This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
SMA-MVScopyleft98.66 798.89 798.39 999.60 199.41 1299.00 2097.63 1297.78 1895.83 1898.33 1199.83 498.85 998.93 898.56 699.41 5099.40 20
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
APDe-MVScopyleft98.87 398.96 498.77 199.58 299.53 799.44 197.81 298.22 1097.33 498.70 599.33 1098.86 898.96 698.40 1399.63 599.57 9
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
PGM-MVS97.81 2598.11 2897.46 2999.55 399.34 2099.32 994.51 4596.21 6393.07 3698.05 1497.95 4298.82 1198.22 3697.89 3999.48 3099.09 56
ACMMP_NAP98.20 1898.49 1397.85 2599.50 499.40 1399.26 1197.64 1197.47 3392.62 4697.59 2099.09 2298.71 1598.82 1297.86 4099.40 5399.19 45
DVP-MVS++98.92 199.18 198.61 499.47 599.61 299.39 397.82 198.80 196.86 898.90 299.92 198.67 1799.02 298.20 1999.43 4799.82 1
APD-MVScopyleft98.36 1598.32 2398.41 899.47 599.26 2699.12 1597.77 796.73 5096.12 1697.27 2898.88 2498.46 2598.47 1898.39 1499.52 2299.22 41
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CSCG97.44 3297.18 4397.75 2799.47 599.52 898.55 3195.41 4097.69 2395.72 1994.29 5595.53 6398.10 3396.20 10797.38 5799.24 7899.62 4
HPM-MVS++copyleft98.34 1698.47 1598.18 1699.46 899.15 3499.10 1697.69 897.67 2494.93 2697.62 1999.70 798.60 2098.45 2097.46 5399.31 6899.26 35
SF-MVS98.39 1398.45 1798.33 1099.45 999.05 3798.27 3797.65 997.73 1997.02 798.18 1299.25 1598.11 3298.15 3897.62 4899.45 3899.19 45
SR-MVS99.45 997.61 1499.20 16
MSP-MVS98.73 698.93 598.50 699.44 1199.57 499.36 497.65 998.14 1296.51 1498.49 799.65 898.67 1798.60 1498.42 1199.40 5399.63 2
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
DVP-MVScopyleft98.86 498.97 398.75 299.43 1299.63 199.25 1297.81 298.62 297.69 197.59 2099.90 298.93 598.99 498.42 1199.37 5999.62 4
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
ACMMPR98.40 1298.49 1398.28 1399.41 1399.40 1399.36 497.35 2198.30 695.02 2597.79 1798.39 3799.04 298.26 3398.10 2399.50 2999.22 41
X-MVS97.84 2498.19 2797.42 3099.40 1499.35 1799.06 1797.25 2597.38 3490.85 6296.06 3798.72 3098.53 2498.41 2498.15 2299.46 3499.28 30
MCST-MVS98.20 1898.36 1998.01 2299.40 1499.05 3799.00 2097.62 1397.59 2893.70 3397.42 2799.30 1198.77 1398.39 2697.48 5299.59 799.31 29
CNVR-MVS98.47 1198.46 1698.48 799.40 1499.05 3799.02 1997.54 1697.73 1996.65 1197.20 2999.13 2098.85 998.91 998.10 2399.41 5099.08 57
HFP-MVS98.48 1098.62 1198.32 1199.39 1799.33 2199.27 1097.42 1898.27 795.25 2398.34 1098.83 2699.08 198.26 3398.08 2599.48 3099.26 35
SED-MVS98.90 299.07 298.69 399.38 1899.61 299.33 897.80 498.25 897.60 298.87 499.89 398.67 1799.02 298.26 1799.36 6199.61 6
NCCC98.10 2198.05 3098.17 1899.38 1899.05 3799.00 2097.53 1798.04 1495.12 2494.80 5299.18 1898.58 2298.49 1797.78 4499.39 5598.98 74
MP-MVScopyleft98.09 2298.30 2497.84 2699.34 2099.19 3299.23 1397.40 1997.09 4393.03 3997.58 2298.85 2598.57 2398.44 2297.69 4699.48 3099.23 39
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
CP-MVS98.32 1798.34 2298.29 1299.34 2099.30 2299.15 1497.35 2197.49 3195.58 2197.72 1898.62 3498.82 1198.29 2897.67 4799.51 2799.28 30
SteuartSystems-ACMMP98.38 1498.71 1097.99 2399.34 2099.46 1099.34 697.33 2497.31 3594.25 2998.06 1399.17 1998.13 3198.98 598.46 999.55 1899.54 11
Skip Steuart: Steuart Systems R&D Blog.
DPE-MVScopyleft98.75 598.91 698.57 599.21 2399.54 699.42 297.78 697.49 3196.84 998.94 199.82 598.59 2198.90 1098.22 1899.56 1799.48 16
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
mPP-MVS99.21 2398.29 38
AdaColmapbinary97.53 3096.93 4798.24 1499.21 2398.77 6598.47 3497.34 2396.68 5296.52 1395.11 4996.12 5898.72 1497.19 6996.24 8599.17 9498.39 115
DeepC-MVS_fast96.13 198.13 2098.27 2597.97 2499.16 2699.03 4399.05 1897.24 2698.22 1094.17 3195.82 4098.07 3998.69 1698.83 1198.80 299.52 2299.10 54
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MSLP-MVS++98.04 2397.93 3298.18 1699.10 2799.09 3698.34 3696.99 3297.54 2996.60 1294.82 5198.45 3598.89 697.46 6198.77 499.17 9499.37 22
3Dnovator93.79 897.08 3797.20 4196.95 3799.09 2899.03 4398.20 3993.33 5297.99 1593.82 3290.61 9496.80 4997.82 3797.90 4898.78 399.47 3399.26 35
QAPM96.78 4797.14 4496.36 4299.05 2999.14 3598.02 4393.26 5497.27 3790.84 6591.16 8697.31 4497.64 4397.70 5498.20 1999.33 6399.18 48
OpenMVScopyleft92.33 1195.50 5695.22 7595.82 5398.98 3098.97 4997.67 5093.04 6294.64 10589.18 9584.44 14294.79 6596.79 6297.23 6697.61 4999.24 7898.88 85
PLCcopyleft94.95 397.37 3396.77 5198.07 2098.97 3198.21 9297.94 4696.85 3597.66 2597.58 393.33 6196.84 4898.01 3697.13 7196.20 8799.09 10698.01 131
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
TPM-MVS98.94 3298.47 8598.04 4292.62 4696.51 3398.76 2995.94 7998.92 12797.55 147
Ray Leroy Khuboni and Hongjun Xu: Textureless Resilient Propagation Matching in Multiple View Stereosis (TPM-MVS). SATNAC 2025
train_agg97.65 2998.06 2997.18 3398.94 3298.91 5698.98 2497.07 3196.71 5190.66 6897.43 2699.08 2398.20 2797.96 4697.14 6499.22 8499.19 45
CDPH-MVS96.84 4597.49 3696.09 4798.92 3498.85 6198.61 2895.09 4196.00 7187.29 10895.45 4697.42 4397.16 5297.83 5097.94 3499.44 4498.92 80
CPTT-MVS97.78 2697.54 3598.05 2198.91 3599.05 3799.00 2096.96 3397.14 4195.92 1795.50 4498.78 2898.99 497.20 6796.07 8998.54 16199.04 66
3Dnovator+93.91 797.23 3597.22 4097.24 3298.89 3698.85 6198.26 3893.25 5697.99 1595.56 2290.01 10098.03 4198.05 3497.91 4798.43 1099.44 4499.35 24
ACMMPcopyleft97.37 3397.48 3797.25 3198.88 3799.28 2498.47 3496.86 3497.04 4592.15 5097.57 2396.05 6097.67 4097.27 6595.99 9499.46 3499.14 53
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
PHI-MVS97.78 2698.44 1897.02 3698.73 3899.25 2898.11 4095.54 3996.66 5392.79 4398.52 699.38 997.50 4597.84 4998.39 1499.45 3899.03 67
OMC-MVS97.00 3996.92 4897.09 3498.69 3998.66 7497.85 4795.02 4298.09 1394.47 2793.15 6296.90 4697.38 4797.16 7096.82 7499.13 10197.65 144
MAR-MVS95.50 5695.60 6595.39 6198.67 4098.18 9595.89 10289.81 10994.55 10791.97 5392.99 6490.21 9197.30 4996.79 8097.49 5198.72 14798.99 72
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
TSAR-MVS + ACMM97.71 2898.60 1296.66 3998.64 4199.05 3798.85 2597.23 2798.45 489.40 9097.51 2499.27 1496.88 6198.53 1597.81 4398.96 12399.59 8
CNLPA96.90 4296.28 5797.64 2898.56 4298.63 7996.85 6896.60 3697.73 1997.08 689.78 10296.28 5697.80 3996.73 8396.63 7698.94 12598.14 127
EPNet96.27 5396.97 4695.46 5998.47 4398.28 8997.41 5393.67 4995.86 7692.86 4297.51 2493.79 7191.76 14397.03 7497.03 6698.61 15799.28 30
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MVS_111021_LR97.16 3698.01 3196.16 4698.47 4398.98 4896.94 6493.89 4897.64 2691.44 5598.89 396.41 5297.20 5198.02 4597.29 6299.04 11798.85 89
MVS_111021_HR97.04 3898.20 2695.69 5498.44 4599.29 2396.59 8093.20 5797.70 2289.94 8298.46 896.89 4796.71 6598.11 4297.95 3399.27 7499.01 70
MSDG94.82 7193.73 10596.09 4798.34 4697.43 11197.06 5996.05 3795.84 7790.56 6986.30 13189.10 10195.55 8796.13 11095.61 10599.00 11895.73 180
TAPA-MVS94.18 596.38 5096.49 5596.25 4398.26 4798.66 7498.00 4494.96 4397.17 3989.48 8792.91 6696.35 5397.53 4496.59 8895.90 9799.28 7297.82 135
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
DeepC-MVS94.87 496.76 4896.50 5497.05 3598.21 4899.28 2498.67 2797.38 2097.31 3590.36 7589.19 10493.58 7298.19 2898.31 2798.50 799.51 2799.36 23
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SD-MVS98.52 898.77 998.23 1598.15 4999.26 2698.79 2697.59 1598.52 396.25 1597.99 1599.75 699.01 398.27 3297.97 3199.59 799.63 2
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
TSAR-MVS + MP.98.49 998.78 898.15 1998.14 5099.17 3399.34 697.18 2998.44 595.72 1997.84 1699.28 1298.87 799.05 198.05 2699.66 299.60 7
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
DPM-MVS96.86 4496.82 5096.91 3898.08 5198.20 9398.52 3397.20 2897.24 3891.42 5691.84 7898.45 3597.25 5097.07 7297.40 5698.95 12497.55 147
EPNet_dtu92.45 11995.02 8189.46 14798.02 5295.47 17094.79 12292.62 6694.97 10070.11 19494.76 5492.61 7884.07 20495.94 11395.56 10697.15 19095.82 179
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CANet96.84 4597.20 4196.42 4097.92 5399.24 3098.60 2993.51 5197.11 4293.07 3691.16 8697.24 4596.21 7498.24 3598.05 2699.22 8499.35 24
LS3D95.46 5995.14 7795.84 5297.91 5498.90 5898.58 3097.79 597.07 4483.65 12388.71 10788.64 10497.82 3797.49 5997.42 5499.26 7797.72 143
CS-MVS-test97.00 3997.85 3396.00 5097.77 5599.56 596.35 8891.95 7697.54 2992.20 4996.14 3696.00 6198.19 2898.46 1997.78 4499.57 1499.45 18
DELS-MVS96.06 5496.04 6196.07 4997.77 5599.25 2898.10 4193.26 5494.42 10992.79 4388.52 11193.48 7395.06 9698.51 1698.83 199.45 3899.28 30
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
COLMAP_ROBcopyleft90.49 1493.27 11192.71 12093.93 9297.75 5797.44 11096.07 9593.17 5895.40 8683.86 12183.76 14688.72 10393.87 11694.25 15494.11 14898.87 13295.28 186
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
PCF-MVS93.95 695.65 5595.14 7796.25 4397.73 5898.73 6797.59 5197.13 3092.50 13989.09 9789.85 10196.65 5096.90 6094.97 14194.89 12699.08 10798.38 116
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
PatchMatch-RL94.69 7794.41 8895.02 6797.63 5998.15 9694.50 12891.99 7495.32 8991.31 5895.47 4583.44 14196.02 7796.56 8995.23 11698.69 15096.67 172
CS-MVS96.87 4397.41 3996.24 4597.42 6099.48 997.30 5691.83 8197.17 3993.02 4094.80 5294.45 6798.16 3098.61 1397.85 4199.69 199.50 12
PVSNet_BlendedMVS95.41 6195.28 7395.57 5697.42 6099.02 4595.89 10293.10 5996.16 6493.12 3491.99 7485.27 12694.66 10298.09 4397.34 5899.24 7899.08 57
PVSNet_Blended95.41 6195.28 7395.57 5697.42 6099.02 4595.89 10293.10 5996.16 6493.12 3491.99 7485.27 12694.66 10298.09 4397.34 5899.24 7899.08 57
DeepPCF-MVS95.28 297.00 3998.35 2195.42 6097.30 6398.94 5194.82 12196.03 3898.24 992.11 5195.80 4198.64 3395.51 8898.95 798.66 596.78 19399.20 44
CHOSEN 280x42095.46 5997.01 4593.66 9797.28 6497.98 10096.40 8685.39 16196.10 6891.07 5996.53 3296.34 5595.61 8597.65 5596.95 6996.21 19497.49 149
MVS_030496.31 5196.91 4995.62 5597.21 6599.20 3198.55 3193.10 5997.04 4589.73 8490.30 9696.35 5395.71 8198.14 3997.93 3799.38 5699.40 20
CHOSEN 1792x268892.66 11692.49 12692.85 10797.13 6698.89 5995.90 10088.50 12795.32 8983.31 12471.99 20088.96 10294.10 11396.69 8496.49 7898.15 17499.10 54
HyFIR lowres test92.03 12091.55 14592.58 10897.13 6698.72 6894.65 12586.54 14693.58 12482.56 12767.75 21190.47 8995.67 8295.87 11595.54 10798.91 12998.93 79
OPM-MVS93.61 10492.43 13095.00 6896.94 6897.34 11297.78 4894.23 4689.64 17285.53 11588.70 10882.81 14496.28 7396.28 10395.00 12599.24 7897.22 157
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
XVS96.60 6999.35 1796.82 6990.85 6298.72 3099.46 34
X-MVStestdata96.60 6999.35 1796.82 6990.85 6298.72 3099.46 34
TSAR-MVS + COLMAP94.79 7394.51 8695.11 6596.50 7197.54 10697.99 4594.54 4497.81 1785.88 11496.73 3181.28 15196.99 5896.29 10295.21 11798.76 14696.73 171
PVSNet_Blended_VisFu94.77 7595.54 6793.87 9396.48 7298.97 4994.33 13091.84 7994.93 10190.37 7485.04 13794.99 6490.87 15898.12 4197.30 6099.30 7099.45 18
LGP-MVS_train94.12 9194.62 8493.53 9896.44 7397.54 10697.40 5491.84 7994.66 10481.09 13695.70 4383.36 14295.10 9596.36 10095.71 10399.32 6599.03 67
HQP-MVS94.43 8494.57 8594.27 8896.41 7497.23 11696.89 6593.98 4795.94 7383.68 12295.01 5084.46 13395.58 8695.47 12994.85 13099.07 10999.00 71
ACMM92.75 1094.41 8693.84 10395.09 6696.41 7496.80 12594.88 12093.54 5096.41 5890.16 7692.31 7283.11 14396.32 7296.22 10594.65 13299.22 8497.35 154
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
RPSCF94.05 9294.00 9994.12 9096.20 7696.41 13996.61 7991.54 8695.83 7889.73 8496.94 3092.80 7695.35 9291.63 19290.44 19495.27 20693.94 197
test250694.32 8893.00 11795.87 5196.16 7799.39 1596.96 6292.80 6495.22 9594.47 2791.55 8370.45 19795.25 9398.29 2897.98 2999.59 798.10 129
ECVR-MVScopyleft94.14 9092.96 11895.52 5896.16 7799.39 1596.96 6292.80 6495.22 9592.38 4881.48 15680.31 15295.25 9398.29 2897.98 2999.59 798.05 130
test111193.94 9592.78 11995.29 6396.14 7999.42 1196.79 7392.85 6395.08 9991.39 5780.69 16179.86 15595.00 9798.28 3198.00 2899.58 1198.11 128
UA-Net93.96 9495.95 6291.64 11996.06 8098.59 8195.29 11190.00 10391.06 15982.87 12590.64 9398.06 4086.06 19198.14 3998.20 1999.58 1196.96 165
UGNet94.92 6896.63 5292.93 10696.03 8198.63 7994.53 12791.52 8796.23 6290.03 7992.87 6796.10 5986.28 19096.68 8596.60 7799.16 9799.32 28
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
ACMP92.88 994.43 8494.38 8994.50 8496.01 8297.69 10495.85 10592.09 7395.74 7989.12 9695.14 4882.62 14694.77 9895.73 12294.67 13199.14 10099.06 62
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
IB-MVS89.56 1591.71 12692.50 12590.79 13195.94 8398.44 8687.05 20291.38 9093.15 12892.98 4184.78 13885.14 12978.27 20992.47 18094.44 14399.10 10599.08 57
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
MS-PatchMatch91.82 12492.51 12491.02 12595.83 8496.88 12195.05 11584.55 17593.85 11982.01 12982.51 15291.71 8090.52 16595.07 13993.03 17098.13 17594.52 188
CANet_DTU93.92 9796.57 5390.83 12995.63 8598.39 8796.99 6187.38 13796.26 6171.97 18396.31 3493.02 7494.53 10597.38 6396.83 7398.49 16497.79 136
ACMH90.77 1391.51 13191.63 14391.38 12295.62 8696.87 12391.76 17589.66 11291.58 15478.67 14686.73 11978.12 16193.77 12094.59 14594.54 13998.78 14498.98 74
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
TSAR-MVS + GP.97.45 3198.36 1996.39 4195.56 8798.93 5397.74 4993.31 5397.61 2794.24 3098.44 999.19 1798.03 3597.60 5697.41 5599.44 4499.33 26
thres600view793.49 10792.37 13394.79 7895.42 8898.93 5396.58 8192.31 6893.04 12987.88 10486.62 12176.94 17097.09 5696.82 7795.63 10499.45 3898.63 99
thres40093.56 10592.43 13094.87 7595.40 8998.91 5696.70 7792.38 6792.93 13188.19 10386.69 12077.35 16797.13 5396.75 8295.85 9999.42 4998.56 102
thres20093.62 10392.54 12394.88 7395.36 9098.93 5396.75 7592.31 6892.84 13288.28 10186.99 11777.81 16697.13 5396.82 7795.92 9599.45 3898.49 108
thres100view90093.55 10692.47 12994.81 7795.33 9198.74 6696.78 7492.30 7192.63 13588.29 9987.21 11578.01 16396.78 6396.38 9795.92 9599.38 5698.40 114
tfpn200view993.64 10292.57 12294.89 7295.33 9198.94 5196.82 6992.31 6892.63 13588.29 9987.21 11578.01 16397.12 5596.82 7795.85 9999.45 3898.56 102
IS_MVSNet95.28 6396.43 5693.94 9195.30 9399.01 4795.90 10091.12 9294.13 11587.50 10791.23 8594.45 6794.17 11198.45 2098.50 799.65 399.23 39
CMPMVSbinary65.18 1784.76 20083.10 20686.69 18895.29 9495.05 18288.37 19785.51 16080.27 21571.31 18768.37 20973.85 18285.25 19587.72 20787.75 20494.38 21488.70 214
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
sasdasda95.25 6595.45 6995.00 6895.27 9598.72 6896.89 6589.82 10796.51 5490.84 6593.72 5886.01 11997.66 4195.78 11997.94 3499.54 1999.50 12
canonicalmvs95.25 6595.45 6995.00 6895.27 9598.72 6896.89 6589.82 10796.51 5490.84 6593.72 5886.01 11997.66 4195.78 11997.94 3499.54 1999.50 12
sdadasadasd95.12 6795.39 7294.79 7895.24 9798.68 7296.80 7289.72 11196.48 5690.11 7893.64 6085.86 12397.36 4895.69 12597.92 3899.53 2199.49 15
Vis-MVSNet (Re-imp)94.46 8396.24 5892.40 11095.23 9898.64 7795.56 10890.99 9394.42 10985.02 11790.88 9294.65 6688.01 18098.17 3798.37 1699.57 1498.53 105
CLD-MVS94.79 7394.36 9095.30 6295.21 9997.46 10997.23 5792.24 7296.43 5791.77 5492.69 6884.31 13496.06 7595.52 12795.03 12299.31 6899.06 62
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
baseline194.59 7994.47 8794.72 8095.16 10097.97 10196.07 9591.94 7794.86 10289.98 8091.60 8285.87 12295.64 8397.07 7296.90 7099.52 2297.06 164
TDRefinement89.07 16388.15 17290.14 14095.16 10096.88 12195.55 10990.20 10189.68 17176.42 15976.67 17474.30 18084.85 19893.11 17091.91 18898.64 15694.47 189
ACMH+90.88 1291.41 13291.13 14891.74 11895.11 10296.95 12093.13 14789.48 11692.42 14179.93 14185.13 13678.02 16293.82 11993.49 16593.88 15498.94 12597.99 132
DCV-MVSNet94.76 7695.12 7994.35 8795.10 10395.81 15996.46 8589.49 11596.33 6090.16 7692.55 7090.26 9095.83 8095.52 12796.03 9299.06 11299.33 26
Anonymous20240521192.18 13595.04 10498.20 9396.14 9291.79 8393.93 11674.60 18388.38 10796.48 7095.17 13795.82 10299.00 11899.15 51
casdiffmvs_mvgpermissive94.55 8094.26 9294.88 7394.96 10598.51 8397.11 5891.82 8294.28 11289.20 9486.60 12286.85 11296.56 6997.47 6097.25 6399.64 498.83 91
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
FC-MVSNet-train93.85 9893.91 10093.78 9594.94 10696.79 12894.29 13191.13 9193.84 12088.26 10290.40 9585.23 12894.65 10496.54 9195.31 11399.38 5699.28 30
EPP-MVSNet95.27 6496.18 6094.20 8994.88 10798.64 7794.97 11790.70 9695.34 8889.67 8691.66 8193.84 7095.42 9197.32 6497.00 6799.58 1199.47 17
FA-MVS(training)93.94 9595.16 7692.53 10994.87 10898.57 8295.42 11079.49 19595.37 8790.98 6086.54 12494.26 6995.44 9097.80 5395.19 11898.97 12198.38 116
EIA-MVS95.50 5696.19 5994.69 8194.83 10998.88 6095.93 9991.50 8894.47 10889.43 8893.14 6392.72 7797.05 5797.82 5297.13 6599.43 4799.15 51
ETV-MVS96.31 5197.47 3894.96 7194.79 11098.78 6496.08 9491.41 8996.16 6490.50 7095.76 4296.20 5797.39 4698.42 2397.82 4299.57 1499.18 48
MVS_Test94.82 7195.66 6493.84 9494.79 11098.35 8896.49 8489.10 12096.12 6787.09 11092.58 6990.61 8896.48 7096.51 9596.89 7199.11 10498.54 104
Anonymous2023121193.49 10792.33 13494.84 7694.78 11298.00 9996.11 9391.85 7894.86 10290.91 6174.69 18289.18 9996.73 6494.82 14295.51 10898.67 15199.24 38
baseline94.83 7095.82 6393.68 9694.75 11397.80 10296.51 8388.53 12697.02 4789.34 9292.93 6592.18 7994.69 10195.78 11996.08 8898.27 17298.97 78
EC-MVSNet96.49 4997.63 3495.16 6494.75 11398.69 7197.39 5588.97 12196.34 5992.02 5296.04 3896.46 5198.21 2698.41 2497.96 3299.61 699.55 10
MVSTER94.89 6995.07 8094.68 8294.71 11596.68 13197.00 6090.57 9895.18 9793.05 3895.21 4786.41 11693.72 12197.59 5795.88 9899.00 11898.50 107
EPMVS90.88 13792.12 13689.44 14894.71 11597.24 11593.55 13876.81 20295.89 7481.77 13191.49 8486.47 11593.87 11690.21 19990.07 19695.92 19793.49 203
casdiffmvspermissive94.38 8794.15 9894.64 8394.70 11798.51 8396.03 9791.66 8495.70 8089.36 9186.48 12685.03 13196.60 6897.40 6297.30 6099.52 2298.67 97
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
diffmvspermissive94.31 8994.21 9394.42 8694.64 11898.28 8996.36 8791.56 8596.77 4988.89 9888.97 10584.23 13596.01 7896.05 11196.41 8099.05 11698.79 94
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
DI_MVS_plusplus_trai94.01 9393.63 10794.44 8594.54 11998.26 9197.51 5290.63 9795.88 7589.34 9280.54 16389.36 9695.48 8996.33 10196.27 8499.17 9498.78 95
thisisatest053094.54 8195.47 6893.46 10094.51 12098.65 7694.66 12490.72 9495.69 8286.90 11193.80 5689.44 9594.74 9996.98 7694.86 12799.19 9298.85 89
tttt051794.52 8295.44 7193.44 10194.51 12098.68 7294.61 12690.72 9495.61 8486.84 11293.78 5789.26 9894.74 9997.02 7594.86 12799.20 9198.87 87
ADS-MVSNet89.80 15291.33 14788.00 16994.43 12296.71 13092.29 16374.95 21296.07 6977.39 15188.67 10986.09 11893.26 12888.44 20589.57 19995.68 20093.81 200
tpmrst88.86 16789.62 15987.97 17094.33 12395.98 14992.62 15576.36 20594.62 10676.94 15585.98 13282.80 14592.80 13386.90 21187.15 20794.77 21193.93 198
PMMVS94.61 7895.56 6693.50 9994.30 12496.74 12994.91 11989.56 11495.58 8587.72 10596.15 3592.86 7596.06 7595.47 12995.02 12398.43 16997.09 160
CostFormer90.69 13890.48 15690.93 12794.18 12596.08 14794.03 13378.20 19893.47 12589.96 8190.97 9180.30 15393.72 12187.66 20988.75 20195.51 20396.12 176
USDC90.69 13890.52 15590.88 12894.17 12696.43 13895.82 10686.76 14393.92 11776.27 16186.49 12574.30 18093.67 12395.04 14093.36 16398.61 15794.13 193
Vis-MVSNetpermissive92.77 11495.00 8290.16 13894.10 12798.79 6394.76 12388.26 12892.37 14479.95 14088.19 11391.58 8184.38 20197.59 5797.58 5099.52 2298.91 83
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
Effi-MVS+92.93 11393.86 10291.86 11594.07 12898.09 9895.59 10785.98 15394.27 11379.54 14491.12 8981.81 14896.71 6596.67 8696.06 9099.27 7498.98 74
GeoE92.52 11892.64 12192.39 11193.96 12997.76 10396.01 9885.60 15893.23 12783.94 12081.56 15584.80 13295.63 8496.22 10595.83 10199.19 9299.07 61
IterMVS-LS92.56 11793.18 11491.84 11693.90 13094.97 18494.99 11686.20 15094.18 11482.68 12685.81 13387.36 11194.43 10695.31 13396.02 9398.87 13298.60 101
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
dps90.11 15089.37 16390.98 12693.89 13196.21 14493.49 14077.61 20091.95 15092.74 4588.85 10678.77 16092.37 13687.71 20887.71 20595.80 19994.38 191
tpm cat188.90 16587.78 18190.22 13793.88 13295.39 17393.79 13678.11 19992.55 13889.43 8881.31 15779.84 15691.40 14684.95 21286.34 21094.68 21394.09 194
PatchmatchNetpermissive90.56 14092.49 12688.31 16093.83 13396.86 12492.42 15976.50 20495.96 7278.31 14791.96 7689.66 9493.48 12590.04 20189.20 20095.32 20493.73 201
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
TinyColmap89.42 15588.58 16790.40 13593.80 13495.45 17193.96 13586.54 14692.24 14776.49 15880.83 15970.44 19893.37 12694.45 14993.30 16698.26 17393.37 204
SCA90.92 13693.04 11688.45 15793.72 13597.33 11392.77 15176.08 20796.02 7078.26 14891.96 7690.86 8593.99 11590.98 19690.04 19795.88 19894.06 196
RPMNet90.19 14792.03 13988.05 16693.46 13695.95 15293.41 14174.59 21392.40 14275.91 16384.22 14386.41 11692.49 13494.42 15093.85 15698.44 16796.96 165
gg-mvs-nofinetune86.17 19488.57 16883.36 20193.44 13798.15 9696.58 8172.05 21674.12 22049.23 22464.81 21590.85 8689.90 17397.83 5096.84 7298.97 12197.41 152
MDTV_nov1_ep1391.57 12993.18 11489.70 14493.39 13896.97 11993.53 13980.91 19295.70 8081.86 13092.40 7189.93 9293.25 12991.97 18990.80 19295.25 20794.46 190
CR-MVSNet90.16 14891.96 14088.06 16593.32 13995.95 15293.36 14375.99 20892.40 14275.19 16983.18 14885.37 12592.05 13895.21 13594.56 13798.47 16697.08 162
test-LLR91.62 12893.56 11089.35 15093.31 14096.57 13492.02 17187.06 14192.34 14575.05 17290.20 9788.64 10490.93 15496.19 10894.07 14997.75 18496.90 168
test0.0.03 191.97 12193.91 10089.72 14393.31 14096.40 14091.34 18087.06 14193.86 11881.67 13291.15 8889.16 10086.02 19295.08 13895.09 11998.91 12996.64 174
CVMVSNet89.77 15391.66 14287.56 17993.21 14295.45 17191.94 17489.22 11889.62 17369.34 20083.99 14585.90 12184.81 19994.30 15395.28 11496.85 19297.09 160
PatchT89.13 16291.71 14186.11 19392.92 14395.59 16683.64 21075.09 21191.87 15175.19 16982.63 15185.06 13092.05 13895.21 13594.56 13797.76 18397.08 162
Fast-Effi-MVS+91.87 12292.08 13791.62 12192.91 14497.21 11794.93 11884.60 17393.61 12381.49 13483.50 14778.95 15896.62 6796.55 9096.22 8699.16 9798.51 106
IterMVS-SCA-FT90.24 14592.48 12887.63 17692.85 14594.30 20093.79 13681.47 19192.66 13469.95 19584.66 14088.38 10789.99 17195.39 13294.34 14497.74 18697.63 145
baseline293.01 11294.17 9691.64 11992.83 14697.49 10893.40 14287.53 13593.67 12286.07 11391.83 7986.58 11391.36 14796.38 9795.06 12198.67 15198.20 125
IterMVS90.20 14692.43 13087.61 17792.82 14794.31 19994.11 13281.54 18992.97 13069.90 19684.71 13988.16 11089.96 17295.25 13494.17 14797.31 18897.46 150
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CDS-MVSNet92.77 11493.60 10891.80 11792.63 14896.80 12595.24 11289.14 11990.30 16984.58 11886.76 11890.65 8790.42 16695.89 11496.49 7898.79 14398.32 121
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
tpm87.95 17589.44 16286.21 19292.53 14994.62 19491.40 17876.36 20591.46 15569.80 19887.43 11475.14 17591.55 14589.85 20390.60 19395.61 20196.96 165
Effi-MVS+-dtu91.78 12593.59 10989.68 14692.44 15097.11 11894.40 12984.94 16992.43 14075.48 16591.09 9083.75 13993.55 12496.61 8795.47 10997.24 18998.67 97
testgi89.42 15591.50 14687.00 18692.40 15195.59 16689.15 19685.27 16592.78 13372.42 18191.75 8076.00 17384.09 20394.38 15193.82 15898.65 15596.15 175
Fast-Effi-MVS+-dtu91.19 13393.64 10688.33 15992.19 15296.46 13793.99 13481.52 19092.59 13771.82 18492.17 7385.54 12491.68 14495.73 12294.64 13398.80 14198.34 118
FC-MVSNet-test91.63 12793.82 10489.08 15192.02 15396.40 14093.26 14587.26 13893.72 12177.26 15288.61 11089.86 9385.50 19495.72 12495.02 12399.16 9797.44 151
GA-MVS89.28 15890.75 15487.57 17891.77 15496.48 13692.29 16387.58 13490.61 16665.77 20584.48 14176.84 17189.46 17495.84 11693.68 15998.52 16297.34 155
dmvs_re91.84 12391.60 14492.12 11491.60 15597.26 11495.14 11491.96 7591.02 16080.98 13786.56 12377.96 16593.84 11894.71 14395.08 12099.22 8498.62 100
UniMVSNet_ETH3D88.47 16986.00 19991.35 12391.55 15696.29 14292.53 15688.81 12285.58 20282.33 12867.63 21266.87 21294.04 11491.49 19395.24 11598.84 13598.92 80
TAMVS90.54 14290.87 15390.16 13891.48 15796.61 13393.26 14586.08 15187.71 18881.66 13383.11 15084.04 13690.42 16694.54 14694.60 13498.04 17995.48 184
tfpnnormal88.50 16887.01 19090.23 13691.36 15895.78 16192.74 15290.09 10283.65 20776.33 16071.46 20369.58 20391.84 14195.54 12694.02 15199.06 11299.03 67
GBi-Net93.81 9994.18 9493.38 10291.34 15995.86 15596.22 8988.68 12395.23 9290.40 7186.39 12791.16 8294.40 10896.52 9296.30 8199.21 8897.79 136
test193.81 9994.18 9493.38 10291.34 15995.86 15596.22 8988.68 12395.23 9290.40 7186.39 12791.16 8294.40 10896.52 9296.30 8199.21 8897.79 136
FMVSNet293.30 11093.36 11393.22 10591.34 15995.86 15596.22 8988.24 12995.15 9889.92 8381.64 15489.36 9694.40 10896.77 8196.98 6899.21 8897.79 136
FMVSNet393.79 10194.17 9693.35 10491.21 16295.99 14896.62 7888.68 12395.23 9290.40 7186.39 12791.16 8294.11 11295.96 11296.67 7599.07 10997.79 136
TransMVSNet (Re)87.73 18186.79 19288.83 15390.76 16394.40 19791.33 18189.62 11384.73 20475.41 16772.73 19671.41 19386.80 18694.53 14793.93 15399.06 11295.83 178
LTVRE_ROB87.32 1687.55 18288.25 17186.73 18790.66 16495.80 16093.05 14884.77 17083.35 20860.32 21783.12 14967.39 21093.32 12794.36 15294.86 12798.28 17198.87 87
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
EG-PatchMatch MVS86.68 19087.24 18686.02 19490.58 16596.26 14391.08 18481.59 18884.96 20369.80 19871.35 20475.08 17784.23 20294.24 15593.35 16498.82 13695.46 185
TESTMET0.1,191.07 13493.56 11088.17 16190.43 16696.57 13492.02 17182.83 18492.34 14575.05 17290.20 9788.64 10490.93 15496.19 10894.07 14997.75 18496.90 168
pm-mvs189.19 16189.02 16489.38 14990.40 16795.74 16292.05 16988.10 13186.13 19877.70 14973.72 19179.44 15788.97 17795.81 11894.51 14199.08 10797.78 141
NR-MVSNet89.34 15788.66 16690.13 14190.40 16795.61 16493.04 14989.91 10491.22 15778.96 14577.72 17168.90 20689.16 17694.24 15593.95 15299.32 6598.99 72
FMVSNet191.54 13090.93 15192.26 11290.35 16995.27 17795.22 11387.16 14091.37 15687.62 10675.45 17783.84 13894.43 10696.52 9296.30 8198.82 13697.74 142
test-mter90.95 13593.54 11287.93 17190.28 17096.80 12591.44 17782.68 18592.15 14974.37 17689.57 10388.23 10990.88 15796.37 9994.31 14597.93 18197.37 153
pmmvs490.55 14189.91 15891.30 12490.26 17194.95 18592.73 15387.94 13293.44 12685.35 11682.28 15376.09 17293.02 13293.56 16392.26 18698.51 16396.77 170
MVS-HIRNet85.36 19886.89 19183.57 20090.13 17294.51 19583.57 21172.61 21588.27 18471.22 18868.97 20781.81 14888.91 17893.08 17191.94 18794.97 21089.64 213
thisisatest051590.12 14992.06 13887.85 17290.03 17396.17 14587.83 19987.45 13691.71 15377.15 15385.40 13584.01 13785.74 19395.41 13193.30 16698.88 13198.43 110
SixPastTwentyTwo88.37 17089.47 16187.08 18490.01 17495.93 15487.41 20085.32 16290.26 17070.26 19286.34 13071.95 19090.93 15492.89 17591.72 18998.55 16097.22 157
UniMVSNet (Re)90.03 15189.61 16090.51 13489.97 17596.12 14692.32 16189.26 11790.99 16180.95 13878.25 17075.08 17791.14 15093.78 15893.87 15599.41 5099.21 43
pmnet_mix0286.12 19587.12 18984.96 19789.82 17694.12 20184.88 20886.63 14591.78 15265.60 20680.76 16076.98 16986.61 18887.29 21084.80 21396.21 19494.09 194
our_test_389.78 17793.84 20385.59 205
UniMVSNet_NR-MVSNet90.35 14489.96 15790.80 13089.66 17895.83 15892.48 15790.53 9990.96 16279.57 14279.33 16777.14 16893.21 13092.91 17494.50 14299.37 5999.05 64
v888.21 17387.94 17888.51 15689.62 17995.01 18392.31 16284.99 16788.94 17574.70 17475.03 17973.51 18490.67 16292.11 18592.74 17898.80 14198.24 123
WR-MVS_H87.93 17687.85 17988.03 16889.62 17995.58 16890.47 18985.55 15987.20 19376.83 15674.42 18672.67 18886.37 18993.22 16993.04 16999.33 6398.83 91
pmmvs587.83 18088.09 17387.51 18189.59 18195.48 16989.75 19484.73 17186.07 20071.44 18680.57 16270.09 20190.74 16194.47 14892.87 17498.82 13697.10 159
gm-plane-assit83.26 20485.29 20180.89 20489.52 18289.89 21570.26 22178.24 19777.11 21858.01 22174.16 18866.90 21190.63 16497.20 6796.05 9198.66 15495.68 181
v1088.00 17487.96 17688.05 16689.44 18394.68 19192.36 16083.35 18089.37 17472.96 18073.98 18972.79 18791.35 14893.59 16092.88 17398.81 13998.42 112
V4288.31 17187.95 17788.73 15489.44 18395.34 17492.23 16587.21 13988.83 17774.49 17574.89 18173.43 18590.41 16892.08 18792.77 17798.60 15998.33 119
v14887.51 18386.79 19288.36 15889.39 18595.21 17989.84 19388.20 13087.61 19077.56 15073.38 19470.32 20086.80 18690.70 19792.31 18498.37 17097.98 134
CP-MVSNet87.89 17987.27 18588.62 15589.30 18695.06 18190.60 18885.78 15587.43 19275.98 16274.60 18368.14 20990.76 15993.07 17293.60 16099.30 7098.98 74
v114487.92 17887.79 18088.07 16389.27 18795.15 18092.17 16685.62 15788.52 18171.52 18573.80 19072.40 18991.06 15293.54 16492.80 17598.81 13998.33 119
DU-MVS89.67 15488.84 16590.63 13389.26 18895.61 16492.48 15789.91 10491.22 15779.57 14277.72 17171.18 19493.21 13092.53 17894.57 13699.35 6299.05 64
WR-MVS87.93 17688.09 17387.75 17389.26 18895.28 17590.81 18686.69 14488.90 17675.29 16874.31 18773.72 18385.19 19792.26 18193.32 16599.27 7498.81 93
Baseline_NR-MVSNet89.27 15988.01 17590.73 13289.26 18893.71 20492.71 15489.78 11090.73 16381.28 13573.53 19272.85 18692.30 13792.53 17893.84 15799.07 10998.88 85
N_pmnet84.80 19985.10 20384.45 19889.25 19192.86 20784.04 20986.21 14888.78 17866.73 20472.41 19974.87 17985.21 19688.32 20686.45 20895.30 20592.04 207
v2v48288.25 17287.71 18288.88 15289.23 19295.28 17592.10 16787.89 13388.69 18073.31 17975.32 17871.64 19191.89 14092.10 18692.92 17298.86 13497.99 132
PS-CasMVS87.33 18686.68 19588.10 16289.22 19394.93 18690.35 19185.70 15686.44 19774.01 17773.43 19366.59 21590.04 17092.92 17393.52 16199.28 7298.91 83
TranMVSNet+NR-MVSNet89.23 16088.48 16990.11 14289.07 19495.25 17892.91 15090.43 10090.31 16877.10 15476.62 17571.57 19291.83 14292.12 18494.59 13599.32 6598.92 80
v119287.51 18387.31 18487.74 17489.04 19594.87 18992.07 16885.03 16688.49 18270.32 19172.65 19770.35 19991.21 14993.59 16092.80 17598.78 14498.42 112
v14419287.40 18587.20 18787.64 17588.89 19694.88 18891.65 17684.70 17287.80 18771.17 18973.20 19570.91 19590.75 16092.69 17692.49 18198.71 14898.43 110
PEN-MVS87.22 18886.50 19788.07 16388.88 19794.44 19690.99 18586.21 14886.53 19673.66 17874.97 18066.56 21689.42 17591.20 19593.48 16299.24 7898.31 122
v192192087.31 18787.13 18887.52 18088.87 19894.72 19091.96 17384.59 17488.28 18369.86 19772.50 19870.03 20291.10 15193.33 16792.61 18098.71 14898.44 109
pmmvs685.98 19684.89 20487.25 18388.83 19994.35 19889.36 19585.30 16478.51 21775.44 16662.71 21775.41 17487.65 18293.58 16292.40 18396.89 19197.29 156
v124086.89 18986.75 19487.06 18588.75 20094.65 19391.30 18284.05 17687.49 19168.94 20171.96 20168.86 20790.65 16393.33 16792.72 17998.67 15198.24 123
anonymousdsp88.90 16591.00 15086.44 19088.74 20195.97 15090.40 19082.86 18388.77 17967.33 20381.18 15881.44 15090.22 16996.23 10494.27 14699.12 10399.16 50
EU-MVSNet85.62 19787.65 18383.24 20288.54 20292.77 20887.12 20185.32 16286.71 19464.54 20878.52 16975.11 17678.35 20892.25 18292.28 18595.58 20295.93 177
DTE-MVSNet86.67 19186.09 19887.35 18288.45 20394.08 20290.65 18786.05 15286.13 19872.19 18274.58 18566.77 21487.61 18390.31 19893.12 16899.13 10197.62 146
FMVSNet590.36 14390.93 15189.70 14487.99 20492.25 20992.03 17083.51 17992.20 14884.13 11985.59 13486.48 11492.43 13594.61 14494.52 14098.13 17590.85 210
v7n86.43 19286.52 19686.33 19187.91 20594.93 18690.15 19283.05 18186.57 19570.21 19371.48 20266.78 21387.72 18194.19 15792.96 17198.92 12798.76 96
test20.0382.92 20585.52 20079.90 20787.75 20691.84 21082.80 21282.99 18282.65 21260.32 21778.90 16870.50 19667.10 21692.05 18890.89 19198.44 16791.80 208
MDTV_nov1_ep13_2view86.30 19388.27 17084.01 19987.71 20794.67 19288.08 19876.78 20390.59 16768.66 20280.46 16480.12 15487.58 18489.95 20288.20 20395.25 20793.90 199
Anonymous2023120683.84 20385.19 20282.26 20387.38 20892.87 20685.49 20683.65 17886.07 20063.44 21268.42 20869.01 20575.45 21293.34 16692.44 18298.12 17794.20 192
FPMVS75.84 21174.59 21577.29 21186.92 20983.89 22085.01 20780.05 19482.91 21060.61 21665.25 21460.41 22063.86 21775.60 21873.60 22087.29 22180.47 218
MIMVSNet88.99 16491.07 14986.57 18986.78 21095.62 16391.20 18375.40 21090.65 16576.57 15784.05 14482.44 14791.01 15395.84 11695.38 11198.48 16593.50 202
tmp_tt66.88 21486.07 21173.86 22368.22 22233.38 22496.88 4880.67 13988.23 11278.82 15949.78 22182.68 21577.47 21883.19 223
WB-MVS69.22 21376.91 21460.24 21785.80 21279.37 22156.86 22684.96 16881.50 21318.16 22976.85 17361.07 21834.23 22482.46 21681.81 21581.43 22475.31 222
PM-MVS84.72 20184.47 20585.03 19684.67 21391.57 21186.27 20482.31 18787.65 18970.62 19076.54 17656.41 22488.75 17992.59 17789.85 19897.54 18796.66 173
pmmvs-eth3d84.33 20282.94 20785.96 19584.16 21490.94 21286.55 20383.79 17784.25 20575.85 16470.64 20556.43 22387.44 18592.20 18390.41 19597.97 18095.68 181
new-patchmatchnet78.49 21078.19 21378.84 20984.13 21590.06 21477.11 21980.39 19379.57 21659.64 22066.01 21355.65 22575.62 21184.55 21380.70 21696.14 19690.77 211
new_pmnet81.53 20682.68 20880.20 20583.47 21689.47 21682.21 21478.36 19687.86 18660.14 21967.90 21069.43 20482.03 20689.22 20487.47 20694.99 20987.39 215
ET-MVSNet_ETH3D93.34 10994.33 9192.18 11383.26 21797.66 10596.72 7689.89 10695.62 8387.17 10996.00 3983.69 14096.99 5893.78 15895.34 11299.06 11298.18 126
pmmvs379.16 20980.12 21178.05 21079.36 21886.59 21878.13 21873.87 21476.42 21957.51 22270.59 20657.02 22284.66 20090.10 20088.32 20294.75 21291.77 209
PMVScopyleft63.12 1867.27 21566.39 21868.30 21377.98 21960.24 22659.53 22576.82 20166.65 22160.74 21554.39 21959.82 22151.24 22073.92 22170.52 22183.48 22279.17 220
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MDA-MVSNet-bldmvs80.11 20780.24 21079.94 20677.01 22093.21 20578.86 21785.94 15482.71 21160.86 21479.71 16651.77 22683.71 20575.60 21886.37 20993.28 21592.35 205
ambc73.83 21676.23 22185.13 21982.27 21384.16 20665.58 20752.82 22023.31 23173.55 21391.41 19485.26 21292.97 21694.70 187
Gipumacopyleft68.35 21466.71 21770.27 21274.16 22268.78 22463.93 22471.77 21783.34 20954.57 22334.37 22231.88 22868.69 21583.30 21485.53 21188.48 21979.78 219
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
MIMVSNet180.03 20880.93 20978.97 20872.46 22390.73 21380.81 21582.44 18680.39 21463.64 21057.57 21864.93 21776.37 21091.66 19191.55 19098.07 17889.70 212
PMMVS264.36 21765.94 21962.52 21667.37 22477.44 22264.39 22369.32 22161.47 22234.59 22546.09 22141.03 22748.02 22374.56 22078.23 21791.43 21782.76 217
EMVS49.98 21946.76 22253.74 21964.96 22551.29 22837.81 22869.35 22051.83 22322.69 22829.57 22425.06 22957.28 21844.81 22456.11 22370.32 22668.64 224
E-PMN50.67 21847.85 22153.96 21864.13 22650.98 22938.06 22769.51 21951.40 22424.60 22729.46 22524.39 23056.07 21948.17 22359.70 22271.40 22570.84 223
test_method72.96 21278.68 21266.28 21550.17 22764.90 22575.45 22050.90 22387.89 18562.54 21362.98 21668.34 20870.45 21491.90 19082.41 21488.19 22092.35 205
MVEpermissive50.86 1949.54 22051.43 22047.33 22044.14 22859.20 22736.45 22960.59 22241.47 22531.14 22629.58 22317.06 23248.52 22262.22 22274.63 21963.12 22775.87 221
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
testmvs12.09 22116.94 2236.42 2223.15 2296.08 2309.51 2313.84 22521.46 2265.31 23027.49 2266.76 23310.89 22517.06 22515.01 2245.84 22824.75 225
GG-mvs-BLEND66.17 21694.91 8332.63 2211.32 23096.64 13291.40 1780.85 22794.39 1112.20 23190.15 9995.70 622.27 22796.39 9695.44 11097.78 18295.68 181
test1239.58 22213.53 2244.97 2231.31 2315.47 2318.32 2322.95 22618.14 2272.03 23220.82 2272.34 23410.60 22610.00 22614.16 2254.60 22923.77 226
uanet_test0.00 2230.00 2250.00 2240.00 2320.00 2320.00 2330.00 2280.00 2280.00 2330.00 2280.00 2350.00 2280.00 2270.00 2260.00 2300.00 227
sosnet-low-res0.00 2230.00 2250.00 2240.00 2320.00 2320.00 2330.00 2280.00 2280.00 2330.00 2280.00 2350.00 2280.00 2270.00 2260.00 2300.00 227
sosnet0.00 2230.00 2250.00 2240.00 2320.00 2320.00 2330.00 2280.00 2280.00 2330.00 2280.00 2350.00 2280.00 2270.00 2260.00 2300.00 227
RE-MVS-def63.50 211
9.1499.28 12
MTAPA96.83 1099.12 21
MTMP97.18 598.83 26
Patchmatch-RL test34.61 230
NP-MVS95.32 89
Patchmtry95.96 15193.36 14375.99 20875.19 169
DeepMVS_CXcopyleft86.86 21779.50 21670.43 21890.73 16363.66 20980.36 16560.83 21979.68 20776.23 21789.46 21886.53 216