This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DVP-MVScopyleft78.77 284.89 171.62 578.04 482.05 181.64 1157.96 787.53 166.64 288.77 186.31 163.16 1079.99 778.56 782.31 2391.03 1
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
SED-MVS79.21 184.74 272.75 178.66 381.96 282.94 558.16 486.82 267.66 188.29 486.15 366.42 280.41 478.65 682.65 1790.92 2
DVP-MVS++78.76 384.44 372.14 276.63 881.93 382.92 658.10 585.86 466.53 387.86 586.16 266.45 180.46 378.53 982.19 2890.29 4
DPE-MVScopyleft78.11 483.84 471.42 677.82 681.32 482.92 657.81 984.04 863.19 1488.63 286.00 464.52 578.71 1177.63 1682.26 2490.57 3
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MSP-MVS77.82 583.46 571.24 975.26 1780.22 882.95 457.85 885.90 364.79 688.54 383.43 766.24 378.21 1878.56 780.34 4989.39 7
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
APDe-MVS77.58 682.93 671.35 777.86 580.55 783.38 157.61 1085.57 561.11 2286.10 782.98 864.76 478.29 1576.78 2383.40 690.20 5
SMA-MVScopyleft77.32 782.51 771.26 875.43 1580.19 982.22 858.26 384.83 764.36 978.19 1683.46 663.61 881.00 180.28 183.66 489.62 6
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
SF-MVS77.13 881.70 871.79 379.32 180.76 582.96 257.49 1182.82 964.79 683.69 1084.46 562.83 1477.13 2775.21 3283.35 787.85 16
ACMMP_NAP76.15 981.17 970.30 1274.09 2179.47 1181.59 1357.09 1581.38 1263.89 1279.02 1480.48 1962.24 1980.05 679.12 482.94 1288.64 9
DeepPCF-MVS66.49 174.25 2180.97 1066.41 3367.75 5378.87 1475.61 4054.16 3584.86 658.22 3477.94 1781.01 1762.52 1778.34 1377.38 1780.16 5288.40 11
APD-MVScopyleft75.80 1180.90 1169.86 1775.42 1678.48 1781.43 1457.44 1380.45 1659.32 2885.28 880.82 1863.96 776.89 3076.08 2881.58 4088.30 12
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
HPM-MVS++copyleft76.01 1080.47 1270.81 1076.60 974.96 3780.18 1858.36 281.96 1163.50 1378.80 1582.53 1164.40 678.74 1078.84 581.81 3487.46 19
TSAR-MVS + MP.75.22 1480.06 1369.56 1874.61 1972.74 5180.59 1555.70 2580.80 1462.65 1786.25 682.92 962.07 2176.89 3075.66 3181.77 3685.19 34
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
CNVR-MVS75.62 1279.91 1470.61 1175.76 1178.82 1581.66 1057.12 1479.77 1863.04 1570.69 2581.15 1662.99 1180.23 579.54 383.11 989.16 8
SteuartSystems-ACMMP75.23 1379.60 1570.13 1476.81 778.92 1381.74 957.99 675.30 3159.83 2775.69 1978.45 2560.48 3180.58 279.77 283.94 388.52 10
Skip Steuart: Steuart Systems R&D Blog.
CSCG74.68 1679.22 1669.40 1975.69 1380.01 1079.12 2552.83 4379.34 1963.99 1170.49 2682.02 1260.35 3477.48 2577.22 2084.38 187.97 15
TSAR-MVS + ACMM72.56 3079.07 1764.96 4273.24 2673.16 5078.50 2848.80 6979.34 1955.32 4285.04 981.49 1558.57 4175.06 4573.75 4675.35 10985.61 31
SD-MVS74.43 1878.87 1869.26 2174.39 2073.70 4779.06 2655.24 2781.04 1362.71 1680.18 1382.61 1061.70 2375.43 4273.92 4582.44 2285.22 33
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
MP-MVScopyleft74.31 1978.87 1868.99 2373.49 2478.56 1679.25 2456.51 1875.33 2960.69 2475.30 2079.12 2461.81 2277.78 2277.93 1282.18 3088.06 14
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
HFP-MVS74.87 1578.86 2070.21 1373.99 2277.91 1980.36 1756.63 1778.41 2164.27 1074.54 2177.75 2962.96 1278.70 1277.82 1383.02 1086.91 22
ACMMPR73.79 2578.41 2168.40 2672.35 2977.79 2079.32 2256.38 2077.67 2558.30 3374.16 2276.66 3061.40 2478.32 1477.80 1482.68 1686.51 23
train_agg73.89 2378.25 2268.80 2575.25 1872.27 5379.75 1956.05 2274.87 3458.97 2981.83 1279.76 2261.05 2777.39 2676.01 2981.71 3785.61 31
DeepC-MVS66.32 273.85 2478.10 2368.90 2467.92 5179.31 1278.16 3059.28 178.24 2361.13 2167.36 3776.10 3463.40 979.11 978.41 1183.52 588.16 13
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
zzz-MVS74.25 2177.97 2469.91 1673.43 2574.06 4579.69 2056.44 1980.74 1564.98 568.72 3179.98 2162.92 1378.24 1777.77 1581.99 3286.30 24
NCCC74.27 2077.83 2570.13 1475.70 1277.41 2480.51 1657.09 1578.25 2262.28 1965.54 3978.26 2662.18 2079.13 878.51 1083.01 1187.68 18
MCST-MVS73.67 2677.39 2669.33 2076.26 1078.19 1878.77 2754.54 3275.33 2959.99 2667.96 3379.23 2362.43 1878.00 1975.71 3084.02 287.30 20
PGM-MVS72.89 2777.13 2767.94 2772.47 2877.25 2579.27 2354.63 3173.71 3657.95 3572.38 2375.33 3660.75 2978.25 1677.36 1982.57 2085.62 30
xxxxxxxxxxxxxcwj74.63 1777.07 2871.79 379.32 180.76 582.96 257.49 1182.82 964.79 683.69 1052.03 12362.83 1477.13 2775.21 3283.35 787.85 16
CP-MVS72.63 2976.95 2967.59 2870.67 3775.53 3577.95 3256.01 2375.65 2858.82 3069.16 3076.48 3260.46 3277.66 2377.20 2181.65 3886.97 21
DeepC-MVS_fast65.08 372.00 3176.11 3067.21 3068.93 4777.46 2276.54 3654.35 3374.92 3358.64 3265.18 4174.04 4462.62 1677.92 2077.02 2282.16 3186.21 25
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DPM-MVS72.80 2875.90 3169.19 2275.51 1477.68 2181.62 1254.83 2875.96 2762.06 2063.96 4776.58 3158.55 4276.66 3476.77 2482.60 1983.68 43
ACMMPcopyleft71.57 3275.84 3266.59 3270.30 4176.85 3078.46 2953.95 3673.52 3755.56 4070.13 2771.36 4958.55 4277.00 2976.23 2782.71 1585.81 29
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CDPH-MVS71.47 3375.82 3366.41 3372.97 2777.15 2678.14 3154.71 2969.88 4953.07 5870.98 2474.83 3856.95 5476.22 3576.57 2582.62 1885.09 35
X-MVS71.18 3475.66 3465.96 3771.71 3176.96 2777.26 3455.88 2472.75 3954.48 5064.39 4474.47 3954.19 6877.84 2177.37 1882.21 2785.85 28
HQP-MVS70.88 3575.02 3566.05 3671.69 3274.47 4277.51 3353.17 4072.89 3854.88 4670.03 2870.48 5157.26 5076.02 3775.01 3781.78 3586.21 25
PHI-MVS69.27 4074.84 3662.76 5366.83 5674.83 3873.88 4849.32 6370.61 4650.93 6469.62 2974.84 3757.25 5175.53 4174.32 4278.35 6984.17 38
MVS_030469.49 3873.96 3764.28 4767.92 5176.13 3374.90 4347.60 7163.29 5954.09 5467.44 3676.35 3359.53 3775.81 3975.03 3581.62 3983.70 42
TSAR-MVS + GP.69.71 3673.92 3864.80 4468.27 4970.56 5871.90 5250.75 5371.38 4357.46 3768.68 3275.42 3560.10 3573.47 5373.99 4480.32 5083.97 39
CANet68.77 4273.01 3963.83 4868.30 4875.19 3673.73 4947.90 7063.86 5654.84 4767.51 3574.36 4257.62 4674.22 5073.57 4980.56 4782.36 48
CPTT-MVS68.76 4373.01 3963.81 4965.42 6473.66 4876.39 3852.08 4572.61 4050.33 6660.73 6172.65 4759.43 3873.32 5472.12 5179.19 6285.99 27
3Dnovator+62.63 469.51 3772.62 4165.88 3868.21 5076.47 3173.50 5052.74 4470.85 4558.65 3155.97 7869.95 5261.11 2676.80 3275.09 3481.09 4483.23 46
canonicalmvs65.62 5672.06 4258.11 7163.94 7571.05 5664.49 9743.18 12974.08 3547.35 7564.17 4571.97 4851.17 9671.87 6070.74 5878.51 6780.56 57
LGP-MVS_train68.87 4172.03 4365.18 4169.33 4574.03 4676.67 3553.88 3768.46 5052.05 6263.21 4963.89 7156.31 5875.99 3874.43 4182.83 1484.18 37
CLD-MVS67.02 5171.57 4461.71 5471.01 3674.81 3971.62 5438.91 16171.86 4260.70 2364.97 4267.88 6451.88 9376.77 3374.98 3876.11 9769.75 125
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
ACMP61.42 568.72 4471.37 4565.64 3969.06 4674.45 4375.88 3953.30 3968.10 5155.74 3961.53 6062.29 7856.97 5374.70 4874.23 4382.88 1384.31 36
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
OMC-MVS65.16 5971.35 4657.94 7552.95 15168.82 6569.00 5938.28 16979.89 1755.20 4362.76 5368.31 5956.14 6171.30 6568.70 7976.06 10179.67 60
OPM-MVS69.33 3971.05 4767.32 2972.34 3075.70 3479.57 2156.34 2155.21 7653.81 5559.51 6568.96 5659.67 3677.61 2476.44 2682.19 2883.88 41
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
PCF-MVS59.98 867.32 5071.04 4862.97 5264.77 6674.49 4174.78 4449.54 6067.44 5254.39 5358.35 7072.81 4655.79 6471.54 6269.24 7278.57 6483.41 44
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
MAR-MVS68.04 4670.74 4964.90 4371.68 3376.33 3274.63 4550.48 5763.81 5755.52 4154.88 8469.90 5357.39 4975.42 4374.79 3979.71 5480.03 59
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
MSLP-MVS++68.17 4570.72 5065.19 4069.41 4470.64 5774.99 4245.76 8070.20 4860.17 2556.42 7673.01 4561.14 2572.80 5670.54 6179.70 5581.42 53
MVS_111021_HR67.62 4870.39 5164.39 4569.77 4370.45 6071.44 5651.72 4960.77 6555.06 4462.14 5766.40 6758.13 4576.13 3674.79 3980.19 5182.04 51
3Dnovator60.86 666.99 5370.32 5263.11 5166.63 5774.52 4071.56 5545.76 8067.37 5355.00 4554.31 8968.19 6058.49 4473.97 5173.63 4881.22 4380.23 58
DELS-MVS65.87 5570.30 5360.71 5764.05 7472.68 5270.90 5745.43 8457.49 7149.05 7264.43 4368.66 5755.11 6674.31 4973.02 5079.70 5581.51 52
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
DROMVSNet67.01 5270.27 5463.21 5067.21 5470.47 5969.01 5846.96 7459.16 6853.23 5764.01 4669.71 5460.37 3374.92 4671.24 5782.50 2182.41 47
TSAR-MVS + COLMAP62.65 6969.90 5554.19 10046.31 18866.73 8965.49 8941.36 14476.57 2646.31 8076.80 1856.68 10253.27 8269.50 8366.65 10872.40 14676.36 88
CS-MVS65.88 5469.71 5661.41 5561.76 8368.14 7067.65 6444.00 10859.14 6952.69 5965.19 4068.13 6160.90 2874.74 4771.58 5381.46 4281.04 55
EPNet65.14 6069.54 5760.00 6166.61 5867.67 7867.53 6655.32 2662.67 6146.22 8267.74 3465.93 6848.07 11272.17 5972.12 5176.28 9378.47 69
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
QAPM65.27 5769.49 5860.35 5965.43 6372.20 5465.69 8747.23 7263.46 5849.14 7053.56 9071.04 5057.01 5272.60 5871.41 5577.62 7382.14 50
AdaColmapbinary67.89 4768.85 5966.77 3173.73 2374.30 4475.28 4153.58 3870.24 4757.59 3651.19 10459.19 9360.74 3075.33 4473.72 4779.69 5777.96 72
ACMM60.30 767.58 4968.82 6066.13 3570.59 3872.01 5576.54 3654.26 3465.64 5554.78 4850.35 10761.72 8258.74 4075.79 4075.03 3581.88 3381.17 54
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CS-MVS-test65.18 5868.70 6161.07 5661.92 8068.06 7267.09 7245.18 8858.47 7052.02 6365.76 3866.44 6659.24 3972.71 5770.05 6680.98 4579.40 62
casdiffmvs64.09 6168.13 6259.37 6661.81 8168.32 6968.48 6244.45 9861.95 6249.12 7163.04 5069.67 5553.83 7270.46 7466.06 11878.55 6577.43 74
PVSNet_Blended_VisFu63.65 6266.92 6359.83 6360.03 9573.44 4966.33 7848.95 6552.20 9650.81 6556.07 7760.25 8953.56 7473.23 5570.01 6779.30 5983.24 45
TAPA-MVS54.74 1060.85 7766.61 6454.12 10247.38 18465.33 10065.35 9036.51 17875.16 3248.82 7354.70 8663.51 7353.31 8168.36 9664.97 13673.37 12974.27 102
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
diffmvs61.64 7366.55 6555.90 9156.63 12763.71 11867.13 7141.27 14559.49 6746.70 7863.93 4868.01 6350.46 9767.30 11965.51 12673.24 13477.87 73
MVS_111021_LR63.05 6666.43 6659.10 6761.33 8663.77 11765.87 8443.58 11860.20 6653.70 5662.09 5862.38 7755.84 6370.24 7868.08 8474.30 11778.28 71
CNLPA62.78 6866.31 6758.65 6958.47 10568.41 6865.98 8341.22 14678.02 2456.04 3846.65 12859.50 9257.50 4769.67 8265.27 13072.70 14176.67 81
MVS_Test62.40 7166.23 6857.94 7559.77 9964.77 10866.50 7741.76 14057.26 7249.33 6962.68 5467.47 6553.50 7768.57 9466.25 11576.77 8576.58 83
ETV-MVS63.23 6466.08 6959.91 6263.13 7868.13 7167.62 6544.62 9553.39 8546.23 8158.74 6758.19 9657.45 4873.60 5271.38 5680.39 4879.13 63
Effi-MVS+63.28 6365.96 7060.17 6064.26 7068.06 7268.78 6145.71 8254.08 7946.64 7955.92 7963.13 7555.94 6270.38 7771.43 5479.68 5878.70 66
OpenMVScopyleft57.13 962.81 6765.75 7159.39 6566.47 5969.52 6364.26 9943.07 13161.34 6450.19 6747.29 12564.41 7054.60 6770.18 7968.62 8177.73 7178.89 65
Vis-MVSNetpermissive58.48 9365.70 7250.06 12953.40 14867.20 8460.24 11743.32 12648.83 11830.23 15562.38 5661.61 8340.35 14871.03 6869.77 6872.82 13779.11 64
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
EPP-MVSNet59.39 8365.45 7352.32 11760.96 8867.70 7758.42 12744.75 9349.71 10627.23 17059.03 6662.20 7943.34 13470.71 7269.13 7479.25 6179.63 61
test_part163.06 6565.27 7460.47 5866.24 6270.17 6171.86 5345.36 8653.75 8249.61 6844.85 15165.53 6948.93 10371.39 6370.65 5980.82 4680.59 56
UGNet57.03 10765.25 7547.44 15846.54 18766.73 8956.30 14143.28 12750.06 10332.99 14162.57 5563.26 7433.31 18168.25 9867.58 9572.20 14978.29 70
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
DI_MVS_plusplus_trai61.88 7265.17 7658.06 7260.05 9465.26 10266.03 8144.22 10055.75 7446.73 7754.64 8768.12 6254.13 7069.13 8666.66 10777.18 8076.61 82
PVSNet_BlendedMVS61.63 7464.82 7757.91 7757.21 12367.55 8063.47 10346.08 7854.72 7752.46 6058.59 6860.73 8551.82 9470.46 7465.20 13276.44 9076.50 86
PVSNet_Blended61.63 7464.82 7757.91 7757.21 12367.55 8063.47 10346.08 7854.72 7752.46 6058.59 6860.73 8551.82 9470.46 7465.20 13276.44 9076.50 86
GeoE62.43 7064.79 7959.68 6464.15 7367.17 8568.80 6044.42 9955.65 7547.38 7451.54 10162.51 7654.04 7169.99 8068.07 8579.28 6078.57 67
CANet_DTU58.88 8764.68 8052.12 11855.77 13166.75 8863.92 10037.04 17653.32 8637.45 13059.81 6361.81 8144.43 12968.25 9867.47 9774.12 11975.33 96
UA-Net58.50 9264.68 8051.30 12266.97 5567.13 8653.68 16245.65 8349.51 10931.58 14962.91 5168.47 5835.85 17268.20 10167.28 9874.03 12069.24 135
IS_MVSNet57.95 10264.26 8250.60 12461.62 8565.25 10457.18 13345.42 8550.79 10026.49 17557.81 7260.05 9034.51 17671.24 6770.20 6578.36 6874.44 101
DCV-MVSNet59.49 8264.00 8354.23 9961.81 8164.33 11261.42 10943.77 11152.85 9138.94 12255.62 8162.15 8043.24 13769.39 8467.66 9476.22 9575.97 90
EIA-MVS61.53 7663.79 8458.89 6863.82 7667.61 7965.35 9042.15 13949.98 10445.66 8557.47 7456.62 10356.59 5770.91 7169.15 7379.78 5374.80 99
Fast-Effi-MVS+60.36 7863.35 8556.87 8558.70 10265.86 9765.08 9337.11 17553.00 9045.36 8752.12 9856.07 10956.27 5971.28 6669.42 7178.71 6375.69 93
FC-MVSNet-train58.40 9563.15 8652.85 11364.29 6961.84 12655.98 14646.47 7653.06 8834.96 13761.95 5956.37 10739.49 15068.67 9168.36 8375.92 10371.81 113
FA-MVS(training)60.00 8163.14 8756.33 8959.50 10064.30 11365.15 9238.75 16656.20 7345.77 8353.08 9156.45 10452.10 9169.04 8867.67 9376.69 8675.27 98
PLCcopyleft52.09 1459.21 8562.47 8855.41 9553.24 14964.84 10764.47 9840.41 15565.92 5444.53 9146.19 13655.69 11055.33 6568.24 10065.30 12974.50 11571.09 116
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
Effi-MVS+-dtu60.34 7962.32 8958.03 7464.31 6867.44 8265.99 8242.26 13649.55 10742.00 10448.92 11559.79 9156.27 5968.07 10567.03 9977.35 7875.45 95
LS3D60.20 8061.70 9058.45 7064.18 7167.77 7567.19 6848.84 6861.67 6341.27 10845.89 14051.81 12554.18 6968.78 8966.50 11375.03 11269.48 131
ET-MVSNet_ETH3D58.38 9661.57 9154.67 9842.15 20165.26 10265.70 8543.82 11048.84 11742.34 10159.76 6447.76 14256.68 5667.02 12668.60 8277.33 7973.73 108
IterMVS-LS58.30 9861.39 9254.71 9759.92 9758.40 15759.42 11943.64 11648.71 12140.25 11557.53 7358.55 9552.15 9065.42 14765.34 12872.85 13575.77 91
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
UniMVSNet_NR-MVSNet56.94 11061.14 9352.05 11960.02 9665.21 10557.44 13152.93 4249.37 11024.31 18254.62 8850.54 13139.04 15268.69 9068.84 7878.53 6670.72 118
MVSTER57.19 10661.11 9452.62 11550.82 17158.79 15361.55 10737.86 17248.81 11941.31 10757.43 7552.10 12248.60 10768.19 10266.75 10575.56 10575.68 94
baseline55.19 12960.88 9548.55 14649.87 17558.10 16258.70 12434.75 18452.82 9239.48 12160.18 6260.86 8445.41 12461.05 16460.74 16763.10 18472.41 111
Anonymous2023121157.71 10460.79 9654.13 10161.68 8465.81 9860.81 11443.70 11551.97 9739.67 11734.82 19263.59 7243.31 13568.55 9566.63 10975.59 10474.13 104
ECVR-MVScopyleft56.44 11560.74 9751.42 12160.39 9264.55 11058.69 12548.87 6653.91 8026.76 17345.55 14553.43 11737.71 16070.96 6969.49 6976.08 9867.32 147
IB-MVS54.11 1158.36 9760.70 9855.62 9358.67 10368.02 7461.56 10643.15 13046.09 14144.06 9344.24 15550.99 13048.71 10666.70 12970.33 6277.60 7478.50 68
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
Anonymous20240521160.60 9963.44 7766.71 9261.00 11347.23 7250.62 10236.85 18760.63 8843.03 13869.17 8567.72 9275.41 10672.54 110
v1059.17 8660.60 9957.50 8057.95 10866.73 8967.09 7244.11 10146.85 13545.42 8648.18 12151.07 12753.63 7367.84 10966.59 11176.79 8476.92 79
v858.88 8760.57 10156.92 8457.35 11865.69 9966.69 7642.64 13347.89 13045.77 8349.04 11252.98 11952.77 8467.51 11665.57 12576.26 9475.30 97
UniMVSNet (Re)55.15 13060.39 10249.03 13955.31 13364.59 10955.77 14750.63 5448.66 12320.95 18851.47 10250.40 13234.41 17867.81 11067.89 8777.11 8371.88 112
ACMH+53.71 1259.26 8460.28 10358.06 7264.17 7268.46 6767.51 6750.93 5252.46 9435.83 13440.83 17745.12 17052.32 8869.88 8169.00 7777.59 7576.21 89
GBi-Net55.20 12760.25 10449.31 13352.42 15461.44 12857.03 13444.04 10449.18 11330.47 15148.28 11758.19 9638.22 15568.05 10666.96 10073.69 12469.65 126
test155.20 12760.25 10449.31 13352.42 15461.44 12857.03 13444.04 10449.18 11330.47 15148.28 11758.19 9638.22 15568.05 10666.96 10073.69 12469.65 126
MS-PatchMatch58.19 10160.20 10655.85 9265.17 6564.16 11464.82 9441.48 14350.95 9942.17 10345.38 14656.42 10548.08 11168.30 9766.70 10673.39 12869.46 133
v114458.88 8760.16 10757.39 8158.03 10767.26 8367.14 7044.46 9745.17 14744.33 9247.81 12249.92 13553.20 8367.77 11166.62 11077.15 8176.58 83
V4256.97 10960.14 10853.28 10748.16 18062.78 12366.30 7937.93 17147.44 13242.68 9948.19 12052.59 12151.90 9267.46 11765.94 12172.72 13976.55 85
TranMVSNet+NR-MVSNet55.87 11860.14 10850.88 12359.46 10163.82 11657.93 12952.98 4148.94 11620.52 19052.87 9347.33 14836.81 16869.12 8769.03 7677.56 7669.89 124
v2v48258.69 9060.12 11057.03 8357.16 12566.05 9667.17 6943.52 12046.33 13945.19 8849.46 11151.02 12852.51 8667.30 11966.03 11976.61 8774.62 100
test111155.24 12659.98 11149.71 13059.80 9864.10 11556.48 14049.34 6252.27 9521.56 18744.49 15351.96 12435.93 17170.59 7369.07 7575.13 11167.40 143
FMVSNet255.04 13159.95 11249.31 13352.42 15461.44 12857.03 13444.08 10349.55 10730.40 15446.89 12658.84 9438.22 15567.07 12566.21 11673.69 12469.65 126
thisisatest053056.68 11259.68 11353.19 10952.97 15060.96 13659.41 12040.51 15148.26 12741.06 11052.67 9446.30 15849.78 9867.66 11467.83 8875.39 10774.07 106
v119258.51 9159.66 11457.17 8257.82 10967.72 7666.21 8044.83 9244.15 15543.49 9546.68 12747.94 13953.55 7567.39 11866.51 11277.13 8277.20 77
tttt051756.53 11459.59 11552.95 11252.66 15360.99 13559.21 12240.51 15147.89 13040.40 11352.50 9746.04 16249.78 9867.75 11267.83 8875.15 11074.17 103
DU-MVS55.41 12459.59 11550.54 12654.60 13962.97 12057.44 13151.80 4748.62 12424.31 18251.99 9947.00 15139.04 15268.11 10367.75 9176.03 10270.72 118
FMVSNet354.78 13259.58 11749.17 13652.37 15761.31 13256.72 13944.04 10449.18 11330.47 15148.28 11758.19 9638.09 15865.48 14565.20 13273.31 13169.45 134
test250655.82 12059.57 11851.46 12060.39 9264.55 11058.69 12548.87 6653.91 8026.99 17148.97 11341.72 18837.71 16070.96 6969.49 6976.08 9867.37 145
ACMH52.42 1358.24 9959.56 11956.70 8766.34 6069.59 6266.71 7549.12 6446.08 14228.90 16242.67 17241.20 18952.60 8571.39 6370.28 6376.51 8975.72 92
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
NR-MVSNet55.35 12559.46 12050.56 12561.33 8662.97 12057.91 13051.80 4748.62 12420.59 18951.99 9944.73 17634.10 17968.58 9368.64 8077.66 7270.67 122
v14419258.23 10059.40 12156.87 8557.56 11066.89 8765.70 8545.01 9044.06 15642.88 9746.61 12948.09 13853.49 7866.94 12765.90 12276.61 8777.29 75
Fast-Effi-MVS+-dtu56.30 11659.29 12252.82 11458.64 10464.89 10665.56 8832.89 19845.80 14435.04 13645.89 14054.14 11449.41 10167.16 12266.45 11475.37 10870.69 120
CostFormer56.57 11359.13 12353.60 10457.52 11361.12 13366.94 7435.95 18053.44 8344.68 9055.87 8054.44 11348.21 10960.37 16858.33 17568.27 16770.33 123
v192192057.89 10359.02 12456.58 8857.55 11166.66 9364.72 9644.70 9443.55 15942.73 9846.17 13746.93 15253.51 7666.78 12865.75 12476.29 9277.28 76
MSDG58.46 9458.97 12557.85 7966.27 6166.23 9567.72 6342.33 13553.43 8443.68 9443.39 16345.35 16649.75 10068.66 9267.77 9077.38 7767.96 140
baseline154.48 13458.69 12649.57 13160.63 9158.29 16055.70 14844.95 9149.20 11229.62 15854.77 8554.75 11235.29 17367.15 12364.08 14271.21 15662.58 177
FMVSNet154.08 13558.68 12748.71 14350.90 17061.35 13156.73 13843.94 10945.91 14329.32 16142.72 17156.26 10837.70 16268.05 10666.96 10073.69 12469.50 130
v124057.55 10558.63 12856.29 9057.30 12166.48 9463.77 10144.56 9642.77 16942.48 10045.64 14346.28 15953.46 7966.32 13465.80 12376.16 9677.13 78
HyFIR lowres test56.87 11158.60 12954.84 9656.62 12869.27 6464.77 9542.21 13745.66 14537.50 12933.08 19557.47 10153.33 8065.46 14667.94 8674.60 11471.35 115
GA-MVS55.67 12158.33 13052.58 11655.23 13663.09 11961.08 11140.15 15742.95 16437.02 13252.61 9547.68 14347.51 11465.92 14065.35 12774.49 11670.68 121
EPNet_dtu52.05 14758.26 13144.81 17054.10 14450.09 18952.01 16740.82 14953.03 8927.41 16854.90 8357.96 10026.72 19362.97 15462.70 15767.78 16966.19 155
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
EG-PatchMatch MVS56.98 10858.24 13255.50 9464.66 6768.62 6661.48 10843.63 11738.44 19441.44 10538.05 18446.18 16143.95 13071.71 6170.61 6077.87 7074.08 105
CHOSEN 1792x268855.85 11958.01 13353.33 10657.26 12262.82 12263.29 10541.55 14246.65 13738.34 12334.55 19353.50 11552.43 8767.10 12467.56 9667.13 17173.92 107
Baseline_NR-MVSNet53.50 13757.89 13448.37 14954.60 13959.25 15056.10 14251.84 4649.32 11117.92 19745.38 14647.68 14336.93 16768.11 10365.95 12072.84 13669.57 129
baseline255.89 11757.82 13553.64 10357.36 11761.09 13459.75 11840.45 15347.38 13341.26 10951.23 10346.90 15348.11 11065.63 14464.38 14174.90 11368.16 139
anonymousdsp52.84 14057.78 13647.06 15940.24 20458.95 15253.70 16133.54 19436.51 20132.69 14443.88 15745.40 16547.97 11367.17 12170.28 6374.22 11882.29 49
IterMVS-SCA-FT52.18 14657.75 13745.68 16551.01 16962.06 12455.10 15534.75 18444.85 14832.86 14351.13 10551.22 12648.74 10462.47 15861.51 16251.61 21071.02 117
Vis-MVSNet (Re-imp)50.37 15857.73 13841.80 18457.53 11254.35 17445.70 19245.24 8749.80 10513.43 20358.23 7156.42 10520.11 20462.96 15563.36 14968.76 16558.96 189
v14855.58 12357.61 13953.20 10854.59 14161.86 12561.18 11038.70 16744.30 15442.25 10247.53 12350.24 13448.73 10565.15 14862.61 15873.79 12271.61 114
v7n55.67 12157.46 14053.59 10556.06 12965.29 10161.06 11243.26 12840.17 18537.99 12640.79 17845.27 16947.09 11667.67 11366.21 11676.08 9876.82 80
IterMVS53.45 13857.12 14149.17 13649.23 17760.93 13759.05 12334.63 18644.53 15033.22 13951.09 10651.01 12948.38 10862.43 15960.79 16670.54 16069.05 136
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CDS-MVSNet52.42 14357.06 14247.02 16053.92 14658.30 15955.50 15046.47 7642.52 17129.38 16049.50 11052.85 12028.49 19166.70 12966.89 10368.34 16662.63 176
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
thisisatest051553.85 13656.84 14350.37 12750.25 17458.17 16155.99 14539.90 15841.88 17438.16 12545.91 13945.30 16744.58 12866.15 13866.89 10373.36 13073.57 109
pmmvs454.66 13356.07 14453.00 11154.63 13857.08 16860.43 11644.10 10251.69 9840.55 11246.55 13244.79 17545.95 12262.54 15763.66 14672.36 14766.20 154
UniMVSNet_ETH3D52.62 14155.98 14548.70 14451.04 16860.71 13856.87 13746.74 7542.52 17126.96 17242.50 17345.95 16337.87 15966.22 13665.15 13572.74 13868.78 138
pm-mvs151.02 15455.55 14645.73 16454.16 14358.52 15550.92 16942.56 13440.32 18325.67 17743.66 16050.34 13330.06 18665.85 14163.97 14470.99 15866.21 153
tfpn200view952.53 14255.51 14749.06 13857.31 11960.24 14055.42 15243.77 11142.85 16727.81 16643.00 16945.06 17237.32 16466.38 13164.54 13872.71 14066.54 149
thres40052.38 14555.51 14748.74 14257.49 11460.10 14355.45 15143.54 11942.90 16626.72 17443.34 16545.03 17436.61 16966.20 13764.53 13972.66 14266.43 150
TransMVSNet (Re)51.92 15055.38 14947.88 15560.95 8959.90 14453.95 15945.14 8939.47 18824.85 17943.87 15846.51 15729.15 18867.55 11565.23 13173.26 13365.16 164
thres20052.39 14455.37 15048.90 14057.39 11660.18 14155.60 14943.73 11342.93 16527.41 16843.35 16445.09 17136.61 16966.36 13263.92 14572.66 14265.78 159
thres600view751.91 15155.14 15148.14 15157.43 11560.18 14154.60 15743.73 11342.61 17025.20 17843.10 16844.47 17935.19 17466.36 13263.28 15072.66 14266.01 157
WR-MVS48.78 17055.06 15241.45 18555.50 13260.40 13943.77 20049.99 5941.92 1738.10 21645.24 14945.56 16417.47 20561.57 16364.60 13773.85 12166.14 156
COLMAP_ROBcopyleft46.52 1551.99 14954.86 15348.63 14549.13 17861.73 12760.53 11536.57 17753.14 8732.95 14237.10 18538.68 20040.49 14765.72 14263.08 15172.11 15064.60 167
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
thres100view90052.04 14854.81 15448.80 14157.31 11959.33 14855.30 15342.92 13242.85 16727.81 16643.00 16945.06 17236.99 16664.74 15063.51 14772.47 14565.21 163
RPSCF46.41 18354.42 15537.06 19825.70 22145.14 20545.39 19420.81 21562.79 6035.10 13544.92 15055.60 11143.56 13256.12 19252.45 20051.80 20963.91 170
PEN-MVS49.21 16654.32 15643.24 17954.33 14259.26 14947.04 18651.37 5141.67 1759.97 21146.22 13541.80 18722.97 20160.52 16664.03 14373.73 12366.75 148
PMMVS49.20 16754.28 15743.28 17834.13 20945.70 20448.98 17626.09 21146.31 14034.92 13855.22 8253.47 11647.48 11559.43 17059.04 17368.05 16860.77 182
USDC51.11 15353.71 15848.08 15344.76 19355.99 17153.01 16640.90 14752.49 9336.14 13344.67 15233.66 21043.27 13663.23 15361.10 16470.39 16164.82 165
WR-MVS_H47.65 17753.67 15940.63 18851.45 16259.74 14644.71 19849.37 6140.69 1817.61 21846.04 13844.34 18117.32 20657.79 18261.18 16373.30 13265.86 158
CP-MVSNet48.37 17153.53 16042.34 18151.35 16458.01 16346.56 18750.54 5541.62 17610.61 20746.53 13340.68 19323.18 19958.71 17661.83 16071.81 15167.36 146
tpm cat153.30 13953.41 16153.17 11058.16 10659.15 15163.73 10238.27 17050.73 10146.98 7645.57 14444.00 18249.20 10255.90 19554.02 19462.65 18664.50 168
GG-mvs-BLEND36.62 20653.39 16217.06 2150.01 22758.61 15448.63 1770.01 22447.13 1340.02 22843.98 15660.64 870.03 22354.92 19951.47 20253.64 20656.99 193
DTE-MVSNet48.03 17653.28 16341.91 18354.64 13757.50 16644.63 19951.66 5041.02 1797.97 21746.26 13440.90 19020.24 20360.45 16762.89 15472.33 14863.97 169
PS-CasMVS48.18 17353.25 16442.27 18251.26 16557.94 16446.51 18850.52 5641.30 17710.56 20845.35 14840.34 19523.04 20058.66 17761.79 16171.74 15367.38 144
SCA50.99 15553.22 16548.40 14851.07 16756.78 16950.25 17139.05 16048.31 12641.38 10649.54 10946.70 15646.00 12158.31 17856.28 17862.65 18656.60 194
CMPMVSbinary37.70 1749.24 16552.71 16645.19 16745.97 19051.23 18547.44 18429.31 20343.04 16344.69 8934.45 19448.35 13743.64 13162.59 15659.82 17060.08 19269.48 131
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
CR-MVSNet50.47 15652.61 16747.98 15449.03 17952.94 17848.27 17838.86 16344.41 15139.59 11844.34 15444.65 17846.63 11858.97 17360.31 16865.48 17662.66 174
gg-mvs-nofinetune49.07 16852.56 16845.00 16961.99 7959.78 14553.55 16441.63 14131.62 21012.08 20529.56 20453.28 11829.57 18766.27 13564.49 14071.19 15762.92 173
TDRefinement49.31 16352.44 16945.67 16630.44 21459.42 14759.24 12139.78 15948.76 12031.20 15035.73 18929.90 21442.81 13964.24 15262.59 15970.55 15966.43 150
MDTV_nov1_ep1350.32 15952.43 17047.86 15649.87 17554.70 17258.10 12834.29 18845.59 14637.71 12747.44 12447.42 14741.86 14258.07 18155.21 18765.34 17858.56 190
pmmvs-eth3d51.33 15252.25 17150.26 12850.82 17154.65 17356.03 14443.45 12543.51 16037.20 13139.20 18139.04 19942.28 14061.85 16262.78 15571.78 15264.72 166
tfpnnormal50.16 16052.19 17247.78 15756.86 12658.37 15854.15 15844.01 10738.35 19625.94 17636.10 18837.89 20234.50 17765.93 13963.42 14871.26 15565.28 162
CVMVSNet46.38 18552.01 17339.81 19042.40 19950.26 18746.15 18937.68 17340.03 18615.09 20046.56 13147.56 14533.72 18056.50 19055.65 18363.80 18267.53 141
pmmvs648.35 17251.64 17444.51 17251.92 16057.94 16449.44 17542.17 13834.45 20324.62 18128.87 20646.90 15329.07 19064.60 15163.08 15169.83 16265.68 160
PatchMatch-RL50.11 16151.56 17548.43 14746.23 18951.94 18250.21 17238.62 16846.62 13837.51 12842.43 17439.38 19752.24 8960.98 16559.56 17165.76 17560.01 187
PatchmatchNetpermissive49.92 16251.29 17648.32 15051.83 16151.86 18353.38 16537.63 17447.90 12940.83 11148.54 11645.30 16745.19 12656.86 18553.99 19661.08 19154.57 197
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
tpm48.82 16951.27 17745.96 16354.10 14447.35 19656.05 14330.23 20246.70 13643.21 9652.54 9647.55 14637.28 16554.11 20050.50 20354.90 20360.12 186
dps50.42 15751.20 17849.51 13255.88 13056.07 17053.73 16038.89 16243.66 15740.36 11445.66 14237.63 20445.23 12559.05 17156.18 17962.94 18560.16 185
PatchT48.08 17451.03 17944.64 17142.96 19850.12 18840.36 20735.09 18243.17 16239.59 11842.00 17539.96 19646.63 11858.97 17360.31 16863.21 18362.66 174
pmmvs547.07 18151.02 18042.46 18045.18 19251.47 18448.23 18033.09 19738.17 19728.62 16446.60 13043.48 18330.74 18458.28 17958.63 17468.92 16460.48 183
test-mter45.30 18750.37 18139.38 19133.65 21146.99 19947.59 18218.59 21738.75 19228.00 16543.28 16646.82 15541.50 14457.28 18455.78 18266.93 17463.70 171
test-LLR49.28 16450.29 18248.10 15255.26 13447.16 19749.52 17343.48 12339.22 18931.98 14543.65 16147.93 14041.29 14556.80 18655.36 18567.08 17261.94 178
TESTMET0.1,146.09 18650.29 18241.18 18636.91 20747.16 19749.52 17320.32 21639.22 18931.98 14543.65 16147.93 14041.29 14556.80 18655.36 18567.08 17261.94 178
SixPastTwentyTwo47.55 17950.25 18444.41 17347.30 18554.31 17547.81 18140.36 15633.76 20419.93 19243.75 15932.77 21242.07 14159.82 16960.94 16568.98 16366.37 152
LTVRE_ROB44.17 1647.06 18250.15 18543.44 17651.39 16358.42 15642.90 20243.51 12122.27 21814.85 20141.94 17634.57 20845.43 12362.28 16062.77 15662.56 18868.83 137
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
tpmrst48.08 17449.88 18645.98 16252.71 15248.11 19453.62 16333.70 19348.70 12239.74 11648.96 11446.23 16040.29 14950.14 20949.28 20555.80 20057.71 192
MDTV_nov1_ep13_2view47.62 17849.72 18745.18 16848.05 18153.70 17654.90 15633.80 19239.90 18729.79 15738.85 18241.89 18639.17 15158.99 17255.55 18465.34 17859.17 188
TAMVS44.02 19149.18 18837.99 19647.03 18645.97 20345.04 19528.47 20639.11 19120.23 19143.22 16748.52 13628.49 19158.15 18057.95 17758.71 19451.36 200
RPMNet46.41 18348.72 18943.72 17447.77 18352.94 17846.02 19133.92 19044.41 15131.82 14836.89 18637.42 20537.41 16353.88 20154.02 19465.37 17761.47 180
MIMVSNet43.79 19248.53 19038.27 19441.46 20248.97 19250.81 17032.88 19944.55 14922.07 18532.05 19647.15 14924.76 19658.73 17556.09 18157.63 19952.14 198
FC-MVSNet-test39.65 20348.35 19129.49 20844.43 19439.28 21430.23 21740.44 15443.59 1583.12 22453.00 9242.03 18510.02 22055.09 19754.77 18948.66 21250.71 202
PM-MVS44.55 19048.13 19240.37 18932.85 21346.82 20146.11 19029.28 20440.48 18229.99 15639.98 18034.39 20941.80 14356.08 19353.88 19862.19 18965.31 161
EPMVS44.66 18947.86 19340.92 18747.97 18244.70 20647.58 18333.27 19548.11 12829.58 15949.65 10844.38 18034.65 17551.71 20447.90 20752.49 20848.57 209
TinyColmap47.08 18047.56 19446.52 16142.35 20053.44 17751.77 16840.70 15043.44 16131.92 14729.78 20323.72 22045.04 12761.99 16159.54 17267.35 17061.03 181
test0.0.03 143.15 19346.95 19538.72 19355.26 13450.56 18642.48 20343.48 12338.16 19815.11 19935.07 19144.69 17716.47 20755.95 19454.34 19359.54 19349.87 207
gm-plane-assit44.74 18845.95 19643.33 17760.88 9046.79 20236.97 21132.24 20124.15 21611.79 20629.26 20532.97 21146.64 11765.09 14962.95 15371.45 15460.42 184
Anonymous2023120642.28 19445.89 19738.07 19551.96 15948.98 19143.66 20138.81 16538.74 19314.32 20226.74 20840.90 19020.94 20256.64 18954.67 19158.71 19454.59 196
FMVSNet540.96 19745.81 19835.29 20334.30 20844.55 20747.28 18528.84 20540.76 18021.62 18629.85 20242.44 18424.77 19557.53 18355.00 18854.93 20250.56 203
EU-MVSNet40.63 20045.65 19934.78 20439.11 20546.94 20040.02 20834.03 18933.50 20510.37 20935.57 19037.80 20323.65 19851.90 20350.21 20461.49 19063.62 172
ambc45.54 20050.66 17352.63 18140.99 20638.36 19524.67 18022.62 21313.94 22329.14 18965.71 14358.06 17658.60 19667.43 142
CHOSEN 280x42040.80 19845.05 20135.84 20232.95 21229.57 21744.98 19623.71 21437.54 19918.42 19531.36 19947.07 15046.41 12056.71 18854.65 19248.55 21358.47 191
test20.0340.38 20244.20 20235.92 20153.73 14749.05 19038.54 20943.49 12232.55 2079.54 21227.88 20739.12 19812.24 21256.28 19154.69 19057.96 19849.83 208
pmnet_mix0240.48 20143.80 20336.61 19945.79 19140.45 21142.12 20433.18 19640.30 18424.11 18438.76 18337.11 20624.30 19752.97 20246.66 21150.17 21150.33 204
testgi38.71 20443.64 20432.95 20552.30 15848.63 19335.59 21435.05 18331.58 2119.03 21530.29 20040.75 19211.19 21855.30 19653.47 19954.53 20545.48 211
ADS-MVSNet40.67 19943.38 20537.50 19744.36 19539.79 21342.09 20532.67 20044.34 15328.87 16340.76 17940.37 19430.22 18548.34 21345.87 21246.81 21444.21 213
MDA-MVSNet-bldmvs41.36 19643.15 20639.27 19228.74 21652.68 18044.95 19740.84 14832.89 20618.13 19631.61 19822.09 22138.97 15450.45 20856.11 18064.01 18156.23 195
MIMVSNet135.51 20741.41 20728.63 20927.53 21843.36 20838.09 21033.82 19132.01 2086.77 21921.63 21435.43 20711.97 21455.05 19853.99 19653.59 20748.36 210
MVS-HIRNet42.24 19541.15 20843.51 17544.06 19740.74 20935.77 21335.35 18135.38 20238.34 12325.63 21038.55 20143.48 13350.77 20647.03 20964.07 18049.98 205
FPMVS38.36 20540.41 20935.97 20038.92 20639.85 21245.50 19325.79 21241.13 17818.70 19430.10 20124.56 21831.86 18349.42 21146.80 21055.04 20151.03 201
pmmvs335.10 20838.47 21031.17 20726.37 22040.47 21034.51 21518.09 21824.75 21516.88 19823.05 21226.69 21632.69 18250.73 20751.60 20158.46 19751.98 199
new-patchmatchnet33.24 21037.20 21128.62 21044.32 19638.26 21529.68 21836.05 17931.97 2096.33 22026.59 20927.33 21511.12 21950.08 21041.05 21444.23 21545.15 212
N_pmnet32.67 21136.85 21227.79 21140.55 20332.13 21635.80 21226.79 20937.24 2009.10 21332.02 19730.94 21316.30 20847.22 21441.21 21338.21 21737.21 214
PMVScopyleft27.84 1833.81 20935.28 21332.09 20634.13 20924.81 21932.51 21626.48 21026.41 21419.37 19323.76 21124.02 21925.18 19450.78 20547.24 20854.89 20449.95 206
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
new_pmnet23.19 21328.17 21417.37 21317.03 22224.92 21819.66 22016.16 22027.05 2134.42 22120.77 21519.20 22212.19 21337.71 21536.38 21534.77 21831.17 215
Gipumacopyleft25.87 21226.91 21524.66 21228.98 21520.17 22020.46 21934.62 18729.55 2129.10 2134.91 2235.31 22715.76 20949.37 21249.10 20639.03 21629.95 216
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMMVS215.84 21419.68 21611.35 21715.74 22316.95 22113.31 22117.64 21916.08 2200.36 22713.12 21711.47 2241.69 22228.82 21627.24 21719.38 22224.09 218
MVEpermissive12.28 1913.53 21715.72 21710.96 2187.39 22415.71 2226.05 22523.73 21310.29 2243.01 2255.77 2223.41 22811.91 21520.11 21729.79 21613.67 22324.98 217
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_method12.44 21814.66 2189.85 2191.30 2263.32 22613.00 2223.21 22122.42 21710.22 21014.13 21625.64 21711.43 21719.75 21811.61 22119.96 2215.79 222
E-PMN15.09 21513.19 21917.30 21427.80 21712.62 2237.81 22427.54 20714.62 2223.19 2226.89 2202.52 23015.09 21015.93 21920.22 21822.38 21919.53 219
EMVS14.49 21612.45 22016.87 21627.02 21912.56 2248.13 22327.19 20815.05 2213.14 2236.69 2212.67 22915.08 21114.60 22118.05 21920.67 22017.56 221
testmvs0.01 2190.02 2210.00 2210.00 2280.00 2280.01 2290.00 2250.01 2250.00 2290.03 2250.00 2310.01 2240.01 2230.01 2220.00 2260.06 224
test1230.01 2190.02 2210.00 2210.00 2280.00 2280.00 2300.00 2250.01 2250.00 2290.04 2240.00 2310.01 2240.00 2240.01 2220.00 2260.07 223
uanet_test0.00 2210.00 2230.00 2210.00 2280.00 2280.00 2300.00 2250.00 2270.00 2290.00 2260.00 2310.00 2260.00 2240.00 2240.00 2260.00 225
sosnet-low-res0.00 2210.00 2230.00 2210.00 2280.00 2280.00 2300.00 2250.00 2270.00 2290.00 2260.00 2310.00 2260.00 2240.00 2240.00 2260.00 225
sosnet0.00 2210.00 2230.00 2210.00 2280.00 2280.00 2300.00 2250.00 2270.00 2290.00 2260.00 2310.00 2260.00 2240.00 2240.00 2260.00 225
RE-MVS-def33.01 140
9.1481.81 13
SR-MVS71.46 3554.67 3081.54 14
our_test_351.15 16657.31 16755.12 154
MTAPA65.14 480.20 20
MTMP62.63 1878.04 27
Patchmatch-RL test1.04 228
tmp_tt5.40 2203.97 2252.35 2273.26 2270.44 22317.56 21912.09 20411.48 2197.14 2251.98 22115.68 22015.49 22010.69 224
XVS70.49 3976.96 2774.36 4654.48 5074.47 3982.24 25
X-MVStestdata70.49 3976.96 2774.36 4654.48 5074.47 3982.24 25
abl_664.36 4670.08 4277.45 2372.88 5150.15 5871.31 4454.77 4962.79 5277.99 2856.80 5581.50 4183.91 40
mPP-MVS71.67 3474.36 42
NP-MVS72.00 41
Patchmtry47.61 19548.27 17838.86 16339.59 118
DeepMVS_CXcopyleft6.95 2255.98 2262.25 22211.73 2232.07 22611.85 2185.43 22611.75 21611.40 2228.10 22518.38 220