This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DVP-MVS++98.07 198.46 197.62 199.08 399.29 298.84 396.63 497.89 195.35 397.83 499.48 396.98 997.99 297.14 1198.82 1199.60 1
SED-MVS97.98 298.36 297.54 498.94 1699.29 298.81 496.64 397.14 395.16 497.96 299.61 296.92 1298.00 197.24 898.75 1799.25 3
DVP-MVScopyleft97.93 398.23 397.58 399.05 699.31 198.64 696.62 597.56 295.08 596.61 1399.64 197.32 197.91 497.31 698.77 1599.26 2
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
DPE-MVScopyleft97.83 498.13 497.48 598.83 2299.19 498.99 196.70 196.05 1894.39 998.30 199.47 497.02 697.75 797.02 1498.98 399.10 9
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MSP-MVS97.70 698.09 597.24 699.00 1199.17 598.76 596.41 996.91 593.88 1497.72 599.04 796.93 1197.29 1797.31 698.45 3799.23 4
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
APDe-MVS97.79 597.96 697.60 299.20 299.10 698.88 296.68 296.81 794.64 697.84 398.02 1197.24 397.74 897.02 1498.97 599.16 6
SMA-MVScopyleft97.53 797.93 797.07 1099.21 199.02 898.08 1996.25 1196.36 1293.57 1596.56 1499.27 596.78 1697.91 497.43 398.51 2698.94 12
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
SD-MVS97.35 897.73 896.90 1497.35 4398.66 1497.85 2596.25 1196.86 694.54 896.75 1199.13 696.99 796.94 2696.58 2398.39 4499.20 5
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
TSAR-MVS + MP.97.31 997.64 996.92 1397.28 4598.56 2398.61 795.48 2896.72 894.03 1396.73 1298.29 997.15 497.61 1296.42 2698.96 699.13 7
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SteuartSystems-ACMMP97.10 1597.49 1096.65 1898.97 1398.95 998.43 995.96 1795.12 2891.46 2896.85 997.60 1896.37 2497.76 697.16 1098.68 1898.97 11
Skip Steuart: Steuart Systems R&D Blog.
CNVR-MVS97.30 1097.41 1197.18 899.02 1098.60 2198.15 1696.24 1396.12 1794.10 1195.54 2597.99 1296.99 797.97 397.17 998.57 2498.50 29
HPM-MVS++copyleft97.22 1197.40 1297.01 1199.08 398.55 2498.19 1496.48 796.02 1993.28 2096.26 1798.71 896.76 1797.30 1696.25 3798.30 5498.68 15
TSAR-MVS + ACMM96.19 2397.39 1394.78 3797.70 3998.41 3597.72 2795.49 2796.47 1186.66 6796.35 1597.85 1393.99 5097.19 2096.37 3097.12 13099.13 7
SF-MVS97.20 1297.29 1497.10 998.95 1598.51 2997.51 2996.48 796.17 1694.64 697.32 697.57 1996.23 2696.78 2996.15 4198.79 1498.55 27
ACMMP_NAP96.93 1697.27 1596.53 2399.06 598.95 998.24 1396.06 1595.66 2190.96 3295.63 2497.71 1696.53 2097.66 1096.68 2098.30 5498.61 20
HFP-MVS97.11 1497.19 1697.00 1298.97 1398.73 1298.37 1195.69 2196.60 993.28 2096.87 896.64 2897.27 296.64 3596.33 3598.44 3898.56 22
MCST-MVS96.83 1897.06 1796.57 1998.88 2098.47 3298.02 2196.16 1495.58 2390.96 3295.78 2397.84 1496.46 2297.00 2596.17 3998.94 798.55 27
APD-MVScopyleft97.12 1397.05 1897.19 799.04 798.63 1998.45 896.54 694.81 3693.50 1696.10 1997.40 2296.81 1397.05 2296.82 1998.80 1298.56 22
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
ACMMPR96.92 1796.96 1996.87 1598.99 1298.78 1198.38 1095.52 2496.57 1092.81 2496.06 2095.90 3597.07 596.60 3796.34 3498.46 3498.42 33
DeepPCF-MVS92.65 295.50 3396.96 1993.79 5196.44 5698.21 4293.51 9594.08 3696.94 489.29 4393.08 3196.77 2793.82 5497.68 997.40 495.59 17698.65 16
TSAR-MVS + GP.95.86 2896.95 2194.60 4194.07 8598.11 4696.30 4391.76 4995.67 2091.07 3096.82 1097.69 1795.71 3295.96 5295.75 5098.68 1898.63 17
PHI-MVS95.86 2896.93 2294.61 4097.60 4198.65 1896.49 4093.13 4094.07 4387.91 5797.12 797.17 2493.90 5396.46 4096.93 1798.64 2098.10 49
MP-MVScopyleft96.56 2196.72 2396.37 2498.93 1898.48 3098.04 2095.55 2394.32 4090.95 3495.88 2297.02 2596.29 2596.77 3096.01 4798.47 3298.56 22
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
NCCC96.75 1996.67 2496.85 1699.03 998.44 3498.15 1696.28 1096.32 1392.39 2592.16 3497.55 2096.68 1997.32 1496.65 2298.55 2598.26 38
train_agg96.15 2596.64 2595.58 3398.44 2798.03 4898.14 1895.40 3193.90 4587.72 5896.26 1798.10 1095.75 3196.25 4795.45 5598.01 8398.47 31
CP-MVS96.68 2096.59 2696.77 1798.85 2198.58 2298.18 1595.51 2695.34 2592.94 2395.21 2896.25 3096.79 1596.44 4295.77 4998.35 4698.56 22
DeepC-MVS_fast93.32 196.48 2296.42 2796.56 2098.70 2598.31 3897.97 2295.76 2096.31 1492.01 2791.43 3995.42 3996.46 2297.65 1197.69 198.49 3198.12 47
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
X-MVS96.07 2696.33 2895.77 2998.94 1698.66 1497.94 2395.41 3095.12 2888.03 5393.00 3296.06 3195.85 2996.65 3496.35 3198.47 3298.48 30
PGM-MVS96.16 2496.33 2895.95 2699.04 798.63 1998.32 1292.76 4293.42 4790.49 3796.30 1695.31 4096.71 1896.46 4096.02 4698.38 4598.19 42
MVS_111021_HR94.84 3995.91 3093.60 5297.35 4398.46 3395.08 5991.19 5494.18 4285.97 7295.38 2692.56 5193.61 5796.61 3696.25 3798.40 4297.92 56
MSLP-MVS++96.05 2795.63 3196.55 2198.33 2998.17 4496.94 3694.61 3494.70 3894.37 1089.20 5195.96 3496.81 1395.57 5897.33 598.24 6298.47 31
MVS_111021_LR94.84 3995.57 3294.00 4497.11 4897.72 6094.88 6391.16 5595.24 2788.74 4896.03 2191.52 5894.33 4795.96 5295.01 6297.79 9597.49 72
CDPH-MVS94.80 4195.50 3393.98 4698.34 2898.06 4797.41 3093.23 3992.81 5282.98 9792.51 3394.82 4193.53 5896.08 5096.30 3698.42 4097.94 54
ACMMPcopyleft95.54 3195.49 3495.61 3298.27 3098.53 2697.16 3494.86 3294.88 3489.34 4295.36 2791.74 5495.50 3595.51 5994.16 7498.50 2998.22 40
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CSCG95.68 3095.46 3595.93 2798.71 2499.07 797.13 3593.55 3795.48 2493.35 1990.61 4493.82 4595.16 3794.60 8295.57 5397.70 10499.08 10
CS-MVS-test94.63 4395.28 3693.88 4996.56 5598.67 1393.41 9789.31 7994.27 4189.64 4190.84 4291.64 5695.58 3397.04 2396.17 3998.77 1598.32 36
CPTT-MVS95.54 3195.07 3796.10 2597.88 3597.98 5097.92 2494.86 3294.56 3992.16 2691.01 4095.71 3696.97 1094.56 8393.50 9096.81 15398.14 45
DROMVSNet94.19 4895.05 3893.18 5893.56 10197.65 6195.34 5786.37 11592.05 5988.71 4989.91 4793.32 4796.14 2797.29 1796.42 2698.98 398.70 14
CANet94.85 3894.92 3994.78 3797.25 4698.52 2897.20 3291.81 4893.25 4991.06 3186.29 6594.46 4392.99 6497.02 2496.68 2098.34 4898.20 41
DPM-MVS95.07 3594.84 4095.34 3497.44 4297.49 6597.76 2695.52 2494.88 3488.92 4687.25 5896.44 2994.41 4395.78 5596.11 4397.99 8595.95 123
DeepC-MVS92.10 395.22 3494.77 4195.75 3097.77 3798.54 2597.63 2895.96 1795.07 3188.85 4785.35 7391.85 5395.82 3096.88 2897.10 1298.44 3898.63 17
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CS-MVS94.53 4494.73 4294.31 4296.30 5998.53 2694.98 6089.24 8193.37 4890.24 3988.96 5389.76 7096.09 2897.48 1396.42 2698.99 298.59 21
MVS_030494.30 4794.68 4393.86 5096.33 5898.48 3097.41 3091.20 5392.75 5386.96 6486.03 6893.81 4692.64 6996.89 2796.54 2598.61 2298.24 39
ETV-MVS93.80 5194.57 4492.91 6593.98 8797.50 6493.62 9288.70 8691.95 6087.57 5990.21 4690.79 6194.56 4297.20 1996.35 3199.02 197.98 51
3Dnovator+90.56 595.06 3694.56 4595.65 3198.11 3198.15 4597.19 3391.59 5195.11 3093.23 2281.99 10094.71 4295.43 3696.48 3996.88 1898.35 4698.63 17
EPNet93.92 5094.40 4693.36 5497.89 3496.55 8996.08 4692.14 4591.65 6489.16 4494.07 3090.17 6987.78 12395.24 6494.97 6397.09 13298.15 44
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
OMC-MVS94.49 4594.36 4794.64 3997.17 4797.73 5895.49 5492.25 4496.18 1590.34 3888.51 5492.88 5094.90 4094.92 7094.17 7397.69 10696.15 116
3Dnovator90.28 794.70 4294.34 4895.11 3598.06 3298.21 4296.89 3791.03 5794.72 3791.45 2982.87 9193.10 4994.61 4196.24 4897.08 1398.63 2198.16 43
QAPM94.13 4994.33 4993.90 4797.82 3698.37 3796.47 4190.89 5892.73 5585.63 8085.35 7393.87 4494.17 4895.71 5795.90 4898.40 4298.42 33
AdaColmapbinary95.02 3793.71 5096.54 2298.51 2697.76 5696.69 3995.94 1993.72 4693.50 1689.01 5290.53 6596.49 2194.51 8593.76 8398.07 7796.69 96
TAPA-MVS90.35 693.69 5393.52 5193.90 4796.89 5197.62 6296.15 4491.67 5094.94 3285.97 7287.72 5791.96 5294.40 4493.76 9993.06 10698.30 5495.58 132
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
DELS-MVS93.71 5293.47 5294.00 4496.82 5298.39 3696.80 3891.07 5689.51 9889.94 4083.80 8389.29 7190.95 8797.32 1497.65 298.42 4098.32 36
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
UGNet91.52 7693.41 5389.32 10794.13 8297.15 7591.83 12389.01 8290.62 7385.86 7686.83 5991.73 5577.40 18894.68 7994.43 6997.71 10298.40 35
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
IS_MVSNet91.87 7093.35 5490.14 10194.09 8497.73 5893.09 10288.12 9488.71 10579.98 11484.49 7890.63 6487.49 12797.07 2196.96 1698.07 7797.88 60
canonicalmvs93.08 5593.09 5593.07 6294.24 8197.86 5295.45 5687.86 10294.00 4487.47 6088.32 5582.37 10495.13 3893.96 9896.41 2998.27 5898.73 13
EPP-MVSNet92.13 6593.06 5691.05 9093.66 10097.30 6892.18 11487.90 9890.24 8183.63 9486.14 6790.52 6790.76 8994.82 7594.38 7098.18 6897.98 51
PLCcopyleft90.69 494.32 4692.99 5795.87 2897.91 3396.49 9195.95 5094.12 3594.94 3294.09 1285.90 6990.77 6295.58 3394.52 8493.32 9797.55 11395.00 144
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
EIA-MVS92.72 5992.96 5892.44 7093.86 9497.76 5693.13 10188.65 8889.78 9486.68 6686.69 6287.57 7293.74 5596.07 5195.32 5698.58 2397.53 70
CANet_DTU90.74 9092.93 5988.19 11894.36 8096.61 8794.34 7184.66 13090.66 7168.75 16790.41 4586.89 7689.78 9995.46 6094.87 6497.25 12295.62 130
Vis-MVSNet (Re-imp)90.54 9292.76 6087.94 12293.73 9896.94 8392.17 11687.91 9788.77 10476.12 12883.68 8490.80 6079.49 18496.34 4596.35 3198.21 6596.46 103
MAR-MVS92.71 6092.63 6192.79 6697.70 3997.15 7593.75 8887.98 9690.71 7085.76 7886.28 6686.38 7894.35 4694.95 6895.49 5497.22 12397.44 73
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
UA-Net90.81 8592.58 6288.74 11394.87 7897.44 6692.61 10788.22 9282.35 15878.93 11885.20 7595.61 3779.56 18396.52 3896.57 2498.23 6394.37 151
CNLPA93.69 5392.50 6395.06 3697.11 4897.36 6793.88 8593.30 3895.64 2293.44 1880.32 10990.73 6394.99 3993.58 10193.33 9597.67 10896.57 101
HQP-MVS92.39 6392.49 6492.29 7395.65 6595.94 10395.64 5392.12 4692.46 5779.65 11591.97 3682.68 10092.92 6793.47 10692.77 11197.74 10098.12 47
PVSNet_BlendedMVS92.80 5792.44 6593.23 5596.02 6197.83 5493.74 8990.58 5991.86 6190.69 3585.87 7182.04 10790.01 9796.39 4395.26 5898.34 4897.81 61
PVSNet_Blended92.80 5792.44 6593.23 5596.02 6197.83 5493.74 8990.58 5991.86 6190.69 3585.87 7182.04 10790.01 9796.39 4395.26 5898.34 4897.81 61
PVSNet_Blended_VisFu91.92 6992.39 6791.36 8895.45 7197.85 5392.25 11389.54 7688.53 10887.47 6079.82 11190.53 6585.47 14896.31 4695.16 6197.99 8598.56 22
TSAR-MVS + COLMAP92.39 6392.31 6892.47 6995.35 7396.46 9396.13 4592.04 4795.33 2680.11 11394.95 2977.35 13694.05 4994.49 8693.08 10497.15 12794.53 148
MVS_Test91.81 7292.19 6991.37 8793.24 10496.95 8294.43 6786.25 11691.45 6783.45 9586.31 6485.15 8692.93 6593.99 9494.71 6797.92 8996.77 94
CHOSEN 280x42090.77 8892.14 7089.17 10993.86 9492.81 16193.16 10080.22 17790.21 8284.67 9289.89 4891.38 5990.57 9494.94 6992.11 12392.52 19793.65 161
PCF-MVS90.19 892.98 5692.07 7194.04 4396.39 5797.87 5196.03 4795.47 2987.16 11685.09 9084.81 7793.21 4893.46 6091.98 13291.98 12897.78 9697.51 71
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
LGP-MVS_train91.83 7192.04 7291.58 8095.46 6996.18 9995.97 4989.85 6890.45 7777.76 12091.92 3780.07 11892.34 7394.27 8893.47 9198.11 7497.90 59
CLD-MVS92.50 6291.96 7393.13 5993.93 9196.24 9795.69 5188.77 8592.92 5089.01 4588.19 5681.74 11093.13 6393.63 10093.08 10498.23 6397.91 58
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
baseline91.19 7991.89 7490.38 9292.76 11495.04 11093.55 9484.54 13392.92 5085.71 7986.68 6386.96 7589.28 10792.00 13192.62 11496.46 15896.99 88
thisisatest053091.04 8291.74 7590.21 9692.93 11297.00 8092.06 11987.63 10790.74 6981.51 10186.81 6082.48 10189.23 10894.81 7693.03 10897.90 9097.33 78
tttt051791.01 8391.71 7690.19 9892.98 10897.07 7991.96 12287.63 10790.61 7481.42 10286.76 6182.26 10589.23 10894.86 7493.03 10897.90 9097.36 76
ACMP89.13 992.03 6691.70 7792.41 7194.92 7696.44 9593.95 8189.96 6791.81 6385.48 8590.97 4179.12 12192.42 7193.28 11292.55 11597.76 9897.74 64
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
MVSTER91.73 7391.61 7891.86 7793.18 10594.56 11294.37 6987.90 9890.16 8588.69 5089.23 5081.28 11288.92 11695.75 5693.95 8098.12 7296.37 107
OpenMVScopyleft88.18 1192.51 6191.61 7893.55 5397.74 3898.02 4995.66 5290.46 6189.14 10186.50 6875.80 13490.38 6892.69 6894.99 6795.30 5798.27 5897.63 65
Vis-MVSNetpermissive89.36 10891.49 8086.88 13392.10 12297.60 6392.16 11785.89 11884.21 14475.20 13082.58 9587.13 7477.40 18895.90 5495.63 5198.51 2697.36 76
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
FA-MVS(training)90.79 8791.33 8190.17 9993.76 9797.22 7292.74 10677.79 18790.60 7588.03 5378.80 11587.41 7391.00 8695.40 6293.43 9397.70 10496.46 103
DCV-MVSNet91.24 7891.26 8291.22 8992.84 11393.44 13993.82 8686.75 11291.33 6885.61 8184.00 8285.46 8591.27 8192.91 11493.62 8597.02 13698.05 50
casdiffmvs_mvgpermissive91.94 6891.25 8392.75 6793.41 10397.19 7495.48 5589.77 7089.86 9286.41 6981.02 10782.23 10692.93 6595.44 6195.61 5298.51 2697.40 75
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PMMVS89.88 10091.19 8488.35 11689.73 14891.97 18190.62 12981.92 16490.57 7680.58 11292.16 3486.85 7791.17 8392.31 12491.35 13996.11 16493.11 168
casdiffmvspermissive91.72 7491.16 8592.38 7293.16 10697.15 7593.95 8189.49 7791.58 6686.03 7180.75 10880.95 11393.16 6295.25 6395.22 6098.50 2997.23 81
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
diffmvspermissive91.37 7791.09 8691.70 7992.71 11796.47 9294.03 7988.78 8492.74 5485.43 8783.63 8580.37 11591.76 7893.39 10893.78 8297.50 11597.23 81
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
LS3D91.97 6790.98 8793.12 6097.03 5097.09 7895.33 5895.59 2292.47 5679.26 11781.60 10382.77 9994.39 4594.28 8794.23 7297.14 12994.45 150
ET-MVSNet_ETH3D89.93 9990.84 8888.87 11179.60 21096.19 9894.43 6786.56 11390.63 7280.75 11090.71 4377.78 13293.73 5691.36 14093.45 9298.15 6995.77 127
EPNet_dtu88.32 11790.61 8985.64 14596.79 5392.27 17392.03 12090.31 6289.05 10265.44 18889.43 4985.90 8374.22 19792.76 11592.09 12495.02 18692.76 170
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
ACMM88.76 1091.70 7590.43 9093.19 5795.56 6695.14 10993.35 9991.48 5292.26 5887.12 6284.02 8179.34 12093.99 5094.07 9392.68 11297.62 11295.50 133
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
baseline190.81 8590.29 9191.42 8493.67 9995.86 10493.94 8389.69 7489.29 10082.85 9882.91 9080.30 11689.60 10095.05 6694.79 6698.80 1293.82 159
GG-mvs-BLEND62.84 20990.21 9230.91 2170.57 22594.45 11686.99 1790.34 22388.71 1050.98 22581.55 10591.58 570.86 22292.66 11891.43 13895.73 17091.11 180
FC-MVSNet-train90.55 9190.19 9390.97 9193.78 9695.16 10892.11 11888.85 8387.64 11383.38 9684.36 8078.41 12789.53 10194.69 7893.15 10398.15 6997.92 56
DI_MVS_plusplus_trai91.05 8190.15 9492.11 7492.67 11896.61 8796.03 4788.44 9090.25 8085.92 7473.73 14284.89 8891.92 7594.17 9194.07 7897.68 10797.31 79
GBi-Net90.21 9690.11 9590.32 9488.66 15893.65 13594.25 7485.78 12090.03 8685.56 8277.38 12086.13 7989.38 10493.97 9594.16 7498.31 5195.47 134
test190.21 9690.11 9590.32 9488.66 15893.65 13594.25 7485.78 12090.03 8685.56 8277.38 12086.13 7989.38 10493.97 9594.16 7498.31 5195.47 134
FMVSNet390.19 9890.06 9790.34 9388.69 15793.85 12794.58 6485.78 12090.03 8685.56 8277.38 12086.13 7989.22 11093.29 11194.36 7198.20 6695.40 138
Effi-MVS+89.79 10289.83 9889.74 10392.98 10896.45 9493.48 9684.24 13587.62 11476.45 12681.76 10177.56 13593.48 5994.61 8193.59 8697.82 9497.22 83
baseline288.97 11289.50 9988.36 11591.14 13495.30 10690.13 14085.17 12787.24 11580.80 10984.46 7978.44 12685.60 14593.54 10491.87 12997.31 12095.66 129
OPM-MVS91.08 8089.34 10093.11 6196.18 6096.13 10096.39 4292.39 4382.97 15581.74 10082.55 9780.20 11793.97 5294.62 8093.23 9898.00 8495.73 128
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
ECVR-MVScopyleft90.77 8889.27 10192.52 6894.97 7498.30 3994.53 6590.25 6489.91 9085.80 7773.64 14374.31 14590.69 9096.75 3296.10 4498.87 895.91 125
RPSCF89.68 10389.24 10290.20 9792.97 11092.93 15792.30 11187.69 10490.44 7885.12 8991.68 3885.84 8490.69 9087.34 18786.07 18992.46 19890.37 186
test250690.93 8489.20 10392.95 6394.97 7498.30 3994.53 6590.25 6489.91 9088.39 5283.23 8764.17 19090.69 9096.75 3296.10 4498.87 895.97 122
FMVSNet289.61 10489.14 10490.16 10088.66 15893.65 13594.25 7485.44 12488.57 10784.96 9173.53 14583.82 9189.38 10494.23 8994.68 6898.31 5195.47 134
test111190.47 9389.10 10592.07 7594.92 7698.30 3994.17 7890.30 6389.56 9783.92 9373.25 15073.66 14690.26 9696.77 3096.14 4298.87 896.04 120
FC-MVSNet-test86.15 13489.10 10582.71 18389.83 14693.18 14987.88 17284.69 12986.54 12362.18 19882.39 9883.31 9474.18 19892.52 12291.86 13097.50 11593.88 158
PatchMatch-RL90.30 9588.93 10791.89 7695.41 7295.68 10590.94 12688.67 8789.80 9386.95 6585.90 6972.51 14892.46 7093.56 10392.18 12196.93 14592.89 169
CDS-MVSNet88.34 11688.71 10887.90 12390.70 14294.54 11392.38 10986.02 11780.37 16779.42 11679.30 11283.43 9382.04 17193.39 10894.01 7996.86 15195.93 124
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
GeoE89.29 11088.68 10989.99 10292.75 11696.03 10293.07 10483.79 14286.98 11881.34 10374.72 13978.92 12291.22 8293.31 11093.21 10097.78 9697.60 69
IterMVS-LS88.60 11388.45 11088.78 11292.02 12392.44 17192.00 12183.57 14686.52 12478.90 11978.61 11781.34 11189.12 11190.68 15393.18 10197.10 13196.35 108
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
test-mter86.09 13788.38 11183.43 17387.89 16892.61 16586.89 18077.11 19084.30 14268.62 16982.57 9682.45 10284.34 15592.40 12390.11 16595.74 16994.21 154
test-LLR86.88 12688.28 11285.24 14991.22 13292.07 17787.41 17583.62 14484.58 13769.33 16383.00 8882.79 9784.24 15692.26 12589.81 17195.64 17493.44 162
TESTMET0.1,186.11 13688.28 11283.59 17087.80 16992.07 17787.41 17577.12 18984.58 13769.33 16383.00 8882.79 9784.24 15692.26 12589.81 17195.64 17493.44 162
MSDG90.42 9488.25 11492.94 6496.67 5494.41 11893.96 8092.91 4189.59 9686.26 7076.74 12780.92 11490.43 9592.60 12092.08 12597.44 11891.41 176
Anonymous2023121189.82 10188.18 11591.74 7892.52 11996.09 10193.38 9889.30 8088.95 10385.90 7564.55 19184.39 8992.41 7292.24 12793.06 10696.93 14597.95 53
Effi-MVS+-dtu87.51 12288.13 11686.77 13591.10 13594.90 11190.91 12782.67 15483.47 15171.55 14681.11 10677.04 13789.41 10392.65 11991.68 13595.00 18796.09 118
Anonymous20240521188.00 11793.16 10696.38 9693.58 9389.34 7887.92 11265.04 18783.03 9692.07 7492.67 11793.33 9596.96 14097.63 65
Fast-Effi-MVS+88.56 11587.99 11889.22 10891.56 12995.21 10792.29 11282.69 15386.82 11977.73 12176.24 13273.39 14793.36 6194.22 9093.64 8497.65 10996.43 105
IB-MVS85.10 1487.98 11887.97 11987.99 12194.55 7996.86 8584.52 19288.21 9386.48 12688.54 5174.41 14177.74 13374.10 19989.65 17092.85 11098.06 7997.80 63
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
tfpn200view989.55 10587.86 12091.53 8293.90 9297.26 6994.31 7389.74 7185.87 12881.15 10576.46 12970.38 15791.76 7894.92 7093.51 8798.28 5796.61 98
CHOSEN 1792x268888.57 11487.82 12189.44 10695.46 6996.89 8493.74 8985.87 11989.63 9577.42 12361.38 19783.31 9488.80 11893.44 10793.16 10295.37 18196.95 90
thres20089.49 10687.72 12291.55 8193.95 8997.25 7094.34 7189.74 7185.66 13181.18 10476.12 13370.19 16091.80 7694.92 7093.51 8798.27 5896.40 106
Fast-Effi-MVS+-dtu86.25 13187.70 12384.56 15890.37 14593.70 13290.54 13078.14 18483.50 15065.37 18981.59 10475.83 14386.09 14491.70 13591.70 13396.88 14995.84 126
test0.0.03 185.58 14287.69 12483.11 17691.22 13292.54 16885.60 19183.62 14485.66 13167.84 17482.79 9379.70 11973.51 20191.15 14590.79 14496.88 14991.23 179
thres100view90089.36 10887.61 12591.39 8593.90 9296.86 8594.35 7089.66 7585.87 12881.15 10576.46 12970.38 15791.17 8394.09 9293.43 9398.13 7196.16 115
MS-PatchMatch87.63 12087.61 12587.65 12693.95 8994.09 12392.60 10881.52 16986.64 12176.41 12773.46 14785.94 8285.01 15292.23 12890.00 16896.43 16090.93 182
thres40089.40 10787.58 12791.53 8294.06 8697.21 7394.19 7789.83 6985.69 13081.08 10775.50 13669.76 16191.80 7694.79 7793.51 8798.20 6696.60 99
SCA86.25 13187.52 12884.77 15491.59 12793.90 12689.11 15973.25 20490.38 7972.84 14083.26 8683.79 9288.49 12086.07 19485.56 19293.33 19089.67 191
MDTV_nov1_ep1386.64 13087.50 12985.65 14490.73 14093.69 13389.96 14478.03 18689.48 9976.85 12584.92 7682.42 10386.14 14286.85 19186.15 18892.17 19988.97 194
thres600view789.28 11187.47 13091.39 8594.12 8397.25 7093.94 8389.74 7185.62 13380.63 11175.24 13869.33 16291.66 8094.92 7093.23 9898.27 5896.72 95
thisisatest051585.70 14087.00 13184.19 16388.16 16593.67 13484.20 19484.14 13883.39 15372.91 13976.79 12674.75 14478.82 18692.57 12191.26 14096.94 14296.56 102
IterMVS-SCA-FT85.44 14686.71 13283.97 16790.59 14390.84 19489.73 15078.34 18384.07 14866.40 18377.27 12578.66 12483.06 16491.20 14290.10 16695.72 17194.78 145
PatchmatchNetpermissive85.70 14086.65 13384.60 15791.79 12493.40 14089.27 15573.62 19990.19 8372.63 14282.74 9481.93 10987.64 12484.99 19784.29 19992.64 19689.00 193
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
ACMH85.51 1387.31 12486.59 13488.14 11993.96 8894.51 11489.00 16287.99 9581.58 16170.15 15778.41 11871.78 15390.60 9391.30 14191.99 12797.17 12696.58 100
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
IterMVS85.25 14886.49 13583.80 16890.42 14490.77 19790.02 14278.04 18584.10 14666.27 18477.28 12478.41 12783.01 16590.88 14789.72 17595.04 18594.24 152
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
HyFIR lowres test87.87 11986.42 13689.57 10495.56 6696.99 8192.37 11084.15 13786.64 12177.17 12457.65 20383.97 9091.08 8592.09 13092.44 11697.09 13295.16 141
CR-MVSNet85.48 14486.29 13784.53 15991.08 13792.10 17589.18 15773.30 20284.75 13571.08 15173.12 15277.91 13186.27 14091.48 13790.75 14796.27 16293.94 156
EPMVS85.77 13986.24 13885.23 15092.76 11493.78 12989.91 14673.60 20090.19 8374.22 13282.18 9978.06 12987.55 12685.61 19685.38 19493.32 19188.48 198
CostFormer86.78 12886.05 13987.62 12892.15 12193.20 14891.55 12575.83 19288.11 11185.29 8881.76 10176.22 14187.80 12284.45 19985.21 19593.12 19293.42 164
COLMAP_ROBcopyleft84.39 1587.61 12186.03 14089.46 10595.54 6894.48 11591.77 12490.14 6687.16 11675.50 12973.41 14876.86 13987.33 12990.05 16489.76 17496.48 15790.46 185
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
ACMH+85.75 1287.19 12586.02 14188.56 11493.42 10294.41 11889.91 14687.66 10683.45 15272.25 14476.42 13171.99 15290.78 8889.86 16590.94 14297.32 11995.11 143
FMVSNet187.33 12386.00 14288.89 11087.13 18492.83 16093.08 10384.46 13481.35 16382.20 9966.33 17877.96 13088.96 11393.97 9594.16 7497.54 11495.38 139
USDC86.73 12985.96 14387.63 12791.64 12693.97 12592.76 10584.58 13288.19 10970.67 15480.10 11067.86 16989.43 10291.81 13389.77 17396.69 15590.05 189
RPMNet84.82 15385.90 14483.56 17191.10 13592.10 17588.73 16671.11 20784.75 13568.79 16673.56 14477.62 13485.33 14990.08 16389.43 17796.32 16193.77 160
UniMVSNet_NR-MVSNet86.80 12785.86 14587.89 12488.17 16494.07 12490.15 13888.51 8984.20 14573.45 13772.38 15470.30 15988.95 11490.25 15892.21 12098.12 7297.62 67
anonymousdsp84.51 15685.85 14682.95 18086.30 19593.51 13885.77 18980.38 17678.25 18163.42 19573.51 14672.20 15084.64 15493.21 11392.16 12297.19 12598.14 45
GA-MVS85.08 14985.65 14784.42 16089.77 14794.25 12189.26 15684.62 13181.19 16462.25 19775.72 13568.44 16684.14 15993.57 10291.68 13596.49 15694.71 147
CVMVSNet83.83 16785.53 14881.85 19089.60 14990.92 19287.81 17383.21 15080.11 17060.16 20276.47 12878.57 12576.79 19089.76 16690.13 16193.51 18992.75 171
PatchT83.86 16685.51 14981.94 18988.41 16191.56 18778.79 20671.57 20684.08 14771.08 15170.62 15876.13 14286.27 14091.48 13790.75 14795.52 17993.94 156
UniMVSNet (Re)86.22 13385.46 15087.11 13088.34 16294.42 11789.65 15287.10 11184.39 14174.61 13170.41 16268.10 16785.10 15191.17 14491.79 13197.84 9397.94 54
ADS-MVSNet84.08 16384.95 15183.05 17991.53 13191.75 18488.16 16970.70 20889.96 8969.51 16278.83 11476.97 13886.29 13984.08 20184.60 19792.13 20188.48 198
TAMVS84.94 15284.95 15184.93 15388.82 15493.18 14988.44 16881.28 17177.16 18673.76 13675.43 13776.57 14082.04 17190.59 15490.79 14495.22 18390.94 181
DU-MVS86.12 13584.81 15387.66 12587.77 17193.78 12990.15 13887.87 10084.40 13973.45 13770.59 15964.82 18788.95 11490.14 15992.33 11797.76 9897.62 67
FMVSNet584.47 15984.72 15484.18 16483.30 20588.43 20288.09 17079.42 18084.25 14374.14 13473.15 15178.74 12383.65 16291.19 14391.19 14196.46 15886.07 203
NR-MVSNet85.46 14584.54 15586.52 13888.33 16393.78 12990.45 13187.87 10084.40 13971.61 14570.59 15962.09 19782.79 16791.75 13491.75 13298.10 7597.44 73
TranMVSNet+NR-MVSNet85.57 14384.41 15686.92 13287.67 17493.34 14290.31 13488.43 9183.07 15470.11 15869.99 16565.28 18286.96 13289.73 16792.27 11898.06 7997.17 85
pmmvs486.00 13884.28 15788.00 12087.80 16992.01 18089.94 14584.91 12886.79 12080.98 10873.41 14866.34 17888.12 12189.31 17388.90 18296.24 16393.20 167
testgi81.94 18784.09 15879.43 19689.53 15190.83 19582.49 19881.75 16780.59 16559.46 20482.82 9265.75 17967.97 20390.10 16289.52 17695.39 18089.03 192
MIMVSNet82.97 17984.00 15981.77 19182.23 20692.25 17487.40 17772.73 20581.48 16269.55 16168.79 16772.42 14981.82 17492.23 12892.25 11996.89 14888.61 196
tpm83.16 17583.64 16082.60 18590.75 13991.05 19188.49 16773.99 19782.36 15767.08 18078.10 11968.79 16384.17 15885.95 19585.96 19091.09 20493.23 166
gg-mvs-nofinetune81.83 18883.58 16179.80 19591.57 12896.54 9093.79 8768.80 21162.71 21543.01 22055.28 20685.06 8783.65 16296.13 4994.86 6597.98 8894.46 149
pm-mvs184.55 15583.46 16285.82 14188.16 16593.39 14189.05 16185.36 12674.03 20072.43 14365.08 18671.11 15482.30 17093.48 10591.70 13397.64 11095.43 137
tpmrst83.72 16983.45 16384.03 16692.21 12091.66 18588.74 16573.58 20188.14 11072.67 14177.37 12372.11 15186.34 13882.94 20482.05 20390.63 20789.86 190
SixPastTwentyTwo83.12 17783.44 16482.74 18287.71 17393.11 15382.30 19982.33 15979.24 17564.33 19278.77 11662.75 19384.11 16088.11 18287.89 18495.70 17294.21 154
Baseline_NR-MVSNet85.28 14783.42 16587.46 12987.77 17190.80 19689.90 14887.69 10483.93 14974.16 13364.72 18966.43 17787.48 12890.14 15990.83 14397.73 10197.11 86
TDRefinement84.97 15183.39 16686.81 13492.97 11094.12 12292.18 11487.77 10382.78 15671.31 14968.43 16868.07 16881.10 17989.70 16989.03 18195.55 17891.62 174
WR-MVS83.14 17683.38 16782.87 18187.55 17593.29 14486.36 18584.21 13680.05 17166.41 18266.91 17466.92 17475.66 19588.96 17890.56 15297.05 13496.96 89
V4284.48 15883.36 16885.79 14387.14 18393.28 14590.03 14183.98 14080.30 16871.20 15066.90 17567.17 17185.55 14689.35 17190.27 15896.82 15296.27 113
v884.45 16083.30 16985.80 14287.53 17692.95 15590.31 13482.46 15880.46 16671.43 14766.99 17367.16 17286.14 14289.26 17490.22 16096.94 14296.06 119
dps85.00 15083.21 17087.08 13190.73 14092.55 16789.34 15475.29 19484.94 13487.01 6379.27 11367.69 17087.27 13084.22 20083.56 20092.83 19590.25 187
v1084.18 16183.17 17185.37 14687.34 17892.68 16390.32 13381.33 17079.93 17469.23 16566.33 17865.74 18087.03 13190.84 14890.38 15596.97 13896.29 112
v2v48284.51 15683.05 17286.20 14087.25 18093.28 14590.22 13685.40 12579.94 17369.78 16067.74 17065.15 18487.57 12589.12 17690.55 15396.97 13895.60 131
v114484.03 16582.88 17385.37 14687.17 18293.15 15290.18 13783.31 14978.83 17767.85 17365.99 18064.99 18586.79 13490.75 15090.33 15796.90 14796.15 116
pmmvs583.37 17382.68 17484.18 16487.13 18493.18 14986.74 18182.08 16376.48 19067.28 17871.26 15662.70 19484.71 15390.77 14990.12 16497.15 12794.24 152
WR-MVS_H82.86 18182.66 17583.10 17787.44 17793.33 14385.71 19083.20 15177.36 18568.20 17266.37 17765.23 18376.05 19489.35 17190.13 16197.99 8596.89 92
v119283.56 17182.35 17684.98 15186.84 18992.84 15890.01 14382.70 15278.54 17866.48 18164.88 18862.91 19286.91 13390.72 15190.25 15996.94 14296.32 110
v14419283.48 17282.23 17784.94 15286.65 19092.84 15889.63 15382.48 15777.87 18267.36 17765.33 18563.50 19186.51 13689.72 16889.99 16997.03 13596.35 108
CP-MVSNet83.11 17882.15 17884.23 16287.20 18192.70 16286.42 18483.53 14777.83 18367.67 17566.89 17660.53 20582.47 16889.23 17590.65 15198.08 7697.20 84
v14883.61 17082.10 17985.37 14687.34 17892.94 15687.48 17485.72 12378.92 17673.87 13565.71 18364.69 18881.78 17587.82 18389.35 17896.01 16595.26 140
v192192083.30 17482.09 18084.70 15586.59 19392.67 16489.82 14982.23 16178.32 17965.76 18664.64 19062.35 19586.78 13590.34 15790.02 16797.02 13696.31 111
TinyColmap84.04 16482.01 18186.42 13990.87 13891.84 18288.89 16484.07 13982.11 16069.89 15971.08 15760.81 20389.04 11290.52 15589.19 17995.76 16888.50 197
tpm cat184.13 16281.99 18286.63 13791.74 12591.50 18890.68 12875.69 19386.12 12785.44 8672.39 15370.72 15585.16 15080.89 20881.56 20491.07 20590.71 183
LTVRE_ROB81.71 1682.44 18581.84 18383.13 17589.01 15392.99 15488.90 16382.32 16066.26 21254.02 21274.68 14059.62 20988.87 11790.71 15292.02 12695.68 17396.62 97
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
v124082.88 18081.66 18484.29 16186.46 19492.52 17089.06 16081.82 16677.16 18665.09 19064.17 19261.50 20086.36 13790.12 16190.13 16196.95 14196.04 120
PEN-MVS82.49 18481.58 18583.56 17186.93 18792.05 17986.71 18283.84 14176.94 18864.68 19167.24 17160.11 20681.17 17887.78 18490.70 15098.02 8296.21 114
v7n82.25 18681.54 18683.07 17885.55 19992.58 16686.68 18381.10 17476.54 18965.97 18562.91 19460.56 20482.36 16991.07 14690.35 15696.77 15496.80 93
PS-CasMVS82.53 18381.54 18683.68 16987.08 18692.54 16886.20 18683.46 14876.46 19165.73 18765.71 18359.41 21081.61 17689.06 17790.55 15398.03 8197.07 87
UniMVSNet_ETH3D84.57 15481.40 18888.28 11789.34 15294.38 12090.33 13286.50 11474.74 19977.52 12259.90 20162.04 19888.78 11988.82 18092.65 11397.22 12397.24 80
EG-PatchMatch MVS81.70 19081.31 18982.15 18888.75 15593.81 12887.14 17878.89 18271.57 20464.12 19461.20 19968.46 16576.73 19291.48 13790.77 14697.28 12191.90 173
tfpnnormal83.80 16881.26 19086.77 13589.60 14993.26 14789.72 15187.60 10972.78 20170.44 15560.53 20061.15 20285.55 14692.72 11691.44 13797.71 10296.92 91
DTE-MVSNet81.76 18981.04 19182.60 18586.63 19191.48 19085.97 18883.70 14376.45 19262.44 19667.16 17259.98 20778.98 18587.15 18889.93 17097.88 9295.12 142
MDTV_nov1_ep13_2view80.43 19280.94 19279.84 19484.82 20290.87 19384.23 19373.80 19880.28 16964.33 19270.05 16468.77 16479.67 18184.83 19883.50 20192.17 19988.25 200
TransMVSNet (Re)82.67 18280.93 19384.69 15688.71 15691.50 18887.90 17187.15 11071.54 20668.24 17163.69 19364.67 18978.51 18791.65 13690.73 14997.64 11092.73 172
EU-MVSNet78.43 19780.25 19476.30 20183.81 20487.27 20880.99 20179.52 17976.01 19354.12 21170.44 16164.87 18667.40 20586.23 19385.54 19391.95 20291.41 176
pmnet_mix0280.14 19480.21 19580.06 19386.61 19289.66 19980.40 20382.20 16282.29 15961.35 19971.52 15566.67 17676.75 19182.55 20580.18 20893.05 19388.62 195
PM-MVS80.29 19379.30 19681.45 19281.91 20788.23 20382.61 19779.01 18179.99 17267.15 17969.07 16651.39 21582.92 16687.55 18685.59 19195.08 18493.28 165
pmmvs680.90 19178.77 19783.38 17485.84 19691.61 18686.01 18782.54 15664.17 21370.43 15654.14 21067.06 17380.73 18090.50 15689.17 18094.74 18894.75 146
gm-plane-assit77.65 20078.50 19876.66 20087.96 16785.43 21064.70 21674.50 19564.15 21451.26 21561.32 19858.17 21184.11 16095.16 6593.83 8197.45 11791.41 176
test20.0376.41 20278.49 19973.98 20385.64 19887.50 20575.89 20880.71 17570.84 20751.07 21668.06 16961.40 20154.99 21288.28 18187.20 18695.58 17786.15 202
Anonymous2023120678.09 19978.11 20078.07 19985.19 20189.17 20080.99 20181.24 17375.46 19758.25 20654.78 20959.90 20866.73 20688.94 17988.26 18396.01 16590.25 187
pmmvs-eth3d79.78 19677.58 20182.34 18781.57 20887.46 20682.92 19681.28 17175.33 19871.34 14861.88 19552.41 21481.59 17787.56 18586.90 18795.36 18291.48 175
MVS-HIRNet78.16 19877.57 20278.83 19785.83 19787.76 20476.67 20770.22 20975.82 19667.39 17655.61 20570.52 15681.96 17386.67 19285.06 19690.93 20681.58 209
CMPMVSbinary61.19 1779.86 19577.46 20382.66 18491.54 13091.82 18383.25 19581.57 16870.51 20868.64 16859.89 20266.77 17579.63 18284.00 20284.30 19891.34 20384.89 206
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
N_pmnet77.55 20176.68 20478.56 19885.43 20087.30 20778.84 20581.88 16578.30 18060.61 20061.46 19662.15 19674.03 20082.04 20680.69 20790.59 20884.81 207
MIMVSNet173.19 20473.70 20572.60 20665.42 21886.69 20975.56 20979.65 17867.87 21155.30 20845.24 21456.41 21263.79 20886.98 18987.66 18595.85 16785.04 205
new_pmnet72.29 20673.25 20671.16 20875.35 21281.38 21273.72 21269.27 21075.97 19449.84 21756.27 20456.12 21369.08 20281.73 20780.86 20689.72 21180.44 211
MDA-MVSNet-bldmvs73.81 20372.56 20775.28 20272.52 21588.87 20174.95 21082.67 15471.57 20455.02 20965.96 18142.84 22176.11 19370.61 21481.47 20590.38 20986.59 201
new-patchmatchnet72.32 20571.09 20873.74 20481.17 20984.86 21172.21 21377.48 18868.32 21054.89 21055.10 20749.31 21863.68 20979.30 21076.46 21193.03 19484.32 208
pmmvs371.13 20771.06 20971.21 20773.54 21480.19 21371.69 21464.86 21362.04 21652.10 21354.92 20848.00 21975.03 19683.75 20383.24 20290.04 21085.27 204
ambc67.96 21073.69 21379.79 21473.82 21171.61 20359.80 20346.00 21320.79 22366.15 20786.92 19080.11 20989.13 21290.50 184
FPMVS69.87 20867.10 21173.10 20584.09 20378.35 21579.40 20476.41 19171.92 20257.71 20754.06 21150.04 21656.72 21071.19 21368.70 21384.25 21375.43 213
test_method58.10 21264.61 21250.51 21228.26 22341.71 22261.28 21732.07 21975.92 19552.04 21447.94 21261.83 19951.80 21379.83 20963.95 21777.60 21781.05 210
PMVScopyleft56.77 1861.27 21058.64 21364.35 20975.66 21154.60 21953.62 21974.23 19653.69 21758.37 20544.27 21549.38 21744.16 21669.51 21565.35 21580.07 21573.66 214
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
Gipumacopyleft58.52 21156.17 21461.27 21067.14 21758.06 21852.16 22068.40 21269.00 20945.02 21922.79 21720.57 22455.11 21176.27 21179.33 21079.80 21667.16 216
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMMVS253.68 21355.72 21551.30 21158.84 21967.02 21754.23 21860.97 21647.50 21819.42 22234.81 21631.97 22230.88 21865.84 21669.99 21283.47 21472.92 215
MVEpermissive39.81 1939.52 21541.58 21637.11 21633.93 22249.06 22026.45 22454.22 21729.46 22124.15 22120.77 21910.60 22734.42 21751.12 21865.27 21649.49 22264.81 217
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN40.00 21435.74 21744.98 21457.69 22139.15 22428.05 22262.70 21435.52 22017.78 22320.90 21814.36 22644.47 21535.89 21947.86 21859.15 22056.47 218
EMVS39.04 21634.32 21844.54 21558.25 22039.35 22327.61 22362.55 21535.99 21916.40 22420.04 22014.77 22544.80 21433.12 22044.10 21957.61 22152.89 219
testmvs4.35 2176.54 2191.79 2180.60 2241.82 2253.06 2260.95 2217.22 2220.88 22612.38 2211.25 2283.87 2216.09 2215.58 2201.40 22311.42 221
test1233.48 2185.31 2201.34 2190.20 2261.52 2262.17 2270.58 2226.13 2230.31 2279.85 2220.31 2293.90 2202.65 2225.28 2210.87 22411.46 220
uanet_test0.00 2190.00 2210.00 2200.00 2270.00 2270.00 2280.00 2240.00 2240.00 2280.00 2230.00 2300.00 2230.00 2230.00 2220.00 2250.00 222
sosnet-low-res0.00 2190.00 2210.00 2200.00 2270.00 2270.00 2280.00 2240.00 2240.00 2280.00 2230.00 2300.00 2230.00 2230.00 2220.00 2250.00 222
sosnet0.00 2190.00 2210.00 2200.00 2270.00 2270.00 2280.00 2240.00 2240.00 2280.00 2230.00 2300.00 2230.00 2230.00 2220.00 2250.00 222
RE-MVS-def60.19 201
9.1497.28 23
SR-MVS98.93 1896.00 1697.75 15
our_test_386.93 18789.77 19881.61 200
MTAPA95.36 297.46 21
MTMP95.70 196.90 26
Patchmatch-RL test18.47 225
tmp_tt50.24 21368.55 21646.86 22148.90 22118.28 22086.51 12568.32 17070.19 16365.33 18126.69 21974.37 21266.80 21470.72 219
XVS95.68 6398.66 1494.96 6188.03 5396.06 3198.46 34
X-MVStestdata95.68 6398.66 1494.96 6188.03 5396.06 3198.46 34
mPP-MVS98.76 2395.49 38
NP-MVS91.63 65
Patchmtry92.39 17289.18 15773.30 20271.08 151
DeepMVS_CXcopyleft71.82 21668.37 21548.05 21877.38 18446.88 21865.77 18247.03 22067.48 20464.27 21776.89 21876.72 212