This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort by
DVP-MVScopyleft97.93 398.23 397.58 399.05 699.31 198.64 696.62 597.56 295.08 596.61 1399.64 197.32 197.91 497.31 698.77 1599.26 2
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
HFP-MVS97.11 1497.19 1697.00 1298.97 1398.73 1298.37 1195.69 2196.60 993.28 2096.87 896.64 2897.27 296.64 3596.33 3598.44 3898.56 22
APDe-MVS97.79 597.96 697.60 299.20 299.10 698.88 296.68 296.81 794.64 697.84 398.02 1197.24 397.74 897.02 1498.97 599.16 6
TSAR-MVS + MP.97.31 997.64 996.92 1397.28 4598.56 2398.61 795.48 2896.72 894.03 1396.73 1298.29 997.15 497.61 1296.42 2698.96 699.13 7
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
ACMMPR96.92 1796.96 1996.87 1598.99 1298.78 1198.38 1095.52 2496.57 1092.81 2496.06 2095.90 3597.07 596.60 3796.34 3498.46 3498.42 33
DPE-MVScopyleft97.83 498.13 497.48 598.83 2299.19 498.99 196.70 196.05 1894.39 998.30 199.47 497.02 697.75 797.02 1498.98 399.10 9
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
SD-MVS97.35 897.73 896.90 1497.35 4398.66 1497.85 2596.25 1196.86 694.54 896.75 1199.13 696.99 796.94 2696.58 2398.39 4499.20 5
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
CNVR-MVS97.30 1097.41 1197.18 899.02 1098.60 2198.15 1696.24 1396.12 1794.10 1195.54 2597.99 1296.99 797.97 397.17 998.57 2498.50 29
DVP-MVS++98.07 198.46 197.62 199.08 399.29 298.84 396.63 497.89 195.35 397.83 499.48 396.98 997.99 297.14 1198.82 1199.60 1
CPTT-MVS95.54 3195.07 3796.10 2597.88 3597.98 5097.92 2494.86 3294.56 3992.16 2691.01 4095.71 3696.97 1094.56 8393.50 9096.81 15398.14 45
MSP-MVS97.70 698.09 597.24 699.00 1199.17 598.76 596.41 996.91 593.88 1497.72 599.04 796.93 1197.29 1797.31 698.45 3799.23 4
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
SED-MVS97.98 298.36 297.54 498.94 1699.29 298.81 496.64 397.14 395.16 497.96 299.61 296.92 1298.00 197.24 898.75 1799.25 3
MSLP-MVS++96.05 2795.63 3196.55 2198.33 2998.17 4496.94 3694.61 3494.70 3894.37 1089.20 5195.96 3496.81 1395.57 5897.33 598.24 6298.47 31
APD-MVScopyleft97.12 1397.05 1897.19 799.04 798.63 1998.45 896.54 694.81 3693.50 1696.10 1997.40 2296.81 1397.05 2296.82 1998.80 1298.56 22
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CP-MVS96.68 2096.59 2696.77 1798.85 2198.58 2298.18 1595.51 2695.34 2592.94 2395.21 2896.25 3096.79 1596.44 4295.77 4998.35 4698.56 22
SMA-MVScopyleft97.53 797.93 797.07 1099.21 199.02 898.08 1996.25 1196.36 1293.57 1596.56 1499.27 596.78 1697.91 497.43 398.51 2698.94 12
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
HPM-MVS++copyleft97.22 1197.40 1297.01 1199.08 398.55 2498.19 1496.48 796.02 1993.28 2096.26 1798.71 896.76 1797.30 1696.25 3798.30 5498.68 15
PGM-MVS96.16 2496.33 2895.95 2699.04 798.63 1998.32 1292.76 4293.42 4790.49 3796.30 1695.31 4096.71 1896.46 4096.02 4698.38 4598.19 42
NCCC96.75 1996.67 2496.85 1699.03 998.44 3498.15 1696.28 1096.32 1392.39 2592.16 3497.55 2096.68 1997.32 1496.65 2298.55 2598.26 38
ACMMP_NAP96.93 1697.27 1596.53 2399.06 598.95 998.24 1396.06 1595.66 2190.96 3295.63 2497.71 1696.53 2097.66 1096.68 2098.30 5498.61 20
AdaColmapbinary95.02 3793.71 5096.54 2298.51 2697.76 5696.69 3995.94 1993.72 4693.50 1689.01 5290.53 6596.49 2194.51 8593.76 8398.07 7796.69 96
MCST-MVS96.83 1897.06 1796.57 1998.88 2098.47 3298.02 2196.16 1495.58 2390.96 3295.78 2397.84 1496.46 2297.00 2596.17 3998.94 798.55 27
DeepC-MVS_fast93.32 196.48 2296.42 2796.56 2098.70 2598.31 3897.97 2295.76 2096.31 1492.01 2791.43 3995.42 3996.46 2297.65 1197.69 198.49 3198.12 47
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SteuartSystems-ACMMP97.10 1597.49 1096.65 1898.97 1398.95 998.43 995.96 1795.12 2891.46 2896.85 997.60 1896.37 2497.76 697.16 1098.68 1898.97 11
Skip Steuart: Steuart Systems R&D Blog.
MP-MVScopyleft96.56 2196.72 2396.37 2498.93 1898.48 3098.04 2095.55 2394.32 4090.95 3495.88 2297.02 2596.29 2596.77 3096.01 4798.47 3298.56 22
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
SF-MVS97.20 1297.29 1497.10 998.95 1598.51 2997.51 2996.48 796.17 1694.64 697.32 697.57 1996.23 2696.78 2996.15 4198.79 1498.55 27
DROMVSNet94.19 4895.05 3893.18 5893.56 10197.65 6195.34 5786.37 11592.05 5988.71 4989.91 4793.32 4796.14 2797.29 1796.42 2698.98 398.70 14
CS-MVS94.53 4494.73 4294.31 4296.30 5998.53 2694.98 6089.24 8193.37 4890.24 3988.96 5389.76 7096.09 2897.48 1396.42 2698.99 298.59 21
X-MVS96.07 2696.33 2895.77 2998.94 1698.66 1497.94 2395.41 3095.12 2888.03 5393.00 3296.06 3195.85 2996.65 3496.35 3198.47 3298.48 30
DeepC-MVS92.10 395.22 3494.77 4195.75 3097.77 3798.54 2597.63 2895.96 1795.07 3188.85 4785.35 7391.85 5395.82 3096.88 2897.10 1298.44 3898.63 17
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
train_agg96.15 2596.64 2595.58 3398.44 2798.03 4898.14 1895.40 3193.90 4587.72 5896.26 1798.10 1095.75 3196.25 4795.45 5598.01 8398.47 31
TSAR-MVS + GP.95.86 2896.95 2194.60 4194.07 8598.11 4696.30 4391.76 4995.67 2091.07 3096.82 1097.69 1795.71 3295.96 5295.75 5098.68 1898.63 17
CS-MVS-test94.63 4395.28 3693.88 4996.56 5598.67 1393.41 9789.31 7994.27 4189.64 4190.84 4291.64 5695.58 3397.04 2396.17 3998.77 1598.32 36
PLCcopyleft90.69 494.32 4692.99 5795.87 2897.91 3396.49 9195.95 5094.12 3594.94 3294.09 1285.90 6990.77 6295.58 3394.52 8493.32 9797.55 11395.00 144
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
ACMMPcopyleft95.54 3195.49 3495.61 3298.27 3098.53 2697.16 3494.86 3294.88 3489.34 4295.36 2791.74 5495.50 3595.51 5994.16 7498.50 2998.22 40
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
3Dnovator+90.56 595.06 3694.56 4595.65 3198.11 3198.15 4597.19 3391.59 5195.11 3093.23 2281.99 10094.71 4295.43 3696.48 3996.88 1898.35 4698.63 17
CSCG95.68 3095.46 3595.93 2798.71 2499.07 797.13 3593.55 3795.48 2493.35 1990.61 4493.82 4595.16 3794.60 8295.57 5397.70 10499.08 10
canonicalmvs93.08 5593.09 5593.07 6294.24 8197.86 5295.45 5687.86 10294.00 4487.47 6088.32 5582.37 10495.13 3893.96 9896.41 2998.27 5898.73 13
CNLPA93.69 5392.50 6395.06 3697.11 4897.36 6793.88 8593.30 3895.64 2293.44 1880.32 10990.73 6394.99 3993.58 10193.33 9597.67 10896.57 101
OMC-MVS94.49 4594.36 4794.64 3997.17 4797.73 5895.49 5492.25 4496.18 1590.34 3888.51 5492.88 5094.90 4094.92 7094.17 7397.69 10696.15 116
3Dnovator90.28 794.70 4294.34 4895.11 3598.06 3298.21 4296.89 3791.03 5794.72 3791.45 2982.87 9193.10 4994.61 4196.24 4897.08 1398.63 2198.16 43
ETV-MVS93.80 5194.57 4492.91 6593.98 8797.50 6493.62 9288.70 8691.95 6087.57 5990.21 4690.79 6194.56 4297.20 1996.35 3199.02 197.98 51
DPM-MVS95.07 3594.84 4095.34 3497.44 4297.49 6597.76 2695.52 2494.88 3488.92 4687.25 5896.44 2994.41 4395.78 5596.11 4397.99 8595.95 123
TAPA-MVS90.35 693.69 5393.52 5193.90 4796.89 5197.62 6296.15 4491.67 5094.94 3285.97 7287.72 5791.96 5294.40 4493.76 9993.06 10698.30 5495.58 132
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
LS3D91.97 6790.98 8793.12 6097.03 5097.09 7895.33 5895.59 2292.47 5679.26 11781.60 10382.77 9994.39 4594.28 8794.23 7297.14 12994.45 150
MAR-MVS92.71 6092.63 6192.79 6697.70 3997.15 7593.75 8887.98 9690.71 7085.76 7886.28 6686.38 7894.35 4694.95 6895.49 5497.22 12397.44 73
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
MVS_111021_LR94.84 3995.57 3294.00 4497.11 4897.72 6094.88 6391.16 5595.24 2788.74 4896.03 2191.52 5894.33 4795.96 5295.01 6297.79 9597.49 72
QAPM94.13 4994.33 4993.90 4797.82 3698.37 3796.47 4190.89 5892.73 5585.63 8085.35 7393.87 4494.17 4895.71 5795.90 4898.40 4298.42 33
TSAR-MVS + COLMAP92.39 6392.31 6892.47 6995.35 7396.46 9396.13 4592.04 4795.33 2680.11 11394.95 2977.35 13694.05 4994.49 8693.08 10497.15 12794.53 148
TSAR-MVS + ACMM96.19 2397.39 1394.78 3797.70 3998.41 3597.72 2795.49 2796.47 1186.66 6796.35 1597.85 1393.99 5097.19 2096.37 3097.12 13099.13 7
ACMM88.76 1091.70 7590.43 9093.19 5795.56 6695.14 10993.35 9991.48 5292.26 5887.12 6284.02 8179.34 12093.99 5094.07 9392.68 11297.62 11295.50 133
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
OPM-MVS91.08 8089.34 10093.11 6196.18 6096.13 10096.39 4292.39 4382.97 15581.74 10082.55 9780.20 11793.97 5294.62 8093.23 9898.00 8495.73 128
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
PHI-MVS95.86 2896.93 2294.61 4097.60 4198.65 1896.49 4093.13 4094.07 4387.91 5797.12 797.17 2493.90 5396.46 4096.93 1798.64 2098.10 49
DeepPCF-MVS92.65 295.50 3396.96 1993.79 5196.44 5698.21 4293.51 9594.08 3696.94 489.29 4393.08 3196.77 2793.82 5497.68 997.40 495.59 17698.65 16
EIA-MVS92.72 5992.96 5892.44 7093.86 9497.76 5693.13 10188.65 8889.78 9486.68 6686.69 6287.57 7293.74 5596.07 5195.32 5698.58 2397.53 70
ET-MVSNet_ETH3D89.93 9990.84 8888.87 11179.60 21096.19 9894.43 6786.56 11390.63 7280.75 11090.71 4377.78 13293.73 5691.36 14093.45 9298.15 6995.77 127
MVS_111021_HR94.84 3995.91 3093.60 5297.35 4398.46 3395.08 5991.19 5494.18 4285.97 7295.38 2692.56 5193.61 5796.61 3696.25 3798.40 4297.92 56
CDPH-MVS94.80 4195.50 3393.98 4698.34 2898.06 4797.41 3093.23 3992.81 5282.98 9792.51 3394.82 4193.53 5896.08 5096.30 3698.42 4097.94 54
Effi-MVS+89.79 10289.83 9889.74 10392.98 10896.45 9493.48 9684.24 13587.62 11476.45 12681.76 10177.56 13593.48 5994.61 8193.59 8697.82 9497.22 83
PCF-MVS90.19 892.98 5692.07 7194.04 4396.39 5797.87 5196.03 4795.47 2987.16 11685.09 9084.81 7793.21 4893.46 6091.98 13291.98 12897.78 9697.51 71
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
Fast-Effi-MVS+88.56 11587.99 11889.22 10891.56 12995.21 10792.29 11282.69 15386.82 11977.73 12176.24 13273.39 14793.36 6194.22 9093.64 8497.65 10996.43 105
casdiffmvspermissive91.72 7491.16 8592.38 7293.16 10697.15 7593.95 8189.49 7791.58 6686.03 7180.75 10880.95 11393.16 6295.25 6395.22 6098.50 2997.23 81
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CLD-MVS92.50 6291.96 7393.13 5993.93 9196.24 9795.69 5188.77 8592.92 5089.01 4588.19 5681.74 11093.13 6393.63 10093.08 10498.23 6397.91 58
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
CANet94.85 3894.92 3994.78 3797.25 4698.52 2897.20 3291.81 4893.25 4991.06 3186.29 6594.46 4392.99 6497.02 2496.68 2098.34 4898.20 41
MVS_Test91.81 7292.19 6991.37 8793.24 10496.95 8294.43 6786.25 11691.45 6783.45 9586.31 6485.15 8692.93 6593.99 9494.71 6797.92 8996.77 94
casdiffmvs_mvgpermissive91.94 6891.25 8392.75 6793.41 10397.19 7495.48 5589.77 7089.86 9286.41 6981.02 10782.23 10692.93 6595.44 6195.61 5298.51 2697.40 75
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
HQP-MVS92.39 6392.49 6492.29 7395.65 6595.94 10395.64 5392.12 4692.46 5779.65 11591.97 3682.68 10092.92 6793.47 10692.77 11197.74 10098.12 47
OpenMVScopyleft88.18 1192.51 6191.61 7893.55 5397.74 3898.02 4995.66 5290.46 6189.14 10186.50 6875.80 13490.38 6892.69 6894.99 6795.30 5798.27 5897.63 65
MVS_030494.30 4794.68 4393.86 5096.33 5898.48 3097.41 3091.20 5392.75 5386.96 6486.03 6893.81 4692.64 6996.89 2796.54 2598.61 2298.24 39
PatchMatch-RL90.30 9588.93 10791.89 7695.41 7295.68 10590.94 12688.67 8789.80 9386.95 6585.90 6972.51 14892.46 7093.56 10392.18 12196.93 14592.89 169
ACMP89.13 992.03 6691.70 7792.41 7194.92 7696.44 9593.95 8189.96 6791.81 6385.48 8590.97 4179.12 12192.42 7193.28 11292.55 11597.76 9897.74 64
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
Anonymous2023121189.82 10188.18 11591.74 7892.52 11996.09 10193.38 9889.30 8088.95 10385.90 7564.55 19184.39 8992.41 7292.24 12793.06 10696.93 14597.95 53
LGP-MVS_train91.83 7192.04 7291.58 8095.46 6996.18 9995.97 4989.85 6890.45 7777.76 12091.92 3780.07 11892.34 7394.27 8893.47 9198.11 7497.90 59
Anonymous20240521188.00 11793.16 10696.38 9693.58 9389.34 7887.92 11265.04 18783.03 9692.07 7492.67 11793.33 9596.96 14097.63 65
DI_MVS_plusplus_trai91.05 8190.15 9492.11 7492.67 11896.61 8796.03 4788.44 9090.25 8085.92 7473.73 14284.89 8891.92 7594.17 9194.07 7897.68 10797.31 79
thres40089.40 10787.58 12791.53 8294.06 8697.21 7394.19 7789.83 6985.69 13081.08 10775.50 13669.76 16191.80 7694.79 7793.51 8798.20 6696.60 99
thres20089.49 10687.72 12291.55 8193.95 8997.25 7094.34 7189.74 7185.66 13181.18 10476.12 13370.19 16091.80 7694.92 7093.51 8798.27 5896.40 106
tfpn200view989.55 10587.86 12091.53 8293.90 9297.26 6994.31 7389.74 7185.87 12881.15 10576.46 12970.38 15791.76 7894.92 7093.51 8798.28 5796.61 98
diffmvspermissive91.37 7791.09 8691.70 7992.71 11796.47 9294.03 7988.78 8492.74 5485.43 8783.63 8580.37 11591.76 7893.39 10893.78 8297.50 11597.23 81
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
thres600view789.28 11187.47 13091.39 8594.12 8397.25 7093.94 8389.74 7185.62 13380.63 11175.24 13869.33 16291.66 8094.92 7093.23 9898.27 5896.72 95
DCV-MVSNet91.24 7891.26 8291.22 8992.84 11393.44 13993.82 8686.75 11291.33 6885.61 8184.00 8285.46 8591.27 8192.91 11493.62 8597.02 13698.05 50
GeoE89.29 11088.68 10989.99 10292.75 11696.03 10293.07 10483.79 14286.98 11881.34 10374.72 13978.92 12291.22 8293.31 11093.21 10097.78 9697.60 69
thres100view90089.36 10887.61 12591.39 8593.90 9296.86 8594.35 7089.66 7585.87 12881.15 10576.46 12970.38 15791.17 8394.09 9293.43 9398.13 7196.16 115
PMMVS89.88 10091.19 8488.35 11689.73 14891.97 18190.62 12981.92 16490.57 7680.58 11292.16 3486.85 7791.17 8392.31 12491.35 13996.11 16493.11 168
HyFIR lowres test87.87 11986.42 13689.57 10495.56 6696.99 8192.37 11084.15 13786.64 12177.17 12457.65 20383.97 9091.08 8592.09 13092.44 11697.09 13295.16 141
FA-MVS(training)90.79 8791.33 8190.17 9993.76 9797.22 7292.74 10677.79 18790.60 7588.03 5378.80 11587.41 7391.00 8695.40 6293.43 9397.70 10496.46 103
DELS-MVS93.71 5293.47 5294.00 4496.82 5298.39 3696.80 3891.07 5689.51 9889.94 4083.80 8389.29 7190.95 8797.32 1497.65 298.42 4098.32 36
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
ACMH+85.75 1287.19 12586.02 14188.56 11493.42 10294.41 11889.91 14687.66 10683.45 15272.25 14476.42 13171.99 15290.78 8889.86 16590.94 14297.32 11995.11 143
EPP-MVSNet92.13 6593.06 5691.05 9093.66 10097.30 6892.18 11487.90 9890.24 8183.63 9486.14 6790.52 6790.76 8994.82 7594.38 7098.18 6897.98 51
test250690.93 8489.20 10392.95 6394.97 7498.30 3994.53 6590.25 6489.91 9088.39 5283.23 8764.17 19090.69 9096.75 3296.10 4498.87 895.97 122
ECVR-MVScopyleft90.77 8889.27 10192.52 6894.97 7498.30 3994.53 6590.25 6489.91 9085.80 7773.64 14374.31 14590.69 9096.75 3296.10 4498.87 895.91 125
RPSCF89.68 10389.24 10290.20 9792.97 11092.93 15792.30 11187.69 10490.44 7885.12 8991.68 3885.84 8490.69 9087.34 18786.07 18992.46 19890.37 186
ACMH85.51 1387.31 12486.59 13488.14 11993.96 8894.51 11489.00 16287.99 9581.58 16170.15 15778.41 11871.78 15390.60 9391.30 14191.99 12797.17 12696.58 100
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CHOSEN 280x42090.77 8892.14 7089.17 10993.86 9492.81 16193.16 10080.22 17790.21 8284.67 9289.89 4891.38 5990.57 9494.94 6992.11 12392.52 19793.65 161
MSDG90.42 9488.25 11492.94 6496.67 5494.41 11893.96 8092.91 4189.59 9686.26 7076.74 12780.92 11490.43 9592.60 12092.08 12597.44 11891.41 176
test111190.47 9389.10 10592.07 7594.92 7698.30 3994.17 7890.30 6389.56 9783.92 9373.25 15073.66 14690.26 9696.77 3096.14 4298.87 896.04 120
PVSNet_BlendedMVS92.80 5792.44 6593.23 5596.02 6197.83 5493.74 8990.58 5991.86 6190.69 3585.87 7182.04 10790.01 9796.39 4395.26 5898.34 4897.81 61
PVSNet_Blended92.80 5792.44 6593.23 5596.02 6197.83 5493.74 8990.58 5991.86 6190.69 3585.87 7182.04 10790.01 9796.39 4395.26 5898.34 4897.81 61
CANet_DTU90.74 9092.93 5988.19 11894.36 8096.61 8794.34 7184.66 13090.66 7168.75 16790.41 4586.89 7689.78 9995.46 6094.87 6497.25 12295.62 130
baseline190.81 8590.29 9191.42 8493.67 9995.86 10493.94 8389.69 7489.29 10082.85 9882.91 9080.30 11689.60 10095.05 6694.79 6698.80 1293.82 159
FC-MVSNet-train90.55 9190.19 9390.97 9193.78 9695.16 10892.11 11888.85 8387.64 11383.38 9684.36 8078.41 12789.53 10194.69 7893.15 10398.15 6997.92 56
USDC86.73 12985.96 14387.63 12791.64 12693.97 12592.76 10584.58 13288.19 10970.67 15480.10 11067.86 16989.43 10291.81 13389.77 17396.69 15590.05 189
Effi-MVS+-dtu87.51 12288.13 11686.77 13591.10 13594.90 11190.91 12782.67 15483.47 15171.55 14681.11 10677.04 13789.41 10392.65 11991.68 13595.00 18796.09 118
GBi-Net90.21 9690.11 9590.32 9488.66 15893.65 13594.25 7485.78 12090.03 8685.56 8277.38 12086.13 7989.38 10493.97 9594.16 7498.31 5195.47 134
test190.21 9690.11 9590.32 9488.66 15893.65 13594.25 7485.78 12090.03 8685.56 8277.38 12086.13 7989.38 10493.97 9594.16 7498.31 5195.47 134
FMVSNet289.61 10489.14 10490.16 10088.66 15893.65 13594.25 7485.44 12488.57 10784.96 9173.53 14583.82 9189.38 10494.23 8994.68 6898.31 5195.47 134
baseline91.19 7991.89 7490.38 9292.76 11495.04 11093.55 9484.54 13392.92 5085.71 7986.68 6386.96 7589.28 10792.00 13192.62 11496.46 15896.99 88
thisisatest053091.04 8291.74 7590.21 9692.93 11297.00 8092.06 11987.63 10790.74 6981.51 10186.81 6082.48 10189.23 10894.81 7693.03 10897.90 9097.33 78
tttt051791.01 8391.71 7690.19 9892.98 10897.07 7991.96 12287.63 10790.61 7481.42 10286.76 6182.26 10589.23 10894.86 7493.03 10897.90 9097.36 76
FMVSNet390.19 9890.06 9790.34 9388.69 15793.85 12794.58 6485.78 12090.03 8685.56 8277.38 12086.13 7989.22 11093.29 11194.36 7198.20 6695.40 138
IterMVS-LS88.60 11388.45 11088.78 11292.02 12392.44 17192.00 12183.57 14686.52 12478.90 11978.61 11781.34 11189.12 11190.68 15393.18 10197.10 13196.35 108
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
TinyColmap84.04 16482.01 18186.42 13990.87 13891.84 18288.89 16484.07 13982.11 16069.89 15971.08 15760.81 20389.04 11290.52 15589.19 17995.76 16888.50 197
FMVSNet187.33 12386.00 14288.89 11087.13 18492.83 16093.08 10384.46 13481.35 16382.20 9966.33 17877.96 13088.96 11393.97 9594.16 7497.54 11495.38 139
UniMVSNet_NR-MVSNet86.80 12785.86 14587.89 12488.17 16494.07 12490.15 13888.51 8984.20 14573.45 13772.38 15470.30 15988.95 11490.25 15892.21 12098.12 7297.62 67
DU-MVS86.12 13584.81 15387.66 12587.77 17193.78 12990.15 13887.87 10084.40 13973.45 13770.59 15964.82 18788.95 11490.14 15992.33 11797.76 9897.62 67
MVSTER91.73 7391.61 7891.86 7793.18 10594.56 11294.37 6987.90 9890.16 8588.69 5089.23 5081.28 11288.92 11695.75 5693.95 8098.12 7296.37 107
LTVRE_ROB81.71 1682.44 18581.84 18383.13 17589.01 15392.99 15488.90 16382.32 16066.26 21254.02 21274.68 14059.62 20988.87 11790.71 15292.02 12695.68 17396.62 97
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
CHOSEN 1792x268888.57 11487.82 12189.44 10695.46 6996.89 8493.74 8985.87 11989.63 9577.42 12361.38 19783.31 9488.80 11893.44 10793.16 10295.37 18196.95 90
UniMVSNet_ETH3D84.57 15481.40 18888.28 11789.34 15294.38 12090.33 13286.50 11474.74 19977.52 12259.90 20162.04 19888.78 11988.82 18092.65 11397.22 12397.24 80
SCA86.25 13187.52 12884.77 15491.59 12793.90 12689.11 15973.25 20490.38 7972.84 14083.26 8683.79 9288.49 12086.07 19485.56 19293.33 19089.67 191
pmmvs486.00 13884.28 15788.00 12087.80 16992.01 18089.94 14584.91 12886.79 12080.98 10873.41 14866.34 17888.12 12189.31 17388.90 18296.24 16393.20 167
CostFormer86.78 12886.05 13987.62 12892.15 12193.20 14891.55 12575.83 19288.11 11185.29 8881.76 10176.22 14187.80 12284.45 19985.21 19593.12 19293.42 164
EPNet93.92 5094.40 4693.36 5497.89 3496.55 8996.08 4692.14 4591.65 6489.16 4494.07 3090.17 6987.78 12395.24 6494.97 6397.09 13298.15 44
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PatchmatchNetpermissive85.70 14086.65 13384.60 15791.79 12493.40 14089.27 15573.62 19990.19 8372.63 14282.74 9481.93 10987.64 12484.99 19784.29 19992.64 19689.00 193
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
v2v48284.51 15683.05 17286.20 14087.25 18093.28 14590.22 13685.40 12579.94 17369.78 16067.74 17065.15 18487.57 12589.12 17690.55 15396.97 13895.60 131
EPMVS85.77 13986.24 13885.23 15092.76 11493.78 12989.91 14673.60 20090.19 8374.22 13282.18 9978.06 12987.55 12685.61 19685.38 19493.32 19188.48 198
IS_MVSNet91.87 7093.35 5490.14 10194.09 8497.73 5893.09 10288.12 9488.71 10579.98 11484.49 7890.63 6487.49 12797.07 2196.96 1698.07 7797.88 60
Baseline_NR-MVSNet85.28 14783.42 16587.46 12987.77 17190.80 19689.90 14887.69 10483.93 14974.16 13364.72 18966.43 17787.48 12890.14 15990.83 14397.73 10197.11 86
COLMAP_ROBcopyleft84.39 1587.61 12186.03 14089.46 10595.54 6894.48 11591.77 12490.14 6687.16 11675.50 12973.41 14876.86 13987.33 12990.05 16489.76 17496.48 15790.46 185
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
dps85.00 15083.21 17087.08 13190.73 14092.55 16789.34 15475.29 19484.94 13487.01 6379.27 11367.69 17087.27 13084.22 20083.56 20092.83 19590.25 187
v1084.18 16183.17 17185.37 14687.34 17892.68 16390.32 13381.33 17079.93 17469.23 16566.33 17865.74 18087.03 13190.84 14890.38 15596.97 13896.29 112
TranMVSNet+NR-MVSNet85.57 14384.41 15686.92 13287.67 17493.34 14290.31 13488.43 9183.07 15470.11 15869.99 16565.28 18286.96 13289.73 16792.27 11898.06 7997.17 85
v119283.56 17182.35 17684.98 15186.84 18992.84 15890.01 14382.70 15278.54 17866.48 18164.88 18862.91 19286.91 13390.72 15190.25 15996.94 14296.32 110
v114484.03 16582.88 17385.37 14687.17 18293.15 15290.18 13783.31 14978.83 17767.85 17365.99 18064.99 18586.79 13490.75 15090.33 15796.90 14796.15 116
v192192083.30 17482.09 18084.70 15586.59 19392.67 16489.82 14982.23 16178.32 17965.76 18664.64 19062.35 19586.78 13590.34 15790.02 16797.02 13696.31 111
v14419283.48 17282.23 17784.94 15286.65 19092.84 15889.63 15382.48 15777.87 18267.36 17765.33 18563.50 19186.51 13689.72 16889.99 16997.03 13596.35 108
v124082.88 18081.66 18484.29 16186.46 19492.52 17089.06 16081.82 16677.16 18665.09 19064.17 19261.50 20086.36 13790.12 16190.13 16196.95 14196.04 120
tpmrst83.72 16983.45 16384.03 16692.21 12091.66 18588.74 16573.58 20188.14 11072.67 14177.37 12372.11 15186.34 13882.94 20482.05 20390.63 20789.86 190
ADS-MVSNet84.08 16384.95 15183.05 17991.53 13191.75 18488.16 16970.70 20889.96 8969.51 16278.83 11476.97 13886.29 13984.08 20184.60 19792.13 20188.48 198
CR-MVSNet85.48 14486.29 13784.53 15991.08 13792.10 17589.18 15773.30 20284.75 13571.08 15173.12 15277.91 13186.27 14091.48 13790.75 14796.27 16293.94 156
PatchT83.86 16685.51 14981.94 18988.41 16191.56 18778.79 20671.57 20684.08 14771.08 15170.62 15876.13 14286.27 14091.48 13790.75 14795.52 17993.94 156
v884.45 16083.30 16985.80 14287.53 17692.95 15590.31 13482.46 15880.46 16671.43 14766.99 17367.16 17286.14 14289.26 17490.22 16096.94 14296.06 119
MDTV_nov1_ep1386.64 13087.50 12985.65 14490.73 14093.69 13389.96 14478.03 18689.48 9976.85 12584.92 7682.42 10386.14 14286.85 19186.15 18892.17 19988.97 194
Fast-Effi-MVS+-dtu86.25 13187.70 12384.56 15890.37 14593.70 13290.54 13078.14 18483.50 15065.37 18981.59 10475.83 14386.09 14491.70 13591.70 13396.88 14995.84 126
baseline288.97 11289.50 9988.36 11591.14 13495.30 10690.13 14085.17 12787.24 11580.80 10984.46 7978.44 12685.60 14593.54 10491.87 12997.31 12095.66 129
tfpnnormal83.80 16881.26 19086.77 13589.60 14993.26 14789.72 15187.60 10972.78 20170.44 15560.53 20061.15 20285.55 14692.72 11691.44 13797.71 10296.92 91
V4284.48 15883.36 16885.79 14387.14 18393.28 14590.03 14183.98 14080.30 16871.20 15066.90 17567.17 17185.55 14689.35 17190.27 15896.82 15296.27 113
PVSNet_Blended_VisFu91.92 6992.39 6791.36 8895.45 7197.85 5392.25 11389.54 7688.53 10887.47 6079.82 11190.53 6585.47 14896.31 4695.16 6197.99 8598.56 22
RPMNet84.82 15385.90 14483.56 17191.10 13592.10 17588.73 16671.11 20784.75 13568.79 16673.56 14477.62 13485.33 14990.08 16389.43 17796.32 16193.77 160
tpm cat184.13 16281.99 18286.63 13791.74 12591.50 18890.68 12875.69 19386.12 12785.44 8672.39 15370.72 15585.16 15080.89 20881.56 20491.07 20590.71 183
UniMVSNet (Re)86.22 13385.46 15087.11 13088.34 16294.42 11789.65 15287.10 11184.39 14174.61 13170.41 16268.10 16785.10 15191.17 14491.79 13197.84 9397.94 54
MS-PatchMatch87.63 12087.61 12587.65 12693.95 8994.09 12392.60 10881.52 16986.64 12176.41 12773.46 14785.94 8285.01 15292.23 12890.00 16896.43 16090.93 182
pmmvs583.37 17382.68 17484.18 16487.13 18493.18 14986.74 18182.08 16376.48 19067.28 17871.26 15662.70 19484.71 15390.77 14990.12 16497.15 12794.24 152
anonymousdsp84.51 15685.85 14682.95 18086.30 19593.51 13885.77 18980.38 17678.25 18163.42 19573.51 14672.20 15084.64 15493.21 11392.16 12297.19 12598.14 45
test-mter86.09 13788.38 11183.43 17387.89 16892.61 16586.89 18077.11 19084.30 14268.62 16982.57 9682.45 10284.34 15592.40 12390.11 16595.74 16994.21 154
test-LLR86.88 12688.28 11285.24 14991.22 13292.07 17787.41 17583.62 14484.58 13769.33 16383.00 8882.79 9784.24 15692.26 12589.81 17195.64 17493.44 162
TESTMET0.1,186.11 13688.28 11283.59 17087.80 16992.07 17787.41 17577.12 18984.58 13769.33 16383.00 8882.79 9784.24 15692.26 12589.81 17195.64 17493.44 162
tpm83.16 17583.64 16082.60 18590.75 13991.05 19188.49 16773.99 19782.36 15767.08 18078.10 11968.79 16384.17 15885.95 19585.96 19091.09 20493.23 166
GA-MVS85.08 14985.65 14784.42 16089.77 14794.25 12189.26 15684.62 13181.19 16462.25 19775.72 13568.44 16684.14 15993.57 10291.68 13596.49 15694.71 147
gm-plane-assit77.65 20078.50 19876.66 20087.96 16785.43 21064.70 21674.50 19564.15 21451.26 21561.32 19858.17 21184.11 16095.16 6593.83 8197.45 11791.41 176
SixPastTwentyTwo83.12 17783.44 16482.74 18287.71 17393.11 15382.30 19982.33 15979.24 17564.33 19278.77 11662.75 19384.11 16088.11 18287.89 18495.70 17294.21 154
gg-mvs-nofinetune81.83 18883.58 16179.80 19591.57 12896.54 9093.79 8768.80 21162.71 21543.01 22055.28 20685.06 8783.65 16296.13 4994.86 6597.98 8894.46 149
FMVSNet584.47 15984.72 15484.18 16483.30 20588.43 20288.09 17079.42 18084.25 14374.14 13473.15 15178.74 12383.65 16291.19 14391.19 14196.46 15886.07 203
IterMVS-SCA-FT85.44 14686.71 13283.97 16790.59 14390.84 19489.73 15078.34 18384.07 14866.40 18377.27 12578.66 12483.06 16491.20 14290.10 16695.72 17194.78 145
IterMVS85.25 14886.49 13583.80 16890.42 14490.77 19790.02 14278.04 18584.10 14666.27 18477.28 12478.41 12783.01 16590.88 14789.72 17595.04 18594.24 152
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
PM-MVS80.29 19379.30 19681.45 19281.91 20788.23 20382.61 19779.01 18179.99 17267.15 17969.07 16651.39 21582.92 16687.55 18685.59 19195.08 18493.28 165
NR-MVSNet85.46 14584.54 15586.52 13888.33 16393.78 12990.45 13187.87 10084.40 13971.61 14570.59 15962.09 19782.79 16791.75 13491.75 13298.10 7597.44 73
CP-MVSNet83.11 17882.15 17884.23 16287.20 18192.70 16286.42 18483.53 14777.83 18367.67 17566.89 17660.53 20582.47 16889.23 17590.65 15198.08 7697.20 84
v7n82.25 18681.54 18683.07 17885.55 19992.58 16686.68 18381.10 17476.54 18965.97 18562.91 19460.56 20482.36 16991.07 14690.35 15696.77 15496.80 93
pm-mvs184.55 15583.46 16285.82 14188.16 16593.39 14189.05 16185.36 12674.03 20072.43 14365.08 18671.11 15482.30 17093.48 10591.70 13397.64 11095.43 137
CDS-MVSNet88.34 11688.71 10887.90 12390.70 14294.54 11392.38 10986.02 11780.37 16779.42 11679.30 11283.43 9382.04 17193.39 10894.01 7996.86 15195.93 124
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
TAMVS84.94 15284.95 15184.93 15388.82 15493.18 14988.44 16881.28 17177.16 18673.76 13675.43 13776.57 14082.04 17190.59 15490.79 14495.22 18390.94 181
MVS-HIRNet78.16 19877.57 20278.83 19785.83 19787.76 20476.67 20770.22 20975.82 19667.39 17655.61 20570.52 15681.96 17386.67 19285.06 19690.93 20681.58 209
MIMVSNet82.97 17984.00 15981.77 19182.23 20692.25 17487.40 17772.73 20581.48 16269.55 16168.79 16772.42 14981.82 17492.23 12892.25 11996.89 14888.61 196
v14883.61 17082.10 17985.37 14687.34 17892.94 15687.48 17485.72 12378.92 17673.87 13565.71 18364.69 18881.78 17587.82 18389.35 17896.01 16595.26 140
PS-CasMVS82.53 18381.54 18683.68 16987.08 18692.54 16886.20 18683.46 14876.46 19165.73 18765.71 18359.41 21081.61 17689.06 17790.55 15398.03 8197.07 87
pmmvs-eth3d79.78 19677.58 20182.34 18781.57 20887.46 20682.92 19681.28 17175.33 19871.34 14861.88 19552.41 21481.59 17787.56 18586.90 18795.36 18291.48 175
PEN-MVS82.49 18481.58 18583.56 17186.93 18792.05 17986.71 18283.84 14176.94 18864.68 19167.24 17160.11 20681.17 17887.78 18490.70 15098.02 8296.21 114
TDRefinement84.97 15183.39 16686.81 13492.97 11094.12 12292.18 11487.77 10382.78 15671.31 14968.43 16868.07 16881.10 17989.70 16989.03 18195.55 17891.62 174
pmmvs680.90 19178.77 19783.38 17485.84 19691.61 18686.01 18782.54 15664.17 21370.43 15654.14 21067.06 17380.73 18090.50 15689.17 18094.74 18894.75 146
MDTV_nov1_ep13_2view80.43 19280.94 19279.84 19484.82 20290.87 19384.23 19373.80 19880.28 16964.33 19270.05 16468.77 16479.67 18184.83 19883.50 20192.17 19988.25 200
CMPMVSbinary61.19 1779.86 19577.46 20382.66 18491.54 13091.82 18383.25 19581.57 16870.51 20868.64 16859.89 20266.77 17579.63 18284.00 20284.30 19891.34 20384.89 206
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
UA-Net90.81 8592.58 6288.74 11394.87 7897.44 6692.61 10788.22 9282.35 15878.93 11885.20 7595.61 3779.56 18396.52 3896.57 2498.23 6394.37 151
Vis-MVSNet (Re-imp)90.54 9292.76 6087.94 12293.73 9896.94 8392.17 11687.91 9788.77 10476.12 12883.68 8490.80 6079.49 18496.34 4596.35 3198.21 6596.46 103
DTE-MVSNet81.76 18981.04 19182.60 18586.63 19191.48 19085.97 18883.70 14376.45 19262.44 19667.16 17259.98 20778.98 18587.15 18889.93 17097.88 9295.12 142
thisisatest051585.70 14087.00 13184.19 16388.16 16593.67 13484.20 19484.14 13883.39 15372.91 13976.79 12674.75 14478.82 18692.57 12191.26 14096.94 14296.56 102
TransMVSNet (Re)82.67 18280.93 19384.69 15688.71 15691.50 18887.90 17187.15 11071.54 20668.24 17163.69 19364.67 18978.51 18791.65 13690.73 14997.64 11092.73 172
UGNet91.52 7693.41 5389.32 10794.13 8297.15 7591.83 12389.01 8290.62 7385.86 7686.83 5991.73 5577.40 18894.68 7994.43 6997.71 10298.40 35
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
Vis-MVSNetpermissive89.36 10891.49 8086.88 13392.10 12297.60 6392.16 11785.89 11884.21 14475.20 13082.58 9587.13 7477.40 18895.90 5495.63 5198.51 2697.36 76
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
CVMVSNet83.83 16785.53 14881.85 19089.60 14990.92 19287.81 17383.21 15080.11 17060.16 20276.47 12878.57 12576.79 19089.76 16690.13 16193.51 18992.75 171
pmnet_mix0280.14 19480.21 19580.06 19386.61 19289.66 19980.40 20382.20 16282.29 15961.35 19971.52 15566.67 17676.75 19182.55 20580.18 20893.05 19388.62 195
EG-PatchMatch MVS81.70 19081.31 18982.15 18888.75 15593.81 12887.14 17878.89 18271.57 20464.12 19461.20 19968.46 16576.73 19291.48 13790.77 14697.28 12191.90 173
MDA-MVSNet-bldmvs73.81 20372.56 20775.28 20272.52 21588.87 20174.95 21082.67 15471.57 20455.02 20965.96 18142.84 22176.11 19370.61 21481.47 20590.38 20986.59 201
WR-MVS_H82.86 18182.66 17583.10 17787.44 17793.33 14385.71 19083.20 15177.36 18568.20 17266.37 17765.23 18376.05 19489.35 17190.13 16197.99 8596.89 92
WR-MVS83.14 17683.38 16782.87 18187.55 17593.29 14486.36 18584.21 13680.05 17166.41 18266.91 17466.92 17475.66 19588.96 17890.56 15297.05 13496.96 89
pmmvs371.13 20771.06 20971.21 20773.54 21480.19 21371.69 21464.86 21362.04 21652.10 21354.92 20848.00 21975.03 19683.75 20383.24 20290.04 21085.27 204
EPNet_dtu88.32 11790.61 8985.64 14596.79 5392.27 17392.03 12090.31 6289.05 10265.44 18889.43 4985.90 8374.22 19792.76 11592.09 12495.02 18692.76 170
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
FC-MVSNet-test86.15 13489.10 10582.71 18389.83 14693.18 14987.88 17284.69 12986.54 12362.18 19882.39 9883.31 9474.18 19892.52 12291.86 13097.50 11593.88 158
IB-MVS85.10 1487.98 11887.97 11987.99 12194.55 7996.86 8584.52 19288.21 9386.48 12688.54 5174.41 14177.74 13374.10 19989.65 17092.85 11098.06 7997.80 63
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
N_pmnet77.55 20176.68 20478.56 19885.43 20087.30 20778.84 20581.88 16578.30 18060.61 20061.46 19662.15 19674.03 20082.04 20680.69 20790.59 20884.81 207
test0.0.03 185.58 14287.69 12483.11 17691.22 13292.54 16885.60 19183.62 14485.66 13167.84 17482.79 9379.70 11973.51 20191.15 14590.79 14496.88 14991.23 179
new_pmnet72.29 20673.25 20671.16 20875.35 21281.38 21273.72 21269.27 21075.97 19449.84 21756.27 20456.12 21369.08 20281.73 20780.86 20689.72 21180.44 211
testgi81.94 18784.09 15879.43 19689.53 15190.83 19582.49 19881.75 16780.59 16559.46 20482.82 9265.75 17967.97 20390.10 16289.52 17695.39 18089.03 192
DeepMVS_CXcopyleft71.82 21668.37 21548.05 21877.38 18446.88 21865.77 18247.03 22067.48 20464.27 21776.89 21876.72 212
EU-MVSNet78.43 19780.25 19476.30 20183.81 20487.27 20880.99 20179.52 17976.01 19354.12 21170.44 16164.87 18667.40 20586.23 19385.54 19391.95 20291.41 176
Anonymous2023120678.09 19978.11 20078.07 19985.19 20189.17 20080.99 20181.24 17375.46 19758.25 20654.78 20959.90 20866.73 20688.94 17988.26 18396.01 16590.25 187
ambc67.96 21073.69 21379.79 21473.82 21171.61 20359.80 20346.00 21320.79 22366.15 20786.92 19080.11 20989.13 21290.50 184
MIMVSNet173.19 20473.70 20572.60 20665.42 21886.69 20975.56 20979.65 17867.87 21155.30 20845.24 21456.41 21263.79 20886.98 18987.66 18595.85 16785.04 205
new-patchmatchnet72.32 20571.09 20873.74 20481.17 20984.86 21172.21 21377.48 18868.32 21054.89 21055.10 20749.31 21863.68 20979.30 21076.46 21193.03 19484.32 208
FPMVS69.87 20867.10 21173.10 20584.09 20378.35 21579.40 20476.41 19171.92 20257.71 20754.06 21150.04 21656.72 21071.19 21368.70 21384.25 21375.43 213
Gipumacopyleft58.52 21156.17 21461.27 21067.14 21758.06 21852.16 22068.40 21269.00 20945.02 21922.79 21720.57 22455.11 21176.27 21179.33 21079.80 21667.16 216
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test20.0376.41 20278.49 19973.98 20385.64 19887.50 20575.89 20880.71 17570.84 20751.07 21668.06 16961.40 20154.99 21288.28 18187.20 18695.58 17786.15 202
test_method58.10 21264.61 21250.51 21228.26 22341.71 22261.28 21732.07 21975.92 19552.04 21447.94 21261.83 19951.80 21379.83 20963.95 21777.60 21781.05 210
EMVS39.04 21634.32 21844.54 21558.25 22039.35 22327.61 22362.55 21535.99 21916.40 22420.04 22014.77 22544.80 21433.12 22044.10 21957.61 22152.89 219
E-PMN40.00 21435.74 21744.98 21457.69 22139.15 22428.05 22262.70 21435.52 22017.78 22320.90 21814.36 22644.47 21535.89 21947.86 21859.15 22056.47 218
PMVScopyleft56.77 1861.27 21058.64 21364.35 20975.66 21154.60 21953.62 21974.23 19653.69 21758.37 20544.27 21549.38 21744.16 21669.51 21565.35 21580.07 21573.66 214
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive39.81 1939.52 21541.58 21637.11 21633.93 22249.06 22026.45 22454.22 21729.46 22124.15 22120.77 21910.60 22734.42 21751.12 21865.27 21649.49 22264.81 217
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMMVS253.68 21355.72 21551.30 21158.84 21967.02 21754.23 21860.97 21647.50 21819.42 22234.81 21631.97 22230.88 21865.84 21669.99 21283.47 21472.92 215
tmp_tt50.24 21368.55 21646.86 22148.90 22118.28 22086.51 12568.32 17070.19 16365.33 18126.69 21974.37 21266.80 21470.72 219
test1233.48 2185.31 2201.34 2190.20 2261.52 2262.17 2270.58 2226.13 2230.31 2279.85 2220.31 2293.90 2202.65 2225.28 2210.87 22411.46 220
testmvs4.35 2176.54 2191.79 2180.60 2241.82 2253.06 2260.95 2217.22 2220.88 22612.38 2211.25 2283.87 2216.09 2215.58 2201.40 22311.42 221
GG-mvs-BLEND62.84 20990.21 9230.91 2170.57 22594.45 11686.99 1790.34 22388.71 1050.98 22581.55 10591.58 570.86 22292.66 11891.43 13895.73 17091.11 180
uanet_test0.00 2190.00 2210.00 2200.00 2270.00 2270.00 2280.00 2240.00 2240.00 2280.00 2230.00 2300.00 2230.00 2230.00 2220.00 2250.00 222
sosnet-low-res0.00 2190.00 2210.00 2200.00 2270.00 2270.00 2280.00 2240.00 2240.00 2280.00 2230.00 2300.00 2230.00 2230.00 2220.00 2250.00 222
sosnet0.00 2190.00 2210.00 2200.00 2270.00 2270.00 2280.00 2240.00 2240.00 2280.00 2230.00 2300.00 2230.00 2230.00 2220.00 2250.00 222
RE-MVS-def60.19 201
9.1497.28 23
SR-MVS98.93 1896.00 1697.75 15
our_test_386.93 18789.77 19881.61 200
MTAPA95.36 297.46 21
MTMP95.70 196.90 26
Patchmatch-RL test18.47 225
XVS95.68 6398.66 1494.96 6188.03 5396.06 3198.46 34
X-MVStestdata95.68 6398.66 1494.96 6188.03 5396.06 3198.46 34
mPP-MVS98.76 2395.49 38
NP-MVS91.63 65
Patchmtry92.39 17289.18 15773.30 20271.08 151