753.56 7173.23 5370.01 6479.30 5683.24 42
test250655.82 11859.57 11651.46 11760.39 8964.55 10758.69 12248.87 6353.91 7826.99 16848.97 11141.72 18537.71 15770.96 6769.49 6676.08 9567.37 142
ECVR-MVScopyleft56.44 11360.74 9551.42 11860.39 8964.55 10758.69 12248.87 6353.91 7826.76 17045.55 14353.43 11537.71 15770.96 6769.49 6676.08 9567.32 144
LS3D60.20 7861.70 8858.45 6764.18 6767.77 7267.19 6548.84 6561.67 6141.27 10545.89 13851.81 12254.18 6668.78 8766.50 11175.03 10969.48 128
TSAR-MVS + ACMM72.56 2879.07 1764.96 4073.24 2473.16 4778.50 2648.80 6679.34 1755.32 4085.04 981.49 1558.57 3975.06 4373.75 4475.35 10685.61 29
CANet68.77 4073.01 3763.83 4568.30 4575.19 3473.73 4747.90 6763.86 5354.84 4567.51 3374.36 4057.62 4474.22 4873.57 4780.56 4382.36 45
MVS_030469.49 3673.96 3564.28 4467.92 4876.13 3174.90 4147.60 6863.29 5754.09 5167.44 3476.35 3159.53 3575.81 3775.03 3381.62 3783.70 39
Anonymous20240521160.60 9763.44 7366.71 8961.00 11047.23 6950.62 9936.85 18460.63 8643.03 13569.17 8367.72 9075.41 10372.54 107
QAPM65.27 5569.49 5660.35 5565.43 5972.20 5165.69 8447.23 6963.46 5549.14 6753.56 8871.04 4857.01 5072.60 5671.41 5377.62 7082.14 47
DROMVSNet67.01 5070.27 5263.21 4767.21 5170.47 5669.01 5546.96 7159.16 6653.23 5464.01 4569.71 5360.37 3174.92 4471.24 5582.50 2082.41 44
UniMVSNet_ETH3D52.62 13955.98 14348.70 14151.04 16560.71 13556.87 13446.74 7242.52 16826.96 16942.50 17045.95 16037.87 15666.22 13465.15 13372.74 13568.78 135
FC-MVSNet-train58.40 9363.15 8452.85 11064.29 6561.84 12355.98 14346.47 7353.06 8534.96 13461.95 5756.37 10539.49 14768.67 8968.36 8175.92 10071.81 110
CDS-MVSNet52.42 14157.06 14047.02 15753.92 14358.30 15655.50 14746.47 7342.52 16829.38 15749.50 10852.85 11828.49 18866.70 12766.89 10168.34 16362.63 173
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
PVSNet_BlendedMVS61.63 7264.82 7557.91 7457.21 12067.55 7763.47 10046.08 7554.72 7552.46 5758.59 6660.73 8351.82 9270.46 7265.20 13076.44 8776.50 83
PVSNet_Blended61.63 7264.82 7557.91 7457.21 12067.55 7763.47 10046.08 7554.72 7552.46 5758.59 6660.73 8351.82 9270.46 7265.20 13076.44 8776.50 83
MSLP-MVS++68.17 4370.72 4865.19 3869.41 4170.64 5474.99 4045.76 7770.20 4560.17 2356.42 7473.01 4361.14 2372.80 5470.54 5879.70 5181.42 50
3Dnovator60.86 666.99 5170.32 5063.11 4866.63 5474.52 3871.56 5145.76 7767.37 5055.00 4354.31 8768.19 5958.49 4273.97 4973.63 4681.22 4080.23 54
Effi-MVS+63.28 6265.96 6960.17 5764.26 6668.06 6968.78 5845.71 7954.08 7746.64 7655.92 7763.13 7355.94 5970.38 7571.43 5279.68 5478.70 62
UA-Net58.50 9064.68 7851.30 11966.97 5267.13 8353.68 15945.65 8049.51 10631.58 14662.91 5068.47 5735.85 16968.20 9967.28 9674.03 11769.24 132
DELS-MVS65.87 5370.30 5160.71 5464.05 7072.68 4970.90 5345.43 8157.49 6949.05 6964.43 4268.66 5655.11 6374.31 4773.02 4879.70 5181.51 49
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
IS_MVSNet57.95 10064.26 8050.60 12161.62 8265.25 10157.18 13045.42 8250.79 9726.49 17257.81 7060.05 8834.51 17371.24 6570.20 6278.36 6574.44 98
casdiffmvs_mvgpermissive65.26 5669.48 5760.33 5662.99 7569.34 6069.80 5445.27 8363.38 5651.11 6165.12 4069.75 5253.51 7371.74 5968.86 7579.33 5578.19 68
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Vis-MVSNet (Re-imp)50.37 15657.73 13641.80 18157.53 10954.35 17145.70 18945.24 8449.80 10213.43 20058.23 6956.42 10320.11 20162.96 15363.36 14768.76 16258.96 186
CS-MVS-test65.18 5768.70 6061.07 5361.92 7768.06 6967.09 6945.18 8558.47 6852.02 6065.76 3666.44 6559.24 3772.71 5570.05 6380.98 4279.40 58
TransMVSNet (Re)51.92 14855.38 14747.88 15260.95 8659.90 14153.95 15645.14 8639.47 18524.85 17643.87 15546.51 15429.15 18567.55 11365.23 12973.26 13065.16 161
v14419258.23 9859.40 11956.87 8257.56 10766.89 8465.70 8245.01 8744.06 15342.88 9446.61 12748.09 13553.49 7666.94 12565.90 12076.61 8477.29 72
baseline154.48 13258.69 12449.57 12860.63 8858.29 15755.70 14544.95 8849.20 10929.62 15554.77 8354.75 11035.29 17067.15 12164.08 14071.21 15362.58 174
v119258.51 8959.66 11257.17 7957.82 10667.72 7366.21 7744.83 8944.15 15243.49 9246.68 12547.94 13653.55 7267.39 11666.51 11077.13 7977.20 74
EPP-MVSNet59.39 8165.45 7252.32 11460.96 8567.70 7458.42 12444.75 9049.71 10327.23 16759.03 6462.20 7743.34 13170.71 7069.13 7179.25 5879.63 57
v192192057.89 10159.02 12256.58 8557.55 10866.66 9064.72 9344.70 9143.55 15642.73 9546.17 13546.93 14953.51 7366.78 12665.75 12276.29 8977.28 73
ETV-MVS63.23 6366.08 6859.91 5963.13 7468.13 6867.62 6244.62 9253.39 8246.23 7858.74 6558.19 9457.45 4673.60 5071.38 5480.39 4479.13 59
v124057.55 10358.63 12656.29 8757.30 11866.48 9163.77 9844.56 9342.77 16642.48 9745.64 14146.28 15653.46 7766.32 13265.80 12176.16 9377.13 75
v114458.88 8560.16 10557.39 7858.03 10467.26 8067.14 6744.46 9445.17 14444.33 8947.81 12049.92 13253.20 8167.77 10966.62 10877.15 7876.58 80
casdiffmvspermissive64.09 6068.13 6159.37 6361.81 7868.32 6668.48 5944.45 9561.95 6049.12 6863.04 4969.67 5453.83 6970.46 7266.06 11678.55 6277.43 71
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
GeoE62.43 6864.79 7759.68 6164.15 6967.17 8268.80 5744.42 9655.65 7347.38 7151.54 9962.51 7454.04 6869.99 7868.07 8379.28 5778.57 63
DI_MVS_plusplus_trai61.88 7065.17 7458.06 6960.05 9165.26 9966.03 7844.22 9755.75 7246.73 7454.64 8568.12 6154.13 6769.13 8466.66 10577.18 7776.61 79
v1059.17 8460.60 9757.50 7757.95 10566.73 8667.09 6944.11 9846.85 13245.42 8348.18 11951.07 12453.63 7067.84 10766.59 10976.79 8176.92 76
pmmvs454.66 13156.07 14253.00 10854.63 13557.08 16560.43 11344.10 9951.69 9540.55 10946.55 13044.79 17245.95 11962.54 15563.66 14472.36 14466.20 151
FMVSNet255.04 12959.95 11049.31 13052.42 15161.44 12557.03 13144.08 10049.55 10430.40 15146.89 12458.84 9238.22 15267.07 12366.21 11473.69 12169.65 123
GBi-Net55.20 12560.25 10249.31 13052.42 15161.44 12557.03 13144.04 10149.18 11030.47 14848.28 11558.19 9438.22 15268.05 10466.96 9873.69 12169.65 123
test155.20 12560.25 10249.31 13052.42 15161.44 12557.03 13144.04 10149.18 11030.47 14848.28 11558.19 9438.22 15268.05 10466.96 9873.69 12169.65 123
FMVSNet354.78 13059.58 11549.17 13352.37 15461.31 12956.72 13644.04 10149.18 11030.47 14848.28 11558.19 9438.09 15565.48 14365.20 13073.31 12869.45 131
tfpnnormal50.16 15852.19 17047.78 15456.86 12358.37 15554.15 15544.01 10438.35 19325.94 17336.10 18537.89 19934.50 17465.93 13763.42 14671.26 15265.28 159
CS-MVS65.88 5269.71 5461.41 5261.76 8068.14 6767.65 6144.00 10559.14 6752.69 5665.19 3868.13 6060.90 2674.74 4571.58 5181.46 3981.04 52
FMVSNet154.08 13358.68 12548.71 14050.90 16761.35 12856.73 13543.94 10645.91 14029.32 15842.72 16856.26 10637.70 15968.05 10466.96 9873.69 12169.50 127
ET-MVSNet_ETH3D58.38 9461.57 8954.67 9542.15 19865.26 9965.70 8243.82 10748.84 11442.34 9859.76 6247.76 13956.68 5367.02 12468.60 8077.33 7673.73 105
DCV-MVSNet59.49 8064.00 8154.23 9661.81 7864.33 10961.42 10643.77 10852.85 8838.94 11955.62 7962.15 7843.24 13469.39 8267.66 9276.22 9275.97 87
tfpn200view952.53 14055.51 14549.06 13557.31 11660.24 13755.42 14943.77 10842.85 16427.81 16343.00 16645.06 16937.32 16166.38 12964.54 13672.71 13766.54 146
thres600view751.91 14955.14 14948.14 14857.43 11260.18 13854.60 15443.73 11042.61 16725.20 17543.10 16544.47 17635.19 17166.36 13063.28 14872.66 13966.01 154
thres20052.39 14255.37 14848.90 13757.39 11360.18 13855.60 14643.73 11042.93 16227.41 16543.35 16145.09 16836.61 16666.36 13063.92 14372.66 13965.78 156
Anonymous2023121157.71 10260.79 9454.13 9861.68 8165.81 9560.81 11143.70 11251.97 9439.67 11434.82 18963.59 7043.31 13268.55 9366.63 10775.59 10174.13 101
IterMVS-LS58.30 9661.39 9054.71 9459.92 9458.40 15459.42 11643.64 11348.71 11840.25 11257.53 7158.55 9352.15 8865.42 14565.34 12672.85 13275.77 88
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EG-PatchMatch MVS56.98 10658.24 13055.50 9164.66 6368.62 6361.48 10543.63 11438.44 19141.44 10238.05 18146.18 15843.95 12771.71 6070.61 5777.87 6774.08 102
MVS_111021_LR63.05 6466.43 6559.10 6461.33 8363.77 11465.87 8143.58 11560.20 6453.70 5362.09 5662.38 7555.84 6070.24 7668.08 8274.30 11478.28 67
thres40052.38 14355.51 14548.74 13957.49 11160.10 14055.45 14843.54 11642.90 16326.72 17143.34 16245.03 17136.61 16666.20 13564.53 13772.66 13966.43 147
v2v48258.69 8860.12 10857.03 8057.16 12266.05 9367.17 6643.52 11746.33 13645.19 8549.46 10951.02 12552.51 8467.30 11766.03 11776.61 8474.62 97
LTVRE_ROB44.17 1647.06 18050.15 18343.44 17351.39 16058.42 15342.90 19943.51 11822.27 21514.85 19841.94 17334.57 20545.43 12062.28 15862.77 15462.56 18568.83 134
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
test20.0340.38 20044.20 20035.92 19853.73 14449.05 18738.54 20643.49 11932.55 2049.54 20927.88 20439.12 19512.24 20956.28 18954.69 18857.96 19549.83 205
test-LLR49.28 16250.29 18048.10 14955.26 13147.16 19449.52 17043.48 12039.22 18631.98 14243.65 15847.93 13741.29 14256.80 18455.36 18367.08 16961.94 175
test0.0.03 143.15 19146.95 19338.72 19055.26 13150.56 18342.48 20043.48 12038.16 19515.11 19635.07 18844.69 17416.47 20455.95 19254.34 19159.54 19049.87 204
pmmvs-eth3d51.33 15052.25 16950.26 12550.82 16854.65 17056.03 14143.45 12243.51 15737.20 12839.20 17839.04 19642.28 13761.85 16062.78 15371.78 14964.72 163
Vis-MVSNetpermissive58.48 9165.70 7150.06 12653.40 14567.20 8160.24 11443.32 12348.83 11530.23 15262.38 5461.61 8140.35 14571.03 6669.77 6572.82 13479.11 60
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
UGNet57.03 10565.25 7347.44 15546.54 18466.73 8656.30 13843.28 12450.06 10032.99 13862.57 5363.26 7233.31 17868.25 9667.58 9372.20 14678.29 66
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
v7n55.67 11957.46 13853.59 10256.06 12665.29 9861.06 10943.26 12540.17 18237.99 12340.79 17545.27 16647.09 11367.67 11166.21 11476.08 9576.82 77
canonicalmvs65.62 5472.06 4058.11 6863.94 7171.05 5364.49 9443.18 12674.08 3347.35 7264.17 4471.97 4651.17 9471.87 5870.74 5678.51 6480.56 53
IB-MVS54.11 1158.36 9560.70 9655.62 9058.67 10068.02 7161.56 10343.15 12746.09 13844.06 9044.24 15250.99 12748.71 10366.70 12770.33 5977.60 7178.50 64
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
OpenMVScopyleft57.13 962.81 6565.75 7059.39 6266.47 5669.52 5964.26 9643.07 12861.34 6250.19 6547.29 12364.41 6854.60 6470.18 7768.62 7977.73 6878.89 61
thres100view90052.04 14654.81 15248.80 13857.31 11659.33 14555.30 15042.92 12942.85 16427.81 16343.00 16645.06 16936.99 16364.74 14863.51 14572.47 14265.21 160
v858.88 8560.57 9956.92 8157.35 11565.69 9666.69 7342.64 13047.89 12745.77 8049.04 11052.98 11752.77 8267.51 11465.57 12376.26 9175.30 94
pm-mvs151.02 15255.55 14445.73 16154.16 14058.52 15250.92 16642.56 13140.32 18025.67 17443.66 15750.34 13030.06 18365.85 13963.97 14270.99 15566.21 150
MSDG58.46 9258.97 12357.85 7666.27 5866.23 9267.72 6042.33 13253.43 8143.68 9143.39 16045.35 16349.75 9868.66 9067.77 8877.38 7467.96 137
Effi-MVS+-dtu60.34 7762.32 8758.03 7164.31 6467.44 7965.99 7942.26 13349.55 10442.00 10148.92 11359.79 8956.27 5668.07 10367.03 9777.35 7575.45 92
HyFIR lowres test56.87 10958.60 12754.84 9356.62 12569.27 6164.77 9242.21 13445.66 14237.50 12633.08 19257.47 9953.33 7865.46 14467.94 8474.60 11171.35 112
pmmvs648.35 17051.64 17244.51 16951.92 15757.94 16149.44 17242.17 13534.45 20024.62 17828.87 20346.90 15029.07 18764.60 14963.08 14969.83 15965.68 157
EIA-MVS61.53 7463.79 8258.89 6563.82 7267.61 7665.35 8742.15 13649.98 10145.66 8257.47 7256.62 10156.59 5470.91 6969.15 7079.78 4974.80 96
MVS_Test62.40 6966.23 6757.94 7259.77 9664.77 10566.50 7441.76 13757.26 7049.33 6662.68 5267.47 6453.50 7568.57 9266.25 11376.77 8276.58 80
gg-mvs-nofinetune49.07 16652.56 16645.00 16661.99 7659.78 14253.55 16141.63 13831.62 20712.08 20229.56 20153.28 11629.57 18466.27 13364.49 13871.19 15462.92 170
CHOSEN 1792x268855.85 11758.01 13153.33 10357.26 11962.82 11963.29 10241.55 13946.65 13438.34 12034.55 19053.50 11352.43 8567.10 12267.56 9467.13 16873.92 104
MS-PatchMatch58.19 9960.20 10455.85 8965.17 6164.16 11164.82 9141.48 14050.95 9642.17 10045.38 14456.42 10348.08 10868.30 9566.70 10473.39 12569.46 130
TSAR-MVS + COLMAP62.65 6769.90 5354.19 9746.31 18566.73 8665.49 8641.36 14176.57 2446.31 7776.80 1756.68 10053.27 8069.50 8166.65 10672.40 14376.36 85
diffmvspermissive61.64 7166.55 6455.90 8856.63 12463.71 11567.13 6841.27 14259.49 6546.70 7563.93 4768.01 6250.46 9567.30 11765.51 12473.24 13177.87 70
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CNLPA62.78 6666.31 6658.65 6658.47 10268.41 6565.98 8041.22 14378.02 2256.04 3646.65 12659.50 9057.50 4569.67 8065.27 12872.70 13876.67 78
USDC51.11 15153.71 15648.08 15044.76 19055.99 16853.01 16340.90 14452.49 9036.14 13044.67 14933.66 20743.27 13363.23 15161.10 16270.39 15864.82 162
MDA-MVSNet-bldmvs41.36 19443.15 20439.27 18928.74 21352.68 17744.95 19440.84 14532.89 20318.13 19331.61 19522.09 21838.97 15150.45 20656.11 17864.01 17856.23 192
EPNet_dtu52.05 14558.26 12944.81 16754.10 14150.09 18652.01 16440.82 14653.03 8627.41 16554.90 8157.96 9826.72 19062.97 15262.70 15567.78 16666.19 152
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
TinyColmap47.08 17847.56 19246.52 15842.35 19753.44 17451.77 16540.70 14743.44 15831.92 14429.78 20023.72 21745.04 12461.99 15959.54 17067.35 16761.03 178
thisisatest053056.68 11059.68 11153.19 10652.97 14760.96 13359.41 11740.51 14848.26 12441.06 10752.67 9246.30 15549.78 9667.66 11267.83 8675.39 10474.07 103
tttt051756.53 11259.59 11352.95 10952.66 15060.99 13259.21 11940.51 14847.89 12740.40 11052.50 9546.04 15949.78 9667.75 11067.83 8675.15 10774.17 100
baseline255.89 11557.82 13353.64 10057.36 11461.09 13159.75 11540.45 15047.38 13041.26 10651.23 10146.90 15048.11 10765.63 14264.38 13974.90 11068.16 136
FC-MVSNet-test39.65 20148.35 18929.49 20544.43 19139.28 21130.23 21440.44 15143.59 1553.12 22153.00 9042.03 18210.02 21755.09 19554.77 18748.66 20950.71 199
PLCcopyleft52.09 1459.21 8362.47 8655.41 9253.24 14664.84 10464.47 9540.41 15265.92 5144.53 8846.19 13455.69 10855.33 6268.24 9865.30 12774.50 11271.09 113
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
SixPastTwentyTwo47.55 17750.25 18244.41 17047.30 18254.31 17247.81 17840.36 15333.76 20119.93 18943.75 15632.77 20942.07 13859.82 16760.94 16368.98 16066.37 149
GA-MVS55.67 11958.33 12852.58 11355.23 13363.09 11661.08 10840.15 15442.95 16137.02 12952.61 9347.68 14047.51 11165.92 13865.35 12574.49 11370.68 118
thisisatest051553.85 13456.84 14150.37 12450.25 17158.17 15855.99 14239.90 15541.88 17138.16 12245.91 13745.30 16444.58 12566.15 13666.89 10173.36 12773.57 106
TDRefinement49.31 16152.44 16745.67 16330.44 21159.42 14459.24 11839.78 15648.76 11731.20 14735.73 18629.90 21142.81 13664.24 15062.59 15770.55 15666.43 147
SCA50.99 15353.22 16348.40 14551.07 16456.78 16650.25 16839.05 15748.31 12341.38 10349.54 10746.70 15346.00 11858.31 17656.28 17662.65 18356.60 191
CLD-MVS67.02 4971.57 4261.71 5171.01 3474.81 3771.62 5038.91 15871.86 4060.70 2164.97 4167.88 6351.88 9176.77 3174.98 3676.11 9469.75 122
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
dps50.42 15551.20 17649.51 12955.88 12756.07 16753.73 15738.89 15943.66 15440.36 11145.66 14037.63 20145.23 12259.05 16956.18 17762.94 18260.16 182
CR-MVSNet50.47 15452.61 16547.98 15149.03 17652.94 17548.27 17538.86 16044.41 14839.59 11544.34 15144.65 17546.63 11558.97 17160.31 16665.48 17362.66 171
Patchmtry47.61 19248.27 17538.86 16039.59 115
Anonymous2023120642.28 19245.89 19538.07 19251.96 15648.98 18843.66 19838.81 16238.74 19014.32 19926.74 20540.90 18720.94 19956.64 18754.67 18958.71 19154.59 193
FA-MVS(training)60.00 7963.14 8556.33 8659.50 9764.30 11065.15 8938.75 16356.20 7145.77 8053.08 8956.45 10252.10 8969.04 8667.67 9176.69 8375.27 95
v14855.58 12157.61 13753.20 10554.59 13861.86 12261.18 10738.70 16444.30 15142.25 9947.53 12150.24 13148.73 10265.15 14662.61 15673.79 11971.61 111
PatchMatch-RL50.11 15951.56 17348.43 14446.23 18651.94 17950.21 16938.62 16546.62 13537.51 12542.43 17139.38 19452.24 8760.98 16359.56 16965.76 17260.01 184
OMC-MVS65.16 5871.35 4457.94 7252.95 14868.82 6269.00 5638.28 16679.89 1555.20 4162.76 5168.31 5856.14 5871.30 6368.70 7776.06 9879.67 56
tpm cat153.30 13753.41 15953.17 10758.16 10359.15 14863.73 9938.27 16750.73 9846.98 7345.57 14244.00 17949.20 10055.90 19354.02 19262.65 18364.50 165
V4256.97 10760.14 10653.28 10448.16 17762.78 12066.30 7637.93 16847.44 12942.68 9648.19 11852.59 11951.90 9067.46 11565.94 11972.72 13676.55 82
MVSTER57.19 10461.11 9252.62 11250.82 16858.79 15061.55 10437.86 16948.81 11641.31 10457.43 7352.10 12048.60 10468.19 10066.75 10375.56 10275.68 91
CVMVSNet46.38 18352.01 17139.81 18742.40 19650.26 18446.15 18637.68 17040.03 18315.09 19746.56 12947.56 14233.72 17756.50 18855.65 18163.80 17967.53 138
PatchmatchNetpermissive49.92 16051.29 17448.32 14751.83 15851.86 18053.38 16237.63 17147.90 12640.83 10848.54 11445.30 16445.19 12356.86 18353.99 19461.08 18854.57 194
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
Fast-Effi-MVS+60.36 7663.35 8356.87 8258.70 9965.86 9465.08 9037.11 17253.00 8745.36 8452.12 9656.07 10756.27 5671.28 6469.42 6878.71 6075.69 90
CANet_DTU58.88 8564.68 7852.12 11555.77 12866.75 8563.92 9737.04 17353.32 8337.45 12759.81 6161.81 7944.43 12668.25 9667.47 9574.12 11675.33 93
COLMAP_ROBcopyleft46.52 1551.99 14754.86 15148.63 14249.13 17561.73 12460.53 11236.57 17453.14 8432.95 13937.10 18238.68 19740.49 14465.72 14063.08 14972.11 14764.60 164
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
TAPA-MVS54.74 1060.85 7566.61 6354.12 9947.38 18165.33 9765.35 8736.51 17575.16 3048.82 7054.70 8463.51 7153.31 7968.36 9464.97 13473.37 12674.27 99
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
new-patchmatchnet33.24 20837.20 20928.62 20744.32 19338.26 21229.68 21536.05 17631.97 2066.33 21726.59 20627.33 21211.12 21650.08 20841.05 21244.23 21245.15 209
CostFormer56.57 11159.13 12153.60 10157.52 11061.12 13066.94 7135.95 17753.44 8044.68 8755.87 7854.44 11148.21 10660.37 16658.33 17368.27 16470.33 120
MVS-HIRNet42.24 19341.15 20643.51 17244.06 19440.74 20635.77 21035.35 17835.38 19938.34 12025.63 20738.55 19843.48 13050.77 20447.03 20764.07 17749.98 202
PatchT48.08 17251.03 17744.64 16842.96 19550.12 18540.36 20435.09 17943.17 15939.59 11542.00 17239.96 19346.63 11558.97 17160.31 16663.21 18062.66 171
testgi38.71 20243.64 20232.95 20252.30 15548.63 19035.59 21135.05 18031.58 2089.03 21230.29 19740.75 18911.19 21555.30 19453.47 19754.53 20245.48 208
IterMVS-SCA-FT52.18 14457.75 13545.68 16251.01 16662.06 12155.10 15234.75 18144.85 14532.86 14051.13 10351.22 12348.74 10162.47 15661.51 16051.61 20771.02 114
baseline55.19 12760.88 9348.55 14349.87 17258.10 15958.70 12134.75 18152.82 8939.48 11860.18 6060.86 8245.41 12161.05 16260.74 16563.10 18172.41 108
IterMVS53.45 13657.12 13949.17 13349.23 17460.93 13459.05 12034.63 18344.53 14733.22 13651.09 10451.01 12648.38 10562.43 15760.79 16470.54 15769.05 133
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Gipumacopyleft25.87 21026.91 21324.66 20928.98 21220.17 21720.46 21634.62 18429.55 2099.10 2104.91 2205.31 22415.76 20649.37 21049.10 20439.03 21329.95 213
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
MDTV_nov1_ep1350.32 15752.43 16847.86 15349.87 17254.70 16958.10 12534.29 18545.59 14337.71 12447.44 12247.42 14441.86 13958.07 17955.21 18565.34 17558.56 187
EU-MVSNet40.63 19845.65 19734.78 20139.11 20246.94 19740.02 20534.03 18633.50 20210.37 20635.57 18737.80 20023.65 19551.90 20150.21 20261.49 18763.62 169
RPMNet46.41 18148.72 18743.72 17147.77 18052.94 17546.02 18833.92 18744.41 14831.82 14536.89 18337.42 20237.41 16053.88 19954.02 19265.37 17461.47 177
MIMVSNet135.51 20541.41 20528.63 20627.53 21543.36 20538.09 20733.82 18832.01 2056.77 21621.63 21135.43 20411.97 21155.05 19653.99 19453.59 20448.36 207
MDTV_nov1_ep13_2view47.62 17649.72 18545.18 16548.05 17853.70 17354.90 15333.80 18939.90 18429.79 15438.85 17941.89 18339.17 14858.99 17055.55 18265.34 17559.17 185
tpmrst48.08 17249.88 18445.98 15952.71 14948.11 19153.62 16033.70 19048.70 11939.74 11348.96 11246.23 15740.29 14650.14 20749.28 20355.80 19757.71 189
anonymousdsp52.84 13857.78 13447.06 15640.24 20158.95 14953.70 15833.54 19136.51 19832.69 14143.88 15445.40 16247.97 11067.17 11970.28 6074.22 11582.29 46
EPMVS44.66 18747.86 19140.92 18447.97 17944.70 20347.58 18033.27 19248.11 12529.58 15649.65 10644.38 17734.65 17251.71 20247.90 20552.49 20548.57 206
pmnet_mix0240.48 19943.80 20136.61 19645.79 18840.45 20842.12 20133.18 19340.30 18124.11 18138.76 18037.11 20324.30 19452.97 20046.66 20950.17 20850.33 201
pmmvs547.07 17951.02 17842.46 17745.18 18951.47 18148.23 17733.09 19438.17 19428.62 16146.60 12843.48 18030.74 18158.28 17758.63 17268.92 16160.48 180
Fast-Effi-MVS+-dtu56.30 11459.29 12052.82 11158.64 10164.89 10365.56 8532.89 19545.80 14135.04 13345.89 13854.14 11249.41 9967.16 12066.45 11275.37 10570.69 117
MIMVSNet43.79 19048.53 18838.27 19141.46 19948.97 18950.81 16732.88 19644.55 14622.07 18232.05 19347.15 14624.76 19358.73 17356.09 17957.63 19652.14 195
ADS-MVSNet40.67 19743.38 20337.50 19444.36 19239.79 21042.09 20232.67 19744.34 15028.87 16040.76 17640.37 19130.22 18248.34 21145.87 21046.81 21144.21 210
gm-plane-assit44.74 18645.95 19443.33 17460.88 8746.79 19936.97 20832.24 19824.15 21311.79 20329.26 20232.97 20846.64 11465.09 14762.95 15171.45 15160.42 181
tpm48.82 16751.27 17545.96 16054.10 14147.35 19356.05 14030.23 19946.70 13343.21 9352.54 9447.55 14337.28 16254.11 19850.50 20154.90 20060.12 183
CMPMVSbinary37.70 1749.24 16352.71 16445.19 16445.97 18751.23 18247.44 18129.31 20043.04 16044.69 8634.45 19148.35 13443.64 12862.59 15459.82 16860.08 18969.48 128
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
PM-MVS44.55 18848.13 19040.37 18632.85 21046.82 19846.11 18729.28 20140.48 17929.99 15339.98 17734.39 20641.80 14056.08 19153.88 19662.19 18665.31 158
FMVSNet540.96 19545.81 19635.29 20034.30 20544.55 20447.28 18228.84 20240.76 17721.62 18329.85 19942.44 18124.77 19257.53 18155.00 18654.93 19950.56 200
TAMVS44.02 18949.18 18637.99 19347.03 18345.97 20045.04 19228.47 20339.11 18820.23 18843.22 16448.52 13328.49 18858.15 17857.95 17558.71 19151.36 197
E-PMN15.09 21313.19 21717.30 21127.80 21412.62 2207.81 22127.54 20414.62 2193.19 2196.89 2172.52 22715.09 20715.93 21720.22 21622.38 21619.53 216
EMVS14.49 21412.45 21816.87 21327.02 21612.56 2218.13 22027.19 20515.05 2183.14 2206.69 2182.67 22615.08 20814.60 21918.05 21720.67 21717.56 218
N_pmnet32.67 20936.85 21027.79 20840.55 20032.13 21335.80 20926.79 20637.24 1979.10 21032.02 19430.94 21016.30 20547.22 21241.21 21138.21 21437.21 211
PMVScopyleft27.84 1833.81 20735.28 21132.09 20334.13 20624.81 21632.51 21326.48 20726.41 21119.37 19023.76 20824.02 21625.18 19150.78 20347.24 20654.89 20149.95 203
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
PMMVS49.20 16554.28 15543.28 17534.13 20645.70 20148.98 17326.09 20846.31 13734.92 13555.22 8053.47 11447.48 11259.43 16859.04 17168.05 16560.77 179
FPMVS38.36 20340.41 20735.97 19738.92 20339.85 20945.50 19025.79 20941.13 17518.70 19130.10 19824.56 21531.86 18049.42 20946.80 20855.04 19851.03 198
MVEpermissive12.28 1913.53 21515.72 21510.96 2157.39 22115.71 2196.05 22223.73 21010.29 2213.01 2225.77 2193.41 22511.91 21220.11 21529.79 21413.67 22024.98 214
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
CHOSEN 280x42040.80 19645.05 19935.84 19932.95 20929.57 21444.98 19323.71 21137.54 19618.42 19231.36 19647.07 14746.41 11756.71 18654.65 19048.55 21058.47 188
RPSCF46.41 18154.42 15337.06 19525.70 21845.14 20245.39 19120.81 21262.79 5835.10 13244.92 14855.60 10943.56 12956.12 19052.45 19851.80 20663.91 167
TESTMET0.1,146.09 18450.29 18041.18 18336.91 20447.16 19449.52 17020.32 21339.22 18631.98 14243.65 15847.93 13741.29 14256.80 18455.36 18367.08 16961.94 175
test-mter45.30 18550.37 17939.38 18833.65 20846.99 19647.59 17918.59 21438.75 18928.00 16243.28 16346.82 15241.50 14157.28 18255.78 18066.93 17163.70 168
pmmvs335.10 20638.47 20831.17 20426.37 21740.47 20734.51 21218.09 21524.75 21216.88 19523.05 20926.69 21332.69 17950.73 20551.60 19958.46 19451.98 196
PMMVS215.84 21219.68 21411.35 21415.74 22016.95 21813.31 21817.64 21616.08 2170.36 22413.12 21411.47 2211.69 21928.82 21427.24 21519.38 21924.09 215
new_pmnet23.19 21128.17 21217.37 21017.03 21924.92 21519.66 21716.16 21727.05 2104.42 21820.77 21219.20 21912.19 21037.71 21336.38 21334.77 21531.17 212
test_method12.44 21614.66 2169.85 2161.30 2233.32 22313.00 2193.21 21822.42 21410.22 20714.13 21325.64 21411.43 21419.75 21611.61 21919.96 2185.79 219
DeepMVS_CXcopyleft6.95 2225.98 2232.25 21911.73 2202.07 22311.85 2155.43 22311.75 21311.40 2208.10 22218.38 217
tmp_tt5.40 2173.97 2222.35 2243.26 2240.44 22017.56 21612.09 20111.48 2167.14 2221.98 21815.68 21815.49 21810.69 221
GG-mvs-BLEND36.62 20453.39 16017.06 2120.01 22458.61 15148.63 1740.01 22147.13 1310.02 22543.98 15360.64 850.03 22054.92 19751.47 20053.64 20356.99 190
uanet_test0.00 2190.00 2210.00 2180.00 2250.00 2250.00 2270.00 2220.00 2240.00 2260.00 2230.00 2280.00 2230.00 2220.00 2220.00 2230.00 222
sosnet-low-res0.00 2190.00 2210.00 2180.00 2250.00 2250.00 2270.00 2220.00 2240.00 2260.00 2230.00 2280.00 2230.00 2220.00 2220.00 2230.00 222
sosnet0.00 2190.00 2210.00 2180.00 2250.00 2250.00 2270.00 2220.00 2240.00 2260.00 2230.00 2280.00 2230.00 2220.00 2220.00 2230.00 222
testmvs0.01 2170.02 2190.00 2180.00 2250.00 2250.01 2260.00 2220.01 2220.00 2260.03 2220.00 2280.01 2210.01 2210.01 2200.00 2230.06 221
test1230.01 2170.02 2190.00 2180.00 2250.00 2250.00 2270.00 2220.01 2220.00 2260.04 2210.00 2280.01 2210.00 2220.01 2200.00 2230.07 220
RE-MVS-def33.01 137
9.1481.81 13
our_test_351.15 16357.31 16455.12 151
ambc45.54 19850.66 17052.63 17840.99 20338.36 19224.67 17722.62 21013.94 22029.14 18665.71 14158.06 17458.60 19367.43 139
MTAPA65.14 480.20 20
MTMP62.63 1678.04 26
Patchmatch-RL test1.04 225
XVS70.49 3776.96 2574.36 4454.48 4774.47 3782.24 24
X-MVStestdata70.49 3776.96 2574.36 4454.48 4774.47 3782.24 24
mPP-MVS71.67 3274.36 40
NP-MVS72.00 39