This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort by
DVP-MVScopyleft95.56 396.26 394.73 396.93 1698.19 196.62 792.81 596.15 291.73 595.01 795.31 293.41 195.95 394.77 896.90 498.46 2
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
APDe-MVS95.23 595.69 694.70 597.12 1097.81 697.19 292.83 495.06 690.98 996.47 292.77 1093.38 295.34 994.21 1696.68 998.17 5
DPE-MVScopyleft95.53 496.13 494.82 296.81 2298.05 497.42 193.09 194.31 991.49 697.12 195.03 393.27 395.55 694.58 1296.86 698.25 4
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
TSAR-MVS + MP.94.48 1194.97 993.90 1295.53 3697.01 1596.69 690.71 2394.24 1090.92 1094.97 892.19 1593.03 494.83 1693.60 2796.51 1397.97 9
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
DVP-MVS++95.79 196.42 195.06 197.84 298.17 297.03 492.84 396.68 192.83 395.90 594.38 492.90 595.98 294.85 596.93 398.99 1
APD-MVScopyleft94.37 1294.47 1694.26 797.18 896.99 1696.53 892.68 692.45 2389.96 1694.53 1191.63 2092.89 694.58 2293.82 2396.31 1897.26 18
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
SED-MVS95.61 296.36 294.73 396.84 1998.15 397.08 392.92 295.64 391.84 495.98 495.33 192.83 796.00 194.94 396.90 498.45 3
MSP-MVS95.12 695.83 594.30 696.82 2197.94 596.98 592.37 1195.40 490.59 1296.16 393.71 692.70 894.80 1794.77 896.37 1497.99 8
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
HPM-MVS++copyleft94.60 994.91 1194.24 897.86 196.53 3296.14 992.51 893.87 1490.76 1193.45 1893.84 592.62 995.11 1294.08 1995.58 5497.48 14
CNVR-MVS94.37 1294.65 1294.04 1097.29 697.11 1196.00 1192.43 1093.45 1589.85 1890.92 2593.04 992.59 1095.77 594.82 696.11 2597.42 16
HFP-MVS94.02 1594.22 1893.78 1397.25 796.85 2095.81 1990.94 2294.12 1190.29 1594.09 1489.98 3092.52 1193.94 3393.49 3295.87 3397.10 23
ACMMPR93.72 1893.94 2093.48 1797.07 1196.93 1795.78 2090.66 2593.88 1389.24 2093.53 1689.08 3792.24 1293.89 3593.50 3095.88 3196.73 30
NCCC93.69 1993.66 2393.72 1597.37 596.66 2995.93 1792.50 993.40 1888.35 2487.36 3492.33 1492.18 1394.89 1594.09 1896.00 2796.91 26
MCST-MVS93.81 1794.06 1993.53 1696.79 2396.85 2095.95 1491.69 1692.20 2587.17 3190.83 2793.41 791.96 1494.49 2593.50 3097.61 197.12 22
SF-MVS94.61 894.96 1094.20 996.75 2497.07 1295.82 1892.60 793.98 1291.09 895.89 692.54 1291.93 1594.40 2793.56 2997.04 297.27 17
CP-MVS93.25 2193.26 2693.24 2096.84 1996.51 3395.52 2390.61 2692.37 2488.88 2190.91 2689.52 3391.91 1693.64 4092.78 4595.69 4597.09 24
SMA-MVScopyleft94.70 795.35 793.93 1197.57 397.57 895.98 1291.91 1394.50 790.35 1393.46 1792.72 1191.89 1795.89 495.22 195.88 3198.10 6
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
SteuartSystems-ACMMP94.06 1494.65 1293.38 1896.97 1597.36 996.12 1091.78 1492.05 2787.34 2994.42 1290.87 2491.87 1895.47 894.59 1196.21 2397.77 11
Skip Steuart: Steuart Systems R&D Blog.
SD-MVS94.53 1095.22 893.73 1495.69 3597.03 1495.77 2191.95 1294.41 891.35 794.97 893.34 891.80 1994.72 2093.99 2095.82 3898.07 7
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
PGM-MVS92.76 2593.03 2892.45 2797.03 1396.67 2895.73 2287.92 4190.15 4186.53 3592.97 2088.33 4391.69 2093.62 4193.03 4095.83 3796.41 37
CPTT-MVS91.39 3690.95 4091.91 3195.06 3895.24 5395.02 2988.98 3591.02 3486.71 3384.89 4188.58 4291.60 2190.82 8789.67 9794.08 12196.45 35
MSLP-MVS++92.02 3391.40 3692.75 2396.01 3195.88 4293.73 3989.00 3389.89 4290.31 1481.28 5788.85 3891.45 2292.88 5194.24 1596.00 2796.76 29
DeepC-MVS_fast88.76 193.10 2293.02 2993.19 2197.13 996.51 3395.35 2591.19 1993.14 2088.14 2585.26 3989.49 3491.45 2295.17 1095.07 295.85 3696.48 34
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
TSAR-MVS + GP.92.71 2793.91 2191.30 3491.96 7296.00 3993.43 4087.94 4092.53 2186.27 3893.57 1591.94 1891.44 2493.29 4492.89 4496.78 797.15 21
ACMMP_NAP93.94 1694.49 1593.30 1997.03 1397.31 1095.96 1391.30 1893.41 1788.55 2393.00 1990.33 2791.43 2595.53 794.41 1495.53 5797.47 15
CS-MVS90.34 4290.58 4490.07 4393.11 5995.82 4490.57 6483.62 7687.07 5385.35 4082.98 4583.47 6091.37 2694.94 1393.37 3696.37 1496.41 37
MP-MVScopyleft93.35 2093.59 2493.08 2297.39 496.82 2295.38 2490.71 2390.82 3588.07 2692.83 2190.29 2891.32 2794.03 3093.19 3995.61 5297.16 20
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
AdaColmapbinary90.29 4388.38 5892.53 2596.10 3095.19 5492.98 4591.40 1789.08 4588.65 2278.35 7181.44 7091.30 2890.81 8890.21 8194.72 9493.59 88
DROMVSNet89.96 4790.77 4389.01 5590.54 9095.15 5591.34 6081.43 10685.27 6183.08 5382.83 4687.22 4890.97 2994.79 1893.38 3496.73 896.71 32
DeepC-MVS87.86 392.26 3091.86 3392.73 2496.18 2896.87 1995.19 2791.76 1592.17 2686.58 3481.79 5185.85 5090.88 3094.57 2394.61 1095.80 3997.18 19
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
3Dnovator+86.06 491.60 3590.86 4292.47 2696.00 3296.50 3594.70 3187.83 4290.49 3889.92 1774.68 9189.35 3590.66 3194.02 3194.14 1795.67 4796.85 27
train_agg92.87 2493.53 2592.09 2996.88 1895.38 4995.94 1590.59 2790.65 3783.65 5194.31 1391.87 1990.30 3293.38 4392.42 5095.17 7496.73 30
CS-MVS-test90.29 4390.96 3989.51 5193.18 5895.87 4389.18 8383.72 7588.32 4884.82 4584.89 4185.23 5390.25 3394.04 2992.66 4995.94 2995.69 49
ACMMPcopyleft92.03 3292.16 3191.87 3395.88 3396.55 3194.47 3489.49 3291.71 3085.26 4191.52 2484.48 5690.21 3492.82 5291.63 5795.92 3096.42 36
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DeepPCF-MVS88.51 292.64 2894.42 1790.56 3994.84 4396.92 1891.31 6189.61 3195.16 584.55 4689.91 2991.45 2190.15 3595.12 1194.81 792.90 15397.58 13
PLCcopyleft83.76 988.61 5786.83 7590.70 3894.22 4792.63 9791.50 5887.19 4689.16 4486.87 3275.51 8680.87 7289.98 3690.01 9889.20 10894.41 11390.45 146
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
CNLPA88.40 5887.00 7390.03 4493.73 5394.28 6989.56 7885.81 5291.87 2887.55 2869.53 12181.49 6989.23 3789.45 10788.59 11894.31 11793.82 83
X-MVS92.36 2992.75 3091.90 3296.89 1796.70 2595.25 2690.48 2891.50 3283.95 4888.20 3188.82 3989.11 3893.75 3893.43 3395.75 4396.83 28
OMC-MVS90.23 4590.40 4590.03 4493.45 5595.29 5091.89 5486.34 5093.25 1984.94 4481.72 5386.65 4988.90 3991.69 6790.27 8094.65 9893.95 80
ETV-MVS89.22 5289.76 4988.60 6191.60 7694.61 6689.48 8083.46 8585.20 6381.58 6282.75 4782.59 6588.80 4094.57 2393.28 3896.68 995.31 56
OPM-MVS87.56 6985.80 8589.62 4993.90 5194.09 7394.12 3588.18 3875.40 13277.30 8876.41 8077.93 9488.79 4192.20 6190.82 6895.40 6293.72 86
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
TSAR-MVS + ACMM92.97 2394.51 1491.16 3695.88 3396.59 3095.09 2890.45 2993.42 1683.01 5494.68 1090.74 2588.74 4294.75 1993.78 2493.82 13497.63 12
CSCG92.76 2593.16 2792.29 2896.30 2797.74 794.67 3288.98 3592.46 2289.73 1986.67 3692.15 1788.69 4392.26 5992.92 4395.40 6297.89 10
3Dnovator85.17 590.48 4189.90 4891.16 3694.88 4295.74 4693.82 3685.36 5589.28 4387.81 2774.34 9487.40 4788.56 4493.07 4793.74 2696.53 1295.71 48
ACMM83.27 1087.68 6886.09 8189.54 5093.26 5692.19 10391.43 5986.74 4786.02 5782.85 5575.63 8575.14 10488.41 4590.68 9289.99 8694.59 10192.97 96
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
DPM-MVS91.72 3491.48 3492.00 3095.53 3695.75 4595.94 1591.07 2091.20 3385.58 3981.63 5590.74 2588.40 4693.40 4293.75 2595.45 6193.85 82
canonicalmvs89.36 5189.92 4688.70 5991.38 7895.92 4191.81 5682.61 9890.37 3982.73 5782.09 4979.28 8588.30 4791.17 7593.59 2895.36 6497.04 25
TAPA-MVS84.37 788.91 5488.93 5488.89 5693.00 6394.85 6292.00 5184.84 5991.68 3180.05 7279.77 6384.56 5588.17 4890.11 9789.00 11495.30 6892.57 111
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
MVS_111021_LR90.14 4690.89 4189.26 5393.23 5794.05 7490.43 6684.65 6190.16 4084.52 4790.14 2883.80 5987.99 4992.50 5690.92 6694.74 9294.70 66
QAPM89.49 5089.58 5189.38 5294.73 4495.94 4092.35 4885.00 5885.69 6080.03 7376.97 7887.81 4587.87 5092.18 6392.10 5396.33 1696.40 39
MAR-MVS88.39 6088.44 5788.33 6694.90 4195.06 5890.51 6583.59 7985.27 6179.07 7777.13 7682.89 6487.70 5192.19 6292.32 5194.23 11894.20 78
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
MVS_111021_HR90.56 4091.29 3889.70 4894.71 4595.63 4791.81 5686.38 4987.53 5181.29 6487.96 3285.43 5287.69 5293.90 3492.93 4296.33 1695.69 49
PHI-MVS92.05 3193.74 2290.08 4294.96 4097.06 1393.11 4487.71 4390.71 3680.78 6992.40 2291.03 2287.68 5394.32 2894.48 1396.21 2396.16 41
TSAR-MVS + COLMAP88.40 5889.09 5387.60 7192.72 6793.92 7692.21 4985.57 5491.73 2973.72 10191.75 2373.22 12087.64 5491.49 6989.71 9693.73 13791.82 125
MVS_030490.88 3991.35 3790.34 4093.91 5096.79 2394.49 3386.54 4886.57 5582.85 5581.68 5489.70 3287.57 5594.64 2193.93 2196.67 1196.15 42
EIA-MVS87.94 6688.05 6287.81 6891.46 7795.00 6088.67 9582.81 9082.53 7780.81 6880.04 6180.20 7687.48 5692.58 5591.61 5895.63 4994.36 72
LS3D85.96 7984.37 9687.81 6894.13 4893.27 8590.26 6989.00 3384.91 6672.84 10971.74 10772.47 12287.45 5789.53 10689.09 11093.20 14989.60 149
PCF-MVS84.60 688.66 5587.75 6889.73 4793.06 6296.02 3893.22 4390.00 3082.44 8080.02 7477.96 7485.16 5487.36 5888.54 11688.54 11994.72 9495.61 52
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
CANet91.33 3791.46 3591.18 3595.01 3996.71 2493.77 3787.39 4587.72 5087.26 3081.77 5289.73 3187.32 5994.43 2693.86 2296.31 1896.02 44
CDPH-MVS91.14 3892.01 3290.11 4196.18 2896.18 3794.89 3088.80 3788.76 4677.88 8589.18 3087.71 4687.29 6093.13 4693.31 3795.62 5095.84 46
HQP-MVS89.13 5389.58 5188.60 6193.53 5493.67 7793.29 4287.58 4488.53 4775.50 9087.60 3380.32 7587.07 6190.66 9389.95 8994.62 10096.35 40
ET-MVSNet_ETH3D84.65 9285.58 8783.56 10974.99 21092.62 9990.29 6880.38 11382.16 8273.01 10883.41 4371.10 12787.05 6287.77 12490.17 8295.62 5091.82 125
ACMP83.90 888.32 6188.06 6188.62 6092.18 7093.98 7591.28 6285.24 5686.69 5481.23 6585.62 3875.13 10587.01 6389.83 10089.77 9494.79 8895.43 55
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
Fast-Effi-MVS+83.77 10282.98 10584.69 8987.98 11791.87 10588.10 10577.70 14978.10 11873.04 10769.13 12368.51 13986.66 6490.49 9589.85 9294.67 9792.88 98
LGP-MVS_train88.25 6288.55 5587.89 6792.84 6693.66 7893.35 4185.22 5785.77 5874.03 10086.60 3776.29 10186.62 6591.20 7390.58 7695.29 6995.75 47
Effi-MVS+85.33 8485.08 9085.63 8289.69 10493.42 8389.90 7280.31 11879.32 10972.48 11173.52 10074.03 11186.55 6690.99 8389.98 8794.83 8794.27 77
casdiffmvspermissive87.45 7087.15 7287.79 7090.15 10194.22 7089.96 7183.93 7185.08 6480.91 6675.81 8477.88 9586.08 6791.86 6690.86 6795.74 4494.37 71
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PatchMatch-RL83.34 10581.36 11785.65 8190.33 9889.52 14084.36 15181.82 10380.87 9979.29 7574.04 9562.85 16086.05 6888.40 11987.04 13592.04 16186.77 171
CLD-MVS88.66 5588.52 5688.82 5791.37 7994.22 7092.82 4782.08 10188.27 4985.14 4281.86 5078.53 9085.93 6991.17 7590.61 7495.55 5595.00 58
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
OpenMVScopyleft82.53 1187.71 6786.84 7488.73 5894.42 4695.06 5891.02 6383.49 8282.50 7982.24 6067.62 13285.48 5185.56 7091.19 7491.30 6095.67 4794.75 64
casdiffmvs_mvgpermissive87.97 6587.63 7088.37 6590.55 8994.42 6791.82 5584.69 6084.05 6982.08 6176.57 7979.00 8685.49 7192.35 5792.29 5295.55 5594.70 66
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MVS_Test86.93 7287.24 7186.56 7590.10 10293.47 8190.31 6780.12 12083.55 7178.12 8179.58 6479.80 8085.45 7290.17 9690.59 7595.29 6993.53 89
DI_MVS_plusplus_trai86.41 7585.54 8887.42 7289.24 10793.13 8692.16 5082.65 9682.30 8180.75 7068.30 12880.41 7485.01 7390.56 9490.07 8494.70 9694.01 79
ACMH+79.08 1381.84 11980.06 13483.91 10489.92 10390.62 11486.21 13183.48 8473.88 14565.75 14066.38 13665.30 14984.63 7485.90 15187.25 13193.45 14591.13 139
ACMH78.52 1481.86 11880.45 12983.51 11190.51 9391.22 10985.62 13984.23 6770.29 16862.21 16369.04 12564.05 15384.48 7587.57 12688.45 12194.01 12592.54 113
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
DELS-MVS89.71 4889.68 5089.74 4693.75 5296.22 3693.76 3885.84 5182.53 7785.05 4378.96 6884.24 5784.25 7694.91 1494.91 495.78 4296.02 44
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
diffmvspermissive86.52 7486.76 7786.23 7788.31 11692.63 9789.58 7781.61 10586.14 5680.26 7179.00 6777.27 9783.58 7788.94 11289.06 11194.05 12394.29 73
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
HyFIR lowres test81.62 12479.45 14484.14 10191.00 8393.38 8488.27 10378.19 14376.28 12670.18 11848.78 20273.69 11583.52 7887.05 13187.83 12693.68 14089.15 152
GeoE84.62 9383.98 10085.35 8689.34 10692.83 9388.34 10278.95 13579.29 11077.16 8968.10 12974.56 10783.40 7989.31 10989.23 10794.92 8394.57 70
Anonymous2023121184.42 9883.02 10486.05 7988.85 11292.70 9588.92 9483.40 8779.99 10378.31 8055.83 19078.92 8883.33 8089.06 11189.76 9593.50 14494.90 60
FA-MVS(training)85.65 8285.79 8685.48 8590.44 9593.47 8188.66 9773.11 17483.34 7282.26 5871.79 10678.39 9183.14 8191.00 8289.47 10295.28 7193.06 94
Anonymous20240521182.75 10889.58 10592.97 9189.04 9184.13 6978.72 11457.18 18676.64 10083.13 8289.55 10589.92 9093.38 14794.28 76
MSDG83.87 10081.02 12287.19 7392.17 7189.80 13289.15 8685.72 5380.61 10079.24 7666.66 13568.75 13882.69 8387.95 12387.44 12894.19 11985.92 178
PVSNet_BlendedMVS88.19 6388.00 6388.42 6392.71 6894.82 6389.08 8883.81 7284.91 6686.38 3679.14 6578.11 9282.66 8493.05 4891.10 6195.86 3494.86 62
PVSNet_Blended88.19 6388.00 6388.42 6392.71 6894.82 6389.08 8883.81 7284.91 6686.38 3679.14 6578.11 9282.66 8493.05 4891.10 6195.86 3494.86 62
RPSCF83.46 10483.36 10383.59 10887.75 11987.35 16484.82 14879.46 13083.84 7078.12 8182.69 4879.87 7882.60 8682.47 18581.13 18888.78 18986.13 176
DCV-MVSNet85.88 8186.17 7985.54 8489.10 11089.85 13089.34 8180.70 11183.04 7378.08 8376.19 8279.00 8682.42 8789.67 10390.30 7993.63 14295.12 57
PMMVS81.65 12184.05 9978.86 15378.56 20182.63 19583.10 15967.22 19781.39 8970.11 11984.91 4079.74 8182.12 8887.31 12785.70 15892.03 16286.67 174
EPP-MVSNet86.55 7387.76 6785.15 8790.52 9194.41 6887.24 11782.32 10081.79 8773.60 10278.57 7082.41 6682.07 8991.23 7190.39 7895.14 7795.48 54
Effi-MVS+-dtu82.05 11581.76 11282.38 12087.72 12090.56 11586.90 12578.05 14573.85 14666.85 13471.29 10971.90 12482.00 9086.64 14185.48 16092.76 15592.58 110
test250685.20 8684.11 9886.47 7691.84 7395.28 5189.18 8384.49 6382.59 7575.34 9474.66 9258.07 18681.68 9193.76 3692.71 4696.28 2191.71 127
ECVR-MVScopyleft85.25 8584.47 9486.16 7891.84 7395.28 5189.18 8384.49 6382.59 7573.49 10366.12 13769.28 13581.68 9193.76 3692.71 4696.28 2191.58 134
CHOSEN 1792x268882.16 11480.91 12583.61 10791.14 8092.01 10489.55 7979.15 13479.87 10470.29 11652.51 19872.56 12181.39 9388.87 11488.17 12290.15 18292.37 118
LTVRE_ROB74.41 1675.78 18474.72 19077.02 16985.88 13889.22 14582.44 16577.17 15250.57 21445.45 20865.44 14452.29 20781.25 9485.50 15787.42 12989.94 18492.62 107
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
test111184.86 9184.21 9785.61 8391.75 7595.14 5688.63 9884.57 6281.88 8571.21 11265.66 14368.51 13981.19 9593.74 3992.68 4896.31 1891.86 124
USDC80.69 12879.89 13781.62 12886.48 13489.11 14986.53 12878.86 13781.15 9463.48 15572.98 10259.12 18481.16 9687.10 12985.01 16493.23 14884.77 183
CHOSEN 280x42080.28 13181.66 11378.67 15782.92 18079.24 20785.36 14266.79 19978.11 11770.32 11575.03 9079.87 7881.09 9789.07 11083.16 17885.54 20487.17 168
EPNet89.60 4989.91 4789.24 5496.45 2693.61 7992.95 4688.03 3985.74 5983.36 5287.29 3583.05 6380.98 9892.22 6091.85 5593.69 13995.58 53
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
v2v48279.84 13678.07 15681.90 12483.75 16790.21 12287.17 11979.85 12670.65 16465.93 13961.93 16160.07 17380.82 9985.25 16086.71 13993.88 13191.70 131
IterMVS-LS83.28 10682.95 10683.65 10688.39 11588.63 15586.80 12678.64 14076.56 12473.43 10472.52 10575.35 10380.81 10086.43 14688.51 12093.84 13392.66 106
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
TinyColmap76.73 16873.95 19279.96 14685.16 15285.64 17882.34 16678.19 14370.63 16562.06 16560.69 17049.61 21080.81 10085.12 16583.69 17691.22 17482.27 191
CANet_DTU85.43 8387.72 6982.76 11690.95 8593.01 9089.99 7075.46 16682.67 7464.91 14783.14 4480.09 7780.68 10292.03 6591.03 6394.57 10392.08 119
MVSTER86.03 7886.12 8085.93 8088.62 11389.93 12889.33 8279.91 12581.87 8681.35 6381.07 5874.91 10680.66 10392.13 6490.10 8395.68 4692.80 101
thres40082.68 11081.15 12084.47 9390.52 9192.89 9288.95 9382.71 9274.33 14069.22 12565.31 14562.61 16180.63 10490.96 8589.50 10194.79 8892.45 117
thres20082.77 10981.25 11984.54 9190.38 9693.05 8889.13 8782.67 9474.40 13969.53 12265.69 14263.03 15880.63 10491.15 7789.42 10394.88 8592.04 121
v119278.94 14977.33 16380.82 13783.25 17389.90 12986.91 12477.72 14868.63 17562.61 16159.17 17857.53 18980.62 10686.89 13386.47 14593.79 13692.75 104
v1079.62 13978.19 15481.28 13383.73 16889.69 13687.27 11676.86 15670.50 16665.46 14160.58 17160.47 17180.44 10786.91 13286.63 14293.93 12792.55 112
thres600view782.53 11381.02 12284.28 9790.61 8893.05 8888.57 10082.67 9474.12 14368.56 12865.09 14862.13 16680.40 10891.15 7789.02 11394.88 8592.59 109
tfpn200view982.86 10781.46 11584.48 9290.30 9993.09 8789.05 9082.71 9275.14 13369.56 12065.72 14063.13 15580.38 10991.15 7789.51 10094.91 8492.50 115
UniMVSNet_NR-MVSNet81.87 11781.33 11882.50 11885.31 14891.30 10885.70 13684.25 6675.89 12864.21 14966.95 13464.65 15180.22 11087.07 13089.18 10995.27 7294.29 73
DU-MVS81.20 12680.30 13082.25 12184.98 15590.94 11285.70 13683.58 8075.74 12964.21 14965.30 14659.60 17980.22 11086.89 13389.31 10494.77 9094.29 73
baseline84.89 9086.06 8283.52 11087.25 12789.67 13787.76 10775.68 16584.92 6578.40 7980.10 6080.98 7180.20 11286.69 14087.05 13491.86 16492.99 95
v192192078.57 15576.99 16880.41 14482.93 17989.63 13986.38 13077.14 15368.31 17661.80 16958.89 18256.79 19280.19 11386.50 14586.05 15494.02 12492.76 103
v114479.38 14577.83 15981.18 13483.62 16990.23 12087.15 12178.35 14269.13 17164.02 15260.20 17359.41 18080.14 11486.78 13686.57 14393.81 13592.53 114
v14419278.81 15077.22 16580.67 13982.95 17889.79 13386.40 12977.42 15068.26 17763.13 15759.50 17658.13 18580.08 11585.93 15086.08 15294.06 12292.83 100
thisisatest053085.15 8885.86 8384.33 9589.19 10992.57 10087.22 11880.11 12182.15 8374.41 9778.15 7273.80 11479.90 11690.99 8389.58 9895.13 7893.75 85
tttt051785.11 8985.81 8484.30 9689.24 10792.68 9687.12 12280.11 12181.98 8474.31 9978.08 7373.57 11679.90 11691.01 8189.58 9895.11 8093.77 84
v124078.15 15776.53 17180.04 14582.85 18289.48 14285.61 14076.77 15767.05 17961.18 17658.37 18456.16 19679.89 11886.11 14986.08 15293.92 12892.47 116
v879.90 13578.39 15281.66 12783.97 16689.81 13187.16 12077.40 15171.49 15867.71 13061.24 16462.49 16279.83 11985.48 15886.17 15093.89 13092.02 123
GBi-Net84.51 9584.80 9184.17 9984.20 16289.95 12589.70 7480.37 11481.17 9175.50 9069.63 11779.69 8279.75 12090.73 8990.72 6995.52 5891.71 127
test184.51 9584.80 9184.17 9984.20 16289.95 12589.70 7480.37 11481.17 9175.50 9069.63 11779.69 8279.75 12090.73 8990.72 6995.52 5891.71 127
FMVSNet283.87 10083.73 10284.05 10384.20 16289.95 12589.70 7480.21 11979.17 11274.89 9565.91 13877.49 9679.75 12090.87 8691.00 6595.52 5891.71 127
thres100view90082.55 11281.01 12484.34 9490.30 9992.27 10189.04 9182.77 9175.14 13369.56 12065.72 14063.13 15579.62 12389.97 9989.26 10694.73 9391.61 133
FMVSNet384.44 9784.64 9384.21 9884.32 16190.13 12389.85 7380.37 11481.17 9175.50 9069.63 11779.69 8279.62 12389.72 10290.52 7795.59 5391.58 134
pmmvs479.99 13378.08 15582.22 12283.04 17787.16 16784.95 14478.80 13978.64 11574.53 9664.61 15259.41 18079.45 12584.13 17484.54 17192.53 15788.08 161
FMVSNet181.64 12280.61 12782.84 11582.36 18789.20 14688.67 9579.58 12870.79 16372.63 11058.95 18172.26 12379.34 12690.73 8990.72 6994.47 10991.62 132
SCA79.51 14280.15 13378.75 15586.58 13387.70 16183.07 16068.53 19281.31 9066.40 13673.83 9675.38 10279.30 12780.49 19279.39 19388.63 19182.96 190
PVSNet_Blended_VisFu87.40 7187.80 6586.92 7492.86 6495.40 4888.56 10183.45 8679.55 10882.26 5874.49 9384.03 5879.24 12892.97 5091.53 5995.15 7696.65 33
FC-MVSNet-train85.18 8785.31 8985.03 8890.67 8691.62 10787.66 10983.61 7779.75 10674.37 9878.69 6971.21 12678.91 12991.23 7189.96 8894.96 8294.69 68
UniMVSNet_ETH3D79.24 14676.47 17282.48 11985.66 14390.97 11186.08 13381.63 10464.48 19268.94 12754.47 19257.65 18878.83 13085.20 16488.91 11593.72 13893.60 87
dps78.02 15875.94 18080.44 14386.06 13786.62 17082.58 16269.98 18775.14 13377.76 8769.08 12459.93 17578.47 13179.47 19677.96 19787.78 19383.40 187
V4279.59 14078.43 15180.94 13682.79 18389.71 13586.66 12776.73 15871.38 15967.42 13161.01 16662.30 16478.39 13285.56 15686.48 14493.65 14192.60 108
CostFormer80.94 12780.21 13181.79 12587.69 12188.58 15687.47 11270.66 18380.02 10277.88 8573.03 10171.40 12578.24 13379.96 19479.63 19088.82 18888.84 153
PatchmatchNetpermissive78.67 15378.85 14778.46 16086.85 13286.03 17283.77 15668.11 19580.88 9866.19 13772.90 10373.40 11878.06 13479.25 19877.71 19887.75 19481.75 193
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
Baseline_NR-MVSNet79.84 13678.37 15381.55 12984.98 15586.66 16985.06 14383.49 8275.57 13163.31 15658.22 18560.97 16978.00 13586.89 13387.13 13294.47 10993.15 92
COLMAP_ROBcopyleft76.78 1580.50 13078.49 14982.85 11490.96 8489.65 13886.20 13283.40 8777.15 12266.54 13562.27 15965.62 14877.89 13685.23 16184.70 16892.11 16084.83 182
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
baseline184.54 9484.43 9584.67 9090.62 8791.16 11088.63 9883.75 7479.78 10571.16 11375.14 8874.10 11077.84 13791.56 6890.67 7396.04 2688.58 155
Fast-Effi-MVS+-dtu79.95 13480.69 12679.08 15186.36 13589.14 14885.85 13472.28 17772.85 15559.32 18370.43 11568.42 14177.57 13886.14 14886.44 14693.11 15191.39 137
TranMVSNet+NR-MVSNet80.52 12979.84 13881.33 13284.92 15790.39 11785.53 14184.22 6874.27 14160.68 17864.93 15059.96 17477.48 13986.75 13889.28 10595.12 7993.29 90
baseline282.80 10882.86 10782.73 11787.68 12290.50 11684.92 14678.93 13678.07 11973.06 10675.08 8969.77 13277.31 14088.90 11386.94 13694.50 10690.74 140
CR-MVSNet78.71 15278.86 14678.55 15885.85 14185.15 18282.30 16768.23 19374.71 13665.37 14364.39 15369.59 13477.18 14185.10 16684.87 16592.34 15988.21 159
PatchT76.42 17477.81 16074.80 18578.46 20284.30 18771.82 20565.03 20673.89 14465.37 14361.58 16266.70 14477.18 14185.10 16684.87 16590.94 17788.21 159
MS-PatchMatch81.79 12081.44 11682.19 12390.35 9789.29 14488.08 10675.36 16777.60 12069.00 12664.37 15478.87 8977.14 14388.03 12285.70 15893.19 15086.24 175
IS_MVSNet86.18 7688.18 6083.85 10591.02 8294.72 6587.48 11182.46 9981.05 9570.28 11776.98 7782.20 6876.65 14493.97 3293.38 3495.18 7394.97 59
tpm cat177.78 16175.28 18780.70 13887.14 12985.84 17585.81 13570.40 18477.44 12178.80 7863.72 15564.01 15476.55 14575.60 20675.21 20485.51 20585.12 180
GA-MVS79.52 14179.71 14179.30 15085.68 14290.36 11884.55 14978.44 14170.47 16757.87 18868.52 12761.38 16776.21 14689.40 10887.89 12393.04 15289.96 148
anonymousdsp77.94 15979.00 14576.71 17179.03 19987.83 16079.58 18372.87 17565.80 18758.86 18765.82 13962.48 16375.99 14786.77 13788.66 11793.92 12895.68 51
tpmrst76.55 17275.99 17977.20 16687.32 12683.05 19182.86 16165.62 20278.61 11667.22 13369.19 12265.71 14775.87 14876.75 20475.33 20384.31 20783.28 188
MDTV_nov1_ep1379.14 14779.49 14378.74 15685.40 14686.89 16884.32 15370.29 18578.85 11369.42 12375.37 8773.29 11975.64 14980.61 19179.48 19287.36 19581.91 192
IterMVS-SCA-FT79.41 14480.20 13278.49 15985.88 13886.26 17183.95 15471.94 17873.55 15061.94 16670.48 11470.50 12875.23 15085.81 15384.61 17091.99 16390.18 147
v14878.59 15476.84 17080.62 14083.61 17089.16 14783.65 15779.24 13369.38 17069.34 12459.88 17560.41 17275.19 15183.81 17684.63 16992.70 15690.63 143
UniMVSNet (Re)81.22 12581.08 12181.39 13085.35 14791.76 10684.93 14582.88 8976.13 12765.02 14664.94 14963.09 15775.17 15287.71 12589.04 11294.97 8194.88 61
gm-plane-assit70.29 19870.65 20069.88 19885.03 15378.50 20858.41 21565.47 20350.39 21540.88 21349.60 20150.11 20975.14 15391.43 7089.78 9394.32 11684.73 184
v7n77.22 16576.23 17578.38 16181.89 19089.10 15082.24 16976.36 15965.96 18661.21 17556.56 18855.79 19775.07 15486.55 14286.68 14093.52 14392.95 97
tfpnnormal77.46 16474.86 18980.49 14286.34 13688.92 15284.33 15281.26 10861.39 20061.70 17051.99 19953.66 20574.84 15588.63 11587.38 13094.50 10692.08 119
PM-MVS74.17 19273.10 19375.41 18076.07 20782.53 19677.56 19471.69 17971.04 16061.92 16761.23 16547.30 21374.82 15681.78 18879.80 18990.42 17988.05 162
SixPastTwentyTwo76.02 18075.72 18276.36 17483.38 17187.54 16275.50 19876.22 16065.50 18957.05 18970.64 11153.97 20474.54 15780.96 19082.12 18591.44 16889.35 151
TDRefinement79.05 14877.05 16781.39 13088.45 11489.00 15186.92 12382.65 9674.21 14264.41 14859.17 17859.16 18274.52 15885.23 16185.09 16391.37 17087.51 167
IterMVS78.79 15179.71 14177.71 16385.26 14985.91 17484.54 15069.84 18973.38 15161.25 17470.53 11370.35 12974.43 15985.21 16383.80 17590.95 17688.77 154
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EPMVS77.53 16378.07 15676.90 17086.89 13184.91 18582.18 17066.64 20081.00 9664.11 15172.75 10469.68 13374.42 16079.36 19778.13 19687.14 19780.68 199
test-mter77.79 16080.02 13575.18 18281.18 19582.85 19380.52 18162.03 21173.62 14962.16 16473.55 9973.83 11373.81 16184.67 16983.34 17791.37 17088.31 158
RPMNet77.07 16677.63 16276.42 17385.56 14585.15 18281.37 17265.27 20474.71 13660.29 17963.71 15666.59 14573.64 16282.71 18382.12 18592.38 15888.39 157
test-LLR79.47 14379.84 13879.03 15287.47 12482.40 19881.24 17578.05 14573.72 14762.69 15973.76 9774.42 10873.49 16384.61 17082.99 18091.25 17287.01 169
TESTMET0.1,177.78 16179.84 13875.38 18180.86 19682.40 19881.24 17562.72 21073.72 14762.69 15973.76 9774.42 10873.49 16384.61 17082.99 18091.25 17287.01 169
tpm76.30 17876.05 17876.59 17286.97 13083.01 19283.83 15567.06 19871.83 15763.87 15369.56 12062.88 15973.41 16579.79 19578.59 19484.41 20686.68 172
pmmvs576.93 16776.33 17477.62 16481.97 18988.40 15881.32 17474.35 17065.42 19061.42 17263.07 15757.95 18773.23 16685.60 15585.35 16293.41 14688.55 156
pmmvs-eth3d74.32 19171.96 19777.08 16877.33 20482.71 19478.41 19076.02 16366.65 18165.98 13854.23 19449.02 21273.14 16782.37 18682.69 18291.61 16786.05 177
NR-MVSNet80.25 13279.98 13680.56 14185.20 15090.94 11285.65 13883.58 8075.74 12961.36 17365.30 14656.75 19372.38 16888.46 11888.80 11695.16 7593.87 81
gg-mvs-nofinetune75.64 18577.26 16473.76 18987.92 11892.20 10287.32 11464.67 20751.92 21335.35 21746.44 20577.05 9971.97 16992.64 5491.02 6495.34 6689.53 150
MVS-HIRNet68.83 20066.39 20471.68 19577.58 20375.52 21066.45 21065.05 20562.16 19862.84 15844.76 20956.60 19571.96 17078.04 20175.06 20586.18 20372.56 209
CMPMVSbinary56.49 1773.84 19371.73 19976.31 17685.20 15085.67 17775.80 19773.23 17362.26 19765.40 14253.40 19659.70 17771.77 17180.25 19379.56 19186.45 20181.28 195
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
UA-Net86.07 7787.78 6684.06 10292.85 6595.11 5787.73 10884.38 6573.22 15273.18 10579.99 6289.22 3671.47 17293.22 4593.03 4094.76 9190.69 141
ADS-MVSNet74.53 19075.69 18373.17 19281.57 19380.71 20379.27 18763.03 20979.27 11159.94 18167.86 13068.32 14371.08 17377.33 20276.83 20084.12 20979.53 200
thisisatest051579.76 13880.59 12878.80 15484.40 16088.91 15379.48 18476.94 15572.29 15667.33 13267.82 13165.99 14670.80 17488.50 11787.84 12493.86 13292.75 104
pm-mvs178.51 15677.75 16179.40 14984.83 15889.30 14383.55 15879.38 13162.64 19663.68 15458.73 18364.68 15070.78 17589.79 10187.84 12494.17 12091.28 138
Vis-MVSNetpermissive84.38 9986.68 7881.70 12687.65 12394.89 6188.14 10480.90 11074.48 13868.23 12977.53 7580.72 7369.98 17692.68 5391.90 5495.33 6794.58 69
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
MDTV_nov1_ep13_2view73.21 19472.91 19473.56 19180.01 19784.28 18878.62 18966.43 20168.64 17459.12 18460.39 17259.69 17869.81 17778.82 20077.43 19987.36 19581.11 197
pmmvs674.83 18872.89 19577.09 16782.11 18887.50 16380.88 17976.97 15452.79 21261.91 16846.66 20460.49 17069.28 17886.74 13985.46 16191.39 16990.56 144
IB-MVS79.09 1282.60 11182.19 11083.07 11391.08 8193.55 8080.90 17881.35 10776.56 12480.87 6764.81 15169.97 13168.87 17985.64 15490.06 8595.36 6494.74 65
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
FMVSNet575.50 18676.07 17674.83 18476.16 20681.19 20181.34 17370.21 18673.20 15361.59 17158.97 18068.33 14268.50 18085.87 15285.85 15691.18 17579.11 202
EG-PatchMatch MVS76.40 17675.47 18577.48 16585.86 14090.22 12182.45 16473.96 17259.64 20559.60 18252.75 19762.20 16568.44 18188.23 12087.50 12794.55 10487.78 165
CDS-MVSNet81.63 12382.09 11181.09 13587.21 12890.28 11987.46 11380.33 11769.06 17270.66 11471.30 10873.87 11267.99 18289.58 10489.87 9192.87 15490.69 141
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
TAMVS76.42 17477.16 16675.56 17983.05 17685.55 17980.58 18071.43 18065.40 19161.04 17767.27 13369.22 13767.99 18284.88 16884.78 16789.28 18783.01 189
CP-MVSNet76.36 17776.41 17376.32 17582.73 18488.64 15479.39 18579.62 12767.21 17853.70 19360.72 16955.22 19967.91 18483.52 17886.34 14894.55 10493.19 91
CVMVSNet76.70 16978.46 15074.64 18783.34 17284.48 18681.83 17174.58 16868.88 17351.23 20169.77 11670.05 13067.49 18584.27 17383.81 17489.38 18687.96 163
MDA-MVSNet-bldmvs66.22 20364.49 20668.24 20061.67 21482.11 20070.07 20776.16 16159.14 20647.94 20554.35 19335.82 22067.33 18664.94 21375.68 20286.30 20279.36 201
PS-CasMVS75.90 18275.86 18175.96 17782.59 18588.46 15779.23 18879.56 12966.00 18552.77 19559.48 17754.35 20367.14 18783.37 17986.23 14994.47 10993.10 93
PEN-MVS76.02 18076.07 17675.95 17883.17 17587.97 15979.65 18280.07 12466.57 18251.45 19960.94 16755.47 19866.81 18882.72 18286.80 13894.59 10192.03 122
UGNet85.90 8088.23 5983.18 11288.96 11194.10 7287.52 11083.60 7881.66 8877.90 8480.76 5983.19 6266.70 18991.13 8090.71 7294.39 11496.06 43
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
TransMVSNet (Re)76.57 17175.16 18878.22 16285.60 14487.24 16582.46 16381.23 10959.80 20459.05 18657.07 18759.14 18366.60 19088.09 12186.82 13794.37 11587.95 164
MIMVSNet74.69 18975.60 18473.62 19076.02 20885.31 18181.21 17767.43 19671.02 16159.07 18554.48 19164.07 15266.14 19186.52 14486.64 14191.83 16581.17 196
Vis-MVSNet (Re-imp)83.65 10386.81 7679.96 14690.46 9492.71 9484.84 14782.00 10280.93 9762.44 16276.29 8182.32 6765.54 19292.29 5891.66 5694.49 10891.47 136
DTE-MVSNet75.14 18775.44 18674.80 18583.18 17487.19 16678.25 19380.11 12166.05 18448.31 20460.88 16854.67 20064.54 19382.57 18486.17 15094.43 11290.53 145
pmmvs361.89 20761.74 20962.06 20764.30 21370.83 21464.22 21152.14 21548.78 21644.47 20941.67 21141.70 21863.03 19476.06 20576.02 20184.18 20877.14 206
pmnet_mix0271.95 19571.83 19872.10 19481.40 19480.63 20473.78 20172.85 17670.90 16254.89 19162.17 16057.42 19062.92 19576.80 20373.98 20786.74 20080.87 198
EPNet_dtu81.98 11683.82 10179.83 14894.10 4985.97 17387.29 11584.08 7080.61 10059.96 18081.62 5677.19 9862.91 19687.21 12886.38 14790.66 17887.77 166
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
WR-MVS76.63 17078.02 15875.02 18384.14 16589.76 13478.34 19180.64 11269.56 16952.32 19761.26 16361.24 16860.66 19784.45 17287.07 13393.99 12692.77 102
WR-MVS_H75.84 18376.93 16974.57 18882.86 18189.50 14178.34 19179.36 13266.90 18052.51 19660.20 17359.71 17659.73 19883.61 17785.77 15794.65 9892.84 99
ambc61.92 20870.98 21273.54 21263.64 21360.06 20252.23 19838.44 21219.17 22357.12 19982.33 18775.03 20683.21 21084.89 181
test0.0.03 176.03 17978.51 14873.12 19387.47 12485.13 18476.32 19678.05 14573.19 15450.98 20270.64 11169.28 13555.53 20085.33 15984.38 17290.39 18081.63 194
N_pmnet66.85 20266.63 20367.11 20378.73 20074.66 21170.53 20671.07 18166.46 18346.54 20651.68 20051.91 20855.48 20174.68 20772.38 20880.29 21274.65 208
EU-MVSNet69.98 19972.30 19667.28 20275.67 20979.39 20673.12 20369.94 18863.59 19542.80 21162.93 15856.71 19455.07 20279.13 19978.55 19587.06 19885.82 179
Anonymous2023120670.80 19770.59 20171.04 19681.60 19282.49 19774.64 20075.87 16464.17 19349.27 20344.85 20853.59 20654.68 20383.07 18082.34 18490.17 18183.65 186
FC-MVSNet-test76.53 17381.62 11470.58 19784.99 15485.73 17674.81 19978.85 13877.00 12339.13 21575.90 8373.50 11754.08 20486.54 14385.99 15591.65 16686.68 172
DeepMVS_CXcopyleft48.31 21948.03 21726.08 21856.42 20925.77 22047.51 20331.31 22151.30 20548.49 21753.61 21861.52 213
FPMVS63.63 20660.08 21167.78 20180.01 19771.50 21372.88 20469.41 19161.82 19953.11 19445.12 20742.11 21750.86 20666.69 21163.84 21280.41 21169.46 211
new_pmnet59.28 20861.47 21056.73 20961.66 21568.29 21559.57 21454.91 21260.83 20134.38 21844.66 21043.65 21549.90 20771.66 20971.56 21079.94 21369.67 210
testgi71.92 19674.20 19169.27 19984.58 15983.06 19073.40 20274.39 16964.04 19446.17 20768.90 12657.15 19148.89 20884.07 17583.08 17988.18 19279.09 203
MIMVSNet165.00 20466.24 20563.55 20658.41 21780.01 20569.00 20874.03 17155.81 21041.88 21236.81 21349.48 21147.89 20981.32 18982.40 18390.08 18377.88 204
new-patchmatchnet63.80 20563.31 20764.37 20576.49 20575.99 20963.73 21270.99 18257.27 20843.08 21045.86 20643.80 21445.13 21073.20 20870.68 21186.80 19976.34 207
test20.0368.31 20170.05 20266.28 20482.41 18680.84 20267.35 20976.11 16258.44 20740.80 21453.77 19554.54 20142.28 21183.07 18081.96 18788.73 19077.76 205
Gipumacopyleft49.17 21147.05 21451.65 21059.67 21648.39 21841.98 21963.47 20855.64 21133.33 21914.90 21713.78 22441.34 21269.31 21072.30 20970.11 21555.00 216
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMVScopyleft50.48 1855.81 21051.93 21260.33 20872.90 21149.34 21748.78 21669.51 19043.49 21754.25 19236.26 21441.04 21939.71 21365.07 21260.70 21376.85 21467.58 212
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
test_method41.78 21248.10 21334.42 21410.74 22319.78 22444.64 21817.73 21959.83 20338.67 21635.82 21554.41 20234.94 21462.87 21443.13 21759.81 21760.82 214
EMVS30.49 21625.44 21836.39 21351.47 21829.89 22220.17 22354.00 21426.49 21912.02 22313.94 2208.84 22534.37 21525.04 22034.37 21946.29 22139.53 219
E-PMN31.40 21426.80 21736.78 21251.39 21929.96 22120.20 22254.17 21325.93 22012.75 22214.73 2188.58 22634.10 21627.36 21937.83 21848.07 22043.18 218
MVEpermissive30.17 1930.88 21533.52 21627.80 21723.78 22239.16 22018.69 22446.90 21721.88 22115.39 22114.37 2197.31 22724.41 21741.63 21856.22 21537.64 22254.07 217
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMMVS241.68 21344.74 21538.10 21146.97 22052.32 21640.63 22048.08 21635.51 2187.36 22426.86 21624.64 22216.72 21855.24 21659.03 21468.85 21659.59 215
tmp_tt32.73 21543.96 22121.15 22326.71 2218.99 22065.67 18851.39 20056.01 18942.64 21611.76 21956.60 21550.81 21653.55 219
test1230.87 2181.40 2200.25 2190.03 2260.25 2260.35 2270.08 2231.21 2230.05 2272.84 2220.03 2290.89 2200.43 2221.16 2210.13 2243.87 220
testmvs1.03 2171.63 2190.34 2180.09 2250.35 2250.61 2260.16 2211.49 2220.10 2263.15 2210.15 2280.86 2211.32 2211.18 2200.20 2233.76 221
GG-mvs-BLEND57.56 20982.61 10928.34 2160.22 22490.10 12479.37 1860.14 22279.56 1070.40 22571.25 11083.40 610.30 22286.27 14783.87 17389.59 18583.83 185
uanet_test0.00 2190.00 2210.00 2200.00 2270.00 2270.00 2280.00 2240.00 2240.00 2280.00 2230.00 2300.00 2230.00 2230.00 2220.00 2250.00 222
sosnet-low-res0.00 2190.00 2210.00 2200.00 2270.00 2270.00 2280.00 2240.00 2240.00 2280.00 2230.00 2300.00 2230.00 2230.00 2220.00 2250.00 222
sosnet0.00 2190.00 2210.00 2200.00 2270.00 2270.00 2280.00 2240.00 2240.00 2280.00 2230.00 2300.00 2230.00 2230.00 2220.00 2250.00 222
RE-MVS-def56.08 190
9.1492.16 16
SR-MVS96.58 2590.99 2192.40 13
our_test_381.81 19183.96 18976.61 195
MTAPA92.97 291.03 22
MTMP93.14 190.21 29
Patchmatch-RL test8.55 225
XVS93.11 5996.70 2591.91 5283.95 4888.82 3995.79 40
X-MVStestdata93.11 5996.70 2591.91 5283.95 4888.82 3995.79 40
mPP-MVS97.06 1288.08 44
NP-MVS87.47 52
Patchmtry85.54 18082.30 16768.23 19365.37 143