This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
patch_mono-299.26 5899.62 198.16 27299.81 4194.59 33399.52 13499.64 3299.33 399.73 4899.90 1699.00 2299.99 299.69 699.98 299.89 6
dcpmvs_299.23 6399.58 298.16 27299.83 3594.68 33299.76 3699.52 8999.07 2399.98 499.88 2698.56 6999.93 7099.67 899.98 299.87 17
EI-MVSNet-UG-set99.58 499.57 399.64 6499.78 4799.14 11799.60 9099.45 18099.01 2899.90 999.83 5698.98 2399.93 7099.59 1199.95 899.86 19
APDe-MVS99.66 199.57 399.92 199.77 5399.89 499.75 3999.56 5799.02 2699.88 1199.85 4299.18 1099.96 2299.22 5399.92 1399.90 4
EI-MVSNet-Vis-set99.58 499.56 599.64 6499.78 4799.15 11699.61 8999.45 18099.01 2899.89 1099.82 6399.01 1899.92 8099.56 1499.95 899.85 22
SED-MVS99.61 299.52 699.88 599.84 3199.90 299.60 9099.48 14299.08 2199.91 799.81 7699.20 799.96 2298.91 8399.85 5599.79 60
SD-MVS99.41 3899.52 699.05 16299.74 7199.68 4899.46 16799.52 8999.11 1599.88 1199.91 1199.43 197.70 35998.72 11499.93 1299.77 68
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DVP-MVS++99.59 399.50 899.88 599.51 15699.88 899.87 999.51 10398.99 3399.88 1199.81 7699.27 599.96 2298.85 9699.80 8399.81 47
TSAR-MVS + MP.99.58 499.50 899.81 3699.91 199.66 5399.63 7799.39 21098.91 4699.78 3599.85 4299.36 299.94 5798.84 9999.88 3799.82 40
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
CS-MVS99.50 1299.48 1099.54 8299.76 5699.42 8599.90 199.55 6598.56 7199.78 3599.70 14298.65 6599.79 16699.65 999.78 9099.41 174
CS-MVS-test99.49 1499.48 1099.54 8299.78 4799.30 9699.89 299.58 4998.56 7199.73 4899.69 15298.55 7099.82 15299.69 699.85 5599.48 159
DVP-MVScopyleft99.57 799.47 1299.88 599.85 2599.89 499.57 10899.37 22499.10 1699.81 2599.80 8998.94 2999.96 2298.93 8099.86 4899.81 47
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
MSLP-MVS++99.46 2399.47 1299.44 11299.60 13499.16 11199.41 18699.71 1398.98 3699.45 11899.78 10699.19 999.54 23499.28 4799.84 6399.63 123
mvsany_test199.50 1299.46 1499.62 6999.61 12999.09 12298.94 30999.48 14299.10 1699.96 699.91 1198.85 3999.96 2299.72 599.58 12399.82 40
XVS99.53 999.42 1599.87 1199.85 2599.83 1699.69 5199.68 1998.98 3699.37 14499.74 12798.81 4499.94 5798.79 10799.86 4899.84 26
SteuartSystems-ACMMP99.54 899.42 1599.87 1199.82 3799.81 2599.59 9699.51 10398.62 6799.79 3099.83 5699.28 499.97 1498.48 14999.90 2599.84 26
Skip Steuart: Steuart Systems R&D Blog.
DELS-MVS99.48 1899.42 1599.65 5999.72 8299.40 8899.05 28199.66 2699.14 1199.57 9799.80 8998.46 7699.94 5799.57 1399.84 6399.60 129
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
HPM-MVS_fast99.51 1199.40 1899.85 2599.91 199.79 3099.76 3699.56 5797.72 16899.76 4399.75 12299.13 1299.92 8099.07 6799.92 1399.85 22
MTAPA99.52 1099.39 1999.89 499.90 499.86 1399.66 6599.47 16098.79 5899.68 6099.81 7698.43 7899.97 1498.88 8699.90 2599.83 35
DROMVSNet99.44 2999.39 1999.58 7599.56 14499.49 7899.88 499.58 4998.38 8699.73 4899.69 15298.20 9099.70 20299.64 1099.82 7699.54 142
DeepC-MVS_fast98.69 199.49 1499.39 1999.77 4599.63 11999.59 6299.36 20999.46 16999.07 2399.79 3099.82 6398.85 3999.92 8098.68 12199.87 4099.82 40
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
HFP-MVS99.49 1499.37 2299.86 2099.87 1599.80 2799.66 6599.67 2298.15 11799.68 6099.69 15299.06 1699.96 2298.69 11999.87 4099.84 26
DeepPCF-MVS98.18 398.81 12499.37 2297.12 31899.60 13491.75 35698.61 33999.44 18899.35 299.83 2399.85 4298.70 6099.81 15799.02 7199.91 1899.81 47
ACMMPR99.49 1499.36 2499.86 2099.87 1599.79 3099.66 6599.67 2298.15 11799.67 6499.69 15298.95 2799.96 2298.69 11999.87 4099.84 26
TSAR-MVS + GP.99.36 4599.36 2499.36 12099.67 10098.61 18399.07 27699.33 24199.00 3199.82 2499.81 7699.06 1699.84 13599.09 6499.42 13399.65 113
region2R99.48 1899.35 2699.87 1199.88 1199.80 2799.65 7199.66 2698.13 12099.66 6999.68 15898.96 2499.96 2298.62 12799.87 4099.84 26
APD-MVS_3200maxsize99.48 1899.35 2699.85 2599.76 5699.83 1699.63 7799.54 7398.36 9099.79 3099.82 6398.86 3899.95 4898.62 12799.81 7999.78 66
RE-MVS-def99.34 2899.76 5699.82 2299.63 7799.52 8998.38 8699.76 4399.82 6398.75 5498.61 13099.81 7999.77 68
ACMMP_NAP99.47 2199.34 2899.88 599.87 1599.86 1399.47 16499.48 14298.05 13699.76 4399.86 3798.82 4399.93 7098.82 10699.91 1899.84 26
ZNCC-MVS99.47 2199.33 3099.87 1199.87 1599.81 2599.64 7399.67 2298.08 13099.55 10299.64 17698.91 3499.96 2298.72 11499.90 2599.82 40
MVS_111021_LR99.41 3899.33 3099.65 5999.77 5399.51 7798.94 30999.85 698.82 5399.65 7599.74 12798.51 7399.80 16398.83 10299.89 3499.64 120
DPE-MVScopyleft99.46 2399.32 3299.91 299.78 4799.88 899.36 20999.51 10398.73 6199.88 1199.84 5298.72 5899.96 2298.16 17699.87 4099.88 12
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
PS-MVSNAJ99.32 4999.32 3299.30 13399.57 14098.94 15198.97 30399.46 16998.92 4599.71 5499.24 29499.01 1899.98 899.35 3599.66 11498.97 215
CP-MVS99.45 2599.32 3299.85 2599.83 3599.75 3999.69 5199.52 8998.07 13199.53 10599.63 18298.93 3399.97 1498.74 11199.91 1899.83 35
MVS_111021_HR99.41 3899.32 3299.66 5599.72 8299.47 8198.95 30799.85 698.82 5399.54 10399.73 13398.51 7399.74 18098.91 8399.88 3799.77 68
CSCG99.32 4999.32 3299.32 12799.85 2598.29 20899.71 4899.66 2698.11 12399.41 13199.80 8998.37 8399.96 2298.99 7399.96 799.72 89
ACMMPcopyleft99.45 2599.32 3299.82 3399.89 899.67 5199.62 8399.69 1898.12 12199.63 8099.84 5298.73 5799.96 2298.55 14599.83 7299.81 47
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
SR-MVS-dyc-post99.45 2599.31 3899.85 2599.76 5699.82 2299.63 7799.52 8998.38 8699.76 4399.82 6398.53 7199.95 4898.61 13099.81 7999.77 68
PGM-MVS99.45 2599.31 3899.86 2099.87 1599.78 3699.58 10499.65 3197.84 15499.71 5499.80 8999.12 1399.97 1498.33 16399.87 4099.83 35
SMA-MVScopyleft99.44 2999.30 4099.85 2599.73 7899.83 1699.56 11499.47 16097.45 19599.78 3599.82 6399.18 1099.91 9098.79 10799.89 3499.81 47
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MCST-MVS99.43 3299.30 4099.82 3399.79 4599.74 4199.29 22899.40 20798.79 5899.52 10799.62 18798.91 3499.90 10198.64 12599.75 9899.82 40
mPP-MVS99.44 2999.30 4099.86 2099.88 1199.79 3099.69 5199.48 14298.12 12199.50 11099.75 12298.78 4799.97 1498.57 13999.89 3499.83 35
CNVR-MVS99.42 3499.30 4099.78 4399.62 12599.71 4499.26 24399.52 8998.82 5399.39 13999.71 13898.96 2499.85 12998.59 13599.80 8399.77 68
SR-MVS99.43 3299.29 4499.86 2099.75 6499.83 1699.59 9699.62 3398.21 10899.73 4899.79 10098.68 6199.96 2298.44 15499.77 9399.79 60
UA-Net99.42 3499.29 4499.80 3899.62 12599.55 6899.50 14599.70 1598.79 5899.77 3899.96 197.45 10999.96 2298.92 8299.90 2599.89 6
HPM-MVScopyleft99.42 3499.28 4699.83 3299.90 499.72 4299.81 2099.54 7397.59 17999.68 6099.63 18298.91 3499.94 5798.58 13699.91 1899.84 26
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
PVSNet_Blended_VisFu99.36 4599.28 4699.61 7099.86 2099.07 12799.47 16499.93 297.66 17599.71 5499.86 3797.73 10499.96 2299.47 2799.82 7699.79 60
MSP-MVS99.42 3499.27 4899.88 599.89 899.80 2799.67 6099.50 12298.70 6399.77 3899.49 23198.21 8999.95 4898.46 15399.77 9399.88 12
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
xiu_mvs_v1_base_debu99.29 5399.27 4899.34 12199.63 11998.97 13999.12 26699.51 10398.86 4899.84 1899.47 23998.18 9199.99 299.50 2099.31 14399.08 200
xiu_mvs_v1_base99.29 5399.27 4899.34 12199.63 11998.97 13999.12 26699.51 10398.86 4899.84 1899.47 23998.18 9199.99 299.50 2099.31 14399.08 200
xiu_mvs_v1_base_debi99.29 5399.27 4899.34 12199.63 11998.97 13999.12 26699.51 10398.86 4899.84 1899.47 23998.18 9199.99 299.50 2099.31 14399.08 200
xiu_mvs_v2_base99.26 5899.25 5299.29 13699.53 15098.91 15599.02 29099.45 18098.80 5799.71 5499.26 29298.94 2999.98 899.34 3999.23 14898.98 214
SF-MVS99.38 4399.24 5399.79 4199.79 4599.68 4899.57 10899.54 7397.82 15999.71 5499.80 8998.95 2799.93 7098.19 17299.84 6399.74 78
GST-MVS99.40 4199.24 5399.85 2599.86 2099.79 3099.60 9099.67 2297.97 14299.63 8099.68 15898.52 7299.95 4898.38 15799.86 4899.81 47
HPM-MVS++copyleft99.39 4299.23 5599.87 1199.75 6499.84 1599.43 17799.51 10398.68 6599.27 16899.53 21998.64 6699.96 2298.44 15499.80 8399.79 60
ETV-MVS99.26 5899.21 5699.40 11599.46 17799.30 9699.56 11499.52 8998.52 7599.44 12399.27 29098.41 8199.86 12399.10 6399.59 12299.04 207
MP-MVS-pluss99.37 4499.20 5799.88 599.90 499.87 1299.30 22499.52 8997.18 21999.60 9099.79 10098.79 4699.95 4898.83 10299.91 1899.83 35
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
NCCC99.34 4799.19 5899.79 4199.61 12999.65 5699.30 22499.48 14298.86 4899.21 18299.63 18298.72 5899.90 10198.25 16899.63 11999.80 56
DeepC-MVS98.35 299.30 5199.19 5899.64 6499.82 3799.23 10499.62 8399.55 6598.94 4299.63 8099.95 295.82 16699.94 5799.37 3499.97 599.73 83
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PHI-MVS99.30 5199.17 6099.70 5399.56 14499.52 7699.58 10499.80 897.12 22599.62 8499.73 13398.58 6799.90 10198.61 13099.91 1899.68 103
MP-MVScopyleft99.33 4899.15 6199.87 1199.88 1199.82 2299.66 6599.46 16998.09 12699.48 11499.74 12798.29 8699.96 2297.93 19299.87 4099.82 40
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
CANet99.25 6199.14 6299.59 7299.41 18899.16 11199.35 21499.57 5298.82 5399.51 10999.61 19196.46 14299.95 4899.59 1199.98 299.65 113
CHOSEN 280x42099.12 8199.13 6399.08 15799.66 10897.89 23098.43 34999.71 1398.88 4799.62 8499.76 11996.63 13799.70 20299.46 2899.99 199.66 109
MVSFormer99.17 6899.12 6499.29 13699.51 15698.94 15199.88 499.46 16997.55 18499.80 2899.65 17097.39 11099.28 27799.03 6999.85 5599.65 113
LS3D99.27 5699.12 6499.74 4999.18 24599.75 3999.56 11499.57 5298.45 8099.49 11399.85 4297.77 10399.94 5798.33 16399.84 6399.52 148
9.1499.10 6699.72 8299.40 19499.51 10397.53 18899.64 7999.78 10698.84 4199.91 9097.63 22099.82 76
CHOSEN 1792x268899.19 6499.10 6699.45 10899.89 898.52 19399.39 19899.94 198.73 6199.11 20099.89 2095.50 17699.94 5799.50 2099.97 599.89 6
EIA-MVS99.18 6699.09 6899.45 10899.49 16799.18 10899.67 6099.53 8497.66 17599.40 13699.44 24598.10 9499.81 15798.94 7899.62 12099.35 180
APD-MVScopyleft99.27 5699.08 6999.84 3199.75 6499.79 3099.50 14599.50 12297.16 22199.77 3899.82 6398.78 4799.94 5797.56 22999.86 4899.80 56
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
TAMVS99.12 8199.08 6999.24 14399.46 17798.55 18799.51 13999.46 16998.09 12699.45 11899.82 6398.34 8499.51 23598.70 11698.93 17399.67 106
sss99.17 6899.05 7199.53 9099.62 12598.97 13999.36 20999.62 3397.83 15599.67 6499.65 17097.37 11399.95 4899.19 5599.19 15199.68 103
3Dnovator97.25 999.24 6299.05 7199.81 3699.12 25899.66 5399.84 1399.74 1099.09 2098.92 23299.90 1695.94 16099.98 898.95 7799.92 1399.79 60
F-COLMAP99.19 6499.04 7399.64 6499.78 4799.27 10099.42 18499.54 7397.29 21099.41 13199.59 19698.42 8099.93 7098.19 17299.69 10999.73 83
OMC-MVS99.08 9099.04 7399.20 14799.67 10098.22 21199.28 23099.52 8998.07 13199.66 6999.81 7697.79 10299.78 17197.79 20499.81 7999.60 129
jason99.13 7599.03 7599.45 10899.46 17798.87 15899.12 26699.26 26898.03 13999.79 3099.65 17097.02 12499.85 12999.02 7199.90 2599.65 113
jason: jason.
CDS-MVSNet99.09 8999.03 7599.25 14199.42 18598.73 17299.45 16899.46 16998.11 12399.46 11799.77 11398.01 9799.37 25898.70 11698.92 17599.66 109
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
API-MVS99.04 9499.03 7599.06 16099.40 19399.31 9599.55 12399.56 5798.54 7399.33 15599.39 26098.76 5199.78 17196.98 26799.78 9098.07 335
diffmvspermissive99.14 7399.02 7899.51 9899.61 12998.96 14399.28 23099.49 13098.46 7999.72 5399.71 13896.50 14199.88 11699.31 4299.11 15899.67 106
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
casdiffmvs_mvgpermissive99.15 7199.02 7899.55 8199.66 10899.09 12299.64 7399.56 5798.26 10099.45 11899.87 3296.03 15599.81 15799.54 1599.15 15599.73 83
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline99.15 7199.02 7899.53 9099.66 10899.14 11799.72 4699.48 14298.35 9199.42 12799.84 5296.07 15399.79 16699.51 1999.14 15699.67 106
MG-MVS99.13 7599.02 7899.45 10899.57 14098.63 18099.07 27699.34 23498.99 3399.61 8799.82 6397.98 9899.87 12097.00 26599.80 8399.85 22
lupinMVS99.13 7599.01 8299.46 10799.51 15698.94 15199.05 28199.16 28397.86 15099.80 2899.56 20797.39 11099.86 12398.94 7899.85 5599.58 137
mvs_anonymous99.03 9698.99 8399.16 15199.38 19798.52 19399.51 13999.38 21697.79 16099.38 14299.81 7697.30 11499.45 23999.35 3598.99 17099.51 154
EPP-MVSNet99.13 7598.99 8399.53 9099.65 11499.06 12899.81 2099.33 24197.43 19899.60 9099.88 2697.14 11899.84 13599.13 6098.94 17299.69 99
CNLPA99.14 7398.99 8399.59 7299.58 13899.41 8799.16 25899.44 18898.45 8099.19 18899.49 23198.08 9599.89 11197.73 21299.75 9899.48 159
casdiffmvspermissive99.13 7598.98 8699.56 7999.65 11499.16 11199.56 11499.50 12298.33 9499.41 13199.86 3795.92 16199.83 14699.45 2999.16 15299.70 97
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MVS_Test99.10 8898.97 8799.48 10299.49 16799.14 11799.67 6099.34 23497.31 20899.58 9499.76 11997.65 10699.82 15298.87 8999.07 16499.46 167
PVSNet_Blended99.08 9098.97 8799.42 11399.76 5698.79 16998.78 32599.91 396.74 25299.67 6499.49 23197.53 10799.88 11698.98 7499.85 5599.60 129
Vis-MVSNetpermissive99.12 8198.97 8799.56 7999.78 4799.10 12199.68 5799.66 2698.49 7799.86 1699.87 3294.77 20699.84 13599.19 5599.41 13499.74 78
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
3Dnovator+97.12 1399.18 6698.97 8799.82 3399.17 25199.68 4899.81 2099.51 10399.20 898.72 25899.89 2095.68 17299.97 1498.86 9499.86 4899.81 47
DP-MVS Recon99.12 8198.95 9199.65 5999.74 7199.70 4699.27 23599.57 5296.40 28399.42 12799.68 15898.75 5499.80 16397.98 18999.72 10499.44 170
DP-MVS99.16 7098.95 9199.78 4399.77 5399.53 7399.41 18699.50 12297.03 23599.04 21499.88 2697.39 11099.92 8098.66 12399.90 2599.87 17
PS-MVSNAJss98.92 10698.92 9398.90 18898.78 30898.53 18999.78 3199.54 7398.07 13199.00 22199.76 11999.01 1899.37 25899.13 6097.23 26098.81 224
HyFIR lowres test99.11 8598.92 9399.65 5999.90 499.37 8999.02 29099.91 397.67 17499.59 9399.75 12295.90 16399.73 18699.53 1699.02 16999.86 19
CDPH-MVS99.13 7598.91 9599.80 3899.75 6499.71 4499.15 26199.41 19996.60 26699.60 9099.55 21098.83 4299.90 10197.48 23699.83 7299.78 66
VNet99.11 8598.90 9699.73 5199.52 15499.56 6699.41 18699.39 21099.01 2899.74 4799.78 10695.56 17499.92 8099.52 1898.18 21399.72 89
CPTT-MVS99.11 8598.90 9699.74 4999.80 4499.46 8299.59 9699.49 13097.03 23599.63 8099.69 15297.27 11699.96 2297.82 20299.84 6399.81 47
Effi-MVS+-dtu98.78 12898.89 9898.47 24499.33 20896.91 27799.57 10899.30 25998.47 7899.41 13198.99 32096.78 13299.74 18098.73 11399.38 13598.74 237
WTY-MVS99.06 9298.88 9999.61 7099.62 12599.16 11199.37 20599.56 5798.04 13799.53 10599.62 18796.84 13099.94 5798.85 9698.49 19999.72 89
CANet_DTU98.97 10398.87 10099.25 14199.33 20898.42 20599.08 27599.30 25999.16 999.43 12499.75 12295.27 18499.97 1498.56 14299.95 899.36 179
mvsmamba98.92 10698.87 10099.08 15799.07 26899.16 11199.88 499.51 10398.15 11799.40 13699.89 2097.12 11999.33 26899.38 3297.40 25498.73 239
IS-MVSNet99.05 9398.87 10099.57 7799.73 7899.32 9299.75 3999.20 27898.02 14099.56 9899.86 3796.54 14099.67 20998.09 17999.13 15799.73 83
canonicalmvs99.02 9798.86 10399.51 9899.42 18599.32 9299.80 2499.48 14298.63 6699.31 15898.81 33197.09 12199.75 17999.27 5097.90 22299.47 165
PLCcopyleft97.94 499.02 9798.85 10499.53 9099.66 10899.01 13499.24 24799.52 8996.85 24799.27 16899.48 23698.25 8899.91 9097.76 20899.62 12099.65 113
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
PAPM_NR99.04 9498.84 10599.66 5599.74 7199.44 8499.39 19899.38 21697.70 17099.28 16499.28 28798.34 8499.85 12996.96 26999.45 13199.69 99
PVSNet96.02 1798.85 12098.84 10598.89 19199.73 7897.28 25098.32 35599.60 4197.86 15099.50 11099.57 20496.75 13499.86 12398.56 14299.70 10899.54 142
Fast-Effi-MVS+-dtu98.77 13098.83 10798.60 22499.41 18896.99 27199.52 13499.49 13098.11 12399.24 17499.34 27396.96 12899.79 16697.95 19199.45 13199.02 210
PVSNet_BlendedMVS98.86 11398.80 10899.03 16499.76 5698.79 16999.28 23099.91 397.42 20099.67 6499.37 26497.53 10799.88 11698.98 7497.29 25898.42 316
AdaColmapbinary99.01 10098.80 10899.66 5599.56 14499.54 7099.18 25699.70 1598.18 11599.35 15199.63 18296.32 14799.90 10197.48 23699.77 9399.55 140
MSDG98.98 10198.80 10899.53 9099.76 5699.19 10698.75 32899.55 6597.25 21399.47 11599.77 11397.82 10199.87 12096.93 27299.90 2599.54 142
test_fmvs198.88 10998.79 11199.16 15199.69 9597.61 24399.55 12399.49 13099.32 499.98 499.91 1191.41 29899.96 2299.82 399.92 1399.90 4
train_agg99.02 9798.77 11299.77 4599.67 10099.65 5699.05 28199.41 19996.28 28798.95 22799.49 23198.76 5199.91 9097.63 22099.72 10499.75 74
1112_ss98.98 10198.77 11299.59 7299.68 9999.02 13299.25 24599.48 14297.23 21699.13 19699.58 20096.93 12999.90 10198.87 8998.78 18699.84 26
COLMAP_ROBcopyleft97.56 698.86 11398.75 11499.17 15099.88 1198.53 18999.34 21799.59 4497.55 18498.70 26599.89 2095.83 16599.90 10198.10 17899.90 2599.08 200
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
AllTest98.87 11098.72 11599.31 12899.86 2098.48 19999.56 11499.61 3697.85 15299.36 14899.85 4295.95 15899.85 12996.66 28599.83 7299.59 133
Vis-MVSNet (Re-imp)98.87 11098.72 11599.31 12899.71 8798.88 15799.80 2499.44 18897.91 14799.36 14899.78 10695.49 17799.43 24897.91 19399.11 15899.62 125
DPM-MVS98.95 10498.71 11799.66 5599.63 11999.55 6898.64 33899.10 28997.93 14599.42 12799.55 21098.67 6399.80 16395.80 30299.68 11299.61 127
EPNet98.86 11398.71 11799.30 13397.20 35698.18 21299.62 8398.91 31399.28 698.63 27699.81 7695.96 15799.99 299.24 5299.72 10499.73 83
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
UGNet98.87 11098.69 11999.40 11599.22 23698.72 17399.44 17399.68 1999.24 799.18 19199.42 24992.74 26299.96 2299.34 3999.94 1199.53 147
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
XVG-OURS98.73 13398.68 12098.88 19399.70 9297.73 23798.92 31199.55 6598.52 7599.45 11899.84 5295.27 18499.91 9098.08 18398.84 18199.00 211
EI-MVSNet98.67 14098.67 12198.68 22199.35 20297.97 22399.50 14599.38 21696.93 24499.20 18599.83 5697.87 9999.36 26298.38 15797.56 23598.71 242
CVMVSNet98.57 14698.67 12198.30 26299.35 20295.59 31199.50 14599.55 6598.60 6999.39 13999.83 5694.48 22099.45 23998.75 11098.56 19599.85 22
114514_t98.93 10598.67 12199.72 5299.85 2599.53 7399.62 8399.59 4492.65 34899.71 5499.78 10698.06 9699.90 10198.84 9999.91 1899.74 78
RRT_MVS98.70 13598.66 12498.83 20798.90 29098.45 20199.89 299.28 26597.76 16398.94 22999.92 1096.98 12699.25 28299.28 4797.00 26698.80 225
Test_1112_low_res98.89 10898.66 12499.57 7799.69 9598.95 14899.03 28799.47 16096.98 23799.15 19499.23 29596.77 13399.89 11198.83 10298.78 18699.86 19
HY-MVS97.30 798.85 12098.64 12699.47 10599.42 18599.08 12599.62 8399.36 22597.39 20399.28 16499.68 15896.44 14499.92 8098.37 15998.22 20899.40 176
test_yl98.86 11398.63 12799.54 8299.49 16799.18 10899.50 14599.07 29598.22 10699.61 8799.51 22595.37 18099.84 13598.60 13398.33 20299.59 133
DCV-MVSNet98.86 11398.63 12799.54 8299.49 16799.18 10899.50 14599.07 29598.22 10699.61 8799.51 22595.37 18099.84 13598.60 13398.33 20299.59 133
FIs98.78 12898.63 12799.23 14599.18 24599.54 7099.83 1699.59 4498.28 9798.79 25299.81 7696.75 13499.37 25899.08 6696.38 27698.78 227
ab-mvs98.86 11398.63 12799.54 8299.64 11699.19 10699.44 17399.54 7397.77 16299.30 16099.81 7694.20 22899.93 7099.17 5898.82 18399.49 158
MAR-MVS98.86 11398.63 12799.54 8299.37 19999.66 5399.45 16899.54 7396.61 26499.01 21799.40 25697.09 12199.86 12397.68 21999.53 12799.10 195
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
GeoE98.85 12098.62 13299.53 9099.61 12999.08 12599.80 2499.51 10397.10 22999.31 15899.78 10695.23 18899.77 17398.21 17099.03 16799.75 74
FC-MVSNet-test98.75 13198.62 13299.15 15499.08 26799.45 8399.86 1299.60 4198.23 10598.70 26599.82 6396.80 13199.22 28899.07 6796.38 27698.79 226
XVG-OURS-SEG-HR98.69 13798.62 13298.89 19199.71 8797.74 23699.12 26699.54 7398.44 8399.42 12799.71 13894.20 22899.92 8098.54 14698.90 17799.00 211
RPSCF98.22 17098.62 13296.99 32099.82 3791.58 35799.72 4699.44 18896.61 26499.66 6999.89 2095.92 16199.82 15297.46 23999.10 16199.57 138
PatchMatch-RL98.84 12398.62 13299.52 9699.71 8799.28 9899.06 27999.77 997.74 16799.50 11099.53 21995.41 17899.84 13597.17 25899.64 11799.44 170
PMMVS98.80 12798.62 13299.34 12199.27 22598.70 17498.76 32799.31 25597.34 20599.21 18299.07 31197.20 11799.82 15298.56 14298.87 17899.52 148
iter_conf_final98.71 13498.61 13898.99 17099.49 16798.96 14399.63 7799.41 19998.19 11199.39 13999.77 11394.82 19999.38 25399.30 4597.52 23898.64 275
Effi-MVS+98.81 12498.59 13999.48 10299.46 17799.12 12098.08 36199.50 12297.50 19199.38 14299.41 25396.37 14699.81 15799.11 6298.54 19699.51 154
bld_raw_dy_0_6498.69 13798.58 14098.99 17098.88 29398.96 14399.80 2499.41 19997.91 14799.32 15699.87 3295.70 17199.31 27499.09 6497.27 25998.71 242
test_djsdf98.67 14098.57 14198.98 17298.70 31998.91 15599.88 499.46 16997.55 18499.22 17999.88 2695.73 16999.28 27799.03 6997.62 23098.75 234
alignmvs98.81 12498.56 14299.58 7599.43 18399.42 8599.51 13998.96 30698.61 6899.35 15198.92 32894.78 20399.77 17399.35 3598.11 21899.54 142
131498.68 13998.54 14399.11 15698.89 29298.65 17899.27 23599.49 13096.89 24597.99 31199.56 20797.72 10599.83 14697.74 21199.27 14698.84 223
FA-MVS(test-final)98.75 13198.53 14499.41 11499.55 14899.05 13099.80 2499.01 30096.59 26899.58 9499.59 19695.39 17999.90 10197.78 20599.49 12999.28 187
D2MVS98.41 15698.50 14598.15 27599.26 22796.62 28799.40 19499.61 3697.71 16998.98 22399.36 26796.04 15499.67 20998.70 11697.41 25398.15 332
tpmrst98.33 16398.48 14697.90 29099.16 25394.78 33099.31 22299.11 28897.27 21199.45 11899.59 19695.33 18299.84 13598.48 14998.61 18999.09 199
iter_conf0598.55 14798.44 14798.87 19799.34 20698.60 18499.55 12399.42 19698.21 10899.37 14499.77 11393.55 24699.38 25399.30 4597.48 24698.63 283
Fast-Effi-MVS+98.70 13598.43 14899.51 9899.51 15699.28 9899.52 13499.47 16096.11 30399.01 21799.34 27396.20 15199.84 13597.88 19598.82 18399.39 177
nrg03098.64 14398.42 14999.28 13899.05 27499.69 4799.81 2099.46 16998.04 13799.01 21799.82 6396.69 13699.38 25399.34 3994.59 31698.78 227
IterMVS-LS98.46 15198.42 14998.58 22899.59 13698.00 22199.37 20599.43 19496.94 24399.07 20899.59 19697.87 9999.03 31598.32 16595.62 29698.71 242
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
test_vis1_n_192098.63 14498.40 15199.31 12899.86 2097.94 22999.67 6099.62 3399.43 199.99 299.91 1187.29 342100.00 199.92 199.92 1399.98 1
BH-untuned98.42 15498.36 15298.59 22599.49 16796.70 28399.27 23599.13 28797.24 21598.80 25099.38 26195.75 16899.74 18097.07 26399.16 15299.33 183
PatchmatchNetpermissive98.31 16498.36 15298.19 27099.16 25395.32 32099.27 23598.92 31097.37 20499.37 14499.58 20094.90 19699.70 20297.43 24299.21 14999.54 142
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
PAPR98.63 14498.34 15499.51 9899.40 19399.03 13198.80 32399.36 22596.33 28499.00 22199.12 30998.46 7699.84 13595.23 31599.37 14299.66 109
ACMM97.58 598.37 16198.34 15498.48 24099.41 18897.10 25899.56 11499.45 18098.53 7499.04 21499.85 4293.00 25499.71 19698.74 11197.45 24898.64 275
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MVSTER98.49 14898.32 15699.00 16899.35 20299.02 13299.54 12799.38 21697.41 20199.20 18599.73 13393.86 24099.36 26298.87 8997.56 23598.62 286
MDTV_nov1_ep1398.32 15699.11 26094.44 33599.27 23598.74 33197.51 19099.40 13699.62 18794.78 20399.76 17797.59 22398.81 185
QAPM98.67 14098.30 15899.80 3899.20 24099.67 5199.77 3399.72 1194.74 32898.73 25799.90 1695.78 16799.98 896.96 26999.88 3799.76 73
anonymousdsp98.44 15298.28 15998.94 17898.50 33498.96 14399.77 3399.50 12297.07 23198.87 24199.77 11394.76 20799.28 27798.66 12397.60 23198.57 301
jajsoiax98.43 15398.28 15998.88 19398.60 32998.43 20399.82 1799.53 8498.19 11198.63 27699.80 8993.22 25299.44 24499.22 5397.50 24298.77 230
mvs_tets98.40 15998.23 16198.91 18698.67 32298.51 19599.66 6599.53 8498.19 11198.65 27499.81 7692.75 26099.44 24499.31 4297.48 24698.77 230
HQP_MVS98.27 16998.22 16298.44 24999.29 22096.97 27399.39 19899.47 16098.97 3999.11 20099.61 19192.71 26599.69 20797.78 20597.63 22898.67 263
FE-MVS98.48 14998.17 16399.40 11599.54 14998.96 14399.68 5798.81 32495.54 31499.62 8499.70 14293.82 24199.93 7097.35 24599.46 13099.32 184
SCA98.19 17498.16 16498.27 26799.30 21695.55 31299.07 27698.97 30497.57 18299.43 12499.57 20492.72 26399.74 18097.58 22499.20 15099.52 148
LCM-MVSNet-Re97.83 22898.15 16596.87 32599.30 21692.25 35499.59 9698.26 34797.43 19896.20 34199.13 30696.27 14998.73 34098.17 17598.99 17099.64 120
test_fmvs1_n98.41 15698.14 16699.21 14699.82 3797.71 24199.74 4299.49 13099.32 499.99 299.95 285.32 34999.97 1499.82 399.84 6399.96 3
tttt051798.42 15498.14 16699.28 13899.66 10898.38 20699.74 4296.85 36397.68 17299.79 3099.74 12791.39 29999.89 11198.83 10299.56 12499.57 138
LPG-MVS_test98.22 17098.13 16898.49 23899.33 20897.05 26499.58 10499.55 6597.46 19299.24 17499.83 5692.58 27099.72 19098.09 17997.51 24098.68 256
OpenMVScopyleft96.50 1698.47 15098.12 16999.52 9699.04 27599.53 7399.82 1799.72 1194.56 33198.08 30699.88 2694.73 20999.98 897.47 23899.76 9699.06 206
test111198.04 19498.11 17097.83 29499.74 7193.82 34199.58 10495.40 37199.12 1499.65 7599.93 690.73 30799.84 13599.43 3099.38 13599.82 40
miper_ehance_all_eth98.18 17698.10 17198.41 25199.23 23397.72 23898.72 33199.31 25596.60 26698.88 23899.29 28597.29 11599.13 30197.60 22295.99 28598.38 321
OPM-MVS98.19 17498.10 17198.45 24698.88 29397.07 26299.28 23099.38 21698.57 7099.22 17999.81 7692.12 28199.66 21298.08 18397.54 23798.61 295
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
CLD-MVS98.16 17898.10 17198.33 25899.29 22096.82 28098.75 32899.44 18897.83 15599.13 19699.55 21092.92 25699.67 20998.32 16597.69 22798.48 307
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
XXY-MVS98.38 16098.09 17499.24 14399.26 22799.32 9299.56 11499.55 6597.45 19598.71 25999.83 5693.23 25099.63 22598.88 8696.32 27898.76 232
miper_enhance_ethall98.16 17898.08 17598.41 25198.96 28697.72 23898.45 34899.32 25196.95 24198.97 22599.17 30197.06 12399.22 28897.86 19895.99 28598.29 325
ADS-MVSNet98.20 17398.08 17598.56 23299.33 20896.48 29299.23 24899.15 28496.24 29199.10 20399.67 16494.11 23299.71 19696.81 27799.05 16599.48 159
BH-RMVSNet98.41 15698.08 17599.40 11599.41 18898.83 16599.30 22498.77 32797.70 17098.94 22999.65 17092.91 25899.74 18096.52 28899.55 12699.64 120
ADS-MVSNet298.02 19898.07 17897.87 29199.33 20895.19 32399.23 24899.08 29296.24 29199.10 20399.67 16494.11 23298.93 33296.81 27799.05 16599.48 159
ECVR-MVScopyleft98.04 19498.05 17998.00 28499.74 7194.37 33699.59 9694.98 37299.13 1299.66 6999.93 690.67 30899.84 13599.40 3199.38 13599.80 56
c3_l98.12 18398.04 18098.38 25599.30 21697.69 24298.81 32299.33 24196.67 25798.83 24699.34 27397.11 12098.99 32197.58 22495.34 30298.48 307
thisisatest053098.35 16298.03 18199.31 12899.63 11998.56 18699.54 12796.75 36597.53 18899.73 4899.65 17091.25 30299.89 11198.62 12799.56 12499.48 159
EU-MVSNet97.98 20598.03 18197.81 29798.72 31696.65 28699.66 6599.66 2698.09 12698.35 29599.82 6395.25 18798.01 35297.41 24395.30 30398.78 227
tpmvs97.98 20598.02 18397.84 29399.04 27594.73 33199.31 22299.20 27896.10 30798.76 25599.42 24994.94 19299.81 15796.97 26898.45 20098.97 215
UniMVSNet (Re)98.29 16798.00 18499.13 15599.00 27999.36 9099.49 15599.51 10397.95 14398.97 22599.13 30696.30 14899.38 25398.36 16193.34 33198.66 271
ACMH97.28 898.10 18497.99 18598.44 24999.41 18896.96 27599.60 9099.56 5798.09 12698.15 30499.91 1190.87 30699.70 20298.88 8697.45 24898.67 263
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Anonymous20240521198.30 16697.98 18699.26 14099.57 14098.16 21399.41 18698.55 34396.03 30899.19 18899.74 12791.87 28599.92 8099.16 5998.29 20799.70 97
UniMVSNet_NR-MVSNet98.22 17097.97 18798.96 17598.92 28998.98 13699.48 15999.53 8497.76 16398.71 25999.46 24396.43 14599.22 28898.57 13992.87 33898.69 251
eth_miper_zixun_eth98.05 19397.96 18898.33 25899.26 22797.38 24898.56 34499.31 25596.65 25998.88 23899.52 22296.58 13899.12 30597.39 24495.53 29998.47 309
EPNet_dtu98.03 19697.96 18898.23 26898.27 33895.54 31499.23 24898.75 32899.02 2697.82 31799.71 13896.11 15299.48 23693.04 34199.65 11699.69 99
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
VPA-MVSNet98.29 16797.95 19099.30 13399.16 25399.54 7099.50 14599.58 4998.27 9999.35 15199.37 26492.53 27299.65 21799.35 3594.46 31798.72 240
baseline198.31 16497.95 19099.38 11999.50 16598.74 17199.59 9698.93 30898.41 8499.14 19599.60 19494.59 21599.79 16698.48 14993.29 33299.61 127
ACMP97.20 1198.06 18897.94 19298.45 24699.37 19997.01 26999.44 17399.49 13097.54 18798.45 28999.79 10091.95 28499.72 19097.91 19397.49 24598.62 286
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
CR-MVSNet98.17 17797.93 19398.87 19799.18 24598.49 19799.22 25299.33 24196.96 23999.56 9899.38 26194.33 22499.00 32094.83 32198.58 19299.14 192
miper_lstm_enhance98.00 20397.91 19498.28 26699.34 20697.43 24798.88 31599.36 22596.48 27698.80 25099.55 21095.98 15698.91 33397.27 24895.50 30098.51 305
pmmvs498.13 18197.90 19598.81 21098.61 32898.87 15898.99 29799.21 27796.44 27999.06 21299.58 20095.90 16399.11 30697.18 25796.11 28298.46 313
test-LLR98.06 18897.90 19598.55 23498.79 30597.10 25898.67 33497.75 35697.34 20598.61 27998.85 32994.45 22199.45 23997.25 24999.38 13599.10 195
HQP-MVS98.02 19897.90 19598.37 25699.19 24296.83 27898.98 30099.39 21098.24 10298.66 26899.40 25692.47 27499.64 22097.19 25597.58 23398.64 275
LTVRE_ROB97.16 1298.02 19897.90 19598.40 25399.23 23396.80 28199.70 4999.60 4197.12 22598.18 30399.70 14291.73 29099.72 19098.39 15697.45 24898.68 256
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
BH-w/o98.00 20397.89 19998.32 26099.35 20296.20 30199.01 29598.90 31596.42 28198.38 29399.00 31995.26 18699.72 19096.06 29698.61 18999.03 208
WR-MVS_H98.13 18197.87 20098.90 18899.02 27798.84 16299.70 4999.59 4497.27 21198.40 29299.19 30095.53 17599.23 28598.34 16293.78 32898.61 295
DIV-MVS_self_test98.01 20197.85 20198.48 24099.24 23297.95 22798.71 33299.35 23096.50 27198.60 28199.54 21595.72 17099.03 31597.21 25195.77 29198.46 313
cl____98.01 20197.84 20298.55 23499.25 23197.97 22398.71 33299.34 23496.47 27898.59 28299.54 21595.65 17399.21 29397.21 25195.77 29198.46 313
dp97.75 24297.80 20397.59 30599.10 26393.71 34499.32 22098.88 31796.48 27699.08 20799.55 21092.67 26899.82 15296.52 28898.58 19299.24 189
thisisatest051598.14 18097.79 20499.19 14899.50 16598.50 19698.61 33996.82 36496.95 24199.54 10399.43 24791.66 29499.86 12398.08 18399.51 12899.22 190
V4298.06 18897.79 20498.86 20198.98 28398.84 16299.69 5199.34 23496.53 27099.30 16099.37 26494.67 21299.32 27197.57 22894.66 31498.42 316
DU-MVS98.08 18797.79 20498.96 17598.87 29798.98 13699.41 18699.45 18097.87 14998.71 25999.50 22894.82 19999.22 28898.57 13992.87 33898.68 256
CP-MVSNet98.09 18597.78 20799.01 16698.97 28599.24 10399.67 6099.46 16997.25 21398.48 28899.64 17693.79 24299.06 31198.63 12694.10 32498.74 237
ACMH+97.24 1097.92 21497.78 20798.32 26099.46 17796.68 28599.56 11499.54 7398.41 8497.79 31999.87 3290.18 31599.66 21298.05 18797.18 26398.62 286
tt080597.97 20897.77 20998.57 22999.59 13696.61 28899.45 16899.08 29298.21 10898.88 23899.80 8988.66 32899.70 20298.58 13697.72 22699.39 177
v2v48298.06 18897.77 20998.92 18298.90 29098.82 16699.57 10899.36 22596.65 25999.19 18899.35 27094.20 22899.25 28297.72 21494.97 31098.69 251
OurMVSNet-221017-097.88 21897.77 20998.19 27098.71 31896.53 29099.88 499.00 30197.79 16098.78 25399.94 491.68 29199.35 26597.21 25196.99 26798.69 251
IterMVS97.83 22897.77 20998.02 28199.58 13896.27 29999.02 29099.48 14297.22 21798.71 25999.70 14292.75 26099.13 30197.46 23996.00 28498.67 263
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
FMVSNet398.03 19697.76 21398.84 20599.39 19698.98 13699.40 19499.38 21696.67 25799.07 20899.28 28792.93 25598.98 32297.10 26096.65 26998.56 302
IterMVS-SCA-FT97.82 23197.75 21498.06 27899.57 14096.36 29699.02 29099.49 13097.18 21998.71 25999.72 13792.72 26399.14 29897.44 24195.86 29098.67 263
MVP-Stereo97.81 23397.75 21497.99 28597.53 34996.60 28998.96 30498.85 32097.22 21797.23 32899.36 26795.28 18399.46 23895.51 30999.78 9097.92 347
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
WR-MVS98.06 18897.73 21699.06 16098.86 30099.25 10299.19 25599.35 23097.30 20998.66 26899.43 24793.94 23799.21 29398.58 13694.28 32198.71 242
CostFormer97.72 24797.73 21697.71 30199.15 25694.02 34099.54 12799.02 29994.67 32999.04 21499.35 27092.35 28099.77 17398.50 14897.94 22199.34 182
XVG-ACMP-BASELINE97.83 22897.71 21898.20 26999.11 26096.33 29799.41 18699.52 8998.06 13599.05 21399.50 22889.64 32099.73 18697.73 21297.38 25698.53 303
v114497.98 20597.69 21998.85 20498.87 29798.66 17799.54 12799.35 23096.27 28999.23 17899.35 27094.67 21299.23 28596.73 28095.16 30698.68 256
Anonymous2024052998.09 18597.68 22099.34 12199.66 10898.44 20299.40 19499.43 19493.67 33899.22 17999.89 2090.23 31499.93 7099.26 5198.33 20299.66 109
our_test_397.65 25997.68 22097.55 30798.62 32694.97 32798.84 31999.30 25996.83 25098.19 30299.34 27397.01 12599.02 31795.00 31996.01 28398.64 275
TranMVSNet+NR-MVSNet97.93 21197.66 22298.76 21698.78 30898.62 18199.65 7199.49 13097.76 16398.49 28799.60 19494.23 22798.97 32998.00 18892.90 33698.70 247
Patchmatch-test97.93 21197.65 22398.77 21599.18 24597.07 26299.03 28799.14 28696.16 29898.74 25699.57 20494.56 21799.72 19093.36 33799.11 15899.52 148
EPMVS97.82 23197.65 22398.35 25798.88 29395.98 30499.49 15594.71 37497.57 18299.26 17299.48 23692.46 27799.71 19697.87 19799.08 16399.35 180
cl2297.85 22397.64 22598.48 24099.09 26597.87 23198.60 34199.33 24197.11 22898.87 24199.22 29692.38 27999.17 29798.21 17095.99 28598.42 316
v897.95 21097.63 22698.93 18098.95 28798.81 16899.80 2499.41 19996.03 30899.10 20399.42 24994.92 19599.30 27596.94 27194.08 32598.66 271
NR-MVSNet97.97 20897.61 22799.02 16598.87 29799.26 10199.47 16499.42 19697.63 17797.08 33399.50 22895.07 19199.13 30197.86 19893.59 32998.68 256
v14419297.92 21497.60 22898.87 19798.83 30398.65 17899.55 12399.34 23496.20 29499.32 15699.40 25694.36 22399.26 28196.37 29395.03 30998.70 247
PS-CasMVS97.93 21197.59 22998.95 17798.99 28099.06 12899.68 5799.52 8997.13 22398.31 29799.68 15892.44 27899.05 31298.51 14794.08 32598.75 234
v14897.79 23697.55 23098.50 23798.74 31397.72 23899.54 12799.33 24196.26 29098.90 23599.51 22594.68 21199.14 29897.83 20193.15 33598.63 283
baseline297.87 22097.55 23098.82 20899.18 24598.02 22099.41 18696.58 36896.97 23896.51 33899.17 30193.43 24799.57 23097.71 21599.03 16798.86 221
tpm97.67 25797.55 23098.03 27999.02 27795.01 32699.43 17798.54 34496.44 27999.12 19899.34 27391.83 28799.60 22897.75 21096.46 27499.48 159
Anonymous2023121197.88 21897.54 23398.90 18899.71 8798.53 18999.48 15999.57 5294.16 33498.81 24899.68 15893.23 25099.42 24998.84 9994.42 31998.76 232
v7n97.87 22097.52 23498.92 18298.76 31298.58 18599.84 1399.46 16996.20 29498.91 23399.70 14294.89 19799.44 24496.03 29793.89 32798.75 234
v1097.85 22397.52 23498.86 20198.99 28098.67 17699.75 3999.41 19995.70 31298.98 22399.41 25394.75 20899.23 28596.01 29894.63 31598.67 263
thres600view797.86 22297.51 23698.92 18299.72 8297.95 22799.59 9698.74 33197.94 14499.27 16898.62 33791.75 28899.86 12393.73 33398.19 21298.96 217
testgi97.65 25997.50 23798.13 27699.36 20196.45 29399.42 18499.48 14297.76 16397.87 31599.45 24491.09 30398.81 33694.53 32398.52 19799.13 194
GBi-Net97.68 25497.48 23898.29 26399.51 15697.26 25399.43 17799.48 14296.49 27299.07 20899.32 28090.26 31198.98 32297.10 26096.65 26998.62 286
test197.68 25497.48 23898.29 26399.51 15697.26 25399.43 17799.48 14296.49 27299.07 20899.32 28090.26 31198.98 32297.10 26096.65 26998.62 286
tfpnnormal97.84 22697.47 24098.98 17299.20 24099.22 10599.64 7399.61 3696.32 28598.27 30099.70 14293.35 24999.44 24495.69 30595.40 30198.27 326
GA-MVS97.85 22397.47 24099.00 16899.38 19797.99 22298.57 34299.15 28497.04 23498.90 23599.30 28389.83 31799.38 25396.70 28298.33 20299.62 125
LF4IMVS97.52 26597.46 24297.70 30298.98 28395.55 31299.29 22898.82 32398.07 13198.66 26899.64 17689.97 31699.61 22797.01 26496.68 26897.94 345
ppachtmachnet_test97.49 27197.45 24397.61 30498.62 32695.24 32198.80 32399.46 16996.11 30398.22 30199.62 18796.45 14398.97 32993.77 33295.97 28898.61 295
thres100view90097.76 23897.45 24398.69 22099.72 8297.86 23399.59 9698.74 33197.93 14599.26 17298.62 33791.75 28899.83 14693.22 33898.18 21398.37 322
v192192097.80 23597.45 24398.84 20598.80 30498.53 18999.52 13499.34 23496.15 30099.24 17499.47 23993.98 23699.29 27695.40 31295.13 30798.69 251
Baseline_NR-MVSNet97.76 23897.45 24398.68 22199.09 26598.29 20899.41 18698.85 32095.65 31398.63 27699.67 16494.82 19999.10 30898.07 18692.89 33798.64 275
MIMVSNet97.73 24597.45 24398.57 22999.45 18297.50 24599.02 29098.98 30396.11 30399.41 13199.14 30590.28 31098.74 33995.74 30398.93 17399.47 165
test_vis1_n97.92 21497.44 24899.34 12199.53 15098.08 21899.74 4299.49 13099.15 10100.00 199.94 479.51 36299.98 899.88 299.76 9699.97 2
v119297.81 23397.44 24898.91 18698.88 29398.68 17599.51 13999.34 23496.18 29699.20 18599.34 27394.03 23599.36 26295.32 31495.18 30598.69 251
VPNet97.84 22697.44 24899.01 16699.21 23898.94 15199.48 15999.57 5298.38 8699.28 16499.73 13388.89 32599.39 25199.19 5593.27 33398.71 242
PEN-MVS97.76 23897.44 24898.72 21898.77 31198.54 18899.78 3199.51 10397.06 23398.29 29999.64 17692.63 26998.89 33598.09 17993.16 33498.72 240
cascas97.69 25297.43 25298.48 24098.60 32997.30 24998.18 36099.39 21092.96 34698.41 29198.78 33393.77 24399.27 28098.16 17698.61 18998.86 221
test0.0.03 197.71 25097.42 25398.56 23298.41 33797.82 23498.78 32598.63 34097.34 20598.05 31098.98 32394.45 22198.98 32295.04 31897.15 26498.89 220
TR-MVS97.76 23897.41 25498.82 20899.06 27197.87 23198.87 31798.56 34296.63 26398.68 26799.22 29692.49 27399.65 21795.40 31297.79 22498.95 219
Patchmtry97.75 24297.40 25598.81 21099.10 26398.87 15899.11 27299.33 24194.83 32698.81 24899.38 26194.33 22499.02 31796.10 29595.57 29798.53 303
tfpn200view997.72 24797.38 25698.72 21899.69 9597.96 22599.50 14598.73 33697.83 15599.17 19298.45 34291.67 29299.83 14693.22 33898.18 21398.37 322
thres40097.77 23797.38 25698.92 18299.69 9597.96 22599.50 14598.73 33697.83 15599.17 19298.45 34291.67 29299.83 14693.22 33898.18 21398.96 217
tpm cat197.39 27497.36 25897.50 30999.17 25193.73 34399.43 17799.31 25591.27 35298.71 25999.08 31094.31 22699.77 17396.41 29298.50 19899.00 211
FMVSNet297.72 24797.36 25898.80 21299.51 15698.84 16299.45 16899.42 19696.49 27298.86 24599.29 28590.26 31198.98 32296.44 29096.56 27298.58 300
LFMVS97.90 21797.35 26099.54 8299.52 15499.01 13499.39 19898.24 34997.10 22999.65 7599.79 10084.79 35199.91 9099.28 4798.38 20199.69 99
VDD-MVS97.73 24597.35 26098.88 19399.47 17697.12 25799.34 21798.85 32098.19 11199.67 6499.85 4282.98 35599.92 8099.49 2498.32 20699.60 129
DSMNet-mixed97.25 27897.35 26096.95 32397.84 34493.61 34799.57 10896.63 36796.13 30298.87 24198.61 33994.59 21597.70 35995.08 31798.86 17999.55 140
tpm297.44 27397.34 26397.74 30099.15 25694.36 33799.45 16898.94 30793.45 34398.90 23599.44 24591.35 30099.59 22997.31 24698.07 21999.29 186
TAPA-MVS97.07 1597.74 24497.34 26398.94 17899.70 9297.53 24499.25 24599.51 10391.90 35099.30 16099.63 18298.78 4799.64 22088.09 36299.87 4099.65 113
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
SixPastTwentyTwo97.50 26897.33 26598.03 27998.65 32396.23 30099.77 3398.68 33997.14 22297.90 31499.93 690.45 30999.18 29697.00 26596.43 27598.67 263
MS-PatchMatch97.24 28097.32 26696.99 32098.45 33693.51 34898.82 32199.32 25197.41 20198.13 30599.30 28388.99 32499.56 23195.68 30699.80 8397.90 348
v124097.69 25297.32 26698.79 21398.85 30198.43 20399.48 15999.36 22596.11 30399.27 16899.36 26793.76 24499.24 28494.46 32495.23 30498.70 247
test_fmvs297.25 27897.30 26897.09 31999.43 18393.31 34999.73 4598.87 31998.83 5299.28 16499.80 8984.45 35299.66 21297.88 19597.45 24898.30 324
pmmvs597.52 26597.30 26898.16 27298.57 33196.73 28299.27 23598.90 31596.14 30198.37 29499.53 21991.54 29799.14 29897.51 23395.87 28998.63 283
h-mvs3397.70 25197.28 27098.97 17499.70 9297.27 25199.36 20999.45 18098.94 4299.66 6999.64 17694.93 19399.99 299.48 2584.36 36199.65 113
pm-mvs197.68 25497.28 27098.88 19399.06 27198.62 18199.50 14599.45 18096.32 28597.87 31599.79 10092.47 27499.35 26597.54 23193.54 33098.67 263
thres20097.61 26197.28 27098.62 22399.64 11698.03 21999.26 24398.74 33197.68 17299.09 20698.32 34691.66 29499.81 15792.88 34298.22 20898.03 338
TESTMET0.1,197.55 26397.27 27398.40 25398.93 28896.53 29098.67 33497.61 35996.96 23998.64 27599.28 28788.63 33099.45 23997.30 24799.38 13599.21 191
USDC97.34 27597.20 27497.75 29999.07 26895.20 32298.51 34699.04 29897.99 14198.31 29799.86 3789.02 32399.55 23395.67 30797.36 25798.49 306
DTE-MVSNet97.51 26797.19 27598.46 24598.63 32598.13 21699.84 1399.48 14296.68 25697.97 31399.67 16492.92 25698.56 34196.88 27692.60 34198.70 247
hse-mvs297.50 26897.14 27698.59 22599.49 16797.05 26499.28 23099.22 27498.94 4299.66 6999.42 24994.93 19399.65 21799.48 2583.80 36399.08 200
test-mter97.49 27197.13 27798.55 23498.79 30597.10 25898.67 33497.75 35696.65 25998.61 27998.85 32988.23 33499.45 23997.25 24999.38 13599.10 195
PAPM97.59 26297.09 27899.07 15999.06 27198.26 21098.30 35699.10 28994.88 32598.08 30699.34 27396.27 14999.64 22089.87 35598.92 17599.31 185
PCF-MVS97.08 1497.66 25897.06 27999.47 10599.61 12999.09 12298.04 36299.25 27091.24 35398.51 28599.70 14294.55 21899.91 9092.76 34599.85 5599.42 172
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
VDDNet97.55 26397.02 28099.16 15199.49 16798.12 21799.38 20399.30 25995.35 31699.68 6099.90 1682.62 35799.93 7099.31 4298.13 21799.42 172
JIA-IIPM97.50 26897.02 28098.93 18098.73 31497.80 23599.30 22498.97 30491.73 35198.91 23394.86 36595.10 19099.71 19697.58 22497.98 22099.28 187
TinyColmap97.12 28296.89 28297.83 29499.07 26895.52 31598.57 34298.74 33197.58 18197.81 31899.79 10088.16 33599.56 23195.10 31697.21 26198.39 320
UniMVSNet_ETH3D97.32 27696.81 28398.87 19799.40 19397.46 24699.51 13999.53 8495.86 31198.54 28499.77 11382.44 35899.66 21298.68 12197.52 23899.50 157
K. test v397.10 28396.79 28498.01 28298.72 31696.33 29799.87 997.05 36297.59 17996.16 34299.80 8988.71 32699.04 31396.69 28396.55 27398.65 273
test250696.81 28796.65 28597.29 31499.74 7192.21 35599.60 9085.06 38299.13 1299.77 3899.93 687.82 34099.85 12999.38 3299.38 13599.80 56
TransMVSNet (Re)97.15 28196.58 28698.86 20199.12 25898.85 16199.49 15598.91 31395.48 31597.16 33199.80 8993.38 24899.11 30694.16 33091.73 34398.62 286
MVS97.28 27796.55 28799.48 10298.78 30898.95 14899.27 23599.39 21083.53 36598.08 30699.54 21596.97 12799.87 12094.23 32899.16 15299.63 123
MVS_030496.79 28896.52 28897.59 30599.22 23694.92 32999.04 28699.59 4496.49 27298.43 29098.99 32080.48 36199.39 25197.15 25999.27 14698.47 309
APD_test195.87 30496.49 28994.00 33899.53 15084.01 36599.54 12799.32 25195.91 31097.99 31199.85 4285.49 34899.88 11691.96 34898.84 18198.12 333
PatchT97.03 28496.44 29098.79 21398.99 28098.34 20799.16 25899.07 29592.13 34999.52 10797.31 35894.54 21998.98 32288.54 36098.73 18899.03 208
FMVSNet196.84 28696.36 29198.29 26399.32 21497.26 25399.43 17799.48 14295.11 32098.55 28399.32 28083.95 35498.98 32295.81 30196.26 27998.62 286
AUN-MVS96.88 28596.31 29298.59 22599.48 17597.04 26799.27 23599.22 27497.44 19798.51 28599.41 25391.97 28399.66 21297.71 21583.83 36299.07 205
test_040296.64 29096.24 29397.85 29298.85 30196.43 29499.44 17399.26 26893.52 34096.98 33599.52 22288.52 33199.20 29592.58 34797.50 24297.93 346
FMVSNet596.43 29596.19 29497.15 31599.11 26095.89 30699.32 22099.52 8994.47 33398.34 29699.07 31187.54 34197.07 36392.61 34695.72 29498.47 309
UnsupCasMVSNet_eth96.44 29496.12 29597.40 31198.65 32395.65 30999.36 20999.51 10397.13 22396.04 34498.99 32088.40 33298.17 34896.71 28190.27 35198.40 319
pmmvs696.53 29296.09 29697.82 29698.69 32095.47 31699.37 20599.47 16093.46 34297.41 32499.78 10687.06 34399.33 26896.92 27492.70 34098.65 273
Anonymous2023120696.22 29796.03 29796.79 32797.31 35494.14 33999.63 7799.08 29296.17 29797.04 33499.06 31393.94 23797.76 35886.96 36595.06 30898.47 309
new_pmnet96.38 29696.03 29797.41 31098.13 34195.16 32599.05 28199.20 27893.94 33597.39 32598.79 33291.61 29699.04 31390.43 35395.77 29198.05 337
test20.0396.12 30195.96 29996.63 32897.44 35095.45 31799.51 13999.38 21696.55 26996.16 34299.25 29393.76 24496.17 36887.35 36494.22 32298.27 326
RPMNet96.72 28995.90 30099.19 14899.18 24598.49 19799.22 25299.52 8988.72 36199.56 9897.38 35594.08 23499.95 4886.87 36698.58 19299.14 192
Anonymous2024052196.20 29995.89 30197.13 31797.72 34894.96 32899.79 3099.29 26393.01 34597.20 33099.03 31689.69 31998.36 34591.16 35196.13 28198.07 335
N_pmnet94.95 31595.83 30292.31 34498.47 33579.33 37299.12 26692.81 37993.87 33697.68 32099.13 30693.87 23999.01 31991.38 35096.19 28098.59 299
Patchmatch-RL test95.84 30595.81 30395.95 33495.61 36490.57 35998.24 35798.39 34695.10 32295.20 34898.67 33694.78 20397.77 35796.28 29490.02 35299.51 154
EG-PatchMatch MVS95.97 30395.69 30496.81 32697.78 34592.79 35299.16 25898.93 30896.16 29894.08 35499.22 29682.72 35699.47 23795.67 30797.50 24298.17 331
test_vis1_rt95.81 30695.65 30596.32 33299.67 10091.35 35899.49 15596.74 36698.25 10195.24 34798.10 34974.96 36399.90 10199.53 1698.85 18097.70 351
ET-MVSNet_ETH3D96.49 29395.64 30699.05 16299.53 15098.82 16698.84 31997.51 36097.63 17784.77 36599.21 29992.09 28298.91 33398.98 7492.21 34299.41 174
PVSNet_094.43 1996.09 30295.47 30797.94 28799.31 21594.34 33897.81 36399.70 1597.12 22597.46 32398.75 33489.71 31899.79 16697.69 21881.69 36599.68 103
X-MVStestdata96.55 29195.45 30899.87 1199.85 2599.83 1699.69 5199.68 1998.98 3699.37 14464.01 37898.81 4499.94 5798.79 10799.86 4899.84 26
IB-MVS95.67 1896.22 29795.44 30998.57 22999.21 23896.70 28398.65 33797.74 35896.71 25497.27 32798.54 34086.03 34599.92 8098.47 15286.30 35999.10 195
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
gg-mvs-nofinetune96.17 30095.32 31098.73 21798.79 30598.14 21599.38 20394.09 37591.07 35598.07 30991.04 37189.62 32199.35 26596.75 27999.09 16298.68 256
MVS-HIRNet95.75 30795.16 31197.51 30899.30 21693.69 34598.88 31595.78 36985.09 36498.78 25392.65 36791.29 30199.37 25894.85 32099.85 5599.46 167
MIMVSNet195.51 30895.04 31296.92 32497.38 35195.60 31099.52 13499.50 12293.65 33996.97 33699.17 30185.28 35096.56 36788.36 36195.55 29898.60 298
CMPMVSbinary69.68 2394.13 32194.90 31391.84 34597.24 35580.01 37198.52 34599.48 14289.01 35991.99 36099.67 16485.67 34799.13 30195.44 31097.03 26596.39 361
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
pmmvs-eth3d95.34 31294.73 31497.15 31595.53 36695.94 30599.35 21499.10 28995.13 31893.55 35697.54 35388.15 33697.91 35494.58 32289.69 35497.61 352
MDA-MVSNet_test_wron95.45 30994.60 31598.01 28298.16 34097.21 25699.11 27299.24 27293.49 34180.73 37198.98 32393.02 25398.18 34794.22 32994.45 31898.64 275
TDRefinement95.42 31094.57 31697.97 28689.83 37596.11 30399.48 15998.75 32896.74 25296.68 33799.88 2688.65 32999.71 19698.37 15982.74 36498.09 334
YYNet195.36 31194.51 31797.92 28897.89 34397.10 25899.10 27499.23 27393.26 34480.77 37099.04 31592.81 25998.02 35194.30 32594.18 32398.64 275
KD-MVS_self_test95.00 31394.34 31896.96 32297.07 35995.39 31999.56 11499.44 18895.11 32097.13 33297.32 35791.86 28697.27 36290.35 35481.23 36698.23 330
new-patchmatchnet94.48 31994.08 31995.67 33595.08 36892.41 35399.18 25699.28 26594.55 33293.49 35797.37 35687.86 33997.01 36491.57 34988.36 35597.61 352
MDA-MVSNet-bldmvs94.96 31493.98 32097.92 28898.24 33997.27 25199.15 26199.33 24193.80 33780.09 37299.03 31688.31 33397.86 35693.49 33694.36 32098.62 286
CL-MVSNet_self_test94.49 31893.97 32196.08 33396.16 36193.67 34698.33 35499.38 21695.13 31897.33 32698.15 34892.69 26796.57 36688.67 35979.87 36797.99 342
KD-MVS_2432*160094.62 31693.72 32297.31 31297.19 35795.82 30798.34 35299.20 27895.00 32397.57 32198.35 34487.95 33798.10 34992.87 34377.00 36998.01 339
miper_refine_blended94.62 31693.72 32297.31 31297.19 35795.82 30798.34 35299.20 27895.00 32397.57 32198.35 34487.95 33798.10 34992.87 34377.00 36998.01 339
OpenMVS_ROBcopyleft92.34 2094.38 32093.70 32496.41 33197.38 35193.17 35099.06 27998.75 32886.58 36294.84 35298.26 34781.53 35999.32 27189.01 35897.87 22396.76 359
mvsany_test393.77 32393.45 32594.74 33795.78 36388.01 36299.64 7398.25 34898.28 9794.31 35397.97 35168.89 36698.51 34397.50 23490.37 35097.71 349
pmmvs394.09 32293.25 32696.60 32994.76 36994.49 33498.92 31198.18 35289.66 35696.48 33998.06 35086.28 34497.33 36189.68 35687.20 35897.97 344
UnsupCasMVSNet_bld93.53 32492.51 32796.58 33097.38 35193.82 34198.24 35799.48 14291.10 35493.10 35896.66 36074.89 36498.37 34494.03 33187.71 35797.56 354
PM-MVS92.96 32592.23 32895.14 33695.61 36489.98 36199.37 20598.21 35094.80 32795.04 35197.69 35265.06 36797.90 35594.30 32589.98 35397.54 355
test_fmvs392.10 32691.77 32993.08 34296.19 36086.25 36399.82 1798.62 34196.65 25995.19 34996.90 35955.05 37495.93 37096.63 28790.92 34997.06 358
test_method91.10 32891.36 33090.31 34995.85 36273.72 37994.89 36899.25 27068.39 37195.82 34599.02 31880.50 36098.95 33193.64 33494.89 31398.25 328
test_f91.90 32791.26 33193.84 33995.52 36785.92 36499.69 5198.53 34595.31 31793.87 35596.37 36255.33 37398.27 34695.70 30490.98 34897.32 357
testf190.42 33090.68 33289.65 35097.78 34573.97 37799.13 26498.81 32489.62 35791.80 36198.93 32662.23 37098.80 33786.61 36791.17 34596.19 362
APD_test290.42 33090.68 33289.65 35097.78 34573.97 37799.13 26498.81 32489.62 35791.80 36198.93 32662.23 37098.80 33786.61 36791.17 34596.19 362
Gipumacopyleft90.99 32990.15 33493.51 34098.73 31490.12 36093.98 36999.45 18079.32 36792.28 35994.91 36469.61 36597.98 35387.42 36395.67 29592.45 367
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test_vis3_rt87.04 33285.81 33590.73 34893.99 37081.96 36999.76 3690.23 38192.81 34781.35 36991.56 36940.06 37899.07 31094.27 32788.23 35691.15 369
FPMVS84.93 33585.65 33682.75 35686.77 37763.39 38198.35 35198.92 31074.11 36883.39 36798.98 32350.85 37592.40 37384.54 37094.97 31092.46 366
PMMVS286.87 33385.37 33791.35 34790.21 37483.80 36698.89 31497.45 36183.13 36691.67 36395.03 36348.49 37694.70 37185.86 36977.62 36895.54 364
LCM-MVSNet86.80 33485.22 33891.53 34687.81 37680.96 37098.23 35998.99 30271.05 36990.13 36496.51 36148.45 37796.88 36590.51 35285.30 36096.76 359
tmp_tt82.80 33681.52 33986.66 35266.61 38268.44 38092.79 37197.92 35468.96 37080.04 37399.85 4285.77 34696.15 36997.86 19843.89 37595.39 365
E-PMN80.61 33879.88 34082.81 35590.75 37376.38 37597.69 36495.76 37066.44 37383.52 36692.25 36862.54 36987.16 37568.53 37461.40 37284.89 373
EMVS80.02 33979.22 34182.43 35791.19 37276.40 37497.55 36692.49 38066.36 37483.01 36891.27 37064.63 36885.79 37665.82 37560.65 37385.08 372
EGC-MVSNET82.80 33677.86 34297.62 30397.91 34296.12 30299.33 21999.28 2658.40 37925.05 38099.27 29084.11 35399.33 26889.20 35798.22 20897.42 356
PMVScopyleft70.75 2275.98 34274.97 34379.01 35870.98 38155.18 38293.37 37098.21 35065.08 37561.78 37693.83 36621.74 38392.53 37278.59 37191.12 34789.34 371
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
ANet_high77.30 34074.86 34484.62 35475.88 38077.61 37397.63 36593.15 37888.81 36064.27 37589.29 37236.51 37983.93 37775.89 37252.31 37492.33 368
MVEpermissive76.82 2176.91 34174.31 34584.70 35385.38 37976.05 37696.88 36793.17 37767.39 37271.28 37489.01 37321.66 38487.69 37471.74 37372.29 37190.35 370
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
testmvs39.17 34443.78 34625.37 36136.04 38416.84 38598.36 35026.56 38320.06 37738.51 37867.32 37429.64 38115.30 38037.59 37739.90 37643.98 375
test12339.01 34542.50 34728.53 36039.17 38320.91 38498.75 32819.17 38519.83 37838.57 37766.67 37533.16 38015.42 37937.50 37829.66 37749.26 374
wuyk23d40.18 34341.29 34836.84 35986.18 37849.12 38379.73 37222.81 38427.64 37625.46 37928.45 37921.98 38248.89 37855.80 37623.56 37812.51 376
cdsmvs_eth3d_5k24.64 34632.85 3490.00 3620.00 3850.00 3860.00 37399.51 1030.00 3800.00 38199.56 20796.58 1380.00 3810.00 3790.00 3790.00 377
ab-mvs-re8.30 34711.06 3500.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 38199.58 2000.00 3850.00 3810.00 3790.00 3790.00 377
pcd_1.5k_mvsjas8.27 34811.03 3510.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.27 38199.01 180.00 3810.00 3790.00 3790.00 377
test_blank0.13 3490.17 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3811.57 3800.00 3850.00 3810.00 3790.00 3790.00 377
uanet_test0.02 3500.03 3530.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.27 3810.00 3850.00 3810.00 3790.00 3790.00 377
DCPMVS0.02 3500.03 3530.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.27 3810.00 3850.00 3810.00 3790.00 3790.00 377
sosnet-low-res0.02 3500.03 3530.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.27 3810.00 3850.00 3810.00 3790.00 3790.00 377
sosnet0.02 3500.03 3530.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.27 3810.00 3850.00 3810.00 3790.00 3790.00 377
uncertanet0.02 3500.03 3530.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.27 3810.00 3850.00 3810.00 3790.00 3790.00 377
Regformer0.02 3500.03 3530.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.27 3810.00 3850.00 3810.00 3790.00 3790.00 377
uanet0.02 3500.03 3530.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.27 3810.00 3850.00 3810.00 3790.00 3790.00 377
FOURS199.91 199.93 199.87 999.56 5799.10 1699.81 25
MSC_two_6792asdad99.87 1199.51 15699.76 3799.33 24199.96 2298.87 8999.84 6399.89 6
PC_three_145298.18 11599.84 1899.70 14299.31 398.52 34298.30 16799.80 8399.81 47
No_MVS99.87 1199.51 15699.76 3799.33 24199.96 2298.87 8999.84 6399.89 6
test_one_060199.81 4199.88 899.49 13098.97 3999.65 7599.81 7699.09 14
eth-test20.00 385
eth-test0.00 385
ZD-MVS99.71 8799.79 3099.61 3696.84 24899.56 9899.54 21598.58 6799.96 2296.93 27299.75 98
IU-MVS99.84 3199.88 899.32 25198.30 9699.84 1898.86 9499.85 5599.89 6
OPU-MVS99.64 6499.56 14499.72 4299.60 9099.70 14299.27 599.42 24998.24 16999.80 8399.79 60
test_241102_TWO99.48 14299.08 2199.88 1199.81 7698.94 2999.96 2298.91 8399.84 6399.88 12
test_241102_ONE99.84 3199.90 299.48 14299.07 2399.91 799.74 12799.20 799.76 177
save fliter99.76 5699.59 6299.14 26399.40 20799.00 31
test_0728_THIRD98.99 3399.81 2599.80 8999.09 1499.96 2298.85 9699.90 2599.88 12
test_0728_SECOND99.91 299.84 3199.89 499.57 10899.51 10399.96 2298.93 8099.86 4899.88 12
test072699.85 2599.89 499.62 8399.50 12299.10 1699.86 1699.82 6398.94 29
GSMVS99.52 148
test_part299.81 4199.83 1699.77 38
sam_mvs194.86 19899.52 148
sam_mvs94.72 210
ambc93.06 34392.68 37182.36 36798.47 34798.73 33695.09 35097.41 35455.55 37299.10 30896.42 29191.32 34497.71 349
MTGPAbinary99.47 160
test_post199.23 24865.14 37794.18 23199.71 19697.58 224
test_post65.99 37694.65 21499.73 186
patchmatchnet-post98.70 33594.79 20299.74 180
GG-mvs-BLEND98.45 24698.55 33298.16 21399.43 17793.68 37697.23 32898.46 34189.30 32299.22 28895.43 31198.22 20897.98 343
MTMP99.54 12798.88 317
gm-plane-assit98.54 33392.96 35194.65 33099.15 30499.64 22097.56 229
test9_res97.49 23599.72 10499.75 74
TEST999.67 10099.65 5699.05 28199.41 19996.22 29398.95 22799.49 23198.77 5099.91 90
test_899.67 10099.61 6099.03 28799.41 19996.28 28798.93 23199.48 23698.76 5199.91 90
agg_prior297.21 25199.73 10399.75 74
agg_prior99.67 10099.62 5999.40 20798.87 24199.91 90
TestCases99.31 12899.86 2098.48 19999.61 3697.85 15299.36 14899.85 4295.95 15899.85 12996.66 28599.83 7299.59 133
test_prior499.56 6698.99 297
test_prior298.96 30498.34 9299.01 21799.52 22298.68 6197.96 19099.74 101
test_prior99.68 5499.67 10099.48 8099.56 5799.83 14699.74 78
旧先验298.96 30496.70 25599.47 11599.94 5798.19 172
新几何299.01 295
新几何199.75 4799.75 6499.59 6299.54 7396.76 25199.29 16399.64 17698.43 7899.94 5796.92 27499.66 11499.72 89
旧先验199.74 7199.59 6299.54 7399.69 15298.47 7599.68 11299.73 83
无先验98.99 29799.51 10396.89 24599.93 7097.53 23299.72 89
原ACMM298.95 307
原ACMM199.65 5999.73 7899.33 9199.47 16097.46 19299.12 19899.66 16998.67 6399.91 9097.70 21799.69 10999.71 96
test22299.75 6499.49 7898.91 31399.49 13096.42 28199.34 15499.65 17098.28 8799.69 10999.72 89
testdata299.95 4896.67 284
segment_acmp98.96 24
testdata99.54 8299.75 6498.95 14899.51 10397.07 23199.43 12499.70 14298.87 3799.94 5797.76 20899.64 11799.72 89
testdata198.85 31898.32 95
test1299.75 4799.64 11699.61 6099.29 26399.21 18298.38 8299.89 11199.74 10199.74 78
plane_prior799.29 22097.03 268
plane_prior699.27 22596.98 27292.71 265
plane_prior599.47 16099.69 20797.78 20597.63 22898.67 263
plane_prior499.61 191
plane_prior397.00 27098.69 6499.11 200
plane_prior299.39 19898.97 39
plane_prior199.26 227
plane_prior96.97 27399.21 25498.45 8097.60 231
n20.00 386
nn0.00 386
door-mid98.05 353
lessismore_v097.79 29898.69 32095.44 31894.75 37395.71 34699.87 3288.69 32799.32 27195.89 29994.93 31298.62 286
LGP-MVS_train98.49 23899.33 20897.05 26499.55 6597.46 19299.24 17499.83 5692.58 27099.72 19098.09 17997.51 24098.68 256
test1199.35 230
door97.92 354
HQP5-MVS96.83 278
HQP-NCC99.19 24298.98 30098.24 10298.66 268
ACMP_Plane99.19 24298.98 30098.24 10298.66 268
BP-MVS97.19 255
HQP4-MVS98.66 26899.64 22098.64 275
HQP3-MVS99.39 21097.58 233
HQP2-MVS92.47 274
NP-MVS99.23 23396.92 27699.40 256
MDTV_nov1_ep13_2view95.18 32499.35 21496.84 24899.58 9495.19 18997.82 20299.46 167
ACMMP++_ref97.19 262
ACMMP++97.43 252
Test By Simon98.75 54
ITE_SJBPF98.08 27799.29 22096.37 29598.92 31098.34 9298.83 24699.75 12291.09 30399.62 22695.82 30097.40 25498.25 328
DeepMVS_CXcopyleft93.34 34199.29 22082.27 36899.22 27485.15 36396.33 34099.05 31490.97 30599.73 18693.57 33597.77 22598.01 339