This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
MSC_two_6792asdad96.52 197.78 5190.86 196.85 6399.61 496.03 1499.06 999.07 5
No_MVS96.52 197.78 5190.86 196.85 6399.61 496.03 1499.06 999.07 5
OPU-MVS96.21 398.00 4290.85 397.13 1497.08 4992.59 298.94 7892.25 6398.99 1498.84 14
HPM-MVS++copyleft95.14 1094.91 1395.83 498.25 2989.65 495.92 7396.96 5291.75 994.02 4696.83 6188.12 2499.55 1693.41 4298.94 1698.28 50
MM95.68 588.34 996.68 3394.37 23495.08 194.68 3697.72 2482.94 8399.64 197.85 198.76 2899.06 7
SMA-MVScopyleft95.20 895.07 1195.59 698.14 3588.48 896.26 4797.28 3185.90 15397.67 398.10 788.41 2099.56 1294.66 2699.19 198.71 19
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
3Dnovator+87.14 492.42 7591.37 8395.55 795.63 12188.73 697.07 1896.77 7490.84 1684.02 25896.62 7475.95 16399.34 3487.77 13097.68 7898.59 24
CNVR-MVS95.40 795.37 795.50 898.11 3688.51 795.29 10596.96 5292.09 695.32 3197.08 4989.49 1599.33 3795.10 2498.85 1998.66 20
ACMMP_NAP94.74 1594.56 1895.28 998.02 4187.70 1195.68 8597.34 2388.28 9195.30 3297.67 2685.90 4799.54 2093.91 3498.95 1598.60 23
DPE-MVScopyleft95.57 495.67 495.25 1098.36 2587.28 1795.56 9597.51 589.13 6397.14 997.91 1891.64 799.62 294.61 2799.17 298.86 11
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MVS_030494.60 1794.38 2495.23 1195.41 12987.49 1596.53 3892.75 27793.82 293.07 6597.84 2283.66 7499.59 897.61 298.76 2898.61 22
SF-MVS94.97 1194.90 1495.20 1297.84 4787.76 1096.65 3597.48 1087.76 11195.71 2797.70 2588.28 2399.35 3393.89 3598.78 2598.48 30
MCST-MVS94.45 2194.20 3495.19 1398.46 1987.50 1495.00 12597.12 4187.13 12392.51 8396.30 8389.24 1799.34 3493.46 3998.62 4498.73 17
NCCC94.81 1494.69 1795.17 1497.83 4887.46 1695.66 8896.93 5692.34 493.94 4796.58 7687.74 2799.44 2992.83 5098.40 5298.62 21
DPM-MVS92.58 7291.74 8095.08 1596.19 9589.31 592.66 24896.56 9383.44 20991.68 10695.04 13486.60 4098.99 7085.60 16097.92 7096.93 124
ZNCC-MVS94.47 2094.28 2995.03 1698.52 1586.96 1996.85 2897.32 2788.24 9293.15 6197.04 5286.17 4499.62 292.40 5998.81 2298.52 26
test_0728_SECOND95.01 1798.79 286.43 3897.09 1697.49 699.61 495.62 2199.08 798.99 9
MTAPA94.42 2594.22 3295.00 1898.42 2186.95 2094.36 17096.97 5091.07 1393.14 6297.56 2784.30 6799.56 1293.43 4098.75 3098.47 33
MSP-MVS95.42 695.56 694.98 1998.49 1786.52 3596.91 2597.47 1191.73 1096.10 2096.69 6689.90 1299.30 4094.70 2598.04 6699.13 2
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
region2R94.43 2394.27 3194.92 2098.65 886.67 2996.92 2497.23 3488.60 8293.58 5397.27 3885.22 5499.54 2092.21 6498.74 3198.56 25
APDe-MVScopyleft95.46 595.64 594.91 2198.26 2886.29 4597.46 697.40 2089.03 6796.20 1998.10 789.39 1699.34 3495.88 1699.03 1199.10 4
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
ACMMPR94.43 2394.28 2994.91 2198.63 986.69 2796.94 2097.32 2788.63 8093.53 5697.26 4085.04 5899.54 2092.35 6198.78 2598.50 27
GST-MVS94.21 3193.97 4294.90 2398.41 2286.82 2396.54 3797.19 3588.24 9293.26 5896.83 6185.48 5199.59 891.43 8798.40 5298.30 47
HFP-MVS94.52 1994.40 2294.86 2498.61 1086.81 2496.94 2097.34 2388.63 8093.65 5197.21 4286.10 4599.49 2692.35 6198.77 2798.30 47
MP-MVS-pluss94.21 3194.00 4194.85 2598.17 3386.65 3094.82 13697.17 3986.26 14592.83 7197.87 2085.57 5099.56 1294.37 3098.92 1798.34 42
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
canonicalmvs93.27 6092.75 6894.85 2595.70 11987.66 1296.33 4296.41 9990.00 3794.09 4494.60 15482.33 9298.62 10392.40 5992.86 17398.27 52
XVS94.45 2194.32 2594.85 2598.54 1386.60 3396.93 2297.19 3590.66 2492.85 6997.16 4785.02 5999.49 2691.99 7498.56 4898.47 33
X-MVStestdata88.31 17386.13 21994.85 2598.54 1386.60 3396.93 2297.19 3590.66 2492.85 6923.41 39685.02 5999.49 2691.99 7498.56 4898.47 33
SteuartSystems-ACMMP95.20 895.32 994.85 2596.99 7286.33 4197.33 797.30 2991.38 1295.39 3097.46 3088.98 1999.40 3094.12 3198.89 1898.82 16
Skip Steuart: Steuart Systems R&D Blog.
DVP-MVS++95.98 196.36 194.82 3097.78 5186.00 4998.29 197.49 690.75 1997.62 598.06 1192.59 299.61 495.64 1999.02 1298.86 11
alignmvs93.08 6592.50 7294.81 3195.62 12287.61 1395.99 6996.07 12889.77 4594.12 4394.87 13980.56 11198.66 9892.42 5893.10 16998.15 61
SED-MVS95.91 296.28 294.80 3298.77 585.99 5197.13 1497.44 1590.31 2897.71 198.07 992.31 499.58 1095.66 1799.13 398.84 14
DeepC-MVS_fast89.43 294.04 3793.79 4594.80 3297.48 6186.78 2595.65 9096.89 6089.40 5392.81 7296.97 5485.37 5399.24 4390.87 9798.69 3598.38 41
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MP-MVScopyleft94.25 2894.07 3894.77 3498.47 1886.31 4396.71 3196.98 4989.04 6691.98 9397.19 4485.43 5299.56 1292.06 7398.79 2398.44 37
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
APD-MVScopyleft94.24 2994.07 3894.75 3598.06 3986.90 2295.88 7496.94 5585.68 15995.05 3497.18 4587.31 3599.07 5391.90 8098.61 4698.28 50
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CP-MVS94.34 2694.21 3394.74 3698.39 2386.64 3197.60 497.24 3288.53 8492.73 7797.23 4185.20 5599.32 3892.15 6798.83 2198.25 55
PGM-MVS93.96 4193.72 4994.68 3798.43 2086.22 4695.30 10397.78 187.45 11893.26 5897.33 3684.62 6599.51 2490.75 9998.57 4798.32 46
DVP-MVScopyleft95.67 396.02 394.64 3898.78 385.93 5497.09 1696.73 7990.27 3197.04 1198.05 1391.47 899.55 1695.62 2199.08 798.45 36
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
mPP-MVS93.99 4093.78 4694.63 3998.50 1685.90 5896.87 2696.91 5888.70 7891.83 10297.17 4683.96 7199.55 1691.44 8698.64 4398.43 38
PHI-MVS93.89 4293.65 5394.62 4096.84 7586.43 3896.69 3297.49 685.15 17393.56 5596.28 8485.60 4999.31 3992.45 5698.79 2398.12 64
TSAR-MVS + MP.94.85 1394.94 1294.58 4198.25 2986.33 4196.11 6096.62 8888.14 9896.10 2096.96 5589.09 1898.94 7894.48 2898.68 3798.48 30
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
CANet93.54 5093.20 6094.55 4295.65 12085.73 6394.94 12896.69 8491.89 890.69 11895.88 10281.99 10299.54 2093.14 4697.95 6998.39 39
train_agg93.44 5493.08 6194.52 4397.53 5886.49 3694.07 18696.78 7281.86 24792.77 7496.20 8787.63 2999.12 5192.14 6898.69 3597.94 74
CDPH-MVS92.83 6892.30 7494.44 4497.79 4986.11 4894.06 18896.66 8580.09 27692.77 7496.63 7386.62 3899.04 5787.40 13698.66 4098.17 60
3Dnovator86.66 591.73 8490.82 9594.44 4494.59 17086.37 4097.18 1297.02 4789.20 6084.31 25496.66 6973.74 19999.17 4786.74 14697.96 6897.79 85
SR-MVS94.23 3094.17 3694.43 4698.21 3285.78 6196.40 4196.90 5988.20 9694.33 4097.40 3384.75 6499.03 5893.35 4397.99 6798.48 30
HPM-MVScopyleft94.02 3893.88 4394.43 4698.39 2385.78 6197.25 1097.07 4586.90 13192.62 8096.80 6584.85 6399.17 4792.43 5798.65 4298.33 43
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
TSAR-MVS + GP.93.66 4893.41 5594.41 4896.59 8286.78 2594.40 16393.93 25089.77 4594.21 4195.59 11587.35 3498.61 10492.72 5396.15 10997.83 83
test1294.34 4997.13 7086.15 4796.29 10591.04 11585.08 5799.01 6398.13 6197.86 80
ACMMPcopyleft93.24 6192.88 6694.30 5098.09 3885.33 6896.86 2797.45 1488.33 8890.15 12797.03 5381.44 10599.51 2490.85 9895.74 11298.04 69
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DeepC-MVS88.79 393.31 5992.99 6494.26 5196.07 10285.83 5994.89 13196.99 4889.02 6989.56 13297.37 3582.51 8999.38 3192.20 6598.30 5597.57 94
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
EPNet91.79 8191.02 9194.10 5290.10 32885.25 6996.03 6692.05 29792.83 387.39 17195.78 10779.39 12699.01 6388.13 12697.48 8098.05 68
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test_fmvsmconf_n94.60 1794.81 1593.98 5394.62 16984.96 7296.15 5597.35 2289.37 5496.03 2398.11 586.36 4199.01 6397.45 397.83 7397.96 73
DELS-MVS93.43 5793.25 5893.97 5495.42 12885.04 7093.06 23797.13 4090.74 2191.84 10095.09 13386.32 4299.21 4591.22 8898.45 5097.65 89
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
DP-MVS Recon91.95 7991.28 8593.96 5598.33 2785.92 5694.66 14796.66 8582.69 22890.03 12995.82 10582.30 9399.03 5884.57 17296.48 10496.91 126
HPM-MVS_fast93.40 5893.22 5993.94 5698.36 2584.83 7497.15 1396.80 7185.77 15692.47 8497.13 4882.38 9099.07 5390.51 10498.40 5297.92 77
test_fmvsmconf0.1_n94.20 3394.31 2793.88 5792.46 24784.80 7596.18 5296.82 6889.29 5795.68 2898.11 585.10 5698.99 7097.38 497.75 7797.86 80
SD-MVS94.96 1295.33 893.88 5797.25 6986.69 2796.19 5097.11 4390.42 2796.95 1397.27 3889.53 1496.91 24894.38 2998.85 1998.03 70
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
MVS_111021_HR93.45 5393.31 5693.84 5996.99 7284.84 7393.24 23097.24 3288.76 7591.60 10795.85 10386.07 4698.66 9891.91 7898.16 5998.03 70
SR-MVS-dyc-post93.82 4393.82 4493.82 6097.92 4384.57 8096.28 4596.76 7587.46 11693.75 4997.43 3184.24 6899.01 6392.73 5197.80 7497.88 78
test_prior93.82 6097.29 6784.49 8496.88 6198.87 8298.11 65
APD-MVS_3200maxsize93.78 4493.77 4793.80 6297.92 4384.19 9496.30 4396.87 6286.96 12793.92 4897.47 2983.88 7298.96 7792.71 5497.87 7198.26 54
fmvsm_l_conf0.5_n94.29 2794.46 2093.79 6395.28 13385.43 6695.68 8596.43 9786.56 13896.84 1497.81 2387.56 3298.77 9297.14 696.82 9697.16 112
CSCG93.23 6293.05 6293.76 6498.04 4084.07 9696.22 4997.37 2184.15 19190.05 12895.66 11287.77 2699.15 5089.91 10798.27 5698.07 66
test_fmvsmconf0.01_n93.19 6393.02 6393.71 6589.25 34084.42 9196.06 6496.29 10589.06 6494.68 3698.13 379.22 12898.98 7497.22 597.24 8497.74 87
UA-Net92.83 6892.54 7193.68 6696.10 10084.71 7795.66 8896.39 10091.92 793.22 6096.49 7983.16 7998.87 8284.47 17495.47 11997.45 99
fmvsm_l_conf0.5_n_a94.20 3394.40 2293.60 6795.29 13284.98 7195.61 9296.28 10886.31 14396.75 1697.86 2187.40 3398.74 9597.07 897.02 8997.07 114
QAPM89.51 13388.15 15993.59 6894.92 15384.58 7996.82 2996.70 8378.43 30083.41 27396.19 9073.18 20699.30 4077.11 27896.54 10196.89 127
test_fmvsm_n_192094.71 1695.11 1093.50 6995.79 11484.62 7896.15 5597.64 289.85 4097.19 897.89 1986.28 4398.71 9797.11 798.08 6597.17 108
casdiffmvs_mvgpermissive92.96 6792.83 6793.35 7094.59 17083.40 11695.00 12596.34 10390.30 3092.05 9196.05 9583.43 7598.15 14392.07 7095.67 11398.49 29
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
EI-MVSNet-Vis-set93.01 6692.92 6593.29 7195.01 14683.51 11394.48 15595.77 15190.87 1592.52 8296.67 6884.50 6699.00 6891.99 7494.44 14497.36 100
Vis-MVSNetpermissive91.75 8391.23 8693.29 7195.32 13183.78 10396.14 5795.98 13489.89 3890.45 12096.58 7675.09 17598.31 13484.75 17096.90 9297.78 86
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
CS-MVS-test94.02 3894.29 2893.24 7396.69 7883.24 11997.49 596.92 5792.14 592.90 6795.77 10885.02 5998.33 13193.03 4798.62 4498.13 62
VNet92.24 7791.91 7893.24 7396.59 8283.43 11494.84 13596.44 9689.19 6194.08 4595.90 10177.85 14798.17 14188.90 11793.38 16398.13 62
VDD-MVS90.74 10089.92 11293.20 7596.27 9383.02 13195.73 8293.86 25488.42 8792.53 8196.84 6062.09 31798.64 10090.95 9592.62 17697.93 76
CS-MVS94.12 3694.44 2193.17 7696.55 8483.08 12997.63 396.95 5491.71 1193.50 5796.21 8685.61 4898.24 13693.64 3798.17 5898.19 58
nrg03091.08 9690.39 9893.17 7693.07 22986.91 2196.41 3996.26 11088.30 9088.37 15194.85 14282.19 9797.64 18591.09 8982.95 28994.96 197
EI-MVSNet-UG-set92.74 7092.62 7093.12 7894.86 15783.20 12194.40 16395.74 15490.71 2392.05 9196.60 7584.00 7098.99 7091.55 8493.63 15497.17 108
test_fmvsmvis_n_192093.44 5493.55 5493.10 7993.67 21384.26 9395.83 7796.14 12089.00 7092.43 8597.50 2883.37 7898.72 9696.61 1297.44 8196.32 144
新几何193.10 7997.30 6684.35 9295.56 16871.09 36691.26 11396.24 8582.87 8598.86 8479.19 25898.10 6296.07 157
OMC-MVS91.23 9290.62 9793.08 8196.27 9384.07 9693.52 21495.93 13886.95 12889.51 13396.13 9378.50 13898.35 12885.84 15892.90 17296.83 130
OpenMVScopyleft83.78 1188.74 16287.29 17993.08 8192.70 24285.39 6796.57 3696.43 9778.74 29580.85 30396.07 9469.64 24999.01 6378.01 26996.65 10094.83 204
MAR-MVS90.30 11089.37 12393.07 8396.61 8184.48 8595.68 8595.67 16082.36 23387.85 15992.85 21676.63 15798.80 9080.01 24696.68 9995.91 162
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
lupinMVS90.92 9790.21 10193.03 8493.86 20383.88 10192.81 24593.86 25479.84 27891.76 10394.29 16477.92 14498.04 15990.48 10597.11 8597.17 108
Effi-MVS+91.59 8791.11 8893.01 8594.35 18683.39 11794.60 14995.10 19887.10 12490.57 11993.10 21181.43 10698.07 15789.29 11394.48 14297.59 93
fmvsm_s_conf0.5_n_a93.57 4993.76 4893.00 8695.02 14583.67 10696.19 5096.10 12587.27 12195.98 2498.05 1383.07 8298.45 11996.68 1195.51 11696.88 128
MVS_111021_LR92.47 7492.29 7592.98 8795.99 10884.43 8993.08 23596.09 12688.20 9691.12 11495.72 11181.33 10797.76 17491.74 8197.37 8396.75 132
fmvsm_s_conf0.1_n_a93.19 6393.26 5792.97 8892.49 24583.62 10996.02 6795.72 15786.78 13396.04 2298.19 182.30 9398.43 12396.38 1395.42 12296.86 129
ETV-MVS92.74 7092.66 6992.97 8895.20 13984.04 9895.07 12196.51 9490.73 2292.96 6691.19 27384.06 6998.34 12991.72 8296.54 10196.54 140
LFMVS90.08 11589.13 12992.95 9096.71 7782.32 15596.08 6189.91 34786.79 13292.15 9096.81 6362.60 31598.34 12987.18 14093.90 15098.19 58
UGNet89.95 12188.95 13392.95 9094.51 17683.31 11895.70 8495.23 19189.37 5487.58 16593.94 18064.00 30498.78 9183.92 18196.31 10696.74 133
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
jason90.80 9890.10 10592.90 9293.04 23183.53 11293.08 23594.15 24380.22 27391.41 11094.91 13776.87 15197.93 16890.28 10696.90 9297.24 104
jason: jason.
DP-MVS87.25 21485.36 24692.90 9297.65 5583.24 11994.81 13792.00 29974.99 33481.92 29295.00 13572.66 21299.05 5566.92 34892.33 18096.40 142
fmvsm_s_conf0.5_n93.76 4594.06 4092.86 9495.62 12283.17 12296.14 5796.12 12388.13 9995.82 2698.04 1683.43 7598.48 11196.97 996.23 10796.92 125
fmvsm_s_conf0.1_n93.46 5293.66 5292.85 9593.75 20983.13 12496.02 6795.74 15487.68 11395.89 2598.17 282.78 8698.46 11596.71 1096.17 10896.98 121
CANet_DTU90.26 11289.41 12292.81 9693.46 21983.01 13293.48 21594.47 22989.43 5287.76 16394.23 16870.54 23999.03 5884.97 16596.39 10596.38 143
MVSFormer91.68 8691.30 8492.80 9793.86 20383.88 10195.96 7195.90 14284.66 18591.76 10394.91 13777.92 14497.30 21889.64 10997.11 8597.24 104
PVSNet_Blended_VisFu91.38 8990.91 9392.80 9796.39 9083.17 12294.87 13396.66 8583.29 21389.27 13794.46 15880.29 11399.17 4787.57 13495.37 12396.05 159
VDDNet89.56 13288.49 15092.76 9995.07 14482.09 15796.30 4393.19 26781.05 26891.88 9896.86 5961.16 32998.33 13188.43 12392.49 17997.84 82
h-mvs3390.80 9890.15 10492.75 10096.01 10482.66 14695.43 9795.53 17289.80 4193.08 6395.64 11375.77 16499.00 6892.07 7078.05 34496.60 136
casdiffmvspermissive92.51 7392.43 7392.74 10194.41 18281.98 16094.54 15396.23 11489.57 4991.96 9596.17 9182.58 8898.01 16190.95 9595.45 12198.23 56
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test_yl90.69 10290.02 11092.71 10295.72 11782.41 15394.11 18195.12 19685.63 16191.49 10894.70 14874.75 17998.42 12486.13 15392.53 17797.31 101
DCV-MVSNet90.69 10290.02 11092.71 10295.72 11782.41 15394.11 18195.12 19685.63 16191.49 10894.70 14874.75 17998.42 12486.13 15392.53 17797.31 101
PCF-MVS84.11 1087.74 18886.08 22392.70 10494.02 19484.43 8989.27 32295.87 14573.62 34884.43 24694.33 16178.48 13998.86 8470.27 32394.45 14394.81 205
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
baseline92.39 7692.29 7592.69 10594.46 17981.77 16594.14 17996.27 10989.22 5991.88 9896.00 9682.35 9197.99 16391.05 9095.27 12798.30 47
MSLP-MVS++93.72 4794.08 3792.65 10697.31 6583.43 11495.79 7997.33 2590.03 3693.58 5396.96 5584.87 6297.76 17492.19 6698.66 4096.76 131
EC-MVSNet93.44 5493.71 5092.63 10795.21 13882.43 15097.27 996.71 8290.57 2692.88 6895.80 10683.16 7998.16 14293.68 3698.14 6097.31 101
ab-mvs89.41 13988.35 15292.60 10895.15 14282.65 14792.20 26595.60 16783.97 19588.55 14793.70 19374.16 19198.21 14082.46 20389.37 21496.94 123
LS3D87.89 18386.32 21392.59 10996.07 10282.92 13695.23 10994.92 20975.66 32682.89 28095.98 9872.48 21599.21 4568.43 33795.23 12895.64 175
Anonymous2024052988.09 17986.59 20392.58 11096.53 8681.92 16295.99 6995.84 14774.11 34389.06 14195.21 12761.44 32398.81 8983.67 18687.47 24997.01 119
CPTT-MVS91.99 7891.80 7992.55 11198.24 3181.98 16096.76 3096.49 9581.89 24690.24 12396.44 8178.59 13698.61 10489.68 10897.85 7297.06 115
114514_t89.51 13388.50 14892.54 11298.11 3681.99 15995.16 11696.36 10270.19 36985.81 20295.25 12476.70 15598.63 10282.07 21096.86 9597.00 120
PAPM_NR91.22 9390.78 9692.52 11397.60 5681.46 17494.37 16996.24 11386.39 14287.41 16894.80 14582.06 10098.48 11182.80 19895.37 12397.61 91
DeepPCF-MVS89.96 194.20 3394.77 1692.49 11496.52 8780.00 21994.00 19497.08 4490.05 3595.65 2997.29 3789.66 1398.97 7593.95 3398.71 3298.50 27
IS-MVSNet91.43 8891.09 9092.46 11595.87 11381.38 17796.95 1993.69 26089.72 4789.50 13495.98 9878.57 13797.77 17383.02 19296.50 10398.22 57
API-MVS90.66 10490.07 10692.45 11696.36 9184.57 8096.06 6495.22 19382.39 23189.13 13894.27 16780.32 11298.46 11580.16 24596.71 9894.33 230
xiu_mvs_v1_base_debu90.64 10590.05 10792.40 11793.97 20084.46 8693.32 22195.46 17585.17 17092.25 8694.03 17270.59 23598.57 10790.97 9294.67 13494.18 235
xiu_mvs_v1_base90.64 10590.05 10792.40 11793.97 20084.46 8693.32 22195.46 17585.17 17092.25 8694.03 17270.59 23598.57 10790.97 9294.67 13494.18 235
xiu_mvs_v1_base_debi90.64 10590.05 10792.40 11793.97 20084.46 8693.32 22195.46 17585.17 17092.25 8694.03 17270.59 23598.57 10790.97 9294.67 13494.18 235
AdaColmapbinary89.89 12489.07 13092.37 12097.41 6283.03 13094.42 16295.92 13982.81 22586.34 19594.65 15273.89 19599.02 6180.69 23695.51 11695.05 192
CNLPA89.07 15187.98 16392.34 12196.87 7484.78 7694.08 18593.24 26581.41 25984.46 24495.13 13275.57 17196.62 25977.21 27693.84 15295.61 178
ET-MVSNet_ETH3D87.51 20285.91 23192.32 12293.70 21283.93 9992.33 26090.94 32884.16 19072.09 36592.52 22869.90 24495.85 30289.20 11488.36 23597.17 108
Anonymous20240521187.68 18986.13 21992.31 12396.66 7980.74 19594.87 13391.49 31580.47 27289.46 13595.44 11754.72 35698.23 13782.19 20889.89 20497.97 72
CHOSEN 1792x268888.84 15887.69 16992.30 12496.14 9681.42 17690.01 31095.86 14674.52 33987.41 16893.94 18075.46 17298.36 12680.36 24195.53 11597.12 113
HY-MVS83.01 1289.03 15387.94 16592.29 12594.86 15782.77 13892.08 27094.49 22881.52 25886.93 17892.79 22278.32 14198.23 13779.93 24790.55 19495.88 164
CDS-MVSNet89.45 13688.51 14792.29 12593.62 21483.61 11193.01 23894.68 22581.95 24287.82 16193.24 20578.69 13496.99 24380.34 24293.23 16796.28 147
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
PAPR90.02 11789.27 12892.29 12595.78 11580.95 18992.68 24796.22 11581.91 24486.66 18893.75 19282.23 9598.44 12179.40 25794.79 13297.48 97
PLCcopyleft84.53 789.06 15288.03 16292.15 12897.27 6882.69 14594.29 17195.44 18079.71 28084.01 25994.18 16976.68 15698.75 9377.28 27593.41 16295.02 193
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
EPP-MVSNet91.70 8591.56 8292.13 12995.88 11180.50 20197.33 795.25 19086.15 14989.76 13195.60 11483.42 7798.32 13387.37 13893.25 16697.56 95
patch_mono-293.74 4694.32 2592.01 13097.54 5778.37 25793.40 21897.19 3588.02 10194.99 3597.21 4288.35 2198.44 12194.07 3298.09 6399.23 1
原ACMM192.01 13097.34 6481.05 18596.81 7078.89 29090.45 12095.92 10082.65 8798.84 8880.68 23798.26 5796.14 151
UniMVSNet (Re)89.80 12689.07 13092.01 13093.60 21584.52 8394.78 13997.47 1189.26 5886.44 19392.32 23482.10 9897.39 21484.81 16980.84 32294.12 239
MG-MVS91.77 8291.70 8192.00 13397.08 7180.03 21793.60 21295.18 19487.85 10990.89 11696.47 8082.06 10098.36 12685.07 16497.04 8897.62 90
EIA-MVS91.95 7991.94 7791.98 13495.16 14080.01 21895.36 9896.73 7988.44 8589.34 13692.16 23983.82 7398.45 11989.35 11197.06 8797.48 97
PVSNet_Blended90.73 10190.32 10091.98 13496.12 9781.25 17992.55 25296.83 6682.04 24089.10 13992.56 22781.04 10998.85 8686.72 14895.91 11095.84 166
PS-MVSNAJ91.18 9490.92 9291.96 13695.26 13682.60 14992.09 26995.70 15886.27 14491.84 10092.46 22979.70 12198.99 7089.08 11595.86 11194.29 233
TAMVS89.21 14588.29 15691.96 13693.71 21082.62 14893.30 22594.19 24182.22 23587.78 16293.94 18078.83 13196.95 24577.70 27192.98 17196.32 144
SDMVSNet90.19 11389.61 11691.93 13896.00 10583.09 12892.89 24295.98 13488.73 7686.85 18495.20 12872.09 21997.08 23688.90 11789.85 20695.63 176
FA-MVS(test-final)89.66 12888.91 13591.93 13894.57 17380.27 20591.36 28394.74 22284.87 17889.82 13092.61 22674.72 18298.47 11483.97 18093.53 15797.04 117
MVS_Test91.31 9191.11 8891.93 13894.37 18380.14 21093.46 21795.80 14986.46 14091.35 11293.77 19082.21 9698.09 15487.57 13494.95 13097.55 96
NR-MVSNet88.58 16887.47 17591.93 13893.04 23184.16 9594.77 14096.25 11289.05 6580.04 31693.29 20379.02 13097.05 24081.71 22180.05 33294.59 212
HyFIR lowres test88.09 17986.81 19191.93 13896.00 10580.63 19790.01 31095.79 15073.42 35087.68 16492.10 24573.86 19697.96 16580.75 23591.70 18397.19 107
GeoE90.05 11689.43 12191.90 14395.16 14080.37 20495.80 7894.65 22683.90 19687.55 16794.75 14778.18 14297.62 18781.28 22593.63 15497.71 88
thisisatest053088.67 16387.61 17191.86 14494.87 15680.07 21394.63 14889.90 34884.00 19488.46 14993.78 18966.88 28198.46 11583.30 18892.65 17597.06 115
xiu_mvs_v2_base91.13 9590.89 9491.86 14494.97 14982.42 15192.24 26395.64 16586.11 15291.74 10593.14 20979.67 12498.89 8189.06 11695.46 12094.28 234
DU-MVS89.34 14488.50 14891.85 14693.04 23183.72 10494.47 15896.59 9089.50 5086.46 19093.29 20377.25 14997.23 22784.92 16681.02 31894.59 212
OPM-MVS90.12 11489.56 11791.82 14793.14 22683.90 10094.16 17895.74 15488.96 7187.86 15895.43 11972.48 21597.91 16988.10 12890.18 19993.65 269
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
HQP_MVS90.60 10890.19 10291.82 14794.70 16582.73 14295.85 7596.22 11590.81 1786.91 18094.86 14074.23 18798.12 14488.15 12489.99 20094.63 209
UniMVSNet_NR-MVSNet89.92 12389.29 12691.81 14993.39 22183.72 10494.43 16197.12 4189.80 4186.46 19093.32 20083.16 7997.23 22784.92 16681.02 31894.49 224
diffmvspermissive91.37 9091.23 8691.77 15093.09 22880.27 20592.36 25795.52 17387.03 12691.40 11194.93 13680.08 11597.44 20292.13 6994.56 13997.61 91
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
1112_ss88.42 16987.33 17891.72 15194.92 15380.98 18792.97 24094.54 22778.16 30683.82 26293.88 18578.78 13397.91 16979.45 25389.41 21396.26 148
Fast-Effi-MVS+89.41 13988.64 14291.71 15294.74 16180.81 19393.54 21395.10 19883.11 21786.82 18690.67 29179.74 12097.75 17780.51 24093.55 15696.57 138
WTY-MVS89.60 13088.92 13491.67 15395.47 12781.15 18392.38 25694.78 22083.11 21789.06 14194.32 16278.67 13596.61 26281.57 22290.89 19397.24 104
TAPA-MVS84.62 688.16 17787.01 18791.62 15496.64 8080.65 19694.39 16596.21 11876.38 31986.19 19895.44 11779.75 11998.08 15662.75 36395.29 12596.13 152
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
iter_conf_final89.42 13888.69 14191.60 15595.12 14382.93 13595.75 8192.14 29487.32 12087.12 17594.07 17067.09 27797.55 19190.61 10189.01 22294.32 231
VPA-MVSNet89.62 12988.96 13291.60 15593.86 20382.89 13795.46 9697.33 2587.91 10488.43 15093.31 20174.17 19097.40 21187.32 13982.86 29494.52 217
FE-MVS87.40 20786.02 22591.57 15794.56 17479.69 22790.27 29993.72 25980.57 27188.80 14491.62 26265.32 29698.59 10674.97 29994.33 14696.44 141
XVG-OURS89.40 14188.70 14091.52 15894.06 19281.46 17491.27 28596.07 12886.14 15088.89 14395.77 10868.73 26597.26 22487.39 13789.96 20295.83 167
hse-mvs289.88 12589.34 12491.51 15994.83 15981.12 18493.94 19793.91 25389.80 4193.08 6393.60 19475.77 16497.66 18192.07 7077.07 35195.74 171
TranMVSNet+NR-MVSNet88.84 15887.95 16491.49 16092.68 24383.01 13294.92 13096.31 10489.88 3985.53 21193.85 18776.63 15796.96 24481.91 21479.87 33594.50 222
AUN-MVS87.78 18786.54 20591.48 16194.82 16081.05 18593.91 20193.93 25083.00 22086.93 17893.53 19569.50 25197.67 17986.14 15177.12 35095.73 173
XVG-OURS-SEG-HR89.95 12189.45 11991.47 16294.00 19881.21 18291.87 27296.06 13085.78 15588.55 14795.73 11074.67 18397.27 22288.71 12089.64 21195.91 162
MVS87.44 20586.10 22291.44 16392.61 24483.62 10992.63 24995.66 16267.26 37381.47 29592.15 24077.95 14398.22 13979.71 24995.48 11892.47 309
F-COLMAP87.95 18286.80 19291.40 16496.35 9280.88 19194.73 14295.45 17879.65 28182.04 29094.61 15371.13 22698.50 11076.24 28791.05 19194.80 206
dcpmvs_293.49 5194.19 3591.38 16597.69 5476.78 28994.25 17396.29 10588.33 8894.46 3896.88 5888.07 2598.64 10093.62 3898.09 6398.73 17
thisisatest051587.33 21085.99 22691.37 16693.49 21779.55 22990.63 29589.56 35480.17 27487.56 16690.86 28467.07 27898.28 13581.50 22393.02 17096.29 146
HQP-MVS89.80 12689.28 12791.34 16794.17 18981.56 16894.39 16596.04 13188.81 7285.43 22193.97 17973.83 19797.96 16587.11 14389.77 20994.50 222
mvsmamba89.96 12089.50 11891.33 16892.90 23881.82 16396.68 3392.37 28589.03 6787.00 17694.85 14273.05 20797.65 18291.03 9188.63 22794.51 219
FMVSNet387.40 20786.11 22191.30 16993.79 20883.64 10894.20 17794.81 21883.89 19784.37 24791.87 25468.45 26896.56 26778.23 26685.36 26793.70 268
FMVSNet287.19 22085.82 23391.30 16994.01 19583.67 10694.79 13894.94 20483.57 20483.88 26192.05 24966.59 28696.51 27077.56 27385.01 27093.73 265
RPMNet83.95 28381.53 29291.21 17190.58 31979.34 23685.24 36496.76 7571.44 36485.55 20882.97 37170.87 23198.91 8061.01 36789.36 21595.40 182
IB-MVS80.51 1585.24 26683.26 27891.19 17292.13 25679.86 22391.75 27591.29 32083.28 21480.66 30688.49 32761.28 32498.46 11580.99 23179.46 33895.25 187
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
CLD-MVS89.47 13588.90 13691.18 17394.22 18882.07 15892.13 26796.09 12687.90 10585.37 22792.45 23074.38 18597.56 19087.15 14190.43 19593.93 248
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
iter_conf0588.85 15788.08 16191.17 17494.27 18781.64 16795.18 11392.15 29386.23 14787.28 17294.07 17063.89 30897.55 19190.63 10089.00 22394.32 231
LPG-MVS_test89.45 13688.90 13691.12 17594.47 17781.49 17295.30 10396.14 12086.73 13585.45 21895.16 13069.89 24598.10 14687.70 13289.23 21893.77 262
LGP-MVS_train91.12 17594.47 17781.49 17296.14 12086.73 13585.45 21895.16 13069.89 24598.10 14687.70 13289.23 21893.77 262
ACMM84.12 989.14 14688.48 15191.12 17594.65 16881.22 18195.31 10196.12 12385.31 16985.92 20194.34 16070.19 24398.06 15885.65 15988.86 22594.08 243
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
tttt051788.61 16587.78 16891.11 17894.96 15077.81 27295.35 9989.69 35185.09 17588.05 15694.59 15566.93 27998.48 11183.27 18992.13 18297.03 118
GBi-Net87.26 21285.98 22791.08 17994.01 19583.10 12595.14 11794.94 20483.57 20484.37 24791.64 25866.59 28696.34 28378.23 26685.36 26793.79 257
test187.26 21285.98 22791.08 17994.01 19583.10 12595.14 11794.94 20483.57 20484.37 24791.64 25866.59 28696.34 28378.23 26685.36 26793.79 257
FMVSNet185.85 25384.11 26791.08 17992.81 24083.10 12595.14 11794.94 20481.64 25482.68 28291.64 25859.01 34196.34 28375.37 29383.78 27993.79 257
Test_1112_low_res87.65 19186.51 20691.08 17994.94 15279.28 24091.77 27494.30 23776.04 32483.51 27192.37 23277.86 14697.73 17878.69 26189.13 22096.22 149
PS-MVSNAJss89.97 11989.62 11591.02 18391.90 26580.85 19295.26 10895.98 13486.26 14586.21 19794.29 16479.70 12197.65 18288.87 11988.10 23794.57 214
BH-RMVSNet88.37 17187.48 17491.02 18395.28 13379.45 23292.89 24293.07 26985.45 16686.91 18094.84 14470.35 24097.76 17473.97 30594.59 13895.85 165
UniMVSNet_ETH3D87.53 20186.37 21091.00 18592.44 24878.96 24594.74 14195.61 16684.07 19385.36 22894.52 15759.78 33797.34 21682.93 19387.88 24296.71 134
FIs90.51 10990.35 9990.99 18693.99 19980.98 18795.73 8297.54 489.15 6286.72 18794.68 15081.83 10497.24 22685.18 16388.31 23694.76 207
ACMP84.23 889.01 15588.35 15290.99 18694.73 16281.27 17895.07 12195.89 14486.48 13983.67 26694.30 16369.33 25497.99 16387.10 14588.55 22893.72 266
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
Anonymous2023121186.59 23885.13 25090.98 18896.52 8781.50 17096.14 5796.16 11973.78 34683.65 26792.15 24063.26 31297.37 21582.82 19781.74 30794.06 244
sss88.93 15688.26 15890.94 18994.05 19380.78 19491.71 27695.38 18481.55 25788.63 14693.91 18475.04 17695.47 31882.47 20291.61 18496.57 138
sd_testset88.59 16787.85 16790.83 19096.00 10580.42 20392.35 25894.71 22388.73 7686.85 18495.20 12867.31 27296.43 27779.64 25189.85 20695.63 176
PVSNet_BlendedMVS89.98 11889.70 11490.82 19196.12 9781.25 17993.92 19996.83 6683.49 20889.10 13992.26 23781.04 10998.85 8686.72 14887.86 24392.35 315
cascas86.43 24584.98 25390.80 19292.10 25880.92 19090.24 30395.91 14173.10 35383.57 27088.39 32865.15 29897.46 19984.90 16891.43 18594.03 246
ECVR-MVScopyleft89.09 14988.53 14690.77 19395.62 12275.89 30196.16 5384.22 37487.89 10790.20 12496.65 7063.19 31398.10 14685.90 15696.94 9098.33 43
GA-MVS86.61 23685.27 24890.66 19491.33 28878.71 24790.40 29893.81 25785.34 16885.12 23189.57 31261.25 32597.11 23580.99 23189.59 21296.15 150
thres600view787.65 19186.67 19890.59 19596.08 10178.72 24694.88 13291.58 31187.06 12588.08 15492.30 23568.91 26298.10 14670.05 33091.10 18794.96 197
thres40087.62 19686.64 19990.57 19695.99 10878.64 24894.58 15091.98 30186.94 12988.09 15291.77 25569.18 25998.10 14670.13 32791.10 18794.96 197
baseline188.10 17887.28 18090.57 19694.96 15080.07 21394.27 17291.29 32086.74 13487.41 16894.00 17776.77 15496.20 28780.77 23479.31 34095.44 180
FC-MVSNet-test90.27 11190.18 10390.53 19893.71 21079.85 22495.77 8097.59 389.31 5686.27 19694.67 15181.93 10397.01 24284.26 17688.09 23994.71 208
PAPM86.68 23585.39 24490.53 19893.05 23079.33 23989.79 31394.77 22178.82 29281.95 29193.24 20576.81 15297.30 21866.94 34693.16 16894.95 200
WR-MVS88.38 17087.67 17090.52 20093.30 22380.18 20893.26 22895.96 13788.57 8385.47 21792.81 22076.12 15996.91 24881.24 22682.29 29894.47 227
MVSTER88.84 15888.29 15690.51 20192.95 23680.44 20293.73 20695.01 20184.66 18587.15 17393.12 21072.79 21197.21 22987.86 12987.36 25293.87 252
RRT_MVS89.09 14988.62 14590.49 20292.85 23979.65 22896.41 3994.41 23288.22 9485.50 21494.77 14669.36 25397.31 21789.33 11286.73 25994.51 219
testdata90.49 20296.40 8977.89 26995.37 18672.51 35893.63 5296.69 6682.08 9997.65 18283.08 19097.39 8295.94 161
test111189.10 14788.64 14290.48 20495.53 12674.97 30896.08 6184.89 37288.13 9990.16 12696.65 7063.29 31198.10 14686.14 15196.90 9298.39 39
tt080586.92 22785.74 23990.48 20492.22 25279.98 22095.63 9194.88 21283.83 19984.74 23792.80 22157.61 34597.67 17985.48 16284.42 27493.79 257
jajsoiax88.24 17587.50 17390.48 20490.89 30880.14 21095.31 10195.65 16484.97 17784.24 25594.02 17565.31 29797.42 20488.56 12188.52 23093.89 249
PatchMatch-RL86.77 23485.54 24090.47 20795.88 11182.71 14490.54 29692.31 28879.82 27984.32 25291.57 26668.77 26496.39 27973.16 31093.48 16192.32 316
tfpn200view987.58 19986.64 19990.41 20895.99 10878.64 24894.58 15091.98 30186.94 12988.09 15291.77 25569.18 25998.10 14670.13 32791.10 18794.48 225
VPNet88.20 17687.47 17590.39 20993.56 21679.46 23194.04 18995.54 17188.67 7986.96 17794.58 15669.33 25497.15 23184.05 17980.53 32794.56 215
ACMH80.38 1785.36 26183.68 27490.39 20994.45 18080.63 19794.73 14294.85 21482.09 23777.24 33892.65 22460.01 33597.58 18872.25 31484.87 27192.96 295
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
thres100view90087.63 19486.71 19690.38 21196.12 9778.55 25095.03 12491.58 31187.15 12288.06 15592.29 23668.91 26298.10 14670.13 32791.10 18794.48 225
mvs_tets88.06 18187.28 18090.38 21190.94 30479.88 22295.22 11095.66 16285.10 17484.21 25693.94 18063.53 30997.40 21188.50 12288.40 23493.87 252
131487.51 20286.57 20490.34 21392.42 24979.74 22692.63 24995.35 18878.35 30180.14 31391.62 26274.05 19297.15 23181.05 22793.53 15794.12 239
LTVRE_ROB82.13 1386.26 24784.90 25690.34 21394.44 18181.50 17092.31 26294.89 21083.03 21979.63 32292.67 22369.69 24897.79 17271.20 31886.26 26291.72 326
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
bld_raw_dy_0_6487.60 19886.73 19490.21 21591.72 27280.26 20795.09 12088.61 35685.68 15985.55 20894.38 15963.93 30796.66 25687.73 13187.84 24493.72 266
test_djsdf89.03 15388.64 14290.21 21590.74 31479.28 24095.96 7195.90 14284.66 18585.33 22992.94 21574.02 19397.30 21889.64 10988.53 22994.05 245
v2v48287.84 18487.06 18490.17 21790.99 30079.23 24394.00 19495.13 19584.87 17885.53 21192.07 24874.45 18497.45 20084.71 17181.75 30693.85 255
pmmvs485.43 25983.86 27290.16 21890.02 33182.97 13490.27 29992.67 28075.93 32580.73 30491.74 25771.05 22795.73 30978.85 26083.46 28691.78 325
V4287.68 18986.86 18990.15 21990.58 31980.14 21094.24 17595.28 18983.66 20285.67 20591.33 26874.73 18197.41 20984.43 17581.83 30492.89 298
MSDG84.86 27283.09 28190.14 22093.80 20680.05 21589.18 32593.09 26878.89 29078.19 33191.91 25265.86 29597.27 22268.47 33688.45 23293.11 290
anonymousdsp87.84 18487.09 18390.12 22189.13 34180.54 20094.67 14695.55 16982.05 23883.82 26292.12 24271.47 22497.15 23187.15 14187.80 24792.67 303
thres20087.21 21886.24 21790.12 22195.36 13078.53 25193.26 22892.10 29586.42 14188.00 15791.11 27969.24 25898.00 16269.58 33191.04 19293.83 256
CR-MVSNet85.35 26283.76 27390.12 22190.58 31979.34 23685.24 36491.96 30378.27 30385.55 20887.87 33871.03 22895.61 31073.96 30689.36 21595.40 182
v114487.61 19786.79 19390.06 22491.01 29979.34 23693.95 19695.42 18383.36 21285.66 20691.31 27174.98 17797.42 20483.37 18782.06 30093.42 278
XXY-MVS87.65 19186.85 19090.03 22592.14 25580.60 19993.76 20595.23 19182.94 22284.60 23994.02 17574.27 18695.49 31781.04 22883.68 28294.01 247
Vis-MVSNet (Re-imp)89.59 13189.44 12090.03 22595.74 11675.85 30295.61 9290.80 33287.66 11587.83 16095.40 12076.79 15396.46 27578.37 26296.73 9797.80 84
test250687.21 21886.28 21590.02 22795.62 12273.64 32096.25 4871.38 39687.89 10790.45 12096.65 7055.29 35498.09 15486.03 15596.94 9098.33 43
BH-untuned88.60 16688.13 16090.01 22895.24 13778.50 25393.29 22694.15 24384.75 18284.46 24493.40 19775.76 16697.40 21177.59 27294.52 14194.12 239
v119287.25 21486.33 21290.00 22990.76 31379.04 24493.80 20395.48 17482.57 22985.48 21691.18 27573.38 20597.42 20482.30 20682.06 30093.53 272
v7n86.81 22985.76 23789.95 23090.72 31579.25 24295.07 12195.92 13984.45 18882.29 28590.86 28472.60 21497.53 19479.42 25680.52 32893.08 292
v887.50 20486.71 19689.89 23191.37 28579.40 23394.50 15495.38 18484.81 18183.60 26991.33 26876.05 16097.42 20482.84 19680.51 32992.84 300
v1087.25 21486.38 20989.85 23291.19 29179.50 23094.48 15595.45 17883.79 20083.62 26891.19 27375.13 17497.42 20481.94 21380.60 32492.63 305
baseline286.50 24285.39 24489.84 23391.12 29676.70 29191.88 27188.58 35782.35 23479.95 31790.95 28373.42 20397.63 18680.27 24489.95 20395.19 188
pm-mvs186.61 23685.54 24089.82 23491.44 28080.18 20895.28 10794.85 21483.84 19881.66 29392.62 22572.45 21796.48 27279.67 25078.06 34392.82 301
TR-MVS86.78 23185.76 23789.82 23494.37 18378.41 25592.47 25392.83 27481.11 26786.36 19492.40 23168.73 26597.48 19773.75 30889.85 20693.57 271
ACMH+81.04 1485.05 26983.46 27789.82 23494.66 16779.37 23494.44 16094.12 24682.19 23678.04 33392.82 21958.23 34397.54 19373.77 30782.90 29392.54 306
EI-MVSNet89.10 14788.86 13889.80 23791.84 26778.30 25993.70 20995.01 20185.73 15787.15 17395.28 12279.87 11897.21 22983.81 18387.36 25293.88 251
v14419287.19 22086.35 21189.74 23890.64 31778.24 26193.92 19995.43 18181.93 24385.51 21391.05 28174.21 18997.45 20082.86 19581.56 30893.53 272
COLMAP_ROBcopyleft80.39 1683.96 28282.04 28989.74 23895.28 13379.75 22594.25 17392.28 28975.17 33278.02 33493.77 19058.60 34297.84 17165.06 35685.92 26391.63 328
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
SCA86.32 24685.18 24989.73 24092.15 25476.60 29291.12 28891.69 30883.53 20785.50 21488.81 32166.79 28296.48 27276.65 28190.35 19796.12 153
IterMVS-LS88.36 17287.91 16689.70 24193.80 20678.29 26093.73 20695.08 20085.73 15784.75 23691.90 25379.88 11796.92 24783.83 18282.51 29593.89 249
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v192192086.97 22686.06 22489.69 24290.53 32278.11 26493.80 20395.43 18181.90 24585.33 22991.05 28172.66 21297.41 20982.05 21181.80 30593.53 272
Fast-Effi-MVS+-dtu87.44 20586.72 19589.63 24392.04 25977.68 27894.03 19093.94 24985.81 15482.42 28491.32 27070.33 24197.06 23980.33 24390.23 19894.14 238
v124086.78 23185.85 23289.56 24490.45 32377.79 27493.61 21195.37 18681.65 25385.43 22191.15 27771.50 22397.43 20381.47 22482.05 30293.47 276
Effi-MVS+-dtu88.65 16488.35 15289.54 24593.33 22276.39 29694.47 15894.36 23587.70 11285.43 22189.56 31373.45 20297.26 22485.57 16191.28 18694.97 194
AllTest83.42 28781.39 29389.52 24695.01 14677.79 27493.12 23290.89 33077.41 31076.12 34693.34 19854.08 35997.51 19568.31 33884.27 27693.26 281
TestCases89.52 24695.01 14677.79 27490.89 33077.41 31076.12 34693.34 19854.08 35997.51 19568.31 33884.27 27693.26 281
mvs_anonymous89.37 14389.32 12589.51 24893.47 21874.22 31591.65 27994.83 21682.91 22385.45 21893.79 18881.23 10896.36 28286.47 15094.09 14797.94 74
XVG-ACMP-BASELINE86.00 24984.84 25889.45 24991.20 29078.00 26591.70 27795.55 16985.05 17682.97 27992.25 23854.49 35797.48 19782.93 19387.45 25192.89 298
MVP-Stereo85.97 25084.86 25789.32 25090.92 30682.19 15692.11 26894.19 24178.76 29478.77 33091.63 26168.38 26996.56 26775.01 29893.95 14989.20 360
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
PatchmatchNetpermissive85.85 25384.70 26089.29 25191.76 27175.54 30588.49 33491.30 31981.63 25585.05 23288.70 32571.71 22096.24 28674.61 30289.05 22196.08 156
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
v14887.04 22486.32 21389.21 25290.94 30477.26 28393.71 20894.43 23084.84 18084.36 25090.80 28876.04 16197.05 24082.12 20979.60 33793.31 280
tfpnnormal84.72 27483.23 27989.20 25392.79 24180.05 21594.48 15595.81 14882.38 23281.08 30191.21 27269.01 26196.95 24561.69 36580.59 32590.58 350
cl2286.78 23185.98 22789.18 25492.34 25077.62 27990.84 29294.13 24581.33 26183.97 26090.15 30073.96 19496.60 26484.19 17782.94 29093.33 279
BH-w/o87.57 20087.05 18589.12 25594.90 15577.90 26892.41 25493.51 26282.89 22483.70 26591.34 26775.75 16797.07 23875.49 29193.49 15992.39 313
WR-MVS_H87.80 18687.37 17789.10 25693.23 22478.12 26395.61 9297.30 2987.90 10583.72 26492.01 25079.65 12596.01 29576.36 28480.54 32693.16 288
miper_enhance_ethall86.90 22886.18 21889.06 25791.66 27777.58 28090.22 30594.82 21779.16 28784.48 24389.10 31779.19 12996.66 25684.06 17882.94 29092.94 296
c3_l87.14 22286.50 20789.04 25892.20 25377.26 28391.22 28794.70 22482.01 24184.34 25190.43 29578.81 13296.61 26283.70 18581.09 31593.25 283
miper_ehance_all_eth87.22 21786.62 20289.02 25992.13 25677.40 28290.91 29194.81 21881.28 26284.32 25290.08 30279.26 12796.62 25983.81 18382.94 29093.04 293
gg-mvs-nofinetune81.77 29979.37 31488.99 26090.85 31077.73 27786.29 35679.63 38574.88 33783.19 27869.05 38660.34 33296.11 29175.46 29294.64 13793.11 290
pmmvs683.42 28781.60 29188.87 26188.01 35577.87 27094.96 12794.24 24074.67 33878.80 32991.09 28060.17 33496.49 27177.06 28075.40 35792.23 318
test_cas_vis1_n_192088.83 16188.85 13988.78 26291.15 29576.72 29093.85 20294.93 20883.23 21692.81 7296.00 9661.17 32894.45 32891.67 8394.84 13195.17 189
MIMVSNet82.59 29380.53 29888.76 26391.51 27978.32 25886.57 35590.13 34179.32 28380.70 30588.69 32652.98 36393.07 35266.03 35188.86 22594.90 201
cl____86.52 24185.78 23488.75 26492.03 26076.46 29490.74 29394.30 23781.83 24983.34 27590.78 28975.74 16996.57 26581.74 21981.54 30993.22 285
DIV-MVS_self_test86.53 24085.78 23488.75 26492.02 26176.45 29590.74 29394.30 23781.83 24983.34 27590.82 28775.75 16796.57 26581.73 22081.52 31093.24 284
CP-MVSNet87.63 19487.26 18288.74 26693.12 22776.59 29395.29 10596.58 9188.43 8683.49 27292.98 21475.28 17395.83 30378.97 25981.15 31493.79 257
eth_miper_zixun_eth86.50 24285.77 23688.68 26791.94 26275.81 30390.47 29794.89 21082.05 23884.05 25790.46 29475.96 16296.77 25282.76 19979.36 33993.46 277
CHOSEN 280x42085.15 26783.99 27088.65 26892.47 24678.40 25679.68 38492.76 27674.90 33681.41 29789.59 31169.85 24795.51 31479.92 24895.29 12592.03 321
PS-CasMVS87.32 21186.88 18888.63 26992.99 23476.33 29895.33 10096.61 8988.22 9483.30 27793.07 21273.03 20995.79 30678.36 26381.00 32093.75 264
TransMVSNet (Re)84.43 27783.06 28288.54 27091.72 27278.44 25495.18 11392.82 27582.73 22779.67 32192.12 24273.49 20195.96 29771.10 32268.73 37391.21 338
EG-PatchMatch MVS82.37 29580.34 30188.46 27190.27 32579.35 23592.80 24694.33 23677.14 31473.26 36290.18 29947.47 37496.72 25370.25 32487.32 25489.30 358
PEN-MVS86.80 23086.27 21688.40 27292.32 25175.71 30495.18 11396.38 10187.97 10282.82 28193.15 20873.39 20495.92 29876.15 28879.03 34293.59 270
Baseline_NR-MVSNet87.07 22386.63 20188.40 27291.44 28077.87 27094.23 17692.57 28284.12 19285.74 20492.08 24677.25 14996.04 29282.29 20779.94 33391.30 336
D2MVS85.90 25185.09 25188.35 27490.79 31177.42 28191.83 27395.70 15880.77 27080.08 31590.02 30366.74 28496.37 28081.88 21587.97 24191.26 337
pmmvs584.21 27882.84 28688.34 27588.95 34376.94 28792.41 25491.91 30575.63 32780.28 31091.18 27564.59 30195.57 31177.09 27983.47 28592.53 307
LCM-MVSNet-Re88.30 17488.32 15588.27 27694.71 16472.41 33793.15 23190.98 32787.77 11079.25 32591.96 25178.35 14095.75 30783.04 19195.62 11496.65 135
CostFormer85.77 25584.94 25588.26 27791.16 29472.58 33589.47 32091.04 32676.26 32286.45 19289.97 30570.74 23396.86 25182.35 20587.07 25795.34 185
ITE_SJBPF88.24 27891.88 26677.05 28692.92 27185.54 16480.13 31493.30 20257.29 34696.20 28772.46 31384.71 27291.49 332
PVSNet78.82 1885.55 25784.65 26188.23 27994.72 16371.93 33887.12 35192.75 27778.80 29384.95 23490.53 29364.43 30296.71 25574.74 30093.86 15196.06 158
IterMVS-SCA-FT85.45 25884.53 26488.18 28091.71 27476.87 28890.19 30692.65 28185.40 16781.44 29690.54 29266.79 28295.00 32681.04 22881.05 31692.66 304
EPNet_dtu86.49 24485.94 23088.14 28190.24 32672.82 32794.11 18192.20 29186.66 13779.42 32492.36 23373.52 20095.81 30571.26 31793.66 15395.80 169
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Patchmtry82.71 29180.93 29788.06 28290.05 33076.37 29784.74 36991.96 30372.28 36181.32 29987.87 33871.03 22895.50 31668.97 33380.15 33192.32 316
test_vis1_n_192089.39 14289.84 11388.04 28392.97 23572.64 33294.71 14496.03 13386.18 14891.94 9796.56 7861.63 32095.74 30893.42 4195.11 12995.74 171
DTE-MVSNet86.11 24885.48 24287.98 28491.65 27874.92 30994.93 12995.75 15387.36 11982.26 28693.04 21372.85 21095.82 30474.04 30477.46 34893.20 286
PMMVS85.71 25684.96 25487.95 28588.90 34477.09 28588.68 33290.06 34372.32 36086.47 18990.76 29072.15 21894.40 33081.78 21893.49 15992.36 314
GG-mvs-BLEND87.94 28689.73 33777.91 26787.80 34178.23 38980.58 30783.86 36459.88 33695.33 32071.20 31892.22 18190.60 349
pmmvs-eth3d80.97 31278.72 32487.74 28784.99 37379.97 22190.11 30891.65 30975.36 32973.51 36086.03 35459.45 33893.96 33975.17 29572.21 36289.29 359
MS-PatchMatch85.05 26984.16 26687.73 28891.42 28378.51 25291.25 28693.53 26177.50 30980.15 31291.58 26461.99 31895.51 31475.69 29094.35 14589.16 361
test_040281.30 30979.17 31987.67 28993.19 22578.17 26292.98 23991.71 30675.25 33176.02 34890.31 29759.23 33996.37 28050.22 38283.63 28388.47 367
IterMVS84.88 27183.98 27187.60 29091.44 28076.03 30090.18 30792.41 28483.24 21581.06 30290.42 29666.60 28594.28 33479.46 25280.98 32192.48 308
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Patchmatch-test81.37 30779.30 31587.58 29190.92 30674.16 31780.99 38087.68 36270.52 36876.63 34388.81 32171.21 22592.76 35460.01 37186.93 25895.83 167
EPMVS83.90 28582.70 28787.51 29290.23 32772.67 33088.62 33381.96 38081.37 26085.01 23388.34 32966.31 28994.45 32875.30 29487.12 25595.43 181
ADS-MVSNet281.66 30279.71 31187.50 29391.35 28674.19 31683.33 37488.48 35872.90 35582.24 28785.77 35764.98 29993.20 35064.57 35783.74 28095.12 190
OurMVSNet-221017-085.35 26284.64 26287.49 29490.77 31272.59 33494.01 19294.40 23384.72 18379.62 32393.17 20761.91 31996.72 25381.99 21281.16 31293.16 288
tpm284.08 28082.94 28387.48 29591.39 28471.27 34589.23 32490.37 33671.95 36284.64 23889.33 31467.30 27396.55 26975.17 29587.09 25694.63 209
RPSCF85.07 26884.27 26587.48 29592.91 23770.62 35391.69 27892.46 28376.20 32382.67 28395.22 12563.94 30597.29 22177.51 27485.80 26494.53 216
miper_lstm_enhance85.27 26584.59 26387.31 29791.28 28974.63 31087.69 34594.09 24781.20 26681.36 29889.85 30874.97 17894.30 33381.03 23079.84 33693.01 294
FMVSNet581.52 30579.60 31287.27 29891.17 29277.95 26691.49 28192.26 29076.87 31576.16 34587.91 33751.67 36492.34 35767.74 34281.16 31291.52 331
USDC82.76 29081.26 29587.26 29991.17 29274.55 31189.27 32293.39 26478.26 30475.30 35192.08 24654.43 35896.63 25871.64 31585.79 26590.61 347
test-LLR85.87 25285.41 24387.25 30090.95 30271.67 34389.55 31689.88 34983.41 21084.54 24187.95 33567.25 27495.11 32381.82 21693.37 16494.97 194
test-mter84.54 27683.64 27587.25 30090.95 30271.67 34389.55 31689.88 34979.17 28684.54 24187.95 33555.56 35195.11 32381.82 21693.37 16494.97 194
JIA-IIPM81.04 31078.98 32287.25 30088.64 34573.48 32281.75 37989.61 35373.19 35282.05 28973.71 38366.07 29495.87 30171.18 32084.60 27392.41 312
TDRefinement79.81 32277.34 32787.22 30379.24 38575.48 30693.12 23292.03 29876.45 31875.01 35291.58 26449.19 37096.44 27670.22 32669.18 37089.75 354
tpmvs83.35 28982.07 28887.20 30491.07 29871.00 35088.31 33791.70 30778.91 28980.49 30987.18 34769.30 25797.08 23668.12 34183.56 28493.51 275
ppachtmachnet_test81.84 29880.07 30687.15 30588.46 34974.43 31489.04 32892.16 29275.33 33077.75 33588.99 31866.20 29195.37 31965.12 35577.60 34691.65 327
dmvs_re84.20 27983.22 28087.14 30691.83 26977.81 27290.04 30990.19 33984.70 18481.49 29489.17 31664.37 30391.13 36871.58 31685.65 26692.46 310
tpm cat181.96 29680.27 30287.01 30791.09 29771.02 34987.38 34991.53 31466.25 37480.17 31186.35 35368.22 27096.15 29069.16 33282.29 29893.86 254
test_fmvs1_n87.03 22587.04 18686.97 30889.74 33671.86 33994.55 15294.43 23078.47 29891.95 9695.50 11651.16 36693.81 34093.02 4894.56 13995.26 186
OpenMVS_ROBcopyleft74.94 1979.51 32577.03 33286.93 30987.00 36176.23 29992.33 26090.74 33368.93 37174.52 35688.23 33249.58 36996.62 25957.64 37584.29 27587.94 370
SixPastTwentyTwo83.91 28482.90 28486.92 31090.99 30070.67 35293.48 21591.99 30085.54 16477.62 33792.11 24460.59 33196.87 25076.05 28977.75 34593.20 286
ADS-MVSNet81.56 30479.78 30886.90 31191.35 28671.82 34083.33 37489.16 35572.90 35582.24 28785.77 35764.98 29993.76 34164.57 35783.74 28095.12 190
PatchT82.68 29281.27 29486.89 31290.09 32970.94 35184.06 37190.15 34074.91 33585.63 20783.57 36669.37 25294.87 32765.19 35388.50 23194.84 203
tpm84.73 27384.02 26986.87 31390.33 32468.90 36089.06 32789.94 34680.85 26985.75 20389.86 30768.54 26795.97 29677.76 27084.05 27895.75 170
Patchmatch-RL test81.67 30179.96 30786.81 31485.42 37171.23 34682.17 37887.50 36378.47 29877.19 33982.50 37370.81 23293.48 34582.66 20072.89 36195.71 174
test_vis1_n86.56 23986.49 20886.78 31588.51 34672.69 32994.68 14593.78 25879.55 28290.70 11795.31 12148.75 37193.28 34893.15 4593.99 14894.38 229
test_fmvs187.34 20987.56 17286.68 31690.59 31871.80 34194.01 19294.04 24878.30 30291.97 9495.22 12556.28 34993.71 34292.89 4994.71 13394.52 217
MDA-MVSNet-bldmvs78.85 32976.31 33486.46 31789.76 33573.88 31888.79 33090.42 33579.16 28759.18 38288.33 33060.20 33394.04 33662.00 36468.96 37191.48 333
tpmrst85.35 26284.99 25286.43 31890.88 30967.88 36488.71 33191.43 31780.13 27586.08 20088.80 32373.05 20796.02 29482.48 20183.40 28895.40 182
TESTMET0.1,183.74 28682.85 28586.42 31989.96 33271.21 34789.55 31687.88 35977.41 31083.37 27487.31 34356.71 34793.65 34480.62 23892.85 17494.40 228
our_test_381.93 29780.46 30086.33 32088.46 34973.48 32288.46 33591.11 32276.46 31776.69 34288.25 33166.89 28094.36 33168.75 33479.08 34191.14 340
lessismore_v086.04 32188.46 34968.78 36180.59 38373.01 36390.11 30155.39 35296.43 27775.06 29765.06 37792.90 297
TinyColmap79.76 32377.69 32685.97 32291.71 27473.12 32489.55 31690.36 33775.03 33372.03 36690.19 29846.22 37696.19 28963.11 36181.03 31788.59 366
KD-MVS_2432*160078.50 33076.02 33785.93 32386.22 36474.47 31284.80 36792.33 28679.29 28476.98 34085.92 35553.81 36193.97 33767.39 34357.42 38589.36 356
miper_refine_blended78.50 33076.02 33785.93 32386.22 36474.47 31284.80 36792.33 28679.29 28476.98 34085.92 35553.81 36193.97 33767.39 34357.42 38589.36 356
K. test v381.59 30380.15 30585.91 32589.89 33469.42 35992.57 25187.71 36185.56 16373.44 36189.71 31055.58 35095.52 31377.17 27769.76 36792.78 302
mvsany_test185.42 26085.30 24785.77 32687.95 35775.41 30787.61 34880.97 38276.82 31688.68 14595.83 10477.44 14890.82 37085.90 15686.51 26091.08 344
MIMVSNet179.38 32677.28 32885.69 32786.35 36373.67 31991.61 28092.75 27778.11 30772.64 36488.12 33348.16 37291.97 36260.32 36877.49 34791.43 334
UnsupCasMVSNet_eth80.07 31978.27 32585.46 32885.24 37272.63 33388.45 33694.87 21382.99 22171.64 36888.07 33456.34 34891.75 36373.48 30963.36 38092.01 322
CL-MVSNet_self_test81.74 30080.53 29885.36 32985.96 36672.45 33690.25 30193.07 26981.24 26479.85 32087.29 34470.93 23092.52 35566.95 34569.23 36991.11 342
MDA-MVSNet_test_wron79.21 32877.19 33085.29 33088.22 35372.77 32885.87 35890.06 34374.34 34062.62 38087.56 34166.14 29291.99 36166.90 34973.01 35991.10 343
YYNet179.22 32777.20 32985.28 33188.20 35472.66 33185.87 35890.05 34574.33 34162.70 37887.61 34066.09 29392.03 35966.94 34672.97 36091.15 339
dp81.47 30680.23 30385.17 33289.92 33365.49 37186.74 35390.10 34276.30 32181.10 30087.12 34862.81 31495.92 29868.13 34079.88 33494.09 242
UnsupCasMVSNet_bld76.23 33873.27 34285.09 33383.79 37572.92 32585.65 36193.47 26371.52 36368.84 37479.08 37849.77 36893.21 34966.81 35060.52 38289.13 363
Anonymous2023120681.03 31179.77 31084.82 33487.85 35870.26 35591.42 28292.08 29673.67 34777.75 33589.25 31562.43 31693.08 35161.50 36682.00 30391.12 341
test0.0.03 182.41 29481.69 29084.59 33588.23 35272.89 32690.24 30387.83 36083.41 21079.86 31989.78 30967.25 27488.99 37865.18 35483.42 28791.90 324
CMPMVSbinary59.16 2180.52 31479.20 31884.48 33683.98 37467.63 36689.95 31293.84 25664.79 37766.81 37691.14 27857.93 34495.17 32176.25 28688.10 23790.65 346
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
CVMVSNet84.69 27584.79 25984.37 33791.84 26764.92 37393.70 20991.47 31666.19 37586.16 19995.28 12267.18 27693.33 34780.89 23390.42 19694.88 202
PVSNet_073.20 2077.22 33574.83 34184.37 33790.70 31671.10 34883.09 37689.67 35272.81 35773.93 35983.13 36860.79 33093.70 34368.54 33550.84 38988.30 368
LF4IMVS80.37 31779.07 32184.27 33986.64 36269.87 35889.39 32191.05 32576.38 31974.97 35390.00 30447.85 37394.25 33574.55 30380.82 32388.69 365
Anonymous2024052180.44 31679.21 31784.11 34085.75 36967.89 36392.86 24493.23 26675.61 32875.59 35087.47 34250.03 36794.33 33271.14 32181.21 31190.12 352
PM-MVS78.11 33276.12 33684.09 34183.54 37670.08 35688.97 32985.27 37179.93 27774.73 35586.43 35134.70 38593.48 34579.43 25572.06 36388.72 364
test_fmvs283.98 28184.03 26883.83 34287.16 36067.53 36793.93 19892.89 27277.62 30886.89 18393.53 19547.18 37592.02 36090.54 10286.51 26091.93 323
testgi80.94 31380.20 30483.18 34387.96 35666.29 36891.28 28490.70 33483.70 20178.12 33292.84 21751.37 36590.82 37063.34 36082.46 29692.43 311
KD-MVS_self_test80.20 31879.24 31683.07 34485.64 37065.29 37291.01 29093.93 25078.71 29676.32 34486.40 35259.20 34092.93 35372.59 31269.35 36891.00 345
testing380.46 31579.59 31383.06 34593.44 22064.64 37493.33 22085.47 36984.34 18979.93 31890.84 28644.35 37992.39 35657.06 37787.56 24892.16 320
ambc83.06 34579.99 38363.51 37877.47 38592.86 27374.34 35884.45 36328.74 38695.06 32573.06 31168.89 37290.61 347
test20.0379.95 32179.08 32082.55 34785.79 36867.74 36591.09 28991.08 32381.23 26574.48 35789.96 30661.63 32090.15 37260.08 36976.38 35389.76 353
test_vis1_rt77.96 33376.46 33382.48 34885.89 36771.74 34290.25 30178.89 38671.03 36771.30 36981.35 37542.49 38191.05 36984.55 17382.37 29784.65 373
EU-MVSNet81.32 30880.95 29682.42 34988.50 34863.67 37793.32 22191.33 31864.02 37880.57 30892.83 21861.21 32792.27 35876.34 28580.38 33091.32 335
myMVS_eth3d79.67 32478.79 32382.32 35091.92 26364.08 37589.75 31487.40 36481.72 25178.82 32787.20 34545.33 37791.29 36659.09 37387.84 24491.60 329
pmmvs371.81 34468.71 34781.11 35175.86 38670.42 35486.74 35383.66 37558.95 38268.64 37580.89 37636.93 38389.52 37563.10 36263.59 37983.39 374
Syy-MVS80.07 31979.78 30880.94 35291.92 26359.93 38389.75 31487.40 36481.72 25178.82 32787.20 34566.29 29091.29 36647.06 38487.84 24491.60 329
new-patchmatchnet76.41 33775.17 34080.13 35382.65 37959.61 38487.66 34691.08 32378.23 30569.85 37283.22 36754.76 35591.63 36564.14 35964.89 37889.16 361
mvsany_test374.95 33973.26 34380.02 35474.61 38763.16 37985.53 36278.42 38774.16 34274.89 35486.46 35036.02 38489.09 37782.39 20466.91 37487.82 371
test_fmvs377.67 33477.16 33179.22 35579.52 38461.14 38192.34 25991.64 31073.98 34478.86 32686.59 34927.38 38987.03 38088.12 12775.97 35589.50 355
DSMNet-mixed76.94 33676.29 33578.89 35683.10 37756.11 39287.78 34279.77 38460.65 38175.64 34988.71 32461.56 32288.34 37960.07 37089.29 21792.21 319
EGC-MVSNET61.97 35256.37 35678.77 35789.63 33873.50 32189.12 32682.79 3770.21 4011.24 40284.80 36139.48 38290.04 37344.13 38675.94 35672.79 385
new_pmnet72.15 34270.13 34678.20 35882.95 37865.68 36983.91 37282.40 37962.94 38064.47 37779.82 37742.85 38086.26 38457.41 37674.44 35882.65 378
MVS-HIRNet73.70 34172.20 34478.18 35991.81 27056.42 39182.94 37782.58 37855.24 38368.88 37366.48 38755.32 35395.13 32258.12 37488.42 23383.01 376
LCM-MVSNet66.00 34962.16 35477.51 36064.51 39758.29 38683.87 37390.90 32948.17 38754.69 38473.31 38416.83 39886.75 38165.47 35261.67 38187.48 372
APD_test169.04 34566.26 35177.36 36180.51 38262.79 38085.46 36383.51 37654.11 38559.14 38384.79 36223.40 39289.61 37455.22 37870.24 36679.68 382
test_f71.95 34370.87 34575.21 36274.21 38959.37 38585.07 36685.82 36765.25 37670.42 37183.13 36823.62 39082.93 39078.32 26471.94 36483.33 375
ANet_high58.88 35654.22 36072.86 36356.50 40056.67 38880.75 38186.00 36673.09 35437.39 39364.63 39022.17 39379.49 39343.51 38723.96 39582.43 379
test_vis3_rt65.12 35062.60 35272.69 36471.44 39060.71 38287.17 35065.55 39763.80 37953.22 38565.65 38914.54 39989.44 37676.65 28165.38 37667.91 388
FPMVS64.63 35162.55 35370.88 36570.80 39156.71 38784.42 37084.42 37351.78 38649.57 38681.61 37423.49 39181.48 39140.61 39176.25 35474.46 384
dmvs_testset74.57 34075.81 33970.86 36687.72 35940.47 39987.05 35277.90 39182.75 22671.15 37085.47 35967.98 27184.12 38845.26 38576.98 35288.00 369
N_pmnet68.89 34668.44 34870.23 36789.07 34228.79 40488.06 33819.50 40469.47 37071.86 36784.93 36061.24 32691.75 36354.70 37977.15 34990.15 351
testf159.54 35456.11 35769.85 36869.28 39256.61 38980.37 38276.55 39442.58 39045.68 38975.61 37911.26 40084.18 38643.20 38860.44 38368.75 386
APD_test259.54 35456.11 35769.85 36869.28 39256.61 38980.37 38276.55 39442.58 39045.68 38975.61 37911.26 40084.18 38643.20 38860.44 38368.75 386
WB-MVS67.92 34767.49 34969.21 37081.09 38041.17 39888.03 33978.00 39073.50 34962.63 37983.11 37063.94 30586.52 38225.66 39551.45 38879.94 381
PMMVS259.60 35356.40 35569.21 37068.83 39446.58 39673.02 38977.48 39255.07 38449.21 38772.95 38517.43 39780.04 39249.32 38344.33 39280.99 380
SSC-MVS67.06 34866.56 35068.56 37280.54 38140.06 40087.77 34377.37 39372.38 35961.75 38182.66 37263.37 31086.45 38324.48 39648.69 39179.16 383
Gipumacopyleft57.99 35754.91 35967.24 37388.51 34665.59 37052.21 39290.33 33843.58 38942.84 39251.18 39320.29 39585.07 38534.77 39270.45 36551.05 392
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMVScopyleft47.18 2252.22 35848.46 36263.48 37445.72 40246.20 39773.41 38878.31 38841.03 39230.06 39565.68 3886.05 40283.43 38930.04 39365.86 37560.80 389
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive39.65 2343.39 36038.59 36657.77 37556.52 39948.77 39555.38 39158.64 40129.33 39528.96 39652.65 3924.68 40364.62 39728.11 39433.07 39359.93 390
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_method50.52 35948.47 36156.66 37652.26 40118.98 40641.51 39481.40 38110.10 39644.59 39175.01 38228.51 38768.16 39453.54 38049.31 39082.83 377
DeepMVS_CXcopyleft56.31 37774.23 38851.81 39456.67 40244.85 38848.54 38875.16 38127.87 38858.74 39840.92 39052.22 38758.39 391
E-PMN43.23 36142.29 36346.03 37865.58 39637.41 40173.51 38764.62 39833.99 39328.47 39747.87 39419.90 39667.91 39522.23 39724.45 39432.77 393
EMVS42.07 36241.12 36444.92 37963.45 39835.56 40373.65 38663.48 39933.05 39426.88 39845.45 39521.27 39467.14 39619.80 39823.02 39632.06 394
tmp_tt35.64 36339.24 36524.84 38014.87 40323.90 40562.71 39051.51 4036.58 39836.66 39462.08 39144.37 37830.34 40052.40 38122.00 39720.27 395
wuyk23d21.27 36520.48 36823.63 38168.59 39536.41 40249.57 3936.85 4059.37 3977.89 3994.46 4014.03 40431.37 39917.47 39916.07 3983.12 396
test1238.76 36711.22 3701.39 3820.85 4050.97 40785.76 3600.35 4070.54 4002.45 4018.14 4000.60 4050.48 4012.16 4010.17 4002.71 397
testmvs8.92 36611.52 3691.12 3831.06 4040.46 40886.02 3570.65 4060.62 3992.74 4009.52 3990.31 4060.45 4022.38 4000.39 3992.46 398
test_blank0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
uanet_test0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
DCPMVS0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
cdsmvs_eth3d_5k22.14 36429.52 3670.00 3840.00 4060.00 4090.00 39595.76 1520.00 4020.00 40394.29 16475.66 1700.00 4030.00 4020.00 4010.00 399
pcd_1.5k_mvsjas6.64 3698.86 3720.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 40279.70 1210.00 4030.00 4020.00 4010.00 399
sosnet-low-res0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
sosnet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
uncertanet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
Regformer0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
ab-mvs-re7.82 36810.43 3710.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 40393.88 1850.00 4070.00 4030.00 4020.00 4010.00 399
uanet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
WAC-MVS64.08 37559.14 372
FOURS198.86 185.54 6598.29 197.49 689.79 4496.29 18
PC_three_145282.47 23097.09 1097.07 5192.72 198.04 15992.70 5599.02 1298.86 11
test_one_060198.58 1185.83 5997.44 1591.05 1496.78 1598.06 1191.45 11
eth-test20.00 406
eth-test0.00 406
ZD-MVS98.15 3486.62 3297.07 4583.63 20394.19 4296.91 5787.57 3199.26 4291.99 7498.44 51
RE-MVS-def93.68 5197.92 4384.57 8096.28 4596.76 7587.46 11693.75 4997.43 3182.94 8392.73 5197.80 7497.88 78
IU-MVS98.77 586.00 4996.84 6581.26 26397.26 795.50 2399.13 399.03 8
test_241102_TWO97.44 1590.31 2897.62 598.07 991.46 1099.58 1095.66 1799.12 698.98 10
test_241102_ONE98.77 585.99 5197.44 1590.26 3397.71 197.96 1792.31 499.38 31
9.1494.47 1997.79 4996.08 6197.44 1586.13 15195.10 3397.40 3388.34 2299.22 4493.25 4498.70 34
save fliter97.85 4685.63 6495.21 11196.82 6889.44 51
test_0728_THIRD90.75 1997.04 1198.05 1392.09 699.55 1695.64 1999.13 399.13 2
test072698.78 385.93 5497.19 1197.47 1190.27 3197.64 498.13 391.47 8
GSMVS96.12 153
test_part298.55 1287.22 1896.40 17
sam_mvs171.70 22196.12 153
sam_mvs70.60 234
MTGPAbinary96.97 50
test_post188.00 3409.81 39869.31 25695.53 31276.65 281
test_post10.29 39770.57 23895.91 300
patchmatchnet-post83.76 36571.53 22296.48 272
MTMP96.16 5360.64 400
gm-plane-assit89.60 33968.00 36277.28 31388.99 31897.57 18979.44 254
test9_res91.91 7898.71 3298.07 66
TEST997.53 5886.49 3694.07 18696.78 7281.61 25692.77 7496.20 8787.71 2899.12 51
test_897.49 6086.30 4494.02 19196.76 7581.86 24792.70 7896.20 8787.63 2999.02 61
agg_prior290.54 10298.68 3798.27 52
agg_prior97.38 6385.92 5696.72 8192.16 8998.97 75
test_prior485.96 5394.11 181
test_prior294.12 18087.67 11492.63 7996.39 8286.62 3891.50 8598.67 39
旧先验293.36 21971.25 36594.37 3997.13 23486.74 146
新几何293.11 234
旧先验196.79 7681.81 16495.67 16096.81 6386.69 3797.66 7996.97 122
无先验93.28 22796.26 11073.95 34599.05 5580.56 23996.59 137
原ACMM292.94 241
test22296.55 8481.70 16692.22 26495.01 20168.36 37290.20 12496.14 9280.26 11497.80 7496.05 159
testdata298.75 9378.30 265
segment_acmp87.16 36
testdata192.15 26687.94 103
plane_prior794.70 16582.74 141
plane_prior694.52 17582.75 13974.23 187
plane_prior596.22 11598.12 14488.15 12489.99 20094.63 209
plane_prior494.86 140
plane_prior382.75 13990.26 3386.91 180
plane_prior295.85 7590.81 17
plane_prior194.59 170
plane_prior82.73 14295.21 11189.66 4889.88 205
n20.00 408
nn0.00 408
door-mid85.49 368
test1196.57 92
door85.33 370
HQP5-MVS81.56 168
HQP-NCC94.17 18994.39 16588.81 7285.43 221
ACMP_Plane94.17 18994.39 16588.81 7285.43 221
BP-MVS87.11 143
HQP4-MVS85.43 22197.96 16594.51 219
HQP3-MVS96.04 13189.77 209
HQP2-MVS73.83 197
NP-MVS94.37 18382.42 15193.98 178
MDTV_nov1_ep13_2view55.91 39387.62 34773.32 35184.59 24070.33 24174.65 30195.50 179
MDTV_nov1_ep1383.56 27691.69 27669.93 35787.75 34491.54 31378.60 29784.86 23588.90 32069.54 25096.03 29370.25 32488.93 224
ACMMP++_ref87.47 249
ACMMP++88.01 240
Test By Simon80.02 116