test_0728_SECOND | | | | | 99.71 1 | 99.72 12 | 99.35 1 | 98.97 82 | 98.88 50 | | | | | 99.94 3 | 98.47 24 | 99.81 12 | 99.84 6 |
|
DPE-MVS |  | | 98.92 5 | 98.67 8 | 99.65 2 | 99.58 32 | 99.20 9 | 98.42 185 | 98.91 44 | 97.58 15 | 99.54 13 | 99.46 14 | 97.10 12 | 99.94 3 | 97.64 72 | 99.84 10 | 99.83 7 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
DVP-MVS++ | | | 99.08 2 | 98.89 2 | 99.64 3 | 99.17 88 | 99.23 7 | 99.69 1 | 98.88 50 | 97.32 29 | 99.53 14 | 99.47 11 | 97.81 3 | 99.94 3 | 98.47 24 | 99.72 46 | 99.74 30 |
|
SED-MVS | | | 99.09 1 | 98.91 1 | 99.63 4 | 99.71 19 | 99.24 5 | 99.02 73 | 98.87 57 | 97.65 10 | 99.73 2 | 99.48 9 | 97.53 7 | 99.94 3 | 98.43 28 | 99.81 12 | 99.70 46 |
|
DVP-MVS |  | | 99.03 3 | 98.83 5 | 99.63 4 | 99.72 12 | 99.25 2 | 98.97 82 | 98.58 137 | 97.62 12 | 99.45 16 | 99.46 14 | 97.42 9 | 99.94 3 | 98.47 24 | 99.81 12 | 99.69 49 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
MSC_two_6792asdad | | | | | 99.62 6 | 99.17 88 | 99.08 11 | | 98.63 127 | | | | | 99.94 3 | 98.53 16 | 99.80 19 | 99.86 2 |
|
No_MVS | | | | | 99.62 6 | 99.17 88 | 99.08 11 | | 98.63 127 | | | | | 99.94 3 | 98.53 16 | 99.80 19 | 99.86 2 |
|
SMA-MVS |  | | 98.58 19 | 98.25 36 | 99.56 8 | 99.51 39 | 99.04 15 | 98.95 86 | 98.80 82 | 93.67 206 | 99.37 21 | 99.52 3 | 96.52 21 | 99.89 36 | 98.06 43 | 99.81 12 | 99.76 27 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
ACMMP_NAP | | | 98.61 14 | 98.30 33 | 99.55 9 | 99.62 30 | 98.95 17 | 98.82 112 | 98.81 74 | 95.80 102 | 99.16 33 | 99.47 11 | 95.37 53 | 99.92 23 | 97.89 53 | 99.75 38 | 99.79 13 |
|
HPM-MVS++ |  | | 98.58 19 | 98.25 36 | 99.55 9 | 99.50 41 | 99.08 11 | 98.72 138 | 98.66 120 | 97.51 18 | 98.15 86 | 98.83 111 | 95.70 42 | 99.92 23 | 97.53 82 | 99.67 52 | 99.66 61 |
|
APDe-MVS | | | 99.02 4 | 98.84 4 | 99.55 9 | 99.57 33 | 98.96 16 | 99.39 12 | 98.93 38 | 97.38 26 | 99.41 18 | 99.54 1 | 96.66 17 | 99.84 53 | 98.86 8 | 99.85 5 | 99.87 1 |
|
MP-MVS-pluss | | | 98.31 46 | 97.92 52 | 99.49 12 | 99.72 12 | 98.88 18 | 98.43 183 | 98.78 89 | 94.10 175 | 97.69 121 | 99.42 17 | 95.25 61 | 99.92 23 | 98.09 42 | 99.80 19 | 99.67 58 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
MCST-MVS | | | 98.65 11 | 98.37 21 | 99.48 13 | 99.60 31 | 98.87 19 | 98.41 186 | 98.68 112 | 97.04 49 | 98.52 72 | 98.80 114 | 96.78 16 | 99.83 55 | 97.93 50 | 99.61 63 | 99.74 30 |
|
MTAPA | | | 98.58 19 | 98.29 34 | 99.46 14 | 99.76 2 | 98.64 25 | 98.90 93 | 98.74 97 | 97.27 36 | 98.02 97 | 99.39 19 | 94.81 73 | 99.96 2 | 97.91 51 | 99.79 23 | 99.77 21 |
|
CNVR-MVS | | | 98.78 7 | 98.56 12 | 99.45 15 | 99.32 59 | 98.87 19 | 98.47 177 | 98.81 74 | 97.72 7 | 98.76 56 | 99.16 63 | 97.05 13 | 99.78 87 | 98.06 43 | 99.66 54 | 99.69 49 |
|
APD-MVS |  | | 98.35 42 | 98.00 50 | 99.42 16 | 99.51 39 | 98.72 21 | 98.80 119 | 98.82 69 | 94.52 164 | 99.23 27 | 99.25 47 | 95.54 47 | 99.80 74 | 96.52 126 | 99.77 28 | 99.74 30 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
SF-MVS | | | 98.59 17 | 98.32 32 | 99.41 17 | 99.54 35 | 98.71 22 | 99.04 67 | 98.81 74 | 95.12 137 | 99.32 23 | 99.39 19 | 96.22 24 | 99.84 53 | 97.72 65 | 99.73 43 | 99.67 58 |
|
NCCC | | | 98.61 14 | 98.35 24 | 99.38 18 | 99.28 71 | 98.61 26 | 98.45 178 | 98.76 93 | 97.82 6 | 98.45 76 | 98.93 100 | 96.65 18 | 99.83 55 | 97.38 89 | 99.41 93 | 99.71 42 |
|
3Dnovator+ | | 94.38 6 | 97.43 84 | 96.78 100 | 99.38 18 | 97.83 204 | 98.52 28 | 99.37 14 | 98.71 105 | 97.09 48 | 92.99 280 | 99.13 68 | 89.36 171 | 99.89 36 | 96.97 101 | 99.57 70 | 99.71 42 |
|
OPU-MVS | | | | | 99.37 20 | 99.24 81 | 99.05 14 | 99.02 73 | | | | 99.16 63 | 97.81 3 | 99.37 155 | 97.24 92 | 99.73 43 | 99.70 46 |
|
SteuartSystems-ACMMP | | | 98.90 6 | 98.75 6 | 99.36 21 | 99.22 83 | 98.43 33 | 99.10 57 | 98.87 57 | 97.38 26 | 99.35 22 | 99.40 18 | 97.78 5 | 99.87 45 | 97.77 62 | 99.85 5 | 99.78 15 |
Skip Steuart: Steuart Systems R&D Blog. |
ZNCC-MVS | | | 98.49 29 | 98.20 41 | 99.35 22 | 99.73 11 | 98.39 34 | 99.19 41 | 98.86 63 | 95.77 103 | 98.31 85 | 99.10 72 | 95.46 48 | 99.93 18 | 97.57 79 | 99.81 12 | 99.74 30 |
|
GST-MVS | | | 98.43 35 | 98.12 44 | 99.34 23 | 99.72 12 | 98.38 35 | 99.09 58 | 98.82 69 | 95.71 107 | 98.73 59 | 99.06 82 | 95.27 59 | 99.93 18 | 97.07 98 | 99.63 60 | 99.72 38 |
|
XVS | | | 98.70 10 | 98.49 15 | 99.34 23 | 99.70 22 | 98.35 41 | 99.29 22 | 98.88 50 | 97.40 23 | 98.46 73 | 99.20 53 | 95.90 38 | 99.89 36 | 97.85 56 | 99.74 41 | 99.78 15 |
|
X-MVStestdata | | | 94.06 265 | 92.30 286 | 99.34 23 | 99.70 22 | 98.35 41 | 99.29 22 | 98.88 50 | 97.40 23 | 98.46 73 | 43.50 374 | 95.90 38 | 99.89 36 | 97.85 56 | 99.74 41 | 99.78 15 |
|
train_agg | | | 97.97 51 | 97.52 66 | 99.33 26 | 99.31 61 | 98.50 29 | 97.92 237 | 98.73 100 | 92.98 233 | 97.74 116 | 98.68 126 | 96.20 26 | 99.80 74 | 96.59 122 | 99.57 70 | 99.68 54 |
|
HFP-MVS | | | 98.63 13 | 98.40 18 | 99.32 27 | 99.72 12 | 98.29 44 | 99.23 31 | 98.96 33 | 96.10 90 | 98.94 42 | 99.17 60 | 96.06 30 | 99.92 23 | 97.62 73 | 99.78 26 | 99.75 28 |
|
MSP-MVS | | | 98.74 9 | 98.55 13 | 99.29 28 | 99.75 3 | 98.23 46 | 99.26 27 | 98.88 50 | 97.52 17 | 99.41 18 | 98.78 116 | 96.00 33 | 99.79 84 | 97.79 61 | 99.59 66 | 99.85 4 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
region2R | | | 98.61 14 | 98.38 20 | 99.29 28 | 99.74 7 | 98.16 51 | 99.23 31 | 98.93 38 | 96.15 87 | 98.94 42 | 99.17 60 | 95.91 37 | 99.94 3 | 97.55 80 | 99.79 23 | 99.78 15 |
|
ACMMPR | | | 98.59 17 | 98.36 22 | 99.29 28 | 99.74 7 | 98.15 52 | 99.23 31 | 98.95 34 | 96.10 90 | 98.93 46 | 99.19 58 | 95.70 42 | 99.94 3 | 97.62 73 | 99.79 23 | 99.78 15 |
|
MP-MVS |  | | 98.33 45 | 98.01 49 | 99.28 31 | 99.75 3 | 98.18 49 | 99.22 35 | 98.79 87 | 96.13 88 | 97.92 108 | 99.23 48 | 94.54 76 | 99.94 3 | 96.74 121 | 99.78 26 | 99.73 35 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
CDPH-MVS | | | 97.94 54 | 97.49 67 | 99.28 31 | 99.47 47 | 98.44 31 | 97.91 239 | 98.67 117 | 92.57 248 | 98.77 55 | 98.85 108 | 95.93 36 | 99.72 99 | 95.56 158 | 99.69 50 | 99.68 54 |
|
PGM-MVS | | | 98.49 29 | 98.23 39 | 99.27 33 | 99.72 12 | 98.08 55 | 98.99 79 | 99.49 5 | 95.43 119 | 99.03 36 | 99.32 35 | 95.56 45 | 99.94 3 | 96.80 118 | 99.77 28 | 99.78 15 |
|
mPP-MVS | | | 98.51 28 | 98.26 35 | 99.25 34 | 99.75 3 | 98.04 56 | 99.28 24 | 98.81 74 | 96.24 83 | 98.35 82 | 99.23 48 | 95.46 48 | 99.94 3 | 97.42 87 | 99.81 12 | 99.77 21 |
|
SR-MVS | | | 98.57 22 | 98.35 24 | 99.24 35 | 99.53 36 | 98.18 49 | 99.09 58 | 98.82 69 | 96.58 69 | 99.10 35 | 99.32 35 | 95.39 51 | 99.82 62 | 97.70 69 | 99.63 60 | 99.72 38 |
|
TSAR-MVS + MP. | | | 98.78 7 | 98.62 9 | 99.24 35 | 99.69 24 | 98.28 45 | 99.14 48 | 98.66 120 | 96.84 57 | 99.56 11 | 99.31 37 | 96.34 23 | 99.70 105 | 98.32 34 | 99.73 43 | 99.73 35 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
DPM-MVS | | | 97.55 77 | 96.99 90 | 99.23 37 | 99.04 101 | 98.55 27 | 97.17 299 | 98.35 184 | 94.85 152 | 97.93 107 | 98.58 137 | 95.07 68 | 99.71 104 | 92.60 245 | 99.34 99 | 99.43 101 |
|
test_prior | | | | | 99.19 38 | 99.31 61 | 98.22 47 | | 98.84 67 | | | | | 99.70 105 | | | 99.65 62 |
|
CP-MVS | | | 98.57 22 | 98.36 22 | 99.19 38 | 99.66 26 | 97.86 61 | 99.34 18 | 98.87 57 | 95.96 95 | 98.60 69 | 99.13 68 | 96.05 31 | 99.94 3 | 97.77 62 | 99.86 1 | 99.77 21 |
|
test12 | | | | | 99.18 40 | 99.16 92 | 98.19 48 | | 98.53 147 | | 98.07 91 | | 95.13 66 | 99.72 99 | | 99.56 76 | 99.63 66 |
|
PHI-MVS | | | 98.34 43 | 98.06 47 | 99.18 40 | 99.15 94 | 98.12 54 | 99.04 67 | 99.09 21 | 93.32 220 | 98.83 52 | 99.10 72 | 96.54 20 | 99.83 55 | 97.70 69 | 99.76 34 | 99.59 72 |
|
DeepC-MVS_fast | | 96.70 1 | 98.55 25 | 98.34 27 | 99.18 40 | 99.25 75 | 98.04 56 | 98.50 174 | 98.78 89 | 97.72 7 | 98.92 47 | 99.28 40 | 95.27 59 | 99.82 62 | 97.55 80 | 99.77 28 | 99.69 49 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
æ–°å‡ ä½•1 | | | | | 99.16 43 | 99.34 54 | 98.01 58 | | 98.69 109 | 90.06 314 | 98.13 87 | 98.95 98 | 94.60 75 | 99.89 36 | 91.97 265 | 99.47 87 | 99.59 72 |
|
APD-MVS_3200maxsize | | | 98.53 27 | 98.33 31 | 99.15 44 | 99.50 41 | 97.92 60 | 99.15 46 | 98.81 74 | 96.24 83 | 99.20 28 | 99.37 25 | 95.30 57 | 99.80 74 | 97.73 64 | 99.67 52 | 99.72 38 |
|
SR-MVS-dyc-post | | | 98.54 26 | 98.35 24 | 99.13 45 | 99.49 45 | 97.86 61 | 99.11 54 | 98.80 82 | 96.49 72 | 99.17 31 | 99.35 31 | 95.34 55 | 99.82 62 | 97.72 65 | 99.65 55 | 99.71 42 |
|
HPM-MVS |  | | 98.36 40 | 98.10 46 | 99.13 45 | 99.74 7 | 97.82 65 | 99.53 8 | 98.80 82 | 94.63 160 | 98.61 68 | 98.97 91 | 95.13 66 | 99.77 92 | 97.65 71 | 99.83 11 | 99.79 13 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
HPM-MVS_fast | | | 98.38 38 | 98.13 43 | 99.12 47 | 99.75 3 | 97.86 61 | 99.44 11 | 98.82 69 | 94.46 167 | 98.94 42 | 99.20 53 | 95.16 65 | 99.74 97 | 97.58 76 | 99.85 5 | 99.77 21 |
|
ACMMP |  | | 98.23 47 | 97.95 51 | 99.09 48 | 99.74 7 | 97.62 69 | 99.03 70 | 99.41 6 | 95.98 93 | 97.60 129 | 99.36 29 | 94.45 81 | 99.93 18 | 97.14 95 | 98.85 121 | 99.70 46 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
3Dnovator | | 94.51 5 | 97.46 79 | 96.93 92 | 99.07 49 | 97.78 206 | 97.64 67 | 99.35 17 | 99.06 23 | 97.02 50 | 93.75 255 | 99.16 63 | 89.25 175 | 99.92 23 | 97.22 94 | 99.75 38 | 99.64 64 |
|
DP-MVS Recon | | | 97.86 57 | 97.46 70 | 99.06 50 | 99.53 36 | 98.35 41 | 98.33 190 | 98.89 47 | 92.62 245 | 98.05 92 | 98.94 99 | 95.34 55 | 99.65 115 | 96.04 141 | 99.42 92 | 99.19 131 |
|
alignmvs | | | 97.56 76 | 97.07 87 | 99.01 51 | 98.66 137 | 98.37 39 | 98.83 110 | 98.06 244 | 96.74 63 | 98.00 101 | 97.65 228 | 90.80 146 | 99.48 148 | 98.37 32 | 96.56 193 | 99.19 131 |
|
DELS-MVS | | | 98.40 37 | 98.20 41 | 98.99 52 | 99.00 106 | 97.66 66 | 97.75 255 | 98.89 47 | 97.71 9 | 98.33 83 | 98.97 91 | 94.97 70 | 99.88 44 | 98.42 30 | 99.76 34 | 99.42 103 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
canonicalmvs | | | 97.67 67 | 97.23 80 | 98.98 53 | 98.70 132 | 98.38 35 | 99.34 18 | 98.39 177 | 96.76 62 | 97.67 122 | 97.40 248 | 92.26 108 | 99.49 144 | 98.28 36 | 96.28 205 | 99.08 149 |
|
UA-Net | | | 97.96 52 | 97.62 59 | 98.98 53 | 98.86 118 | 97.47 74 | 98.89 97 | 99.08 22 | 96.67 66 | 98.72 60 | 99.54 1 | 93.15 97 | 99.81 67 | 94.87 174 | 98.83 122 | 99.65 62 |
|
VNet | | | 97.79 60 | 97.40 74 | 98.96 55 | 98.88 116 | 97.55 71 | 98.63 155 | 98.93 38 | 96.74 63 | 99.02 37 | 98.84 109 | 90.33 155 | 99.83 55 | 98.53 16 | 96.66 189 | 99.50 84 |
|
QAPM | | | 96.29 133 | 95.40 155 | 98.96 55 | 97.85 203 | 97.60 70 | 99.23 31 | 98.93 38 | 89.76 319 | 93.11 277 | 99.02 84 | 89.11 180 | 99.93 18 | 91.99 264 | 99.62 62 | 99.34 107 |
|
114514_t | | | 96.93 106 | 96.27 121 | 98.92 57 | 99.50 41 | 97.63 68 | 98.85 106 | 98.90 45 | 84.80 351 | 97.77 112 | 99.11 70 | 92.84 99 | 99.66 114 | 94.85 175 | 99.77 28 | 99.47 92 |
|
CPTT-MVS | | | 97.72 63 | 97.32 77 | 98.92 57 | 99.64 28 | 97.10 88 | 99.12 52 | 98.81 74 | 92.34 256 | 98.09 90 | 99.08 80 | 93.01 98 | 99.92 23 | 96.06 140 | 99.77 28 | 99.75 28 |
|
CANet | | | 98.05 50 | 97.76 55 | 98.90 59 | 98.73 127 | 97.27 79 | 98.35 188 | 98.78 89 | 97.37 28 | 97.72 119 | 98.96 96 | 91.53 131 | 99.92 23 | 98.79 10 | 99.65 55 | 99.51 82 |
|
MVS_111021_HR | | | 98.47 32 | 98.34 27 | 98.88 60 | 99.22 83 | 97.32 77 | 97.91 239 | 99.58 3 | 97.20 39 | 98.33 83 | 99.00 89 | 95.99 34 | 99.64 117 | 98.05 45 | 99.76 34 | 99.69 49 |
|
TSAR-MVS + GP. | | | 98.38 38 | 98.24 38 | 98.81 61 | 99.22 83 | 97.25 84 | 98.11 222 | 98.29 198 | 97.19 40 | 98.99 41 | 99.02 84 | 96.22 24 | 99.67 112 | 98.52 22 | 98.56 135 | 99.51 82 |
|
DeepC-MVS | | 95.98 3 | 97.88 56 | 97.58 61 | 98.77 62 | 99.25 75 | 96.93 93 | 98.83 110 | 98.75 95 | 96.96 53 | 96.89 153 | 99.50 6 | 90.46 152 | 99.87 45 | 97.84 58 | 99.76 34 | 99.52 79 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
CNLPA | | | 97.45 82 | 97.03 88 | 98.73 63 | 99.05 100 | 97.44 76 | 98.07 224 | 98.53 147 | 95.32 127 | 96.80 158 | 98.53 141 | 93.32 95 | 99.72 99 | 94.31 196 | 99.31 101 | 99.02 153 |
|
WTY-MVS | | | 97.37 89 | 96.92 93 | 98.72 64 | 98.86 118 | 96.89 97 | 98.31 195 | 98.71 105 | 95.26 130 | 97.67 122 | 98.56 140 | 92.21 111 | 99.78 87 | 95.89 145 | 96.85 184 | 99.48 90 |
|
EI-MVSNet-Vis-set | | | 98.47 32 | 98.39 19 | 98.69 65 | 99.46 49 | 96.49 116 | 98.30 197 | 98.69 109 | 97.21 38 | 98.84 50 | 99.36 29 | 95.41 50 | 99.78 87 | 98.62 13 | 99.65 55 | 99.80 12 |
|
LS3D | | | 97.16 98 | 96.66 108 | 98.68 66 | 98.53 147 | 97.19 86 | 98.93 90 | 98.90 45 | 92.83 240 | 95.99 186 | 99.37 25 | 92.12 114 | 99.87 45 | 93.67 217 | 99.57 70 | 98.97 158 |
|
MVS_111021_LR | | | 98.34 43 | 98.23 39 | 98.67 67 | 99.27 72 | 96.90 95 | 97.95 235 | 99.58 3 | 97.14 44 | 98.44 77 | 99.01 88 | 95.03 69 | 99.62 123 | 97.91 51 | 99.75 38 | 99.50 84 |
|
原ACMM1 | | | | | 98.65 68 | 99.32 59 | 96.62 105 | | 98.67 117 | 93.27 224 | 97.81 111 | 98.97 91 | 95.18 64 | 99.83 55 | 93.84 211 | 99.46 90 | 99.50 84 |
|
PAPR | | | 96.84 110 | 96.24 123 | 98.65 68 | 98.72 131 | 96.92 94 | 97.36 283 | 98.57 139 | 93.33 219 | 96.67 161 | 97.57 236 | 94.30 84 | 99.56 131 | 91.05 282 | 98.59 133 | 99.47 92 |
|
EI-MVSNet-UG-set | | | 98.41 36 | 98.34 27 | 98.61 70 | 99.45 52 | 96.32 125 | 98.28 200 | 98.68 112 | 97.17 41 | 98.74 57 | 99.37 25 | 95.25 61 | 99.79 84 | 98.57 14 | 99.54 79 | 99.73 35 |
|
sss | | | 97.39 87 | 96.98 91 | 98.61 70 | 98.60 143 | 96.61 107 | 98.22 205 | 98.93 38 | 93.97 183 | 98.01 100 | 98.48 146 | 91.98 118 | 99.85 50 | 96.45 128 | 98.15 153 | 99.39 104 |
|
HY-MVS | | 93.96 8 | 96.82 111 | 96.23 124 | 98.57 72 | 98.46 151 | 97.00 90 | 98.14 217 | 98.21 207 | 93.95 184 | 96.72 160 | 97.99 196 | 91.58 126 | 99.76 93 | 94.51 189 | 96.54 194 | 98.95 161 |
|
DP-MVS | | | 96.59 118 | 95.93 135 | 98.57 72 | 99.34 54 | 96.19 131 | 98.70 143 | 98.39 177 | 89.45 324 | 94.52 213 | 99.35 31 | 91.85 120 | 99.85 50 | 92.89 241 | 98.88 118 | 99.68 54 |
|
MSLP-MVS++ | | | 98.56 24 | 98.57 11 | 98.55 74 | 99.26 74 | 96.80 98 | 98.71 139 | 99.05 25 | 97.28 32 | 98.84 50 | 99.28 40 | 96.47 22 | 99.40 153 | 98.52 22 | 99.70 49 | 99.47 92 |
|
ab-mvs | | | 96.42 126 | 95.71 146 | 98.55 74 | 98.63 140 | 96.75 101 | 97.88 244 | 98.74 97 | 93.84 189 | 96.54 170 | 98.18 182 | 85.34 260 | 99.75 95 | 95.93 144 | 96.35 199 | 99.15 138 |
|
test_yl | | | 97.22 93 | 96.78 100 | 98.54 76 | 98.73 127 | 96.60 108 | 98.45 178 | 98.31 190 | 94.70 154 | 98.02 97 | 98.42 154 | 90.80 146 | 99.70 105 | 96.81 116 | 96.79 186 | 99.34 107 |
|
DCV-MVSNet | | | 97.22 93 | 96.78 100 | 98.54 76 | 98.73 127 | 96.60 108 | 98.45 178 | 98.31 190 | 94.70 154 | 98.02 97 | 98.42 154 | 90.80 146 | 99.70 105 | 96.81 116 | 96.79 186 | 99.34 107 |
|
SD-MVS | | | 98.64 12 | 98.68 7 | 98.53 78 | 99.33 56 | 98.36 40 | 98.90 93 | 98.85 66 | 97.28 32 | 99.72 4 | 99.39 19 | 96.63 19 | 97.60 327 | 98.17 38 | 99.85 5 | 99.64 64 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
EPNet | | | 97.28 91 | 96.87 95 | 98.51 79 | 94.98 337 | 96.14 132 | 98.90 93 | 97.02 316 | 98.28 1 | 95.99 186 | 99.11 70 | 91.36 133 | 99.89 36 | 96.98 100 | 99.19 105 | 99.50 84 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
1112_ss | | | 96.63 116 | 96.00 132 | 98.50 80 | 98.56 144 | 96.37 122 | 98.18 214 | 98.10 232 | 92.92 236 | 94.84 203 | 98.43 152 | 92.14 113 | 99.58 127 | 94.35 193 | 96.51 195 | 99.56 78 |
|
PAPM_NR | | | 97.46 79 | 97.11 84 | 98.50 80 | 99.50 41 | 96.41 121 | 98.63 155 | 98.60 130 | 95.18 134 | 97.06 144 | 98.06 189 | 94.26 86 | 99.57 128 | 93.80 213 | 98.87 120 | 99.52 79 |
|
DROMVSNet | | | 98.21 48 | 98.11 45 | 98.49 82 | 98.34 164 | 97.26 83 | 99.61 5 | 98.43 171 | 96.78 60 | 98.87 49 | 98.84 109 | 93.72 92 | 99.01 199 | 98.91 7 | 99.50 82 | 99.19 131 |
|
AdaColmap |  | | 97.15 99 | 96.70 104 | 98.48 83 | 99.16 92 | 96.69 104 | 98.01 230 | 98.89 47 | 94.44 168 | 96.83 154 | 98.68 126 | 90.69 149 | 99.76 93 | 94.36 192 | 99.29 102 | 98.98 157 |
|
LFMVS | | | 95.86 154 | 94.98 182 | 98.47 84 | 98.87 117 | 96.32 125 | 98.84 109 | 96.02 339 | 93.40 217 | 98.62 67 | 99.20 53 | 74.99 342 | 99.63 120 | 97.72 65 | 97.20 179 | 99.46 96 |
|
CS-MVS-test | | | 98.49 29 | 98.50 14 | 98.46 85 | 99.20 86 | 97.05 89 | 99.64 4 | 98.50 156 | 97.45 22 | 98.88 48 | 99.14 67 | 95.25 61 | 99.15 175 | 98.83 9 | 99.56 76 | 99.20 127 |
|
MAR-MVS | | | 96.91 107 | 96.40 116 | 98.45 86 | 98.69 134 | 96.90 95 | 98.66 151 | 98.68 112 | 92.40 255 | 97.07 143 | 97.96 199 | 91.54 130 | 99.75 95 | 93.68 215 | 98.92 115 | 98.69 178 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
casdiffmvs_mvg |  | | 97.72 63 | 97.48 69 | 98.44 87 | 98.42 153 | 96.59 110 | 98.92 91 | 98.44 167 | 96.20 85 | 97.76 113 | 99.20 53 | 91.66 125 | 99.23 165 | 98.27 37 | 98.41 144 | 99.49 89 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
PVSNet_Blended_VisFu | | | 97.70 65 | 97.46 70 | 98.44 87 | 99.27 72 | 95.91 149 | 98.63 155 | 99.16 18 | 94.48 166 | 97.67 122 | 98.88 105 | 92.80 100 | 99.91 31 | 97.11 96 | 99.12 107 | 99.50 84 |
|
MG-MVS | | | 97.81 59 | 97.60 60 | 98.44 87 | 99.12 96 | 95.97 141 | 97.75 255 | 98.78 89 | 96.89 56 | 98.46 73 | 99.22 50 | 93.90 91 | 99.68 111 | 94.81 178 | 99.52 81 | 99.67 58 |
|
PLC |  | 95.07 4 | 97.20 96 | 96.78 100 | 98.44 87 | 99.29 67 | 96.31 127 | 98.14 217 | 98.76 93 | 92.41 254 | 96.39 176 | 98.31 169 | 94.92 72 | 99.78 87 | 94.06 205 | 98.77 125 | 99.23 124 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
PCF-MVS | | 93.45 11 | 94.68 220 | 93.43 266 | 98.42 91 | 98.62 141 | 96.77 100 | 95.48 348 | 98.20 209 | 84.63 352 | 93.34 268 | 98.32 168 | 88.55 196 | 99.81 67 | 84.80 342 | 98.96 114 | 98.68 179 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
ETV-MVS | | | 97.96 52 | 97.81 53 | 98.40 92 | 98.42 153 | 97.27 79 | 98.73 134 | 98.55 143 | 96.84 57 | 98.38 79 | 97.44 245 | 95.39 51 | 99.35 156 | 97.62 73 | 98.89 117 | 98.58 188 |
|
Effi-MVS+ | | | 97.12 100 | 96.69 105 | 98.39 93 | 98.19 179 | 96.72 103 | 97.37 281 | 98.43 171 | 93.71 199 | 97.65 125 | 98.02 192 | 92.20 112 | 99.25 162 | 96.87 113 | 97.79 165 | 99.19 131 |
|
Test_1112_low_res | | | 96.34 132 | 95.66 151 | 98.36 94 | 98.56 144 | 95.94 144 | 97.71 258 | 98.07 239 | 92.10 265 | 94.79 207 | 97.29 253 | 91.75 122 | 99.56 131 | 94.17 200 | 96.50 196 | 99.58 76 |
|
Vis-MVSNet |  | | 97.42 85 | 97.11 84 | 98.34 95 | 98.66 137 | 96.23 128 | 99.22 35 | 99.00 28 | 96.63 68 | 98.04 94 | 99.21 51 | 88.05 208 | 99.35 156 | 96.01 143 | 99.21 103 | 99.45 98 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
OpenMVS |  | 93.04 13 | 95.83 156 | 95.00 180 | 98.32 96 | 97.18 254 | 97.32 77 | 99.21 38 | 98.97 31 | 89.96 315 | 91.14 313 | 99.05 83 | 86.64 235 | 99.92 23 | 93.38 223 | 99.47 87 | 97.73 214 |
|
CS-MVS | | | 98.44 34 | 98.49 15 | 98.31 97 | 99.08 99 | 96.73 102 | 99.67 3 | 98.47 162 | 97.17 41 | 98.94 42 | 99.10 72 | 95.73 41 | 99.13 178 | 98.71 11 | 99.49 84 | 99.09 145 |
|
casdiffmvs |  | | 97.63 70 | 97.41 73 | 98.28 98 | 98.33 166 | 96.14 132 | 98.82 112 | 98.32 188 | 96.38 80 | 97.95 103 | 99.21 51 | 91.23 138 | 99.23 165 | 98.12 40 | 98.37 145 | 99.48 90 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
EIA-MVS | | | 97.75 61 | 97.58 61 | 98.27 99 | 98.38 156 | 96.44 118 | 99.01 75 | 98.60 130 | 95.88 99 | 97.26 135 | 97.53 239 | 94.97 70 | 99.33 158 | 97.38 89 | 99.20 104 | 99.05 151 |
|
PatchMatch-RL | | | 96.59 118 | 96.03 131 | 98.27 99 | 99.31 61 | 96.51 115 | 97.91 239 | 99.06 23 | 93.72 198 | 96.92 151 | 98.06 189 | 88.50 198 | 99.65 115 | 91.77 269 | 99.00 113 | 98.66 182 |
|
testdata | | | | | 98.26 101 | 99.20 86 | 95.36 169 | | 98.68 112 | 91.89 270 | 98.60 69 | 99.10 72 | 94.44 82 | 99.82 62 | 94.27 197 | 99.44 91 | 99.58 76 |
|
baseline | | | 97.64 69 | 97.44 72 | 98.25 102 | 98.35 159 | 96.20 129 | 99.00 77 | 98.32 188 | 96.33 82 | 98.03 95 | 99.17 60 | 91.35 134 | 99.16 172 | 98.10 41 | 98.29 151 | 99.39 104 |
|
IS-MVSNet | | | 97.22 93 | 96.88 94 | 98.25 102 | 98.85 120 | 96.36 123 | 99.19 41 | 97.97 252 | 95.39 121 | 97.23 136 | 98.99 90 | 91.11 140 | 98.93 211 | 94.60 185 | 98.59 133 | 99.47 92 |
|
CANet_DTU | | | 96.96 105 | 96.55 111 | 98.21 104 | 98.17 183 | 96.07 134 | 97.98 233 | 98.21 207 | 97.24 37 | 97.13 139 | 98.93 100 | 86.88 232 | 99.91 31 | 95.00 173 | 99.37 98 | 98.66 182 |
|
CSCG | | | 97.85 58 | 97.74 56 | 98.20 105 | 99.67 25 | 95.16 177 | 99.22 35 | 99.32 7 | 93.04 231 | 97.02 146 | 98.92 102 | 95.36 54 | 99.91 31 | 97.43 86 | 99.64 59 | 99.52 79 |
|
OMC-MVS | | | 97.55 77 | 97.34 76 | 98.20 105 | 99.33 56 | 95.92 148 | 98.28 200 | 98.59 132 | 95.52 115 | 97.97 102 | 99.10 72 | 93.28 96 | 99.49 144 | 95.09 171 | 98.88 118 | 99.19 131 |
|
UGNet | | | 96.78 112 | 96.30 120 | 98.19 107 | 98.24 171 | 95.89 151 | 98.88 100 | 98.93 38 | 97.39 25 | 96.81 157 | 97.84 210 | 82.60 294 | 99.90 34 | 96.53 125 | 99.49 84 | 98.79 170 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
PVSNet_Blended | | | 97.38 88 | 97.12 83 | 98.14 108 | 99.25 75 | 95.35 171 | 97.28 290 | 99.26 9 | 93.13 228 | 97.94 105 | 98.21 179 | 92.74 101 | 99.81 67 | 96.88 110 | 99.40 95 | 99.27 120 |
|
HyFIR lowres test | | | 96.90 108 | 96.49 114 | 98.14 108 | 99.33 56 | 95.56 161 | 97.38 279 | 99.65 2 | 92.34 256 | 97.61 128 | 98.20 180 | 89.29 173 | 99.10 186 | 96.97 101 | 97.60 173 | 99.77 21 |
|
MVS_Test | | | 97.28 91 | 97.00 89 | 98.13 110 | 98.33 166 | 95.97 141 | 98.74 130 | 98.07 239 | 94.27 171 | 98.44 77 | 98.07 188 | 92.48 103 | 99.26 161 | 96.43 129 | 98.19 152 | 99.16 137 |
|
diffmvs |  | | 97.58 74 | 97.40 74 | 98.13 110 | 98.32 168 | 95.81 154 | 98.06 225 | 98.37 181 | 96.20 85 | 98.74 57 | 98.89 104 | 91.31 136 | 99.25 162 | 98.16 39 | 98.52 136 | 99.34 107 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
lupinMVS | | | 97.44 83 | 97.22 81 | 98.12 112 | 98.07 189 | 95.76 155 | 97.68 260 | 97.76 265 | 94.50 165 | 98.79 53 | 98.61 132 | 92.34 105 | 99.30 159 | 97.58 76 | 99.59 66 | 99.31 113 |
|
GeoE | | | 96.58 120 | 96.07 128 | 98.10 113 | 98.35 159 | 95.89 151 | 99.34 18 | 98.12 226 | 93.12 229 | 96.09 182 | 98.87 106 | 89.71 164 | 98.97 201 | 92.95 237 | 98.08 156 | 99.43 101 |
|
MVS | | | 94.67 223 | 93.54 262 | 98.08 114 | 96.88 272 | 96.56 112 | 98.19 211 | 98.50 156 | 78.05 361 | 92.69 288 | 98.02 192 | 91.07 142 | 99.63 120 | 90.09 293 | 98.36 147 | 98.04 205 |
|
CHOSEN 1792x2688 | | | 97.12 100 | 96.80 97 | 98.08 114 | 99.30 65 | 94.56 210 | 98.05 226 | 99.71 1 | 93.57 211 | 97.09 140 | 98.91 103 | 88.17 203 | 99.89 36 | 96.87 113 | 99.56 76 | 99.81 11 |
|
jason | | | 97.32 90 | 97.08 86 | 98.06 116 | 97.45 235 | 95.59 159 | 97.87 245 | 97.91 259 | 94.79 153 | 98.55 71 | 98.83 111 | 91.12 139 | 99.23 165 | 97.58 76 | 99.60 64 | 99.34 107 |
jason: jason. |
Fast-Effi-MVS+ | | | 96.28 135 | 95.70 148 | 98.03 117 | 98.29 170 | 95.97 141 | 98.58 161 | 98.25 204 | 91.74 273 | 95.29 195 | 97.23 257 | 91.03 143 | 99.15 175 | 92.90 239 | 97.96 159 | 98.97 158 |
|
baseline1 | | | 95.84 155 | 95.12 175 | 98.01 118 | 98.49 150 | 95.98 136 | 98.73 134 | 97.03 314 | 95.37 124 | 96.22 179 | 98.19 181 | 89.96 160 | 99.16 172 | 94.60 185 | 87.48 324 | 98.90 164 |
|
EPP-MVSNet | | | 97.46 79 | 97.28 78 | 97.99 119 | 98.64 139 | 95.38 168 | 99.33 21 | 98.31 190 | 93.61 210 | 97.19 137 | 99.07 81 | 94.05 88 | 99.23 165 | 96.89 108 | 98.43 143 | 99.37 106 |
|
thisisatest0530 | | | 96.01 143 | 95.36 160 | 97.97 120 | 98.38 156 | 95.52 164 | 98.88 100 | 94.19 360 | 94.04 177 | 97.64 126 | 98.31 169 | 83.82 290 | 99.46 151 | 95.29 166 | 97.70 170 | 98.93 162 |
|
F-COLMAP | | | 97.09 102 | 96.80 97 | 97.97 120 | 99.45 52 | 94.95 190 | 98.55 168 | 98.62 129 | 93.02 232 | 96.17 181 | 98.58 137 | 94.01 89 | 99.81 67 | 93.95 207 | 98.90 116 | 99.14 140 |
|
nrg030 | | | 96.28 135 | 95.72 143 | 97.96 122 | 96.90 271 | 98.15 52 | 99.39 12 | 98.31 190 | 95.47 117 | 94.42 221 | 98.35 162 | 92.09 115 | 98.69 235 | 97.50 84 | 89.05 308 | 97.04 231 |
|
API-MVS | | | 97.41 86 | 97.25 79 | 97.91 123 | 98.70 132 | 96.80 98 | 98.82 112 | 98.69 109 | 94.53 162 | 98.11 88 | 98.28 171 | 94.50 80 | 99.57 128 | 94.12 202 | 99.49 84 | 97.37 224 |
|
CDS-MVSNet | | | 96.99 104 | 96.69 105 | 97.90 124 | 98.05 192 | 95.98 136 | 98.20 208 | 98.33 187 | 93.67 206 | 96.95 147 | 98.49 145 | 93.54 93 | 98.42 265 | 95.24 169 | 97.74 168 | 99.31 113 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
VDDNet | | | 95.36 184 | 94.53 201 | 97.86 125 | 98.10 188 | 95.13 180 | 98.85 106 | 97.75 266 | 90.46 306 | 98.36 80 | 99.39 19 | 73.27 349 | 99.64 117 | 97.98 46 | 96.58 192 | 98.81 169 |
|
MVSFormer | | | 97.57 75 | 97.49 67 | 97.84 126 | 98.07 189 | 95.76 155 | 99.47 9 | 98.40 175 | 94.98 145 | 98.79 53 | 98.83 111 | 92.34 105 | 98.41 273 | 96.91 104 | 99.59 66 | 99.34 107 |
|
Vis-MVSNet (Re-imp) | | | 96.87 109 | 96.55 111 | 97.83 127 | 98.73 127 | 95.46 166 | 99.20 39 | 98.30 196 | 94.96 147 | 96.60 165 | 98.87 106 | 90.05 158 | 98.59 245 | 93.67 217 | 98.60 132 | 99.46 96 |
|
MSDG | | | 95.93 150 | 95.30 167 | 97.83 127 | 98.90 114 | 95.36 169 | 96.83 324 | 98.37 181 | 91.32 288 | 94.43 220 | 98.73 122 | 90.27 156 | 99.60 125 | 90.05 296 | 98.82 123 | 98.52 189 |
|
FA-MVS(test-final) | | | 96.41 130 | 95.94 134 | 97.82 129 | 98.21 175 | 95.20 176 | 97.80 251 | 97.58 275 | 93.21 225 | 97.36 133 | 97.70 222 | 89.47 168 | 99.56 131 | 94.12 202 | 97.99 157 | 98.71 177 |
|
h-mvs33 | | | 96.17 138 | 95.62 152 | 97.81 130 | 99.03 102 | 94.45 212 | 98.64 153 | 98.75 95 | 97.48 19 | 98.67 61 | 98.72 123 | 89.76 162 | 99.86 49 | 97.95 48 | 81.59 350 | 99.11 143 |
|
1314 | | | 96.25 137 | 95.73 142 | 97.79 131 | 97.13 257 | 95.55 163 | 98.19 211 | 98.59 132 | 93.47 214 | 92.03 305 | 97.82 214 | 91.33 135 | 99.49 144 | 94.62 184 | 98.44 141 | 98.32 198 |
|
FE-MVS | | | 95.62 168 | 94.90 186 | 97.78 132 | 98.37 158 | 94.92 191 | 97.17 299 | 97.38 298 | 90.95 300 | 97.73 118 | 97.70 222 | 85.32 262 | 99.63 120 | 91.18 277 | 98.33 148 | 98.79 170 |
|
tttt0517 | | | 96.07 141 | 95.51 154 | 97.78 132 | 98.41 155 | 94.84 194 | 99.28 24 | 94.33 358 | 94.26 172 | 97.64 126 | 98.64 130 | 84.05 283 | 99.47 150 | 95.34 162 | 97.60 173 | 99.03 152 |
|
PAPM | | | 94.95 209 | 94.00 230 | 97.78 132 | 97.04 261 | 95.65 158 | 96.03 340 | 98.25 204 | 91.23 293 | 94.19 233 | 97.80 216 | 91.27 137 | 98.86 222 | 82.61 350 | 97.61 172 | 98.84 168 |
|
thisisatest0515 | | | 95.61 171 | 94.89 187 | 97.76 135 | 98.15 185 | 95.15 179 | 96.77 325 | 94.41 356 | 92.95 235 | 97.18 138 | 97.43 246 | 84.78 269 | 99.45 152 | 94.63 182 | 97.73 169 | 98.68 179 |
|
Anonymous20240529 | | | 95.10 199 | 94.22 216 | 97.75 136 | 99.01 105 | 94.26 221 | 98.87 103 | 98.83 68 | 85.79 347 | 96.64 162 | 98.97 91 | 78.73 318 | 99.85 50 | 96.27 132 | 94.89 219 | 99.12 142 |
|
TAPA-MVS | | 93.98 7 | 95.35 185 | 94.56 200 | 97.74 137 | 99.13 95 | 94.83 196 | 98.33 190 | 98.64 125 | 86.62 339 | 96.29 178 | 98.61 132 | 94.00 90 | 99.29 160 | 80.00 356 | 99.41 93 | 99.09 145 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
xiu_mvs_v1_base_debu | | | 97.60 71 | 97.56 63 | 97.72 138 | 98.35 159 | 95.98 136 | 97.86 246 | 98.51 151 | 97.13 45 | 99.01 38 | 98.40 156 | 91.56 127 | 99.80 74 | 98.53 16 | 98.68 126 | 97.37 224 |
|
xiu_mvs_v1_base | | | 97.60 71 | 97.56 63 | 97.72 138 | 98.35 159 | 95.98 136 | 97.86 246 | 98.51 151 | 97.13 45 | 99.01 38 | 98.40 156 | 91.56 127 | 99.80 74 | 98.53 16 | 98.68 126 | 97.37 224 |
|
xiu_mvs_v1_base_debi | | | 97.60 71 | 97.56 63 | 97.72 138 | 98.35 159 | 95.98 136 | 97.86 246 | 98.51 151 | 97.13 45 | 99.01 38 | 98.40 156 | 91.56 127 | 99.80 74 | 98.53 16 | 98.68 126 | 97.37 224 |
|
TAMVS | | | 97.02 103 | 96.79 99 | 97.70 141 | 98.06 191 | 95.31 173 | 98.52 169 | 98.31 190 | 93.95 184 | 97.05 145 | 98.61 132 | 93.49 94 | 98.52 253 | 95.33 163 | 97.81 164 | 99.29 118 |
|
VPA-MVSNet | | | 95.75 159 | 95.11 176 | 97.69 142 | 97.24 246 | 97.27 79 | 98.94 88 | 99.23 13 | 95.13 136 | 95.51 192 | 97.32 251 | 85.73 251 | 98.91 213 | 97.33 91 | 89.55 300 | 96.89 248 |
|
BH-RMVSNet | | | 95.92 151 | 95.32 164 | 97.69 142 | 98.32 168 | 94.64 202 | 98.19 211 | 97.45 292 | 94.56 161 | 96.03 184 | 98.61 132 | 85.02 264 | 99.12 180 | 90.68 287 | 99.06 108 | 99.30 116 |
|
Anonymous202405211 | | | 95.28 189 | 94.49 203 | 97.67 144 | 99.00 106 | 93.75 237 | 98.70 143 | 97.04 313 | 90.66 302 | 96.49 172 | 98.80 114 | 78.13 324 | 99.83 55 | 96.21 136 | 95.36 218 | 99.44 99 |
|
FIs | | | 96.51 123 | 96.12 126 | 97.67 144 | 97.13 257 | 97.54 72 | 99.36 15 | 99.22 15 | 95.89 97 | 94.03 241 | 98.35 162 | 91.98 118 | 98.44 263 | 96.40 130 | 92.76 262 | 97.01 233 |
|
thres600view7 | | | 95.49 172 | 94.77 190 | 97.67 144 | 98.98 110 | 95.02 183 | 98.85 106 | 96.90 322 | 95.38 122 | 96.63 163 | 96.90 290 | 84.29 276 | 99.59 126 | 88.65 317 | 96.33 200 | 98.40 193 |
|
mvsany_test1 | | | 97.69 66 | 97.70 57 | 97.66 147 | 98.24 171 | 94.18 225 | 97.53 271 | 97.53 284 | 95.52 115 | 99.66 6 | 99.51 5 | 94.30 84 | 99.56 131 | 98.38 31 | 98.62 131 | 99.23 124 |
|
thres400 | | | 95.38 181 | 94.62 197 | 97.65 148 | 98.94 112 | 94.98 187 | 98.68 146 | 96.93 320 | 95.33 125 | 96.55 168 | 96.53 307 | 84.23 279 | 99.56 131 | 88.11 318 | 96.29 202 | 98.40 193 |
|
PS-MVSNAJ | | | 97.73 62 | 97.77 54 | 97.62 149 | 98.68 135 | 95.58 160 | 97.34 285 | 98.51 151 | 97.29 31 | 98.66 65 | 97.88 206 | 94.51 77 | 99.90 34 | 97.87 55 | 99.17 106 | 97.39 222 |
|
VDD-MVS | | | 95.82 157 | 95.23 169 | 97.61 150 | 98.84 121 | 93.98 229 | 98.68 146 | 97.40 296 | 95.02 144 | 97.95 103 | 99.34 34 | 74.37 346 | 99.78 87 | 98.64 12 | 96.80 185 | 99.08 149 |
|
ET-MVSNet_ETH3D | | | 94.13 258 | 92.98 274 | 97.58 151 | 98.22 174 | 96.20 129 | 97.31 288 | 95.37 347 | 94.53 162 | 79.56 360 | 97.63 232 | 86.51 236 | 97.53 331 | 96.91 104 | 90.74 284 | 99.02 153 |
|
UniMVSNet (Re) | | | 95.78 158 | 95.19 171 | 97.58 151 | 96.99 264 | 97.47 74 | 98.79 124 | 99.18 17 | 95.60 111 | 93.92 245 | 97.04 276 | 91.68 123 | 98.48 256 | 95.80 150 | 87.66 323 | 96.79 260 |
|
xiu_mvs_v2_base | | | 97.66 68 | 97.70 57 | 97.56 153 | 98.61 142 | 95.46 166 | 97.44 274 | 98.46 163 | 97.15 43 | 98.65 66 | 98.15 183 | 94.33 83 | 99.80 74 | 97.84 58 | 98.66 130 | 97.41 220 |
|
FC-MVSNet-test | | | 96.42 126 | 96.05 129 | 97.53 154 | 96.95 266 | 97.27 79 | 99.36 15 | 99.23 13 | 95.83 101 | 93.93 244 | 98.37 160 | 92.00 117 | 98.32 282 | 96.02 142 | 92.72 263 | 97.00 234 |
|
XXY-MVS | | | 95.20 194 | 94.45 208 | 97.46 155 | 96.75 279 | 96.56 112 | 98.86 105 | 98.65 124 | 93.30 222 | 93.27 270 | 98.27 174 | 84.85 268 | 98.87 220 | 94.82 177 | 91.26 279 | 96.96 237 |
|
NR-MVSNet | | | 94.98 207 | 94.16 220 | 97.44 156 | 96.53 290 | 97.22 85 | 98.74 130 | 98.95 34 | 94.96 147 | 89.25 330 | 97.69 224 | 89.32 172 | 98.18 294 | 94.59 187 | 87.40 326 | 96.92 240 |
|
tfpn200view9 | | | 95.32 188 | 94.62 197 | 97.43 157 | 98.94 112 | 94.98 187 | 98.68 146 | 96.93 320 | 95.33 125 | 96.55 168 | 96.53 307 | 84.23 279 | 99.56 131 | 88.11 318 | 96.29 202 | 97.76 211 |
|
thres100view900 | | | 95.38 181 | 94.70 194 | 97.41 158 | 98.98 110 | 94.92 191 | 98.87 103 | 96.90 322 | 95.38 122 | 96.61 164 | 96.88 291 | 84.29 276 | 99.56 131 | 88.11 318 | 96.29 202 | 97.76 211 |
|
PMMVS | | | 96.60 117 | 96.33 118 | 97.41 158 | 97.90 201 | 93.93 230 | 97.35 284 | 98.41 173 | 92.84 239 | 97.76 113 | 97.45 244 | 91.10 141 | 99.20 169 | 96.26 133 | 97.91 160 | 99.11 143 |
|
VPNet | | | 94.99 205 | 94.19 218 | 97.40 160 | 97.16 255 | 96.57 111 | 98.71 139 | 98.97 31 | 95.67 109 | 94.84 203 | 98.24 178 | 80.36 309 | 98.67 239 | 96.46 127 | 87.32 327 | 96.96 237 |
|
UniMVSNet_NR-MVSNet | | | 95.71 162 | 95.15 172 | 97.40 160 | 96.84 274 | 96.97 91 | 98.74 130 | 99.24 11 | 95.16 135 | 93.88 247 | 97.72 221 | 91.68 123 | 98.31 284 | 95.81 148 | 87.25 328 | 96.92 240 |
|
DU-MVS | | | 95.42 178 | 94.76 191 | 97.40 160 | 96.53 290 | 96.97 91 | 98.66 151 | 98.99 30 | 95.43 119 | 93.88 247 | 97.69 224 | 88.57 194 | 98.31 284 | 95.81 148 | 87.25 328 | 96.92 240 |
|
iter_conf_final | | | 96.42 126 | 96.12 126 | 97.34 163 | 98.46 151 | 96.55 114 | 99.08 60 | 98.06 244 | 96.03 92 | 95.63 190 | 98.46 150 | 87.72 215 | 98.59 245 | 97.84 58 | 93.80 239 | 96.87 251 |
|
mvsmamba | | | 96.57 121 | 96.32 119 | 97.32 164 | 96.60 286 | 96.43 119 | 99.54 7 | 97.98 250 | 96.49 72 | 95.20 196 | 98.64 130 | 90.82 144 | 98.55 249 | 97.97 47 | 93.65 244 | 96.98 235 |
|
thres200 | | | 95.25 190 | 94.57 199 | 97.28 165 | 98.81 123 | 94.92 191 | 98.20 208 | 97.11 309 | 95.24 133 | 96.54 170 | 96.22 318 | 84.58 273 | 99.53 139 | 87.93 322 | 96.50 196 | 97.39 222 |
|
RPMNet | | | 92.81 287 | 91.34 295 | 97.24 166 | 97.00 262 | 93.43 249 | 94.96 350 | 98.80 82 | 82.27 356 | 96.93 149 | 92.12 359 | 86.98 230 | 99.82 62 | 76.32 364 | 96.65 190 | 98.46 191 |
|
WR-MVS | | | 95.15 196 | 94.46 206 | 97.22 167 | 96.67 284 | 96.45 117 | 98.21 206 | 98.81 74 | 94.15 173 | 93.16 273 | 97.69 224 | 87.51 220 | 98.30 286 | 95.29 166 | 88.62 314 | 96.90 247 |
|
CHOSEN 280x420 | | | 97.18 97 | 97.18 82 | 97.20 168 | 98.81 123 | 93.27 256 | 95.78 344 | 99.15 19 | 95.25 131 | 96.79 159 | 98.11 186 | 92.29 107 | 99.07 189 | 98.56 15 | 99.85 5 | 99.25 123 |
|
IB-MVS | | 91.98 17 | 93.27 279 | 91.97 290 | 97.19 169 | 97.47 230 | 93.41 251 | 97.09 304 | 95.99 340 | 93.32 220 | 92.47 296 | 95.73 327 | 78.06 325 | 99.53 139 | 94.59 187 | 82.98 345 | 98.62 185 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
mvs_anonymous | | | 96.70 115 | 96.53 113 | 97.18 170 | 98.19 179 | 93.78 234 | 98.31 195 | 98.19 211 | 94.01 180 | 94.47 215 | 98.27 174 | 92.08 116 | 98.46 260 | 97.39 88 | 97.91 160 | 99.31 113 |
|
TR-MVS | | | 94.94 211 | 94.20 217 | 97.17 171 | 97.75 208 | 94.14 226 | 97.59 268 | 97.02 316 | 92.28 260 | 95.75 189 | 97.64 230 | 83.88 287 | 98.96 205 | 89.77 300 | 96.15 210 | 98.40 193 |
|
iter_conf05 | | | 96.13 140 | 95.79 139 | 97.15 172 | 98.16 184 | 95.99 135 | 98.88 100 | 97.98 250 | 95.91 96 | 95.58 191 | 98.46 150 | 85.53 255 | 98.59 245 | 97.88 54 | 93.75 240 | 96.86 254 |
|
GA-MVS | | | 94.81 214 | 94.03 226 | 97.14 173 | 97.15 256 | 93.86 232 | 96.76 326 | 97.58 275 | 94.00 181 | 94.76 208 | 97.04 276 | 80.91 304 | 98.48 256 | 91.79 268 | 96.25 207 | 99.09 145 |
|
gg-mvs-nofinetune | | | 92.21 293 | 90.58 301 | 97.13 174 | 96.75 279 | 95.09 181 | 95.85 342 | 89.40 374 | 85.43 349 | 94.50 214 | 81.98 367 | 80.80 307 | 98.40 279 | 92.16 257 | 98.33 148 | 97.88 208 |
|
PVSNet_BlendedMVS | | | 96.73 113 | 96.60 109 | 97.12 175 | 99.25 75 | 95.35 171 | 98.26 203 | 99.26 9 | 94.28 170 | 97.94 105 | 97.46 242 | 92.74 101 | 99.81 67 | 96.88 110 | 93.32 254 | 96.20 317 |
|
TranMVSNet+NR-MVSNet | | | 95.14 197 | 94.48 204 | 97.11 176 | 96.45 296 | 96.36 123 | 99.03 70 | 99.03 26 | 95.04 143 | 93.58 258 | 97.93 201 | 88.27 201 | 98.03 307 | 94.13 201 | 86.90 333 | 96.95 239 |
|
FMVSNet3 | | | 94.97 208 | 94.26 215 | 97.11 176 | 98.18 181 | 96.62 105 | 98.56 167 | 98.26 203 | 93.67 206 | 94.09 237 | 97.10 263 | 84.25 278 | 98.01 308 | 92.08 259 | 92.14 266 | 96.70 272 |
|
MVSTER | | | 96.06 142 | 95.72 143 | 97.08 178 | 98.23 173 | 95.93 147 | 98.73 134 | 98.27 199 | 94.86 151 | 95.07 198 | 98.09 187 | 88.21 202 | 98.54 251 | 96.59 122 | 93.46 249 | 96.79 260 |
|
FMVSNet2 | | | 94.47 238 | 93.61 258 | 97.04 179 | 98.21 175 | 96.43 119 | 98.79 124 | 98.27 199 | 92.46 249 | 93.50 264 | 97.09 267 | 81.16 301 | 98.00 310 | 91.09 278 | 91.93 269 | 96.70 272 |
|
bld_raw_dy_0_64 | | | 95.74 160 | 95.31 166 | 97.03 180 | 96.35 300 | 95.76 155 | 99.12 52 | 97.37 299 | 95.97 94 | 94.70 209 | 98.48 146 | 85.80 250 | 98.49 255 | 96.55 124 | 93.48 248 | 96.84 256 |
|
XVG-OURS-SEG-HR | | | 96.51 123 | 96.34 117 | 97.02 181 | 98.77 125 | 93.76 235 | 97.79 253 | 98.50 156 | 95.45 118 | 96.94 148 | 99.09 78 | 87.87 213 | 99.55 138 | 96.76 120 | 95.83 215 | 97.74 213 |
|
AllTest | | | 95.24 191 | 94.65 196 | 96.99 182 | 99.25 75 | 93.21 259 | 98.59 159 | 98.18 214 | 91.36 284 | 93.52 261 | 98.77 118 | 84.67 271 | 99.72 99 | 89.70 303 | 97.87 162 | 98.02 206 |
|
TestCases | | | | | 96.99 182 | 99.25 75 | 93.21 259 | | 98.18 214 | 91.36 284 | 93.52 261 | 98.77 118 | 84.67 271 | 99.72 99 | 89.70 303 | 97.87 162 | 98.02 206 |
|
XVG-OURS | | | 96.55 122 | 96.41 115 | 96.99 182 | 98.75 126 | 93.76 235 | 97.50 273 | 98.52 149 | 95.67 109 | 96.83 154 | 99.30 38 | 88.95 188 | 99.53 139 | 95.88 146 | 96.26 206 | 97.69 216 |
|
UniMVSNet_ETH3D | | | 94.24 251 | 93.33 268 | 96.97 185 | 97.19 253 | 93.38 253 | 98.74 130 | 98.57 139 | 91.21 295 | 93.81 251 | 98.58 137 | 72.85 350 | 98.77 231 | 95.05 172 | 93.93 236 | 98.77 174 |
|
PVSNet | | 91.96 18 | 96.35 131 | 96.15 125 | 96.96 186 | 99.17 88 | 92.05 274 | 96.08 337 | 98.68 112 | 93.69 202 | 97.75 115 | 97.80 216 | 88.86 189 | 99.69 110 | 94.26 198 | 99.01 112 | 99.15 138 |
|
anonymousdsp | | | 95.42 178 | 94.91 185 | 96.94 187 | 95.10 336 | 95.90 150 | 99.14 48 | 98.41 173 | 93.75 194 | 93.16 273 | 97.46 242 | 87.50 222 | 98.41 273 | 95.63 157 | 94.03 232 | 96.50 302 |
|
hse-mvs2 | | | 95.71 162 | 95.30 167 | 96.93 188 | 98.50 148 | 93.53 246 | 98.36 187 | 98.10 232 | 97.48 19 | 98.67 61 | 97.99 196 | 89.76 162 | 99.02 197 | 97.95 48 | 80.91 354 | 98.22 200 |
|
test_djsdf | | | 96.00 144 | 95.69 149 | 96.93 188 | 95.72 323 | 95.49 165 | 99.47 9 | 98.40 175 | 94.98 145 | 94.58 211 | 97.86 207 | 89.16 178 | 98.41 273 | 96.91 104 | 94.12 230 | 96.88 249 |
|
cascas | | | 94.63 225 | 93.86 241 | 96.93 188 | 96.91 270 | 94.27 220 | 96.00 341 | 98.51 151 | 85.55 348 | 94.54 212 | 96.23 316 | 84.20 281 | 98.87 220 | 95.80 150 | 96.98 183 | 97.66 217 |
|
AUN-MVS | | | 94.53 233 | 93.73 252 | 96.92 191 | 98.50 148 | 93.52 247 | 98.34 189 | 98.10 232 | 93.83 191 | 95.94 188 | 97.98 198 | 85.59 254 | 99.03 194 | 94.35 193 | 80.94 353 | 98.22 200 |
|
PS-MVSNAJss | | | 96.43 125 | 96.26 122 | 96.92 191 | 95.84 321 | 95.08 182 | 99.16 45 | 98.50 156 | 95.87 100 | 93.84 250 | 98.34 166 | 94.51 77 | 98.61 242 | 96.88 110 | 93.45 251 | 97.06 230 |
|
baseline2 | | | 95.11 198 | 94.52 202 | 96.87 193 | 96.65 285 | 93.56 243 | 98.27 202 | 94.10 362 | 93.45 215 | 92.02 306 | 97.43 246 | 87.45 224 | 99.19 170 | 93.88 210 | 97.41 177 | 97.87 209 |
|
HQP_MVS | | | 96.14 139 | 95.90 136 | 96.85 194 | 97.42 237 | 94.60 208 | 98.80 119 | 98.56 141 | 97.28 32 | 95.34 193 | 98.28 171 | 87.09 227 | 99.03 194 | 96.07 137 | 94.27 222 | 96.92 240 |
|
CP-MVSNet | | | 94.94 211 | 94.30 214 | 96.83 195 | 96.72 281 | 95.56 161 | 99.11 54 | 98.95 34 | 93.89 186 | 92.42 298 | 97.90 203 | 87.19 226 | 98.12 299 | 94.32 195 | 88.21 317 | 96.82 259 |
|
patch_mono-2 | | | 98.36 40 | 98.87 3 | 96.82 196 | 99.53 36 | 90.68 299 | 98.64 153 | 99.29 8 | 97.88 5 | 99.19 30 | 99.52 3 | 96.80 15 | 99.97 1 | 99.11 3 | 99.86 1 | 99.82 10 |
|
pmmvs4 | | | 94.69 218 | 93.99 232 | 96.81 197 | 95.74 322 | 95.94 144 | 97.40 277 | 97.67 269 | 90.42 308 | 93.37 267 | 97.59 234 | 89.08 181 | 98.20 293 | 92.97 236 | 91.67 273 | 96.30 314 |
|
WR-MVS_H | | | 95.05 202 | 94.46 206 | 96.81 197 | 96.86 273 | 95.82 153 | 99.24 30 | 99.24 11 | 93.87 188 | 92.53 293 | 96.84 295 | 90.37 153 | 98.24 292 | 93.24 227 | 87.93 320 | 96.38 309 |
|
OPM-MVS | | | 95.69 165 | 95.33 163 | 96.76 199 | 96.16 309 | 94.63 203 | 98.43 183 | 98.39 177 | 96.64 67 | 95.02 200 | 98.78 116 | 85.15 263 | 99.05 190 | 95.21 170 | 94.20 225 | 96.60 283 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
jajsoiax | | | 95.45 176 | 95.03 179 | 96.73 200 | 95.42 334 | 94.63 203 | 99.14 48 | 98.52 149 | 95.74 104 | 93.22 271 | 98.36 161 | 83.87 288 | 98.65 240 | 96.95 103 | 94.04 231 | 96.91 245 |
|
PS-CasMVS | | | 94.67 223 | 93.99 232 | 96.71 201 | 96.68 283 | 95.26 174 | 99.13 51 | 99.03 26 | 93.68 204 | 92.33 299 | 97.95 200 | 85.35 259 | 98.10 300 | 93.59 219 | 88.16 319 | 96.79 260 |
|
COLMAP_ROB |  | 93.27 12 | 95.33 187 | 94.87 188 | 96.71 201 | 99.29 67 | 93.24 258 | 98.58 161 | 98.11 229 | 89.92 316 | 93.57 259 | 99.10 72 | 86.37 241 | 99.79 84 | 90.78 285 | 98.10 155 | 97.09 229 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
V42 | | | 94.78 216 | 94.14 222 | 96.70 203 | 96.33 302 | 95.22 175 | 98.97 82 | 98.09 236 | 92.32 258 | 94.31 226 | 97.06 273 | 88.39 199 | 98.55 249 | 92.90 239 | 88.87 312 | 96.34 310 |
|
HQP-MVS | | | 95.72 161 | 95.40 155 | 96.69 204 | 97.20 250 | 94.25 222 | 98.05 226 | 98.46 163 | 96.43 75 | 94.45 216 | 97.73 219 | 86.75 233 | 98.96 205 | 95.30 164 | 94.18 226 | 96.86 254 |
|
LTVRE_ROB | | 92.95 15 | 94.60 226 | 93.90 238 | 96.68 205 | 97.41 240 | 94.42 214 | 98.52 169 | 98.59 132 | 91.69 276 | 91.21 312 | 98.35 162 | 84.87 267 | 99.04 193 | 91.06 280 | 93.44 252 | 96.60 283 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
ECVR-MVS |  | | 95.95 147 | 95.71 146 | 96.65 206 | 99.02 103 | 90.86 294 | 99.03 70 | 91.80 369 | 96.96 53 | 98.10 89 | 99.26 43 | 81.31 300 | 99.51 143 | 96.90 107 | 99.04 109 | 99.59 72 |
|
mvs_tets | | | 95.41 180 | 95.00 180 | 96.65 206 | 95.58 327 | 94.42 214 | 99.00 77 | 98.55 143 | 95.73 106 | 93.21 272 | 98.38 159 | 83.45 292 | 98.63 241 | 97.09 97 | 94.00 233 | 96.91 245 |
|
v2v482 | | | 94.69 218 | 94.03 226 | 96.65 206 | 96.17 307 | 94.79 199 | 98.67 149 | 98.08 237 | 92.72 242 | 94.00 242 | 97.16 261 | 87.69 219 | 98.45 261 | 92.91 238 | 88.87 312 | 96.72 268 |
|
BH-untuned | | | 95.95 147 | 95.72 143 | 96.65 206 | 98.55 146 | 92.26 270 | 98.23 204 | 97.79 264 | 93.73 197 | 94.62 210 | 98.01 194 | 88.97 187 | 99.00 200 | 93.04 234 | 98.51 137 | 98.68 179 |
|
tt0805 | | | 94.54 231 | 93.85 242 | 96.63 210 | 97.98 197 | 93.06 264 | 98.77 126 | 97.84 262 | 93.67 206 | 93.80 252 | 98.04 191 | 76.88 335 | 98.96 205 | 94.79 179 | 92.86 261 | 97.86 210 |
|
Patchmatch-test | | | 94.42 241 | 93.68 256 | 96.63 210 | 97.60 219 | 91.76 278 | 94.83 354 | 97.49 289 | 89.45 324 | 94.14 235 | 97.10 263 | 88.99 183 | 98.83 225 | 85.37 338 | 98.13 154 | 99.29 118 |
|
ADS-MVSNet | | | 95.00 204 | 94.45 208 | 96.63 210 | 98.00 193 | 91.91 276 | 96.04 338 | 97.74 267 | 90.15 312 | 96.47 173 | 96.64 304 | 87.89 211 | 98.96 205 | 90.08 294 | 97.06 180 | 99.02 153 |
|
Anonymous20231211 | | | 94.10 261 | 93.26 271 | 96.61 213 | 99.11 97 | 94.28 219 | 99.01 75 | 98.88 50 | 86.43 341 | 92.81 283 | 97.57 236 | 81.66 298 | 98.68 238 | 94.83 176 | 89.02 310 | 96.88 249 |
|
ACMM | | 93.85 9 | 95.69 165 | 95.38 159 | 96.61 213 | 97.61 218 | 93.84 233 | 98.91 92 | 98.44 167 | 95.25 131 | 94.28 227 | 98.47 148 | 86.04 248 | 99.12 180 | 95.50 160 | 93.95 235 | 96.87 251 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
v1144 | | | 94.59 228 | 93.92 235 | 96.60 215 | 96.21 304 | 94.78 200 | 98.59 159 | 98.14 224 | 91.86 272 | 94.21 232 | 97.02 278 | 87.97 209 | 98.41 273 | 91.72 270 | 89.57 298 | 96.61 282 |
|
GG-mvs-BLEND | | | | | 96.59 216 | 96.34 301 | 94.98 187 | 96.51 334 | 88.58 375 | | 93.10 278 | 94.34 345 | 80.34 311 | 98.05 306 | 89.53 306 | 96.99 182 | 96.74 265 |
|
pm-mvs1 | | | 93.94 268 | 93.06 273 | 96.59 216 | 96.49 293 | 95.16 177 | 98.95 86 | 98.03 247 | 92.32 258 | 91.08 314 | 97.84 210 | 84.54 274 | 98.41 273 | 92.16 257 | 86.13 339 | 96.19 318 |
|
CR-MVSNet | | | 94.76 217 | 94.15 221 | 96.59 216 | 97.00 262 | 93.43 249 | 94.96 350 | 97.56 277 | 92.46 249 | 96.93 149 | 96.24 314 | 88.15 204 | 97.88 320 | 87.38 324 | 96.65 190 | 98.46 191 |
|
v8 | | | 94.47 238 | 93.77 248 | 96.57 219 | 96.36 299 | 94.83 196 | 99.05 64 | 98.19 211 | 91.92 269 | 93.16 273 | 96.97 283 | 88.82 191 | 98.48 256 | 91.69 271 | 87.79 321 | 96.39 308 |
|
dcpmvs_2 | | | 98.08 49 | 98.59 10 | 96.56 220 | 99.57 33 | 90.34 306 | 99.15 46 | 98.38 180 | 96.82 59 | 99.29 24 | 99.49 8 | 95.78 40 | 99.57 128 | 98.94 6 | 99.86 1 | 99.77 21 |
|
RRT_MVS | | | 95.98 145 | 95.78 140 | 96.56 220 | 96.48 294 | 94.22 224 | 99.57 6 | 97.92 257 | 95.89 97 | 93.95 243 | 98.70 124 | 89.27 174 | 98.42 265 | 97.23 93 | 93.02 258 | 97.04 231 |
|
GBi-Net | | | 94.49 236 | 93.80 245 | 96.56 220 | 98.21 175 | 95.00 184 | 98.82 112 | 98.18 214 | 92.46 249 | 94.09 237 | 97.07 270 | 81.16 301 | 97.95 312 | 92.08 259 | 92.14 266 | 96.72 268 |
|
test1 | | | 94.49 236 | 93.80 245 | 96.56 220 | 98.21 175 | 95.00 184 | 98.82 112 | 98.18 214 | 92.46 249 | 94.09 237 | 97.07 270 | 81.16 301 | 97.95 312 | 92.08 259 | 92.14 266 | 96.72 268 |
|
FMVSNet1 | | | 93.19 283 | 92.07 288 | 96.56 220 | 97.54 225 | 95.00 184 | 98.82 112 | 98.18 214 | 90.38 309 | 92.27 300 | 97.07 270 | 73.68 348 | 97.95 312 | 89.36 310 | 91.30 277 | 96.72 268 |
|
tfpnnormal | | | 93.66 270 | 92.70 280 | 96.55 225 | 96.94 267 | 95.94 144 | 98.97 82 | 99.19 16 | 91.04 298 | 91.38 311 | 97.34 249 | 84.94 266 | 98.61 242 | 85.45 337 | 89.02 310 | 95.11 338 |
|
v1192 | | | 94.32 246 | 93.58 259 | 96.53 226 | 96.10 310 | 94.45 212 | 98.50 174 | 98.17 219 | 91.54 279 | 94.19 233 | 97.06 273 | 86.95 231 | 98.43 264 | 90.14 292 | 89.57 298 | 96.70 272 |
|
EPMVS | | | 94.99 205 | 94.48 204 | 96.52 227 | 97.22 248 | 91.75 279 | 97.23 292 | 91.66 370 | 94.11 174 | 97.28 134 | 96.81 296 | 85.70 252 | 98.84 223 | 93.04 234 | 97.28 178 | 98.97 158 |
|
v10 | | | 94.29 248 | 93.55 261 | 96.51 228 | 96.39 298 | 94.80 198 | 98.99 79 | 98.19 211 | 91.35 286 | 93.02 279 | 96.99 281 | 88.09 206 | 98.41 273 | 90.50 289 | 88.41 316 | 96.33 312 |
|
test_vis1_n | | | 95.47 173 | 95.13 173 | 96.49 229 | 97.77 207 | 90.41 304 | 99.27 26 | 98.11 229 | 96.58 69 | 99.66 6 | 99.18 59 | 67.00 357 | 99.62 123 | 99.21 2 | 99.40 95 | 99.44 99 |
|
PEN-MVS | | | 94.42 241 | 93.73 252 | 96.49 229 | 96.28 303 | 94.84 194 | 99.17 44 | 99.00 28 | 93.51 212 | 92.23 301 | 97.83 213 | 86.10 245 | 97.90 316 | 92.55 250 | 86.92 332 | 96.74 265 |
|
v144192 | | | 94.39 243 | 93.70 254 | 96.48 231 | 96.06 312 | 94.35 218 | 98.58 161 | 98.16 221 | 91.45 281 | 94.33 225 | 97.02 278 | 87.50 222 | 98.45 261 | 91.08 279 | 89.11 307 | 96.63 280 |
|
v7n | | | 94.19 254 | 93.43 266 | 96.47 232 | 95.90 318 | 94.38 217 | 99.26 27 | 98.34 186 | 91.99 267 | 92.76 285 | 97.13 262 | 88.31 200 | 98.52 253 | 89.48 308 | 87.70 322 | 96.52 297 |
|
LPG-MVS_test | | | 95.62 168 | 95.34 161 | 96.47 232 | 97.46 231 | 93.54 244 | 98.99 79 | 98.54 145 | 94.67 158 | 94.36 223 | 98.77 118 | 85.39 257 | 99.11 182 | 95.71 153 | 94.15 228 | 96.76 263 |
|
LGP-MVS_train | | | | | 96.47 232 | 97.46 231 | 93.54 244 | | 98.54 145 | 94.67 158 | 94.36 223 | 98.77 118 | 85.39 257 | 99.11 182 | 95.71 153 | 94.15 228 | 96.76 263 |
|
SCA | | | 95.46 174 | 95.13 173 | 96.46 235 | 97.67 214 | 91.29 289 | 97.33 286 | 97.60 274 | 94.68 157 | 96.92 151 | 97.10 263 | 83.97 285 | 98.89 217 | 92.59 247 | 98.32 150 | 99.20 127 |
|
CLD-MVS | | | 95.62 168 | 95.34 161 | 96.46 235 | 97.52 228 | 93.75 237 | 97.27 291 | 98.46 163 | 95.53 114 | 94.42 221 | 98.00 195 | 86.21 243 | 98.97 201 | 96.25 135 | 94.37 220 | 96.66 278 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
ACMP | | 93.49 10 | 95.34 186 | 94.98 182 | 96.43 237 | 97.67 214 | 93.48 248 | 98.73 134 | 98.44 167 | 94.94 150 | 92.53 293 | 98.53 141 | 84.50 275 | 99.14 177 | 95.48 161 | 94.00 233 | 96.66 278 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
test1111 | | | 95.94 149 | 95.78 140 | 96.41 238 | 98.99 109 | 90.12 308 | 99.04 67 | 92.45 368 | 96.99 52 | 98.03 95 | 99.27 42 | 81.40 299 | 99.48 148 | 96.87 113 | 99.04 109 | 99.63 66 |
|
MIMVSNet | | | 93.26 280 | 92.21 287 | 96.41 238 | 97.73 212 | 93.13 261 | 95.65 345 | 97.03 314 | 91.27 292 | 94.04 240 | 96.06 321 | 75.33 340 | 97.19 337 | 86.56 328 | 96.23 208 | 98.92 163 |
|
v1921920 | | | 94.20 253 | 93.47 265 | 96.40 240 | 95.98 315 | 94.08 227 | 98.52 169 | 98.15 222 | 91.33 287 | 94.25 229 | 97.20 260 | 86.41 240 | 98.42 265 | 90.04 297 | 89.39 304 | 96.69 277 |
|
EI-MVSNet | | | 95.96 146 | 95.83 138 | 96.36 241 | 97.93 199 | 93.70 241 | 98.12 220 | 98.27 199 | 93.70 201 | 95.07 198 | 99.02 84 | 92.23 110 | 98.54 251 | 94.68 180 | 93.46 249 | 96.84 256 |
|
PatchT | | | 93.06 285 | 91.97 290 | 96.35 242 | 96.69 282 | 92.67 267 | 94.48 358 | 97.08 310 | 86.62 339 | 97.08 141 | 92.23 358 | 87.94 210 | 97.90 316 | 78.89 360 | 96.69 188 | 98.49 190 |
|
v1240 | | | 94.06 265 | 93.29 270 | 96.34 243 | 96.03 314 | 93.90 231 | 98.44 181 | 98.17 219 | 91.18 296 | 94.13 236 | 97.01 280 | 86.05 246 | 98.42 265 | 89.13 313 | 89.50 302 | 96.70 272 |
|
ACMH | | 92.88 16 | 94.55 230 | 93.95 234 | 96.34 243 | 97.63 217 | 93.26 257 | 98.81 118 | 98.49 161 | 93.43 216 | 89.74 325 | 98.53 141 | 81.91 296 | 99.08 188 | 93.69 214 | 93.30 255 | 96.70 272 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
test_vis1_n_1920 | | | 96.71 114 | 96.84 96 | 96.31 245 | 99.11 97 | 89.74 312 | 99.05 64 | 98.58 137 | 98.08 3 | 99.87 1 | 99.37 25 | 78.48 320 | 99.93 18 | 99.29 1 | 99.69 50 | 99.27 120 |
|
DeepPCF-MVS | | 96.37 2 | 97.93 55 | 98.48 17 | 96.30 246 | 99.00 106 | 89.54 317 | 97.43 276 | 98.87 57 | 98.16 2 | 99.26 26 | 99.38 24 | 96.12 29 | 99.64 117 | 98.30 35 | 99.77 28 | 99.72 38 |
|
PatchmatchNet |  | | 95.71 162 | 95.52 153 | 96.29 247 | 97.58 220 | 90.72 298 | 96.84 323 | 97.52 285 | 94.06 176 | 97.08 141 | 96.96 285 | 89.24 176 | 98.90 216 | 92.03 263 | 98.37 145 | 99.26 122 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
BH-w/o | | | 95.38 181 | 95.08 177 | 96.26 248 | 98.34 164 | 91.79 277 | 97.70 259 | 97.43 294 | 92.87 238 | 94.24 230 | 97.22 258 | 88.66 192 | 98.84 223 | 91.55 273 | 97.70 170 | 98.16 203 |
|
IterMVS-LS | | | 95.46 174 | 95.21 170 | 96.22 249 | 98.12 186 | 93.72 240 | 98.32 194 | 98.13 225 | 93.71 199 | 94.26 228 | 97.31 252 | 92.24 109 | 98.10 300 | 94.63 182 | 90.12 291 | 96.84 256 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
TransMVSNet (Re) | | | 92.67 289 | 91.51 294 | 96.15 250 | 96.58 288 | 94.65 201 | 98.90 93 | 96.73 329 | 90.86 301 | 89.46 329 | 97.86 207 | 85.62 253 | 98.09 302 | 86.45 329 | 81.12 351 | 95.71 328 |
|
DTE-MVSNet | | | 93.98 267 | 93.26 271 | 96.14 251 | 96.06 312 | 94.39 216 | 99.20 39 | 98.86 63 | 93.06 230 | 91.78 307 | 97.81 215 | 85.87 249 | 97.58 329 | 90.53 288 | 86.17 337 | 96.46 306 |
|
cl22 | | | 94.68 220 | 94.19 218 | 96.13 252 | 98.11 187 | 93.60 242 | 96.94 311 | 98.31 190 | 92.43 253 | 93.32 269 | 96.87 293 | 86.51 236 | 98.28 290 | 94.10 204 | 91.16 280 | 96.51 300 |
|
miper_enhance_ethall | | | 95.10 199 | 94.75 192 | 96.12 253 | 97.53 227 | 93.73 239 | 96.61 331 | 98.08 237 | 92.20 264 | 93.89 246 | 96.65 303 | 92.44 104 | 98.30 286 | 94.21 199 | 91.16 280 | 96.34 310 |
|
test2506 | | | 94.44 240 | 93.91 237 | 96.04 254 | 99.02 103 | 88.99 327 | 99.06 62 | 79.47 381 | 96.96 53 | 98.36 80 | 99.26 43 | 77.21 332 | 99.52 142 | 96.78 119 | 99.04 109 | 99.59 72 |
|
cl____ | | | 94.51 235 | 94.01 229 | 96.02 255 | 97.58 220 | 93.40 252 | 97.05 305 | 97.96 254 | 91.73 275 | 92.76 285 | 97.08 269 | 89.06 182 | 98.13 298 | 92.61 244 | 90.29 289 | 96.52 297 |
|
DIV-MVS_self_test | | | 94.52 234 | 94.03 226 | 95.99 256 | 97.57 224 | 93.38 253 | 97.05 305 | 97.94 255 | 91.74 273 | 92.81 283 | 97.10 263 | 89.12 179 | 98.07 304 | 92.60 245 | 90.30 288 | 96.53 294 |
|
EPNet_dtu | | | 95.21 193 | 94.95 184 | 95.99 256 | 96.17 307 | 90.45 303 | 98.16 216 | 97.27 304 | 96.77 61 | 93.14 276 | 98.33 167 | 90.34 154 | 98.42 265 | 85.57 335 | 98.81 124 | 99.09 145 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
miper_ehance_all_eth | | | 95.01 203 | 94.69 195 | 95.97 258 | 97.70 213 | 93.31 255 | 97.02 307 | 98.07 239 | 92.23 261 | 93.51 263 | 96.96 285 | 91.85 120 | 98.15 296 | 93.68 215 | 91.16 280 | 96.44 307 |
|
Baseline_NR-MVSNet | | | 94.35 244 | 93.81 244 | 95.96 259 | 96.20 305 | 94.05 228 | 98.61 158 | 96.67 333 | 91.44 282 | 93.85 249 | 97.60 233 | 88.57 194 | 98.14 297 | 94.39 191 | 86.93 331 | 95.68 329 |
|
JIA-IIPM | | | 93.35 276 | 92.49 283 | 95.92 260 | 96.48 294 | 90.65 300 | 95.01 349 | 96.96 318 | 85.93 345 | 96.08 183 | 87.33 364 | 87.70 218 | 98.78 230 | 91.35 275 | 95.58 216 | 98.34 196 |
|
Fast-Effi-MVS+-dtu | | | 95.87 153 | 95.85 137 | 95.91 261 | 97.74 211 | 91.74 280 | 98.69 145 | 98.15 222 | 95.56 113 | 94.92 201 | 97.68 227 | 88.98 186 | 98.79 229 | 93.19 229 | 97.78 166 | 97.20 228 |
|
v148 | | | 94.29 248 | 93.76 250 | 95.91 261 | 96.10 310 | 92.93 265 | 98.58 161 | 97.97 252 | 92.59 247 | 93.47 265 | 96.95 287 | 88.53 197 | 98.32 282 | 92.56 249 | 87.06 330 | 96.49 303 |
|
c3_l | | | 94.79 215 | 94.43 210 | 95.89 263 | 97.75 208 | 93.12 262 | 97.16 301 | 98.03 247 | 92.23 261 | 93.46 266 | 97.05 275 | 91.39 132 | 98.01 308 | 93.58 220 | 89.21 306 | 96.53 294 |
|
ACMH+ | | 92.99 14 | 94.30 247 | 93.77 248 | 95.88 264 | 97.81 205 | 92.04 275 | 98.71 139 | 98.37 181 | 93.99 182 | 90.60 319 | 98.47 148 | 80.86 306 | 99.05 190 | 92.75 243 | 92.40 265 | 96.55 291 |
|
Patchmtry | | | 93.22 281 | 92.35 285 | 95.84 265 | 96.77 276 | 93.09 263 | 94.66 357 | 97.56 277 | 87.37 337 | 92.90 281 | 96.24 314 | 88.15 204 | 97.90 316 | 87.37 325 | 90.10 292 | 96.53 294 |
|
test-LLR | | | 95.10 199 | 94.87 188 | 95.80 266 | 96.77 276 | 89.70 313 | 96.91 314 | 95.21 348 | 95.11 138 | 94.83 205 | 95.72 329 | 87.71 216 | 98.97 201 | 93.06 232 | 98.50 138 | 98.72 175 |
|
test-mter | | | 94.08 263 | 93.51 263 | 95.80 266 | 96.77 276 | 89.70 313 | 96.91 314 | 95.21 348 | 92.89 237 | 94.83 205 | 95.72 329 | 77.69 327 | 98.97 201 | 93.06 232 | 98.50 138 | 98.72 175 |
|
test0.0.03 1 | | | 94.08 263 | 93.51 263 | 95.80 266 | 95.53 329 | 92.89 266 | 97.38 279 | 95.97 341 | 95.11 138 | 92.51 295 | 96.66 301 | 87.71 216 | 96.94 341 | 87.03 326 | 93.67 242 | 97.57 218 |
|
XVG-ACMP-BASELINE | | | 94.54 231 | 94.14 222 | 95.75 269 | 96.55 289 | 91.65 282 | 98.11 222 | 98.44 167 | 94.96 147 | 94.22 231 | 97.90 203 | 79.18 317 | 99.11 182 | 94.05 206 | 93.85 237 | 96.48 304 |
|
pmmvs5 | | | 93.65 272 | 92.97 275 | 95.68 270 | 95.49 330 | 92.37 269 | 98.20 208 | 97.28 303 | 89.66 321 | 92.58 291 | 97.26 254 | 82.14 295 | 98.09 302 | 93.18 230 | 90.95 283 | 96.58 285 |
|
test_fmvs1 | | | 96.42 126 | 96.67 107 | 95.66 271 | 98.82 122 | 88.53 334 | 98.80 119 | 98.20 209 | 96.39 79 | 99.64 8 | 99.20 53 | 80.35 310 | 99.67 112 | 99.04 4 | 99.57 70 | 98.78 173 |
|
test_fmvs1_n | | | 95.90 152 | 95.99 133 | 95.63 272 | 98.67 136 | 88.32 338 | 99.26 27 | 98.22 206 | 96.40 78 | 99.67 5 | 99.26 43 | 73.91 347 | 99.70 105 | 99.02 5 | 99.50 82 | 98.87 165 |
|
TESTMET0.1,1 | | | 94.18 256 | 93.69 255 | 95.63 272 | 96.92 268 | 89.12 323 | 96.91 314 | 94.78 353 | 93.17 227 | 94.88 202 | 96.45 310 | 78.52 319 | 98.92 212 | 93.09 231 | 98.50 138 | 98.85 166 |
|
CostFormer | | | 94.95 209 | 94.73 193 | 95.60 274 | 97.28 244 | 89.06 324 | 97.53 271 | 96.89 324 | 89.66 321 | 96.82 156 | 96.72 299 | 86.05 246 | 98.95 210 | 95.53 159 | 96.13 211 | 98.79 170 |
|
Effi-MVS+-dtu | | | 96.29 133 | 96.56 110 | 95.51 275 | 97.89 202 | 90.22 307 | 98.80 119 | 98.10 232 | 96.57 71 | 96.45 175 | 96.66 301 | 90.81 145 | 98.91 213 | 95.72 152 | 97.99 157 | 97.40 221 |
|
D2MVS | | | 95.18 195 | 95.08 177 | 95.48 276 | 97.10 259 | 92.07 273 | 98.30 197 | 99.13 20 | 94.02 179 | 92.90 281 | 96.73 298 | 89.48 167 | 98.73 233 | 94.48 190 | 93.60 247 | 95.65 330 |
|
eth_miper_zixun_eth | | | 94.68 220 | 94.41 211 | 95.47 277 | 97.64 216 | 91.71 281 | 96.73 328 | 98.07 239 | 92.71 243 | 93.64 256 | 97.21 259 | 90.54 151 | 98.17 295 | 93.38 223 | 89.76 295 | 96.54 292 |
|
tpm2 | | | 94.19 254 | 93.76 250 | 95.46 278 | 97.23 247 | 89.04 325 | 97.31 288 | 96.85 328 | 87.08 338 | 96.21 180 | 96.79 297 | 83.75 291 | 98.74 232 | 92.43 255 | 96.23 208 | 98.59 186 |
|
tpmrst | | | 95.63 167 | 95.69 149 | 95.44 279 | 97.54 225 | 88.54 333 | 96.97 309 | 97.56 277 | 93.50 213 | 97.52 131 | 96.93 289 | 89.49 166 | 99.16 172 | 95.25 168 | 96.42 198 | 98.64 184 |
|
ITE_SJBPF | | | | | 95.44 279 | 97.42 237 | 91.32 288 | | 97.50 287 | 95.09 141 | 93.59 257 | 98.35 162 | 81.70 297 | 98.88 219 | 89.71 302 | 93.39 253 | 96.12 319 |
|
MVP-Stereo | | | 94.28 250 | 93.92 235 | 95.35 281 | 94.95 338 | 92.60 268 | 97.97 234 | 97.65 270 | 91.61 278 | 90.68 318 | 97.09 267 | 86.32 242 | 98.42 265 | 89.70 303 | 99.34 99 | 95.02 341 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
tpmvs | | | 94.60 226 | 94.36 213 | 95.33 282 | 97.46 231 | 88.60 332 | 96.88 320 | 97.68 268 | 91.29 290 | 93.80 252 | 96.42 311 | 88.58 193 | 99.24 164 | 91.06 280 | 96.04 213 | 98.17 202 |
|
MVS_0304 | | | 92.81 287 | 92.01 289 | 95.23 283 | 97.46 231 | 91.33 287 | 98.17 215 | 98.81 74 | 91.13 297 | 93.80 252 | 95.68 332 | 66.08 359 | 98.06 305 | 90.79 284 | 96.13 211 | 96.32 313 |
|
TDRefinement | | | 91.06 303 | 89.68 308 | 95.21 284 | 85.35 372 | 91.49 285 | 98.51 173 | 97.07 311 | 91.47 280 | 88.83 335 | 97.84 210 | 77.31 331 | 99.09 187 | 92.79 242 | 77.98 360 | 95.04 340 |
|
USDC | | | 93.33 278 | 92.71 279 | 95.21 284 | 96.83 275 | 90.83 296 | 96.91 314 | 97.50 287 | 93.84 189 | 90.72 317 | 98.14 184 | 77.69 327 | 98.82 226 | 89.51 307 | 93.21 257 | 95.97 323 |
|
pmmvs6 | | | 91.77 295 | 90.63 300 | 95.17 286 | 94.69 344 | 91.24 290 | 98.67 149 | 97.92 257 | 86.14 343 | 89.62 326 | 97.56 238 | 75.79 339 | 98.34 280 | 90.75 286 | 84.56 341 | 95.94 324 |
|
tpm | | | 94.13 258 | 93.80 245 | 95.12 287 | 96.50 292 | 87.91 343 | 97.44 274 | 95.89 344 | 92.62 245 | 96.37 177 | 96.30 313 | 84.13 282 | 98.30 286 | 93.24 227 | 91.66 274 | 99.14 140 |
|
miper_lstm_enhance | | | 94.33 245 | 94.07 225 | 95.11 288 | 97.75 208 | 90.97 293 | 97.22 293 | 98.03 247 | 91.67 277 | 92.76 285 | 96.97 283 | 90.03 159 | 97.78 323 | 92.51 252 | 89.64 297 | 96.56 289 |
|
ADS-MVSNet2 | | | 94.58 229 | 94.40 212 | 95.11 288 | 98.00 193 | 88.74 330 | 96.04 338 | 97.30 301 | 90.15 312 | 96.47 173 | 96.64 304 | 87.89 211 | 97.56 330 | 90.08 294 | 97.06 180 | 99.02 153 |
|
tpm cat1 | | | 93.36 275 | 92.80 277 | 95.07 290 | 97.58 220 | 87.97 342 | 96.76 326 | 97.86 261 | 82.17 357 | 93.53 260 | 96.04 322 | 86.13 244 | 99.13 178 | 89.24 311 | 95.87 214 | 98.10 204 |
|
PVSNet_0 | | 88.72 19 | 91.28 300 | 90.03 306 | 95.00 291 | 97.99 195 | 87.29 347 | 94.84 353 | 98.50 156 | 92.06 266 | 89.86 324 | 95.19 335 | 79.81 313 | 99.39 154 | 92.27 256 | 69.79 367 | 98.33 197 |
|
ppachtmachnet_test | | | 93.22 281 | 92.63 281 | 94.97 292 | 95.45 332 | 90.84 295 | 96.88 320 | 97.88 260 | 90.60 303 | 92.08 304 | 97.26 254 | 88.08 207 | 97.86 321 | 85.12 339 | 90.33 287 | 96.22 316 |
|
LCM-MVSNet-Re | | | 95.22 192 | 95.32 164 | 94.91 293 | 98.18 181 | 87.85 344 | 98.75 127 | 95.66 345 | 95.11 138 | 88.96 331 | 96.85 294 | 90.26 157 | 97.65 325 | 95.65 156 | 98.44 141 | 99.22 126 |
|
dp | | | 94.15 257 | 93.90 238 | 94.90 294 | 97.31 243 | 86.82 349 | 96.97 309 | 97.19 308 | 91.22 294 | 96.02 185 | 96.61 306 | 85.51 256 | 99.02 197 | 90.00 298 | 94.30 221 | 98.85 166 |
|
testgi | | | 93.06 285 | 92.45 284 | 94.88 295 | 96.43 297 | 89.90 309 | 98.75 127 | 97.54 283 | 95.60 111 | 91.63 310 | 97.91 202 | 74.46 345 | 97.02 339 | 86.10 331 | 93.67 242 | 97.72 215 |
|
IterMVS-SCA-FT | | | 94.11 260 | 93.87 240 | 94.85 296 | 97.98 197 | 90.56 302 | 97.18 297 | 98.11 229 | 93.75 194 | 92.58 291 | 97.48 241 | 83.97 285 | 97.41 334 | 92.48 254 | 91.30 277 | 96.58 285 |
|
OurMVSNet-221017-0 | | | 94.21 252 | 94.00 230 | 94.85 296 | 95.60 326 | 89.22 322 | 98.89 97 | 97.43 294 | 95.29 128 | 92.18 302 | 98.52 144 | 82.86 293 | 98.59 245 | 93.46 222 | 91.76 271 | 96.74 265 |
|
MDA-MVSNet-bldmvs | | | 89.97 312 | 88.35 317 | 94.83 298 | 95.21 335 | 91.34 286 | 97.64 264 | 97.51 286 | 88.36 333 | 71.17 368 | 96.13 320 | 79.22 316 | 96.63 349 | 83.65 346 | 86.27 336 | 96.52 297 |
|
IterMVS | | | 94.09 262 | 93.85 242 | 94.80 299 | 97.99 195 | 90.35 305 | 97.18 297 | 98.12 226 | 93.68 204 | 92.46 297 | 97.34 249 | 84.05 283 | 97.41 334 | 92.51 252 | 91.33 276 | 96.62 281 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
SixPastTwentyTwo | | | 93.34 277 | 92.86 276 | 94.75 300 | 95.67 324 | 89.41 320 | 98.75 127 | 96.67 333 | 93.89 186 | 90.15 323 | 98.25 177 | 80.87 305 | 98.27 291 | 90.90 283 | 90.64 285 | 96.57 287 |
|
our_test_3 | | | 93.65 272 | 93.30 269 | 94.69 301 | 95.45 332 | 89.68 315 | 96.91 314 | 97.65 270 | 91.97 268 | 91.66 309 | 96.88 291 | 89.67 165 | 97.93 315 | 88.02 321 | 91.49 275 | 96.48 304 |
|
MDA-MVSNet_test_wron | | | 90.71 306 | 89.38 311 | 94.68 302 | 94.83 340 | 90.78 297 | 97.19 296 | 97.46 290 | 87.60 335 | 72.41 367 | 95.72 329 | 86.51 236 | 96.71 347 | 85.92 333 | 86.80 334 | 96.56 289 |
|
TinyColmap | | | 92.31 292 | 91.53 293 | 94.65 303 | 96.92 268 | 89.75 311 | 96.92 312 | 96.68 332 | 90.45 307 | 89.62 326 | 97.85 209 | 76.06 338 | 98.81 227 | 86.74 327 | 92.51 264 | 95.41 332 |
|
YYNet1 | | | 90.70 307 | 89.39 310 | 94.62 304 | 94.79 342 | 90.65 300 | 97.20 295 | 97.46 290 | 87.54 336 | 72.54 366 | 95.74 325 | 86.51 236 | 96.66 348 | 86.00 332 | 86.76 335 | 96.54 292 |
|
KD-MVS_2432*1600 | | | 89.61 315 | 87.96 321 | 94.54 305 | 94.06 348 | 91.59 283 | 95.59 346 | 97.63 272 | 89.87 317 | 88.95 332 | 94.38 343 | 78.28 322 | 96.82 342 | 84.83 340 | 68.05 368 | 95.21 335 |
|
miper_refine_blended | | | 89.61 315 | 87.96 321 | 94.54 305 | 94.06 348 | 91.59 283 | 95.59 346 | 97.63 272 | 89.87 317 | 88.95 332 | 94.38 343 | 78.28 322 | 96.82 342 | 84.83 340 | 68.05 368 | 95.21 335 |
|
FMVSNet5 | | | 91.81 294 | 90.92 297 | 94.49 307 | 97.21 249 | 92.09 272 | 98.00 232 | 97.55 282 | 89.31 327 | 90.86 316 | 95.61 333 | 74.48 344 | 95.32 359 | 85.57 335 | 89.70 296 | 96.07 321 |
|
K. test v3 | | | 92.55 290 | 91.91 292 | 94.48 308 | 95.64 325 | 89.24 321 | 99.07 61 | 94.88 352 | 94.04 177 | 86.78 344 | 97.59 234 | 77.64 330 | 97.64 326 | 92.08 259 | 89.43 303 | 96.57 287 |
|
test_0402 | | | 91.32 298 | 90.27 304 | 94.48 308 | 96.60 286 | 91.12 291 | 98.50 174 | 97.22 307 | 86.10 344 | 88.30 337 | 96.98 282 | 77.65 329 | 97.99 311 | 78.13 362 | 92.94 260 | 94.34 345 |
|
MS-PatchMatch | | | 93.84 269 | 93.63 257 | 94.46 310 | 96.18 306 | 89.45 318 | 97.76 254 | 98.27 199 | 92.23 261 | 92.13 303 | 97.49 240 | 79.50 314 | 98.69 235 | 89.75 301 | 99.38 97 | 95.25 334 |
|
lessismore_v0 | | | | | 94.45 311 | 94.93 339 | 88.44 336 | | 91.03 371 | | 86.77 345 | 97.64 230 | 76.23 337 | 98.42 265 | 90.31 291 | 85.64 340 | 96.51 300 |
|
pmmvs-eth3d | | | 90.36 309 | 89.05 314 | 94.32 312 | 91.10 361 | 92.12 271 | 97.63 267 | 96.95 319 | 88.86 330 | 84.91 354 | 93.13 353 | 78.32 321 | 96.74 344 | 88.70 316 | 81.81 349 | 94.09 351 |
|
LF4IMVS | | | 93.14 284 | 92.79 278 | 94.20 313 | 95.88 319 | 88.67 331 | 97.66 262 | 97.07 311 | 93.81 192 | 91.71 308 | 97.65 228 | 77.96 326 | 98.81 227 | 91.47 274 | 91.92 270 | 95.12 337 |
|
UnsupCasMVSNet_eth | | | 90.99 304 | 89.92 307 | 94.19 314 | 94.08 347 | 89.83 310 | 97.13 303 | 98.67 117 | 93.69 202 | 85.83 350 | 96.19 319 | 75.15 341 | 96.74 344 | 89.14 312 | 79.41 356 | 96.00 322 |
|
EG-PatchMatch MVS | | | 91.13 302 | 90.12 305 | 94.17 315 | 94.73 343 | 89.00 326 | 98.13 219 | 97.81 263 | 89.22 328 | 85.32 353 | 96.46 309 | 67.71 355 | 98.42 265 | 87.89 323 | 93.82 238 | 95.08 339 |
|
MIMVSNet1 | | | 89.67 314 | 88.28 318 | 93.82 316 | 92.81 356 | 91.08 292 | 98.01 230 | 97.45 292 | 87.95 334 | 87.90 339 | 95.87 324 | 67.63 356 | 94.56 363 | 78.73 361 | 88.18 318 | 95.83 326 |
|
OpenMVS_ROB |  | 86.42 20 | 89.00 318 | 87.43 325 | 93.69 317 | 93.08 354 | 89.42 319 | 97.91 239 | 96.89 324 | 78.58 360 | 85.86 349 | 94.69 340 | 69.48 353 | 98.29 289 | 77.13 363 | 93.29 256 | 93.36 357 |
|
CVMVSNet | | | 95.43 177 | 96.04 130 | 93.57 318 | 97.93 199 | 83.62 355 | 98.12 220 | 98.59 132 | 95.68 108 | 96.56 166 | 99.02 84 | 87.51 220 | 97.51 332 | 93.56 221 | 97.44 175 | 99.60 70 |
|
Anonymous20240521 | | | 91.18 301 | 90.44 302 | 93.42 319 | 93.70 351 | 88.47 335 | 98.94 88 | 97.56 277 | 88.46 332 | 89.56 328 | 95.08 338 | 77.15 334 | 96.97 340 | 83.92 345 | 89.55 300 | 94.82 343 |
|
Patchmatch-RL test | | | 91.49 297 | 90.85 298 | 93.41 320 | 91.37 359 | 84.40 352 | 92.81 362 | 95.93 343 | 91.87 271 | 87.25 341 | 94.87 339 | 88.99 183 | 96.53 350 | 92.54 251 | 82.00 347 | 99.30 116 |
|
KD-MVS_self_test | | | 90.38 308 | 89.38 311 | 93.40 321 | 92.85 355 | 88.94 328 | 97.95 235 | 97.94 255 | 90.35 310 | 90.25 321 | 93.96 346 | 79.82 312 | 95.94 354 | 84.62 344 | 76.69 362 | 95.33 333 |
|
Anonymous20231206 | | | 91.66 296 | 91.10 296 | 93.33 322 | 94.02 350 | 87.35 346 | 98.58 161 | 97.26 305 | 90.48 305 | 90.16 322 | 96.31 312 | 83.83 289 | 96.53 350 | 79.36 358 | 89.90 294 | 96.12 319 |
|
UnsupCasMVSNet_bld | | | 87.17 323 | 85.12 329 | 93.31 323 | 91.94 357 | 88.77 329 | 94.92 352 | 98.30 196 | 84.30 353 | 82.30 357 | 90.04 361 | 63.96 361 | 97.25 336 | 85.85 334 | 74.47 366 | 93.93 355 |
|
RPSCF | | | 94.87 213 | 95.40 155 | 93.26 324 | 98.89 115 | 82.06 360 | 98.33 190 | 98.06 244 | 90.30 311 | 96.56 166 | 99.26 43 | 87.09 227 | 99.49 144 | 93.82 212 | 96.32 201 | 98.24 199 |
|
new_pmnet | | | 90.06 311 | 89.00 315 | 93.22 325 | 94.18 345 | 88.32 338 | 96.42 336 | 96.89 324 | 86.19 342 | 85.67 351 | 93.62 348 | 77.18 333 | 97.10 338 | 81.61 352 | 89.29 305 | 94.23 347 |
|
test_vis1_rt | | | 91.29 299 | 90.65 299 | 93.19 326 | 97.45 235 | 86.25 350 | 98.57 166 | 90.90 372 | 93.30 222 | 86.94 343 | 93.59 349 | 62.07 362 | 99.11 182 | 97.48 85 | 95.58 216 | 94.22 348 |
|
CL-MVSNet_self_test | | | 90.11 310 | 89.14 313 | 93.02 327 | 91.86 358 | 88.23 340 | 96.51 334 | 98.07 239 | 90.49 304 | 90.49 320 | 94.41 341 | 84.75 270 | 95.34 358 | 80.79 354 | 74.95 364 | 95.50 331 |
|
test_fmvs2 | | | 93.43 274 | 93.58 259 | 92.95 328 | 96.97 265 | 83.91 354 | 99.19 41 | 97.24 306 | 95.74 104 | 95.20 196 | 98.27 174 | 69.65 352 | 98.72 234 | 96.26 133 | 93.73 241 | 96.24 315 |
|
MVS-HIRNet | | | 89.46 317 | 88.40 316 | 92.64 329 | 97.58 220 | 82.15 359 | 94.16 361 | 93.05 367 | 75.73 363 | 90.90 315 | 82.52 366 | 79.42 315 | 98.33 281 | 83.53 347 | 98.68 126 | 97.43 219 |
|
test20.03 | | | 90.89 305 | 90.38 303 | 92.43 330 | 93.48 352 | 88.14 341 | 98.33 190 | 97.56 277 | 93.40 217 | 87.96 338 | 96.71 300 | 80.69 308 | 94.13 364 | 79.15 359 | 86.17 337 | 95.01 342 |
|
DSMNet-mixed | | | 92.52 291 | 92.58 282 | 92.33 331 | 94.15 346 | 82.65 358 | 98.30 197 | 94.26 359 | 89.08 329 | 92.65 289 | 95.73 327 | 85.01 265 | 95.76 355 | 86.24 330 | 97.76 167 | 98.59 186 |
|
EGC-MVSNET | | | 75.22 336 | 69.54 339 | 92.28 332 | 94.81 341 | 89.58 316 | 97.64 264 | 96.50 336 | 1.82 379 | 5.57 380 | 95.74 325 | 68.21 354 | 96.26 353 | 73.80 366 | 91.71 272 | 90.99 361 |
|
EU-MVSNet | | | 93.66 270 | 94.14 222 | 92.25 333 | 95.96 317 | 83.38 356 | 98.52 169 | 98.12 226 | 94.69 156 | 92.61 290 | 98.13 185 | 87.36 225 | 96.39 352 | 91.82 267 | 90.00 293 | 96.98 235 |
|
pmmvs3 | | | 86.67 326 | 84.86 330 | 92.11 334 | 88.16 366 | 87.19 348 | 96.63 330 | 94.75 354 | 79.88 359 | 87.22 342 | 92.75 356 | 66.56 358 | 95.20 360 | 81.24 353 | 76.56 363 | 93.96 354 |
|
new-patchmatchnet | | | 88.50 320 | 87.45 324 | 91.67 335 | 90.31 363 | 85.89 351 | 97.16 301 | 97.33 300 | 89.47 323 | 83.63 356 | 92.77 355 | 76.38 336 | 95.06 361 | 82.70 349 | 77.29 361 | 94.06 353 |
|
PM-MVS | | | 87.77 322 | 86.55 327 | 91.40 336 | 91.03 362 | 83.36 357 | 96.92 312 | 95.18 350 | 91.28 291 | 86.48 348 | 93.42 350 | 53.27 366 | 96.74 344 | 89.43 309 | 81.97 348 | 94.11 350 |
|
mvsany_test3 | | | 88.80 319 | 88.04 319 | 91.09 337 | 89.78 364 | 81.57 361 | 97.83 250 | 95.49 346 | 93.81 192 | 87.53 340 | 93.95 347 | 56.14 365 | 97.43 333 | 94.68 180 | 83.13 344 | 94.26 346 |
|
CMPMVS |  | 66.06 21 | 89.70 313 | 89.67 309 | 89.78 338 | 93.19 353 | 76.56 363 | 97.00 308 | 98.35 184 | 80.97 358 | 81.57 358 | 97.75 218 | 74.75 343 | 98.61 242 | 89.85 299 | 93.63 245 | 94.17 349 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
ambc | | | | | 89.49 339 | 86.66 369 | 75.78 364 | 92.66 363 | 96.72 330 | | 86.55 347 | 92.50 357 | 46.01 367 | 97.90 316 | 90.32 290 | 82.09 346 | 94.80 344 |
|
APD_test1 | | | 88.22 321 | 88.01 320 | 88.86 340 | 95.98 315 | 74.66 369 | 97.21 294 | 96.44 337 | 83.96 354 | 86.66 346 | 97.90 203 | 60.95 363 | 97.84 322 | 82.73 348 | 90.23 290 | 94.09 351 |
|
test_f | | | 86.07 327 | 85.39 328 | 88.10 341 | 89.28 365 | 75.57 366 | 97.73 257 | 96.33 338 | 89.41 326 | 85.35 352 | 91.56 360 | 43.31 371 | 95.53 356 | 91.32 276 | 84.23 343 | 93.21 359 |
|
test_fmvs3 | | | 87.17 323 | 87.06 326 | 87.50 342 | 91.21 360 | 75.66 365 | 99.05 64 | 96.61 335 | 92.79 241 | 88.85 334 | 92.78 354 | 43.72 369 | 93.49 365 | 93.95 207 | 84.56 341 | 93.34 358 |
|
DeepMVS_CX |  | | | | 86.78 343 | 97.09 260 | 72.30 370 | | 95.17 351 | 75.92 362 | 84.34 355 | 95.19 335 | 70.58 351 | 95.35 357 | 79.98 357 | 89.04 309 | 92.68 360 |
|
LCM-MVSNet | | | 78.70 332 | 76.24 337 | 86.08 344 | 77.26 378 | 71.99 371 | 94.34 359 | 96.72 330 | 61.62 369 | 76.53 361 | 89.33 362 | 33.91 377 | 92.78 369 | 81.85 351 | 74.60 365 | 93.46 356 |
|
PMMVS2 | | | 77.95 334 | 75.44 338 | 85.46 345 | 82.54 373 | 74.95 367 | 94.23 360 | 93.08 366 | 72.80 364 | 74.68 362 | 87.38 363 | 36.36 374 | 91.56 370 | 73.95 365 | 63.94 370 | 89.87 362 |
|
N_pmnet | | | 87.12 325 | 87.77 323 | 85.17 346 | 95.46 331 | 61.92 376 | 97.37 281 | 70.66 382 | 85.83 346 | 88.73 336 | 96.04 322 | 85.33 261 | 97.76 324 | 80.02 355 | 90.48 286 | 95.84 325 |
|
test_vis3_rt | | | 79.22 328 | 77.40 334 | 84.67 347 | 86.44 370 | 74.85 368 | 97.66 262 | 81.43 379 | 84.98 350 | 67.12 370 | 81.91 368 | 28.09 379 | 97.60 327 | 88.96 314 | 80.04 355 | 81.55 368 |
|
Gipuma |  | | 78.40 333 | 76.75 336 | 83.38 348 | 95.54 328 | 80.43 362 | 79.42 371 | 97.40 296 | 64.67 368 | 73.46 365 | 80.82 369 | 45.65 368 | 93.14 368 | 66.32 370 | 87.43 325 | 76.56 371 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
testf1 | | | 79.02 330 | 77.70 332 | 82.99 349 | 88.10 367 | 66.90 373 | 94.67 355 | 93.11 364 | 71.08 365 | 74.02 363 | 93.41 351 | 34.15 375 | 93.25 366 | 72.25 367 | 78.50 358 | 88.82 363 |
|
APD_test2 | | | 79.02 330 | 77.70 332 | 82.99 349 | 88.10 367 | 66.90 373 | 94.67 355 | 93.11 364 | 71.08 365 | 74.02 363 | 93.41 351 | 34.15 375 | 93.25 366 | 72.25 367 | 78.50 358 | 88.82 363 |
|
test_method | | | 79.03 329 | 78.17 331 | 81.63 351 | 86.06 371 | 54.40 381 | 82.75 370 | 96.89 324 | 39.54 374 | 80.98 359 | 95.57 334 | 58.37 364 | 94.73 362 | 84.74 343 | 78.61 357 | 95.75 327 |
|
ANet_high | | | 69.08 337 | 65.37 341 | 80.22 352 | 65.99 380 | 71.96 372 | 90.91 366 | 90.09 373 | 82.62 355 | 49.93 375 | 78.39 370 | 29.36 378 | 81.75 373 | 62.49 371 | 38.52 374 | 86.95 367 |
|
FPMVS | | | 77.62 335 | 77.14 335 | 79.05 353 | 79.25 376 | 60.97 377 | 95.79 343 | 95.94 342 | 65.96 367 | 67.93 369 | 94.40 342 | 37.73 373 | 88.88 372 | 68.83 369 | 88.46 315 | 87.29 365 |
|
MVE |  | 62.14 22 | 63.28 342 | 59.38 345 | 74.99 354 | 74.33 379 | 65.47 375 | 85.55 368 | 80.50 380 | 52.02 372 | 51.10 374 | 75.00 373 | 10.91 383 | 80.50 374 | 51.60 373 | 53.40 371 | 78.99 369 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
tmp_tt | | | 68.90 338 | 66.97 340 | 74.68 355 | 50.78 382 | 59.95 378 | 87.13 367 | 83.47 378 | 38.80 375 | 62.21 371 | 96.23 316 | 64.70 360 | 76.91 377 | 88.91 315 | 30.49 375 | 87.19 366 |
|
PMVS |  | 61.03 23 | 65.95 339 | 63.57 343 | 73.09 356 | 57.90 381 | 51.22 382 | 85.05 369 | 93.93 363 | 54.45 370 | 44.32 376 | 83.57 365 | 13.22 380 | 89.15 371 | 58.68 372 | 81.00 352 | 78.91 370 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
E-PMN | | | 64.94 340 | 64.25 342 | 67.02 357 | 82.28 374 | 59.36 379 | 91.83 365 | 85.63 376 | 52.69 371 | 60.22 372 | 77.28 371 | 41.06 372 | 80.12 375 | 46.15 374 | 41.14 372 | 61.57 373 |
|
EMVS | | | 64.07 341 | 63.26 344 | 66.53 358 | 81.73 375 | 58.81 380 | 91.85 364 | 84.75 377 | 51.93 373 | 59.09 373 | 75.13 372 | 43.32 370 | 79.09 376 | 42.03 375 | 39.47 373 | 61.69 372 |
|
wuyk23d | | | 30.17 343 | 30.18 347 | 30.16 359 | 78.61 377 | 43.29 383 | 66.79 372 | 14.21 383 | 17.31 376 | 14.82 379 | 11.93 379 | 11.55 382 | 41.43 378 | 37.08 376 | 19.30 376 | 5.76 376 |
|
test123 | | | 20.95 346 | 23.72 349 | 12.64 360 | 13.54 384 | 8.19 384 | 96.55 333 | 6.13 385 | 7.48 378 | 16.74 378 | 37.98 376 | 12.97 381 | 6.05 379 | 16.69 377 | 5.43 378 | 23.68 374 |
|
testmvs | | | 21.48 345 | 24.95 348 | 11.09 361 | 14.89 383 | 6.47 385 | 96.56 332 | 9.87 384 | 7.55 377 | 17.93 377 | 39.02 375 | 9.43 384 | 5.90 380 | 16.56 378 | 12.72 377 | 20.91 375 |
|
test_blank | | | 0.00 349 | 0.00 352 | 0.00 362 | 0.00 385 | 0.00 386 | 0.00 373 | 0.00 386 | 0.00 380 | 0.00 381 | 0.00 380 | 0.00 385 | 0.00 381 | 0.00 379 | 0.00 379 | 0.00 377 |
|
uanet_test | | | 0.00 349 | 0.00 352 | 0.00 362 | 0.00 385 | 0.00 386 | 0.00 373 | 0.00 386 | 0.00 380 | 0.00 381 | 0.00 380 | 0.00 385 | 0.00 381 | 0.00 379 | 0.00 379 | 0.00 377 |
|
DCPMVS | | | 0.00 349 | 0.00 352 | 0.00 362 | 0.00 385 | 0.00 386 | 0.00 373 | 0.00 386 | 0.00 380 | 0.00 381 | 0.00 380 | 0.00 385 | 0.00 381 | 0.00 379 | 0.00 379 | 0.00 377 |
|
cdsmvs_eth3d_5k | | | 23.98 344 | 31.98 346 | 0.00 362 | 0.00 385 | 0.00 386 | 0.00 373 | 98.59 132 | 0.00 380 | 0.00 381 | 98.61 132 | 90.60 150 | 0.00 381 | 0.00 379 | 0.00 379 | 0.00 377 |
|
pcd_1.5k_mvsjas | | | 7.88 348 | 10.50 351 | 0.00 362 | 0.00 385 | 0.00 386 | 0.00 373 | 0.00 386 | 0.00 380 | 0.00 381 | 0.00 380 | 94.51 77 | 0.00 381 | 0.00 379 | 0.00 379 | 0.00 377 |
|
sosnet-low-res | | | 0.00 349 | 0.00 352 | 0.00 362 | 0.00 385 | 0.00 386 | 0.00 373 | 0.00 386 | 0.00 380 | 0.00 381 | 0.00 380 | 0.00 385 | 0.00 381 | 0.00 379 | 0.00 379 | 0.00 377 |
|
sosnet | | | 0.00 349 | 0.00 352 | 0.00 362 | 0.00 385 | 0.00 386 | 0.00 373 | 0.00 386 | 0.00 380 | 0.00 381 | 0.00 380 | 0.00 385 | 0.00 381 | 0.00 379 | 0.00 379 | 0.00 377 |
|
uncertanet | | | 0.00 349 | 0.00 352 | 0.00 362 | 0.00 385 | 0.00 386 | 0.00 373 | 0.00 386 | 0.00 380 | 0.00 381 | 0.00 380 | 0.00 385 | 0.00 381 | 0.00 379 | 0.00 379 | 0.00 377 |
|
Regformer | | | 0.00 349 | 0.00 352 | 0.00 362 | 0.00 385 | 0.00 386 | 0.00 373 | 0.00 386 | 0.00 380 | 0.00 381 | 0.00 380 | 0.00 385 | 0.00 381 | 0.00 379 | 0.00 379 | 0.00 377 |
|
ab-mvs-re | | | 8.20 347 | 10.94 350 | 0.00 362 | 0.00 385 | 0.00 386 | 0.00 373 | 0.00 386 | 0.00 380 | 0.00 381 | 98.43 152 | 0.00 385 | 0.00 381 | 0.00 379 | 0.00 379 | 0.00 377 |
|
uanet | | | 0.00 349 | 0.00 352 | 0.00 362 | 0.00 385 | 0.00 386 | 0.00 373 | 0.00 386 | 0.00 380 | 0.00 381 | 0.00 380 | 0.00 385 | 0.00 381 | 0.00 379 | 0.00 379 | 0.00 377 |
|
FOURS1 | | | | | | 99.82 1 | 98.66 24 | 99.69 1 | 98.95 34 | 97.46 21 | 99.39 20 | | | | | | |
|
PC_three_1452 | | | | | | | | | | 95.08 142 | 99.60 10 | 99.16 63 | 97.86 2 | 98.47 259 | 97.52 83 | 99.72 46 | 99.74 30 |
|
test_one_0601 | | | | | | 99.66 26 | 99.25 2 | | 98.86 63 | 97.55 16 | 99.20 28 | 99.47 11 | 97.57 6 | | | | |
|
eth-test2 | | | | | | 0.00 385 | | | | | | | | | | | |
|
eth-test | | | | | | 0.00 385 | | | | | | | | | | | |
|
ZD-MVS | | | | | | 99.46 49 | 98.70 23 | | 98.79 87 | 93.21 225 | 98.67 61 | 98.97 91 | 95.70 42 | 99.83 55 | 96.07 137 | 99.58 69 | |
|
RE-MVS-def | | | | 98.34 27 | | 99.49 45 | 97.86 61 | 99.11 54 | 98.80 82 | 96.49 72 | 99.17 31 | 99.35 31 | 95.29 58 | | 97.72 65 | 99.65 55 | 99.71 42 |
|
IU-MVS | | | | | | 99.71 19 | 99.23 7 | | 98.64 125 | 95.28 129 | 99.63 9 | | | | 98.35 33 | 99.81 12 | 99.83 7 |
|
test_241102_TWO | | | | | | | | | 98.87 57 | 97.65 10 | 99.53 14 | 99.48 9 | 97.34 11 | 99.94 3 | 98.43 28 | 99.80 19 | 99.83 7 |
|
test_241102_ONE | | | | | | 99.71 19 | 99.24 5 | | 98.87 57 | 97.62 12 | 99.73 2 | 99.39 19 | 97.53 7 | 99.74 97 | | | |
|
9.14 | | | | 98.06 47 | | 99.47 47 | | 98.71 139 | 98.82 69 | 94.36 169 | 99.16 33 | 99.29 39 | 96.05 31 | 99.81 67 | 97.00 99 | 99.71 48 | |
|
save fliter | | | | | | 99.46 49 | 98.38 35 | 98.21 206 | 98.71 105 | 97.95 4 | | | | | | | |
|
test_0728_THIRD | | | | | | | | | | 97.32 29 | 99.45 16 | 99.46 14 | 97.88 1 | 99.94 3 | 98.47 24 | 99.86 1 | 99.85 4 |
|
test0726 | | | | | | 99.72 12 | 99.25 2 | 99.06 62 | 98.88 50 | 97.62 12 | 99.56 11 | 99.50 6 | 97.42 9 | | | | |
|
GSMVS | | | | | | | | | | | | | | | | | 99.20 127 |
|
test_part2 | | | | | | 99.63 29 | 99.18 10 | | | | 99.27 25 | | | | | | |
|
sam_mvs1 | | | | | | | | | | | | | 89.45 169 | | | | 99.20 127 |
|
sam_mvs | | | | | | | | | | | | | 88.99 183 | | | | |
|
MTGPA |  | | | | | | | | 98.74 97 | | | | | | | | |
|
test_post1 | | | | | | | | 96.68 329 | | | | 30.43 378 | 87.85 214 | 98.69 235 | 92.59 247 | | |
|
test_post | | | | | | | | | | | | 31.83 377 | 88.83 190 | 98.91 213 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 95.10 337 | 89.42 170 | 98.89 217 | | | |
|
MTMP | | | | | | | | 98.89 97 | 94.14 361 | | | | | | | | |
|
gm-plane-assit | | | | | | 95.88 319 | 87.47 345 | | | 89.74 320 | | 96.94 288 | | 99.19 170 | 93.32 226 | | |
|
test9_res | | | | | | | | | | | | | | | 96.39 131 | 99.57 70 | 99.69 49 |
|
TEST9 | | | | | | 99.31 61 | 98.50 29 | 97.92 237 | 98.73 100 | 92.63 244 | 97.74 116 | 98.68 126 | 96.20 26 | 99.80 74 | | | |
|
test_8 | | | | | | 99.29 67 | 98.44 31 | 97.89 243 | 98.72 102 | 92.98 233 | 97.70 120 | 98.66 129 | 96.20 26 | 99.80 74 | | | |
|
agg_prior2 | | | | | | | | | | | | | | | 95.87 147 | 99.57 70 | 99.68 54 |
|
agg_prior | | | | | | 99.30 65 | 98.38 35 | | 98.72 102 | | 97.57 130 | | | 99.81 67 | | | |
|
test_prior4 | | | | | | | 98.01 58 | 97.86 246 | | | | | | | | | |
|
test_prior2 | | | | | | | | 97.80 251 | | 96.12 89 | 97.89 110 | 98.69 125 | 95.96 35 | | 96.89 108 | 99.60 64 | |
|
旧先验2 | | | | | | | | 97.57 270 | | 91.30 289 | 98.67 61 | | | 99.80 74 | 95.70 155 | | |
|
æ–°å‡ ä½•2 | | | | | | | | 97.64 264 | | | | | | | | | |
|
旧先验1 | | | | | | 99.29 67 | 97.48 73 | | 98.70 108 | | | 99.09 78 | 95.56 45 | | | 99.47 87 | 99.61 68 |
|
æ— å…ˆéªŒ | | | | | | | | 97.58 269 | 98.72 102 | 91.38 283 | | | | 99.87 45 | 93.36 225 | | 99.60 70 |
|
原ACMM2 | | | | | | | | 97.67 261 | | | | | | | | | |
|
test222 | | | | | | 99.23 82 | 97.17 87 | 97.40 277 | 98.66 120 | 88.68 331 | 98.05 92 | 98.96 96 | 94.14 87 | | | 99.53 80 | 99.61 68 |
|
testdata2 | | | | | | | | | | | | | | 99.89 36 | 91.65 272 | | |
|
segment_acmp | | | | | | | | | | | | | 96.85 14 | | | | |
|
testdata1 | | | | | | | | 97.32 287 | | 96.34 81 | | | | | | | |
|
plane_prior7 | | | | | | 97.42 237 | 94.63 203 | | | | | | | | | | |
|
plane_prior6 | | | | | | 97.35 242 | 94.61 206 | | | | | | 87.09 227 | | | | |
|
plane_prior5 | | | | | | | | | 98.56 141 | | | | | 99.03 194 | 96.07 137 | 94.27 222 | 96.92 240 |
|
plane_prior4 | | | | | | | | | | | | 98.28 171 | | | | | |
|
plane_prior3 | | | | | | | 94.61 206 | | | 97.02 50 | 95.34 193 | | | | | | |
|
plane_prior2 | | | | | | | | 98.80 119 | | 97.28 32 | | | | | | | |
|
plane_prior1 | | | | | | 97.37 241 | | | | | | | | | | | |
|
plane_prior | | | | | | | 94.60 208 | 98.44 181 | | 96.74 63 | | | | | | 94.22 224 | |
|
n2 | | | | | | | | | 0.00 386 | | | | | | | | |
|
nn | | | | | | | | | 0.00 386 | | | | | | | | |
|
door-mid | | | | | | | | | 94.37 357 | | | | | | | | |
|
test11 | | | | | | | | | 98.66 120 | | | | | | | | |
|
door | | | | | | | | | 94.64 355 | | | | | | | | |
|
HQP5-MVS | | | | | | | 94.25 222 | | | | | | | | | | |
|
HQP-NCC | | | | | | 97.20 250 | | 98.05 226 | | 96.43 75 | 94.45 216 | | | | | | |
|
ACMP_Plane | | | | | | 97.20 250 | | 98.05 226 | | 96.43 75 | 94.45 216 | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 95.30 164 | | |
|
HQP4-MVS | | | | | | | | | | | 94.45 216 | | | 98.96 205 | | | 96.87 251 |
|
HQP3-MVS | | | | | | | | | 98.46 163 | | | | | | | 94.18 226 | |
|
HQP2-MVS | | | | | | | | | | | | | 86.75 233 | | | | |
|
NP-MVS | | | | | | 97.28 244 | 94.51 211 | | | | | 97.73 219 | | | | | |
|
MDTV_nov1_ep13_2view | | | | | | | 84.26 353 | 96.89 319 | | 90.97 299 | 97.90 109 | | 89.89 161 | | 93.91 209 | | 99.18 136 |
|
MDTV_nov1_ep13 | | | | 95.40 155 | | 97.48 229 | 88.34 337 | 96.85 322 | 97.29 302 | 93.74 196 | 97.48 132 | 97.26 254 | 89.18 177 | 99.05 190 | 91.92 266 | 97.43 176 | |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 92.97 259 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 93.61 246 | |
|
Test By Simon | | | | | | | | | | | | | 94.64 74 | | | | |
|