This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DeepC-MVS78.47 284.81 2586.03 2883.37 1889.29 3190.38 1188.61 2676.50 186.25 2277.22 2375.12 3980.28 4477.59 2188.39 1088.17 691.02 693.66 18
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SED-MVS88.85 291.59 385.67 290.54 1592.29 391.71 376.40 292.41 383.24 292.50 390.64 481.10 389.53 388.02 791.00 895.73 3
DVP-MVS++89.14 191.86 185.97 192.55 292.38 191.69 476.31 393.31 183.11 392.44 491.18 181.17 289.55 287.93 891.01 796.21 1
DVP-MVScopyleft88.67 391.62 285.22 490.47 1692.36 290.69 976.15 493.08 282.75 492.19 690.71 380.45 689.27 687.91 990.82 1195.84 2
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
HPM-MVS++copyleft87.09 988.92 1384.95 692.61 187.91 3990.23 1576.06 588.85 1281.20 987.33 1387.93 1279.47 988.59 988.23 590.15 3493.60 20
DPE-MVScopyleft88.63 491.29 485.53 390.87 892.20 491.98 276.00 690.55 882.09 693.85 190.75 281.25 188.62 887.59 1490.96 995.48 4
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MSP-MVS88.09 590.84 584.88 790.00 2291.80 691.63 575.80 791.99 481.23 892.54 289.18 680.89 487.99 1587.91 989.70 4494.51 7
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
SF-MVS87.47 889.70 884.86 891.26 691.10 890.90 675.65 889.21 981.25 791.12 888.93 778.82 1087.42 1986.23 3091.28 393.90 13
APD-MVScopyleft86.84 1288.91 1484.41 1090.66 1190.10 1290.78 775.64 987.38 1678.72 1890.68 1086.82 1780.15 787.13 2486.45 2890.51 2193.83 14
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CNVR-MVS86.36 1488.19 1784.23 1191.33 589.84 1490.34 1175.56 1087.36 1778.97 1781.19 2886.76 1878.74 1189.30 588.58 290.45 2794.33 10
NCCC85.34 1986.59 2483.88 1591.48 488.88 2589.79 1775.54 1186.67 2077.94 2276.55 3484.99 2578.07 1688.04 1287.68 1290.46 2693.31 21
APDe-MVS88.00 690.50 685.08 590.95 791.58 792.03 175.53 1291.15 580.10 1492.27 588.34 1180.80 588.00 1486.99 1891.09 595.16 6
SMA-MVScopyleft87.56 790.17 784.52 991.71 390.57 990.77 875.19 1390.67 780.50 1386.59 1788.86 878.09 1589.92 189.41 190.84 1095.19 5
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
SD-MVS86.96 1089.45 984.05 1490.13 1989.23 2289.77 1874.59 1489.17 1080.70 1089.93 1189.67 578.47 1287.57 1886.79 2290.67 1793.76 16
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
SteuartSystems-ACMMP85.99 1688.31 1683.27 2090.73 1089.84 1490.27 1474.31 1584.56 2975.88 2987.32 1485.04 2477.31 2389.01 788.46 391.14 493.96 12
Skip Steuart: Steuart Systems R&D Blog.
HFP-MVS86.15 1587.95 1884.06 1390.80 989.20 2389.62 1974.26 1687.52 1480.63 1186.82 1684.19 2878.22 1487.58 1787.19 1690.81 1293.13 24
DeepC-MVS_fast78.24 384.27 2885.50 3082.85 2290.46 1789.24 2187.83 3274.24 1784.88 2576.23 2775.26 3881.05 4277.62 2088.02 1387.62 1390.69 1692.41 27
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MP-MVScopyleft85.50 1887.40 2183.28 1990.65 1289.51 1989.16 2374.11 1883.70 3378.06 2185.54 2084.89 2777.31 2387.40 2187.14 1790.41 2893.65 19
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
ACMMP_NAP86.52 1389.01 1183.62 1690.28 1890.09 1390.32 1374.05 1988.32 1379.74 1587.04 1585.59 2376.97 2889.35 488.44 490.35 3094.27 11
ACMMPR85.52 1787.53 2083.17 2190.13 1989.27 2089.30 2073.97 2086.89 1977.14 2486.09 1883.18 3177.74 1987.42 1987.20 1590.77 1392.63 25
CP-MVS84.74 2686.43 2682.77 2389.48 2988.13 3888.64 2573.93 2184.92 2476.77 2581.94 2683.50 2977.29 2586.92 3086.49 2790.49 2293.14 23
MCST-MVS85.13 2286.62 2383.39 1790.55 1489.82 1689.29 2173.89 2284.38 3076.03 2879.01 3185.90 2178.47 1287.81 1686.11 3392.11 193.29 22
X-MVS83.23 3285.20 3280.92 3389.71 2688.68 2788.21 3173.60 2382.57 3771.81 4477.07 3281.92 3671.72 5886.98 2886.86 2090.47 2392.36 28
SR-MVS88.99 3373.57 2487.54 14
train_agg84.86 2487.21 2282.11 2690.59 1385.47 5389.81 1673.55 2583.95 3173.30 3789.84 1287.23 1575.61 3386.47 3385.46 3889.78 4092.06 31
TSAR-MVS + MP.86.88 1189.23 1084.14 1289.78 2588.67 3090.59 1073.46 2688.99 1180.52 1291.26 788.65 979.91 886.96 2986.22 3190.59 1993.83 14
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
DPM-MVS83.30 3184.33 3482.11 2689.56 2788.49 3390.33 1273.24 2783.85 3276.46 2672.43 4982.65 3273.02 4886.37 3586.91 1990.03 3689.62 51
DeepPCF-MVS79.04 185.30 2088.93 1281.06 3188.77 3590.48 1085.46 4573.08 2890.97 673.77 3684.81 2285.95 2077.43 2288.22 1187.73 1187.85 8394.34 9
OPM-MVS79.68 4779.28 6080.15 3787.99 3886.77 4588.52 2872.72 2964.55 9867.65 6267.87 7374.33 6474.31 3986.37 3585.25 4089.73 4389.81 49
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
TSAR-MVS + ACMM85.10 2388.81 1580.77 3489.55 2888.53 3288.59 2772.55 3087.39 1571.90 4190.95 987.55 1374.57 3687.08 2686.54 2687.47 9093.67 17
EPNet79.08 5580.62 5177.28 5188.90 3483.17 7983.65 5372.41 3174.41 5667.15 6576.78 3374.37 6364.43 9783.70 6083.69 5287.15 9488.19 59
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
ACMMPcopyleft83.42 3085.27 3181.26 3088.47 3688.49 3388.31 3072.09 3283.42 3472.77 3982.65 2478.22 4975.18 3486.24 3885.76 3590.74 1492.13 30
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
AdaColmapbinary79.74 4678.62 6281.05 3289.23 3286.06 5084.95 4871.96 3379.39 4675.51 3063.16 9068.84 9476.51 2983.55 6182.85 5888.13 7386.46 75
CDPH-MVS82.64 3385.03 3379.86 3889.41 3088.31 3588.32 2971.84 3480.11 4367.47 6382.09 2581.44 4071.85 5685.89 4186.15 3290.24 3291.25 37
PGM-MVS84.42 2786.29 2782.23 2590.04 2188.82 2689.23 2271.74 3582.82 3674.61 3284.41 2382.09 3477.03 2787.13 2486.73 2490.73 1592.06 31
3Dnovator+75.73 482.40 3482.76 3981.97 2888.02 3789.67 1786.60 3671.48 3681.28 4178.18 2064.78 8477.96 5177.13 2687.32 2286.83 2190.41 2891.48 35
CSCG85.28 2187.68 1982.49 2489.95 2391.99 588.82 2471.20 3786.41 2179.63 1679.26 2988.36 1073.94 4186.64 3186.67 2591.40 294.41 8
CPTT-MVS81.77 3783.10 3880.21 3685.93 4986.45 4887.72 3370.98 3882.54 3871.53 4774.23 4481.49 3976.31 3182.85 6981.87 6588.79 6292.26 29
ACMM72.26 878.86 5678.13 6479.71 3986.89 4383.40 7486.02 3970.50 3975.28 5371.49 4863.01 9169.26 8873.57 4384.11 5683.98 4789.76 4287.84 62
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
HQP-MVS81.19 4083.27 3778.76 4487.40 4085.45 5486.95 3470.47 4081.31 4066.91 6679.24 3076.63 5371.67 5984.43 5483.78 5189.19 5492.05 33
TSAR-MVS + GP.83.69 2986.58 2580.32 3585.14 5386.96 4384.91 4970.25 4184.71 2873.91 3585.16 2185.63 2277.92 1785.44 4285.71 3689.77 4192.45 26
MSLP-MVS++82.09 3682.66 4081.42 2987.03 4287.22 4285.82 4170.04 4280.30 4278.66 1968.67 6981.04 4377.81 1885.19 4684.88 4389.19 5491.31 36
PCF-MVS73.28 679.42 4980.41 5478.26 4684.88 5988.17 3686.08 3869.85 4375.23 5568.43 5768.03 7278.38 4771.76 5781.26 8780.65 8788.56 6591.18 38
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
TranMVSNet+NR-MVSNet69.25 12070.81 11267.43 12777.23 11479.46 11273.48 14369.66 4460.43 13139.56 18358.82 11253.48 16355.74 16079.59 11181.21 7288.89 5982.70 114
UniMVSNet_NR-MVSNet70.59 10472.19 10368.72 11277.72 10980.72 10073.81 13869.65 4561.99 11843.23 17560.54 10157.50 13658.57 13579.56 11381.07 7489.34 4983.97 104
LGP-MVS_train79.83 4381.22 4778.22 4886.28 4785.36 5686.76 3569.59 4677.34 4865.14 7275.68 3670.79 7871.37 6284.60 5084.01 4690.18 3390.74 42
ACMP73.23 779.79 4480.53 5278.94 4285.61 5185.68 5185.61 4269.59 4677.33 4971.00 5074.45 4269.16 8971.88 5483.15 6683.37 5489.92 3790.57 44
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
PHI-MVS82.36 3585.89 2978.24 4786.40 4689.52 1885.52 4369.52 4882.38 3965.67 6981.35 2782.36 3373.07 4787.31 2386.76 2389.24 5191.56 34
MVS_111021_HR80.13 4281.46 4478.58 4585.77 5085.17 5783.45 5469.28 4974.08 6070.31 5374.31 4375.26 6073.13 4686.46 3485.15 4189.53 4689.81 49
DU-MVS69.63 11570.91 11168.13 11875.99 12079.54 11073.81 13869.20 5061.20 12643.23 17558.52 11353.50 16158.57 13579.22 11780.45 9087.97 7883.97 104
NR-MVSNet68.79 12570.56 11366.71 14377.48 11279.54 11073.52 14269.20 5061.20 12639.76 18258.52 11350.11 18751.37 17580.26 10480.71 8488.97 5783.59 110
LS3D74.08 7873.39 9374.88 6785.05 5482.62 8379.71 7368.66 5272.82 6558.80 9157.61 12261.31 11971.07 6480.32 10178.87 11486.00 13280.18 141
Baseline_NR-MVSNet67.53 14368.77 13566.09 14575.99 12074.75 16172.43 14968.41 5361.33 12538.33 18751.31 17054.13 15656.03 15679.22 11778.19 12185.37 14382.45 116
ACMH65.37 1470.71 10370.00 11871.54 8382.51 6682.47 8477.78 9368.13 5456.19 15646.06 16654.30 14051.20 18168.68 7580.66 9680.72 8086.07 12684.45 103
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMH+66.54 1371.36 9970.09 11772.85 7882.59 6581.13 9578.56 8568.04 5561.55 12252.52 13051.50 16954.14 15468.56 7678.85 12279.50 10586.82 10683.94 106
UniMVSNet (Re)69.53 11671.90 10666.76 14176.42 11880.93 9672.59 14868.03 5661.75 12141.68 18058.34 11957.23 13853.27 17179.53 11480.62 8888.57 6484.90 96
CANet81.62 3983.41 3679.53 4087.06 4188.59 3185.47 4467.96 5776.59 5174.05 3374.69 4081.98 3572.98 4986.14 3985.47 3789.68 4590.42 45
DTE-MVSNet61.85 17864.96 16958.22 18274.32 13874.39 16361.01 19567.85 5851.76 18621.91 21253.28 15148.17 19237.74 19872.22 17076.44 14786.52 11878.49 152
test111171.56 9573.44 9269.38 10781.16 7682.95 8074.99 11867.68 5966.89 8246.33 16355.19 13660.91 12057.99 14184.59 5182.70 6088.12 7480.85 132
PEN-MVS62.96 16665.77 16059.70 17673.98 14275.45 15463.39 18967.61 6052.49 17925.49 20453.39 14949.12 19140.85 19471.94 17377.26 13786.86 10580.72 134
test250671.72 9372.95 9770.29 9481.49 7283.27 7575.74 10767.59 6168.19 7749.81 14361.15 9649.73 18958.82 13384.76 4882.94 5688.27 6780.63 135
ECVR-MVScopyleft72.20 8973.91 8970.20 9681.49 7283.27 7575.74 10767.59 6168.19 7749.31 14755.77 13062.00 11758.82 13384.76 4882.94 5688.27 6780.41 139
MAR-MVS79.21 5280.32 5577.92 4987.46 3988.15 3783.95 5267.48 6374.28 5768.25 5864.70 8577.04 5272.17 5285.42 4385.00 4288.22 6987.62 64
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
MVS_030481.73 3883.86 3579.26 4186.22 4889.18 2486.41 3767.15 6475.28 5370.75 5174.59 4183.49 3074.42 3887.05 2786.34 2990.58 2091.08 39
CP-MVSNet62.68 16865.49 16359.40 17971.84 15975.34 15562.87 19167.04 6552.64 17827.19 20253.38 15048.15 19341.40 19271.26 17675.68 15286.07 12682.00 121
PS-CasMVS62.38 17465.06 16659.25 18071.73 16075.21 15962.77 19266.99 6651.94 18526.96 20352.00 16747.52 19641.06 19371.16 17975.60 15385.97 13381.97 123
UniMVSNet_ETH3D67.18 14767.03 15267.36 12974.44 13778.12 12574.07 13366.38 6752.22 18146.87 15848.64 18051.84 17856.96 14977.29 13778.53 11685.42 14282.59 115
WR-MVS_H61.83 18065.87 15957.12 18671.72 16176.87 14161.45 19466.19 6851.97 18422.92 20953.13 15652.30 17633.80 20271.03 18075.00 15786.65 11480.78 133
PVSNet_Blended_VisFu76.57 6677.90 6575.02 6580.56 8486.58 4779.24 7866.18 6964.81 9568.18 5965.61 7871.45 7367.05 8184.16 5581.80 6688.90 5890.92 40
WR-MVS63.03 16567.40 15057.92 18375.14 12977.60 13760.56 19666.10 7054.11 17323.88 20553.94 14653.58 15934.50 20173.93 16177.71 12787.35 9280.94 131
PLCcopyleft68.99 1175.68 7075.31 8276.12 6082.94 6381.26 9379.94 6966.10 7077.15 5066.86 6759.13 11168.53 9673.73 4280.38 10079.04 11087.13 9881.68 126
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
QAPM78.47 5880.22 5676.43 5885.03 5586.75 4680.62 6466.00 7273.77 6265.35 7165.54 8078.02 5072.69 5083.71 5983.36 5588.87 6090.41 46
UA-Net74.47 7677.80 6670.59 9185.33 5285.40 5573.54 14165.98 7360.65 12956.00 10872.11 5079.15 4554.63 16683.13 6782.25 6288.04 7781.92 124
TSAR-MVS + COLMAP78.34 5981.64 4374.48 7280.13 9185.01 5881.73 5765.93 7484.75 2761.68 8385.79 1966.27 10471.39 6182.91 6880.78 7886.01 13185.98 77
3Dnovator73.76 579.75 4580.52 5378.84 4384.94 5887.35 4084.43 5165.54 7578.29 4773.97 3463.00 9275.62 5974.07 4085.00 4785.34 3990.11 3589.04 53
Anonymous20240521172.16 10580.85 8281.85 8676.88 10365.40 7662.89 11346.35 18667.99 9862.05 11281.15 8980.38 9185.97 13384.50 101
MVS_111021_LR78.13 6079.85 5876.13 5981.12 7881.50 8980.28 6665.25 7776.09 5271.32 4976.49 3572.87 7072.21 5182.79 7081.29 7186.59 11687.91 61
FC-MVSNet-train72.60 8775.07 8369.71 10281.10 8078.79 12073.74 14065.23 7866.10 8753.34 12370.36 6063.40 11356.92 15181.44 8080.96 7687.93 7984.46 102
OMC-MVS80.26 4182.59 4177.54 5083.04 6185.54 5283.25 5565.05 7987.32 1872.42 4072.04 5178.97 4673.30 4583.86 5781.60 6988.15 7288.83 55
DELS-MVS79.15 5481.07 4976.91 5583.54 6087.31 4184.45 5064.92 8069.98 6969.34 5571.62 5376.26 5469.84 6786.57 3285.90 3489.39 4889.88 48
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CNLPA77.20 6477.54 6876.80 5682.63 6484.31 6379.77 7164.64 8185.17 2373.18 3856.37 12869.81 8574.53 3781.12 9078.69 11586.04 13087.29 67
MSDG71.52 9669.87 11973.44 7682.21 7079.35 11379.52 7564.59 8266.15 8661.87 8253.21 15456.09 14465.85 9578.94 12178.50 11786.60 11576.85 163
TDRefinement66.09 15165.03 16867.31 13069.73 17876.75 14375.33 10964.55 8360.28 13249.72 14545.63 18842.83 20560.46 12975.75 15075.95 15184.08 15578.04 154
baseline170.10 11172.17 10467.69 12379.74 9276.80 14273.91 13464.38 8462.74 11448.30 15164.94 8264.08 11054.17 16881.46 7978.92 11285.66 13876.22 165
PVSNet_BlendedMVS76.21 6777.52 6974.69 6979.46 9483.79 6977.50 9664.34 8569.88 7071.88 4268.54 7070.42 8067.05 8183.48 6279.63 10087.89 8186.87 71
PVSNet_Blended76.21 6777.52 6974.69 6979.46 9483.79 6977.50 9664.34 8569.88 7071.88 4268.54 7070.42 8067.05 8183.48 6279.63 10087.89 8186.87 71
casdiffmvs_mvgpermissive77.79 6179.55 5975.73 6181.56 7184.70 6082.12 5664.26 8774.27 5867.93 6070.83 5874.66 6269.19 7283.33 6581.94 6489.29 5087.14 69
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
ETV-MVS77.32 6378.81 6175.58 6282.24 6983.64 7279.98 6764.02 8869.64 7463.90 7770.89 5769.94 8473.41 4485.39 4583.91 5089.92 3788.31 58
CDS-MVSNet67.65 14069.83 12165.09 14875.39 12776.55 14574.42 12663.75 8953.55 17449.37 14659.41 10962.45 11544.44 18679.71 11079.82 9883.17 16177.36 159
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
CS-MVS-test78.79 5780.72 5076.53 5781.11 7983.88 6779.69 7463.72 9073.80 6169.95 5475.40 3776.17 5574.85 3584.50 5382.78 5989.87 3988.54 57
DROMVSNet79.44 4881.35 4577.22 5282.95 6284.67 6181.31 5963.65 9172.47 6768.75 5673.15 4678.33 4875.99 3286.06 4083.96 4890.67 1790.79 41
UGNet72.78 8577.67 6767.07 13671.65 16383.24 7775.20 11263.62 9264.93 9456.72 10471.82 5273.30 6649.02 17981.02 9180.70 8586.22 12288.67 56
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
IS_MVSNet73.33 8277.34 7368.65 11481.29 7583.47 7374.45 12363.58 9365.75 9048.49 14967.11 7770.61 7954.63 16684.51 5283.58 5389.48 4786.34 76
EPNet_dtu68.08 13171.00 11064.67 15279.64 9368.62 18375.05 11763.30 9466.36 8545.27 17067.40 7566.84 10343.64 18875.37 15274.98 15881.15 16777.44 158
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CS-MVS79.22 5181.11 4877.01 5481.36 7484.03 6480.35 6563.25 9573.43 6470.37 5274.10 4576.03 5776.40 3086.32 3783.95 4990.34 3189.93 47
casdiffmvspermissive76.76 6578.46 6374.77 6880.32 8883.73 7180.65 6363.24 9673.58 6366.11 6869.39 6474.09 6569.49 7082.52 7279.35 10988.84 6186.52 74
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
canonicalmvs79.16 5382.37 4275.41 6382.33 6886.38 4980.80 6263.18 9782.90 3567.34 6472.79 4876.07 5669.62 6883.46 6484.41 4589.20 5390.60 43
TAPA-MVS71.42 977.69 6280.05 5774.94 6680.68 8384.52 6281.36 5863.14 9884.77 2664.82 7468.72 6775.91 5871.86 5581.62 7679.55 10487.80 8585.24 89
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
Effi-MVS+75.28 7376.20 7974.20 7381.15 7783.24 7781.11 6063.13 9966.37 8460.27 8764.30 8868.88 9370.93 6581.56 7881.69 6788.61 6387.35 65
Vis-MVSNet (Re-imp)67.83 13673.52 9161.19 16878.37 10276.72 14466.80 17362.96 10065.50 9134.17 19467.19 7669.68 8639.20 19779.39 11679.44 10785.68 13776.73 164
COLMAP_ROBcopyleft62.73 1567.66 13966.76 15568.70 11380.49 8677.98 13075.29 11162.95 10163.62 10749.96 14147.32 18550.72 18458.57 13576.87 14375.50 15584.94 15075.33 174
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
Anonymous2023121171.90 9172.48 10271.21 8480.14 9081.53 8876.92 10162.89 10264.46 10058.94 8943.80 19070.98 7762.22 10980.70 9580.19 9486.18 12385.73 79
tfpn200view968.11 13068.72 13667.40 12877.83 10778.93 11674.28 12862.81 10356.64 15146.82 15952.65 16253.47 16456.59 15280.41 9778.43 11886.11 12480.52 137
thres600view767.68 13868.43 14066.80 14077.90 10478.86 11873.84 13662.75 10456.07 15744.70 17352.85 16052.81 17155.58 16180.41 9777.77 12686.05 12880.28 140
thres20067.98 13268.55 13967.30 13177.89 10678.86 11874.18 13262.75 10456.35 15446.48 16252.98 15853.54 16056.46 15380.41 9777.97 12486.05 12879.78 145
thres40067.95 13368.62 13867.17 13377.90 10478.59 12374.27 12962.72 10656.34 15545.77 16853.00 15753.35 16756.46 15380.21 10678.43 11885.91 13580.43 138
GBi-Net70.78 10173.37 9467.76 11972.95 15178.00 12775.15 11362.72 10664.13 10151.44 13258.37 11669.02 9057.59 14381.33 8380.72 8086.70 11082.02 118
test170.78 10173.37 9467.76 11972.95 15178.00 12775.15 11362.72 10664.13 10151.44 13258.37 11669.02 9057.59 14381.33 8380.72 8086.70 11082.02 118
FMVSNet370.49 10572.90 9967.67 12472.88 15477.98 13074.96 12062.72 10664.13 10151.44 13258.37 11669.02 9057.43 14679.43 11579.57 10386.59 11681.81 125
FMVSNet270.39 10772.67 10167.72 12272.95 15178.00 12775.15 11362.69 11063.29 10951.25 13655.64 13168.49 9757.59 14380.91 9380.35 9286.70 11082.02 118
EPP-MVSNet74.00 7977.41 7170.02 9980.53 8583.91 6674.99 11862.68 11165.06 9349.77 14468.68 6872.09 7263.06 10582.49 7380.73 7989.12 5688.91 54
TransMVSNet (Re)64.74 15865.66 16163.66 15977.40 11375.33 15669.86 15662.67 11247.63 19641.21 18150.01 17552.33 17445.31 18579.57 11277.69 12885.49 14077.07 162
DI_MVS_plusplus_trai75.13 7476.12 8073.96 7478.18 10381.55 8780.97 6162.54 11368.59 7565.13 7361.43 9574.81 6169.32 7181.01 9279.59 10287.64 8885.89 78
thres100view90067.60 14268.02 14367.12 13577.83 10777.75 13473.90 13562.52 11456.64 15146.82 15952.65 16253.47 16455.92 15778.77 12377.62 12985.72 13679.23 148
tfpnnormal64.27 16163.64 17765.02 14975.84 12375.61 15371.24 15462.52 11447.79 19542.97 17742.65 19344.49 20352.66 17378.77 12376.86 14184.88 15179.29 147
ET-MVSNet_ETH3D72.46 8874.19 8770.44 9262.50 19881.17 9479.90 7062.46 11664.52 9957.52 10071.49 5559.15 12972.08 5378.61 12581.11 7388.16 7183.29 112
FMVSNet168.84 12470.47 11566.94 13871.35 16877.68 13574.71 12162.35 11756.93 14949.94 14250.01 17564.59 10857.07 14881.33 8380.72 8086.25 12182.00 121
EIA-MVS75.64 7176.60 7874.53 7182.43 6783.84 6878.32 8962.28 11865.96 8863.28 8168.95 6567.54 9971.61 6082.55 7181.63 6889.24 5185.72 80
OpenMVScopyleft70.44 1076.15 6976.82 7775.37 6485.01 5684.79 5978.99 8262.07 11971.27 6867.88 6157.91 12172.36 7170.15 6682.23 7481.41 7088.12 7487.78 63
test-LLR64.42 15964.36 17264.49 15375.02 13063.93 19666.61 17561.96 12054.41 16947.77 15457.46 12360.25 12255.20 16470.80 18269.33 18080.40 17174.38 178
test0.0.03 158.80 18961.58 19055.56 19175.02 13068.45 18459.58 20061.96 12052.74 17729.57 19849.75 17854.56 15231.46 20471.19 17769.77 17875.75 18864.57 199
PatchMatch-RL67.78 13766.65 15669.10 10973.01 15072.69 16868.49 16361.85 12262.93 11260.20 8856.83 12750.42 18569.52 6975.62 15174.46 16181.51 16573.62 182
IB-MVS66.94 1271.21 10071.66 10870.68 8879.18 9682.83 8272.61 14761.77 12359.66 13463.44 8053.26 15259.65 12759.16 13276.78 14582.11 6387.90 8087.33 66
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
Vis-MVSNetpermissive72.77 8677.20 7467.59 12674.19 13984.01 6576.61 10661.69 12460.62 13050.61 13970.25 6171.31 7655.57 16283.85 5882.28 6186.90 10388.08 60
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
DCV-MVSNet73.65 8175.78 8171.16 8580.19 8979.27 11477.45 9861.68 12566.73 8358.72 9265.31 8169.96 8362.19 11081.29 8680.97 7586.74 10986.91 70
Effi-MVS+-dtu71.82 9271.86 10771.78 8278.77 9880.47 10278.55 8661.67 12660.68 12855.49 10958.48 11565.48 10668.85 7476.92 14275.55 15487.35 9285.46 85
test20.0353.93 20156.28 20251.19 20072.19 15865.83 19153.20 20761.08 12742.74 20422.08 21037.07 20245.76 20124.29 21270.44 18669.04 18274.31 19663.05 203
GeoE74.23 7774.84 8573.52 7580.42 8781.46 9079.77 7161.06 12867.23 8163.67 7859.56 10868.74 9567.90 7880.25 10579.37 10888.31 6687.26 68
pmmvs467.89 13467.39 15168.48 11571.60 16573.57 16574.45 12360.98 12964.65 9657.97 9854.95 13851.73 17961.88 11673.78 16275.11 15683.99 15777.91 155
CLD-MVS79.35 5081.23 4677.16 5385.01 5686.92 4485.87 4060.89 13080.07 4575.35 3172.96 4773.21 6868.43 7785.41 4484.63 4487.41 9185.44 86
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
pm-mvs165.62 15267.42 14963.53 16073.66 14776.39 14669.66 15760.87 13149.73 19143.97 17451.24 17157.00 14148.16 18079.89 10877.84 12584.85 15279.82 144
v114469.93 11369.36 12770.61 9074.89 13280.93 9679.11 8060.64 13255.97 15855.31 11153.85 14754.14 15466.54 9078.10 13077.44 13387.14 9785.09 91
v2v48270.05 11269.46 12670.74 8674.62 13580.32 10679.00 8160.62 13357.41 14756.89 10355.43 13555.14 14966.39 9277.25 13877.14 13886.90 10383.57 111
v14419269.34 11968.68 13770.12 9774.06 14080.54 10178.08 9260.54 13454.99 16654.13 11652.92 15952.80 17266.73 8877.13 14076.72 14387.15 9485.63 81
v119269.50 11768.83 13370.29 9474.49 13680.92 9878.55 8660.54 13455.04 16454.21 11452.79 16152.33 17466.92 8577.88 13277.35 13687.04 10185.51 83
IterMVS-LS71.69 9472.82 10070.37 9377.54 11176.34 14775.13 11660.46 13661.53 12357.57 9964.89 8367.33 10066.04 9477.09 14177.37 13585.48 14185.18 90
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
USDC67.36 14567.90 14566.74 14271.72 16175.23 15871.58 15160.28 13767.45 8050.54 14060.93 9745.20 20262.08 11176.56 14774.50 16084.25 15475.38 173
v192192069.03 12268.32 14169.86 10074.03 14180.37 10477.55 9460.25 13854.62 16853.59 12252.36 16551.50 18066.75 8777.17 13976.69 14586.96 10285.56 82
HyFIR lowres test69.47 11868.94 13270.09 9876.77 11782.93 8176.63 10560.17 13959.00 13754.03 11740.54 19965.23 10767.89 7976.54 14878.30 12085.03 14880.07 142
diffmvspermissive74.86 7577.37 7271.93 8175.62 12580.35 10579.42 7760.15 14072.81 6664.63 7571.51 5473.11 6966.53 9179.02 12077.98 12385.25 14586.83 73
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MVS_Test75.37 7277.13 7573.31 7779.07 9781.32 9279.98 6760.12 14169.72 7264.11 7670.53 5973.22 6768.90 7380.14 10779.48 10687.67 8785.50 84
CHOSEN 1792x268869.20 12169.26 12869.13 10876.86 11678.93 11677.27 9960.12 14161.86 12054.42 11342.54 19461.61 11866.91 8678.55 12678.14 12279.23 17583.23 113
v124068.64 12767.89 14669.51 10573.89 14380.26 10876.73 10459.97 14353.43 17653.08 12551.82 16850.84 18366.62 8976.79 14476.77 14286.78 10885.34 87
v1070.22 10969.76 12270.74 8674.79 13380.30 10779.22 7959.81 14457.71 14556.58 10654.22 14555.31 14766.95 8478.28 12877.47 13287.12 10085.07 92
TinyColmap62.84 16761.03 19264.96 15069.61 17971.69 17168.48 16459.76 14555.41 16047.69 15647.33 18434.20 21462.76 10774.52 15772.59 17081.44 16671.47 185
EG-PatchMatch MVS67.24 14666.94 15367.60 12578.73 9981.35 9173.28 14559.49 14646.89 19851.42 13543.65 19153.49 16255.50 16381.38 8280.66 8687.15 9481.17 130
pmmvs-eth3d63.52 16462.44 18664.77 15166.82 18970.12 17769.41 15959.48 14754.34 17252.71 12646.24 18744.35 20456.93 15072.37 16673.77 16483.30 15975.91 167
pmmvs662.41 17262.88 18061.87 16571.38 16775.18 16067.76 16659.45 14841.64 20642.52 17937.33 20152.91 17046.87 18277.67 13476.26 14983.23 16079.18 149
v870.23 10869.86 12070.67 8974.69 13479.82 10978.79 8459.18 14958.80 13858.20 9755.00 13757.33 13766.31 9377.51 13576.71 14486.82 10683.88 107
thisisatest053071.48 9773.01 9669.70 10373.83 14478.62 12274.53 12259.12 15064.13 10158.63 9364.60 8658.63 13164.27 9880.28 10380.17 9587.82 8484.64 100
tttt051771.41 9872.95 9769.60 10473.70 14678.70 12174.42 12659.12 15063.89 10558.35 9664.56 8758.39 13364.27 9880.29 10280.17 9587.74 8684.69 99
LTVRE_ROB59.44 1661.82 18162.64 18360.87 17072.83 15577.19 13964.37 18558.97 15233.56 21528.00 20152.59 16442.21 20663.93 10174.52 15776.28 14877.15 18282.13 117
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
MS-PatchMatch70.17 11070.49 11469.79 10180.98 8177.97 13277.51 9558.95 15362.33 11655.22 11253.14 15565.90 10562.03 11379.08 11977.11 13984.08 15577.91 155
baseline269.69 11470.27 11669.01 11075.72 12477.13 14073.82 13758.94 15461.35 12457.09 10261.68 9457.17 13961.99 11478.10 13076.58 14686.48 11979.85 143
v7n67.05 14866.94 15367.17 13372.35 15678.97 11573.26 14658.88 15551.16 18750.90 13748.21 18250.11 18760.96 12477.70 13377.38 13486.68 11385.05 93
Fast-Effi-MVS+73.11 8473.66 9072.48 7977.72 10980.88 9978.55 8658.83 15665.19 9260.36 8659.98 10562.42 11671.22 6381.66 7580.61 8988.20 7084.88 97
FC-MVSNet-test56.90 19465.20 16547.21 20466.98 18663.20 20149.11 21258.60 15759.38 13611.50 21965.60 7956.68 14224.66 21171.17 17871.36 17572.38 20169.02 192
GA-MVS68.14 12969.17 13066.93 13973.77 14578.50 12474.45 12358.28 15855.11 16348.44 15060.08 10353.99 15761.50 12178.43 12777.57 13085.13 14680.54 136
MDA-MVSNet-bldmvs53.37 20253.01 20553.79 19743.67 21667.95 18559.69 19957.92 15943.69 20232.41 19641.47 19527.89 21952.38 17456.97 21265.99 19876.68 18567.13 195
Anonymous2023120656.36 19557.80 19954.67 19470.08 17566.39 19060.46 19757.54 16049.50 19329.30 19933.86 20646.64 19735.18 20070.44 18668.88 18475.47 19168.88 193
SixPastTwentyTwo61.84 17962.45 18561.12 16969.20 18272.20 16962.03 19357.40 16146.54 19938.03 18957.14 12641.72 20758.12 13969.67 19071.58 17381.94 16378.30 153
thisisatest051567.40 14468.78 13465.80 14670.02 17675.24 15769.36 16057.37 16254.94 16753.67 12155.53 13454.85 15058.00 14078.19 12978.91 11386.39 12083.78 108
v14867.85 13567.53 14768.23 11673.25 14977.57 13874.26 13057.36 16355.70 15957.45 10153.53 14855.42 14661.96 11575.23 15373.92 16285.08 14781.32 129
MVSTER72.06 9074.24 8669.51 10570.39 17475.97 15076.91 10257.36 16364.64 9761.39 8568.86 6663.76 11163.46 10281.44 8079.70 9987.56 8985.31 88
V4268.76 12669.63 12367.74 12164.93 19478.01 12678.30 9056.48 16558.65 13956.30 10754.26 14357.03 14064.85 9677.47 13677.01 14085.60 13984.96 95
CANet_DTU73.29 8376.96 7669.00 11177.04 11582.06 8579.49 7656.30 16667.85 7953.29 12471.12 5670.37 8261.81 11981.59 7780.96 7686.09 12584.73 98
CVMVSNet62.55 16965.89 15858.64 18166.95 18769.15 18066.49 17756.29 16752.46 18032.70 19559.27 11058.21 13550.09 17771.77 17471.39 17479.31 17478.99 150
Fast-Effi-MVS+-dtu68.34 12869.47 12567.01 13775.15 12877.97 13277.12 10055.40 16857.87 14046.68 16156.17 12960.39 12162.36 10876.32 14976.25 15085.35 14481.34 128
FA-MVS(training)73.66 8074.95 8472.15 8078.63 10180.46 10378.92 8354.79 16969.71 7365.37 7062.04 9366.89 10267.10 8080.72 9479.87 9788.10 7684.97 94
gg-mvs-nofinetune62.55 16965.05 16759.62 17778.72 10077.61 13670.83 15553.63 17039.71 21022.04 21136.36 20364.32 10947.53 18181.16 8879.03 11185.00 14977.17 160
baseline70.45 10674.09 8866.20 14470.95 17175.67 15174.26 13053.57 17168.33 7658.42 9469.87 6271.45 7361.55 12074.84 15674.76 15978.42 17783.72 109
PMVScopyleft39.38 1846.06 20943.30 21149.28 20362.93 19638.75 21641.88 21553.50 17233.33 21635.46 19228.90 21131.01 21733.04 20358.61 21154.63 21268.86 20857.88 210
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
SCA65.40 15466.58 15764.02 15670.65 17273.37 16667.35 16753.46 17363.66 10654.14 11560.84 9860.20 12461.50 12169.96 18968.14 19077.01 18469.91 188
testgi54.39 20057.86 19850.35 20171.59 16667.24 18754.95 20553.25 17443.36 20323.78 20644.64 18947.87 19424.96 20970.45 18568.66 18673.60 19862.78 204
IterMVS-SCA-FT66.89 14969.22 12964.17 15471.30 16975.64 15271.33 15253.17 17557.63 14649.08 14860.72 9960.05 12563.09 10474.99 15573.92 16277.07 18381.57 127
dps64.00 16362.99 17965.18 14773.29 14872.07 17068.98 16253.07 17657.74 14458.41 9555.55 13347.74 19560.89 12769.53 19167.14 19476.44 18771.19 186
tpm cat165.41 15363.81 17667.28 13275.61 12672.88 16775.32 11052.85 17762.97 11163.66 7953.24 15353.29 16961.83 11865.54 19964.14 20174.43 19574.60 176
CR-MVSNet64.83 15765.54 16264.01 15770.64 17369.41 17865.97 17852.74 17857.81 14252.65 12754.27 14156.31 14360.92 12572.20 17173.09 16781.12 16875.69 170
Patchmtry65.80 19265.97 17852.74 17852.65 127
pmmvs562.37 17564.04 17460.42 17165.03 19271.67 17267.17 16952.70 18050.30 18844.80 17154.23 14451.19 18249.37 17872.88 16573.48 16683.45 15874.55 177
MIMVSNet149.27 20453.25 20444.62 20644.61 21461.52 20653.61 20652.18 18141.62 20718.68 21528.14 21241.58 20825.50 20768.46 19669.04 18273.15 19962.37 205
new-patchmatchnet46.97 20749.47 20944.05 20862.82 19756.55 21045.35 21452.01 18242.47 20517.04 21735.73 20535.21 21321.84 21561.27 20754.83 21165.26 21160.26 206
CostFormer68.92 12369.58 12468.15 11775.98 12276.17 14978.22 9151.86 18365.80 8961.56 8463.57 8962.83 11461.85 11770.40 18868.67 18579.42 17379.62 146
CMPMVSbinary47.78 1762.49 17162.52 18462.46 16370.01 17770.66 17662.97 19051.84 18451.98 18356.71 10542.87 19253.62 15857.80 14272.23 16970.37 17775.45 19275.91 167
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
PatchmatchNetpermissive64.21 16264.65 17063.69 15871.29 17068.66 18269.63 15851.70 18563.04 11053.77 12059.83 10758.34 13460.23 13068.54 19566.06 19775.56 19068.08 194
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
PM-MVS60.48 18560.94 19359.94 17458.85 20566.83 18964.27 18651.39 18655.03 16548.03 15350.00 17740.79 20958.26 13869.20 19367.13 19578.84 17677.60 157
FPMVS51.87 20350.00 20854.07 19566.83 18857.25 20960.25 19850.91 18750.25 18934.36 19336.04 20432.02 21641.49 19158.98 21056.07 20970.56 20659.36 209
RPSCF67.64 14171.25 10963.43 16161.86 20070.73 17567.26 16850.86 18874.20 5958.91 9067.49 7469.33 8764.10 10071.41 17568.45 18977.61 17977.17 160
IterMVS66.36 15068.30 14264.10 15569.48 18174.61 16273.41 14450.79 18957.30 14848.28 15260.64 10059.92 12660.85 12874.14 16072.66 16981.80 16478.82 151
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
anonymousdsp65.28 15567.98 14462.13 16458.73 20673.98 16467.10 17050.69 19048.41 19447.66 15754.27 14152.75 17361.45 12376.71 14680.20 9387.13 9889.53 52
EU-MVSNet54.63 19858.69 19649.90 20256.99 20862.70 20456.41 20450.64 19145.95 20123.14 20850.42 17446.51 19836.63 19965.51 20064.85 19975.57 18974.91 175
MDTV_nov1_ep1364.37 16065.24 16463.37 16268.94 18370.81 17472.40 15050.29 19260.10 13353.91 11960.07 10459.15 12957.21 14769.43 19267.30 19277.47 18069.78 190
pmnet_mix0255.30 19757.01 20153.30 19964.14 19559.09 20758.39 20250.24 19353.47 17538.68 18649.75 17845.86 20040.14 19665.38 20160.22 20668.19 20965.33 198
RPMNet61.71 18262.88 18060.34 17269.51 18069.41 17863.48 18849.23 19457.81 14245.64 16950.51 17350.12 18653.13 17268.17 19768.49 18881.07 16975.62 172
MVS-HIRNet54.41 19952.10 20657.11 18758.99 20456.10 21149.68 21149.10 19546.18 20052.15 13133.18 20746.11 19956.10 15563.19 20559.70 20876.64 18660.25 207
MIMVSNet58.52 19161.34 19155.22 19260.76 20167.01 18866.81 17249.02 19656.43 15338.90 18540.59 19854.54 15340.57 19573.16 16471.65 17275.30 19366.00 197
TAMVS59.58 18862.81 18255.81 19066.03 19065.64 19363.86 18748.74 19749.95 19037.07 19154.77 13958.54 13244.44 18672.29 16871.79 17174.70 19466.66 196
PatchT61.97 17764.04 17459.55 17860.49 20267.40 18656.54 20348.65 19856.69 15052.65 12751.10 17252.14 17760.92 12572.20 17173.09 16778.03 17875.69 170
Gipumacopyleft36.38 21135.80 21337.07 20945.76 21333.90 21729.81 21748.47 19939.91 20918.02 2168.00 2208.14 22425.14 20859.29 20961.02 20555.19 21540.31 213
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
MDTV_nov1_ep13_2view60.16 18660.51 19459.75 17565.39 19169.05 18168.00 16548.29 20051.99 18245.95 16748.01 18349.64 19053.39 17068.83 19466.52 19677.47 18069.55 191
EPMVS60.00 18761.97 18857.71 18468.46 18463.17 20264.54 18448.23 20163.30 10844.72 17260.19 10256.05 14550.85 17665.27 20262.02 20469.44 20763.81 201
tpmrst62.00 17662.35 18761.58 16671.62 16464.14 19569.07 16148.22 20262.21 11753.93 11858.26 12055.30 14855.81 15963.22 20462.62 20370.85 20470.70 187
FMVSNet557.24 19260.02 19553.99 19656.45 20962.74 20365.27 18147.03 20355.14 16239.55 18440.88 19653.42 16641.83 18972.35 16771.10 17673.79 19764.50 200
gm-plane-assit57.00 19357.62 20056.28 18976.10 11962.43 20547.62 21346.57 20433.84 21423.24 20737.52 20040.19 21059.61 13179.81 10977.55 13184.55 15372.03 184
ADS-MVSNet55.94 19658.01 19753.54 19862.48 19958.48 20859.12 20146.20 20559.65 13542.88 17852.34 16653.31 16846.31 18362.00 20660.02 20764.23 21260.24 208
tpm62.41 17263.15 17861.55 16772.24 15763.79 19871.31 15346.12 20657.82 14155.33 11059.90 10654.74 15153.63 16967.24 19864.29 20070.65 20574.25 180
N_pmnet47.35 20650.13 20744.11 20759.98 20351.64 21351.86 20844.80 20749.58 19220.76 21340.65 19740.05 21129.64 20559.84 20855.15 21057.63 21354.00 211
PMMVS65.06 15669.17 13060.26 17355.25 21263.43 19966.71 17443.01 20862.41 11550.64 13869.44 6367.04 10163.29 10374.36 15973.54 16582.68 16273.99 181
CHOSEN 280x42058.70 19061.88 18954.98 19355.45 21150.55 21464.92 18240.36 20955.21 16138.13 18848.31 18163.76 11163.03 10673.73 16368.58 18768.00 21073.04 183
E-PMN21.77 21418.24 21725.89 21140.22 21719.58 22012.46 22239.87 21018.68 2206.71 2219.57 2174.31 22722.36 21419.89 21927.28 21733.73 21828.34 217
EMVS20.98 21517.15 21825.44 21239.51 21819.37 22112.66 22139.59 21119.10 2196.62 2229.27 2184.40 22622.43 21317.99 22024.40 21831.81 21925.53 218
TESTMET0.1,161.10 18364.36 17257.29 18557.53 20763.93 19666.61 17536.22 21254.41 16947.77 15457.46 12360.25 12255.20 16470.80 18269.33 18080.40 17174.38 178
test-mter60.84 18464.62 17156.42 18855.99 21064.18 19465.39 18034.23 21354.39 17146.21 16557.40 12559.49 12855.86 15871.02 18169.65 17980.87 17076.20 166
MVEpermissive19.12 1920.47 21623.27 21617.20 21612.66 22225.41 21910.52 22334.14 21414.79 2216.53 2238.79 2194.68 22516.64 21729.49 21741.63 21422.73 22138.11 214
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
new_pmnet38.40 21042.64 21233.44 21037.54 21945.00 21536.60 21632.72 21540.27 20812.72 21829.89 20928.90 21824.78 21053.17 21352.90 21356.31 21448.34 212
pmmvs347.65 20549.08 21045.99 20544.61 21454.79 21250.04 20931.95 21633.91 21329.90 19730.37 20833.53 21546.31 18363.50 20363.67 20273.14 20063.77 202
PMMVS225.60 21229.75 21420.76 21428.00 22030.93 21823.10 21929.18 21723.14 2181.46 22418.23 21616.54 2215.08 21840.22 21441.40 21537.76 21637.79 215
DeepMVS_CXcopyleft18.74 22218.55 2208.02 21826.96 2177.33 22023.81 21413.05 22325.99 20625.17 21822.45 22236.25 216
test_method22.26 21325.94 21517.95 2153.24 2237.17 22323.83 2187.27 21937.35 21220.44 21421.87 21539.16 21218.67 21634.56 21520.84 21934.28 21720.64 219
tmp_tt14.50 21714.68 2217.17 22310.46 2242.21 22037.73 21128.71 20025.26 21316.98 2204.37 21931.49 21629.77 21626.56 220
GG-mvs-BLEND46.86 20867.51 14822.75 2130.05 22476.21 14864.69 1830.04 22161.90 1190.09 22555.57 13271.32 750.08 22070.54 18467.19 19371.58 20269.86 189
testmvs0.09 2170.15 2190.02 2180.01 2250.02 2250.05 2260.01 2220.11 2220.01 2260.26 2220.01 2280.06 2220.10 2210.10 2200.01 2230.43 221
test1230.09 2170.14 2200.02 2180.00 2260.02 2250.02 2270.01 2220.09 2230.00 2270.30 2210.00 2290.08 2200.03 2220.09 2210.01 2230.45 220
uanet_test0.00 2190.00 2210.00 2200.00 2260.00 2270.00 2280.00 2240.00 2240.00 2270.00 2230.00 2290.00 2230.00 2230.00 2220.00 2250.00 222
sosnet-low-res0.00 2190.00 2210.00 2200.00 2260.00 2270.00 2280.00 2240.00 2240.00 2270.00 2230.00 2290.00 2230.00 2230.00 2220.00 2250.00 222
sosnet0.00 2190.00 2210.00 2200.00 2260.00 2270.00 2280.00 2240.00 2240.00 2270.00 2230.00 2290.00 2230.00 2230.00 2220.00 2250.00 222
RE-MVS-def46.24 164
9.1486.88 16
our_test_367.93 18570.99 17366.89 171
ambc53.42 20364.99 19363.36 20049.96 21047.07 19737.12 19028.97 21016.36 22241.82 19075.10 15467.34 19171.55 20375.72 169
MTAPA83.48 186.45 19
MTMP82.66 584.91 26
Patchmatch-RL test2.85 225
XVS86.63 4488.68 2785.00 4671.81 4481.92 3690.47 23
X-MVStestdata86.63 4488.68 2785.00 4671.81 4481.92 3690.47 23
mPP-MVS89.90 2481.29 41
NP-MVS80.10 44