This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort by
DVP-MVScopyleft97.93 398.23 397.58 399.05 699.31 198.64 696.62 597.56 295.08 596.61 1399.64 197.32 197.91 497.31 698.77 1599.26 2
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
SED-MVS97.98 298.36 297.54 498.94 1699.29 298.81 496.64 397.14 395.16 497.96 299.61 296.92 1298.00 197.24 898.75 1799.25 3
DVP-MVS++98.07 198.46 197.62 199.08 399.29 298.84 396.63 497.89 195.35 397.83 499.48 396.98 997.99 297.14 1198.82 1199.60 1
DPE-MVScopyleft97.83 498.13 497.48 598.83 2299.19 498.99 196.70 196.05 1894.39 998.30 199.47 497.02 697.75 797.02 1498.98 399.10 9
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
SMA-MVScopyleft97.53 797.93 797.07 1099.21 199.02 898.08 1996.25 1196.36 1293.57 1596.56 1499.27 596.78 1697.91 497.43 398.51 2698.94 12
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
SD-MVS97.35 897.73 896.90 1497.35 4498.66 1497.85 2596.25 1196.86 694.54 896.75 1199.13 696.99 796.94 2696.58 2398.39 4499.20 5
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
MSP-MVS97.70 698.09 597.24 699.00 1199.17 598.76 596.41 996.91 593.88 1497.72 599.04 796.93 1197.29 1797.31 698.45 3799.23 4
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
HPM-MVS++copyleft97.22 1197.40 1297.01 1199.08 398.55 2498.19 1496.48 796.02 1993.28 2096.26 1798.71 896.76 1797.30 1696.25 3998.30 5498.68 17
TSAR-MVS + MP.97.31 997.64 996.92 1397.28 4698.56 2398.61 795.48 2896.72 894.03 1396.73 1298.29 997.15 497.61 1296.42 2698.96 699.13 7
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
train_agg96.15 2596.64 2595.58 3398.44 2798.03 4898.14 1895.40 3193.90 4687.72 5996.26 1798.10 1095.75 3196.25 4795.45 5798.01 8698.47 33
APDe-MVScopyleft97.79 597.96 697.60 299.20 299.10 698.88 296.68 296.81 794.64 697.84 398.02 1197.24 397.74 897.02 1498.97 599.16 6
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
CNVR-MVS97.30 1097.41 1197.18 899.02 1098.60 2198.15 1696.24 1396.12 1794.10 1195.54 2597.99 1296.99 797.97 397.17 998.57 2498.50 31
TSAR-MVS + ACMM96.19 2397.39 1394.78 3797.70 4098.41 3597.72 2795.49 2796.47 1186.66 6996.35 1597.85 1393.99 5297.19 2096.37 3197.12 13499.13 7
MCST-MVS96.83 1897.06 1796.57 1998.88 2098.47 3298.02 2196.16 1495.58 2390.96 3295.78 2397.84 1496.46 2297.00 2596.17 4198.94 798.55 29
SR-MVS98.93 1896.00 1697.75 15
ACMMP_NAP96.93 1697.27 1596.53 2399.06 598.95 998.24 1396.06 1595.66 2190.96 3295.63 2497.71 1696.53 2097.66 1096.68 2098.30 5498.61 22
TSAR-MVS + GP.95.86 2896.95 2194.60 4194.07 8898.11 4696.30 4491.76 4995.67 2091.07 3096.82 1097.69 1795.71 3295.96 5295.75 5298.68 1898.63 19
SteuartSystems-ACMMP97.10 1597.49 1096.65 1898.97 1398.95 998.43 995.96 1795.12 2891.46 2896.85 997.60 1896.37 2497.76 697.16 1098.68 1898.97 11
Skip Steuart: Steuart Systems R&D Blog.
SF-MVS97.20 1297.29 1497.10 998.95 1598.51 2997.51 2996.48 796.17 1694.64 697.32 697.57 1996.23 2696.78 2996.15 4398.79 1498.55 29
NCCC96.75 1996.67 2496.85 1699.03 998.44 3498.15 1696.28 1096.32 1392.39 2592.16 3597.55 2096.68 1997.32 1496.65 2298.55 2598.26 40
MTAPA95.36 297.46 21
APD-MVScopyleft97.12 1397.05 1897.19 799.04 798.63 1998.45 896.54 694.81 3693.50 1696.10 1997.40 2296.81 1397.05 2296.82 1998.80 1298.56 24
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
9.1497.28 23
PHI-MVS95.86 2896.93 2294.61 4097.60 4298.65 1896.49 4193.13 4094.07 4387.91 5897.12 797.17 2493.90 5596.46 4096.93 1798.64 2098.10 51
TPM-MVS98.33 2997.85 5497.06 3689.97 4093.26 3197.16 2593.12 6697.79 9895.95 126
Ray Leroy Khuboni and Hongjun Xu: Textureless Resilient Propagation Matching in Multiple View Stereosis (TPM-MVS). SATNAC 2025
MP-MVScopyleft96.56 2196.72 2396.37 2498.93 1898.48 3098.04 2095.55 2394.32 4090.95 3495.88 2297.02 2696.29 2596.77 3096.01 4998.47 3298.56 24
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MTMP95.70 196.90 27
DeepPCF-MVS92.65 295.50 3396.96 1993.79 5196.44 5798.21 4293.51 9894.08 3696.94 489.29 4493.08 3296.77 2893.82 5697.68 997.40 495.59 18098.65 18
HFP-MVS97.11 1497.19 1697.00 1298.97 1398.73 1298.37 1195.69 2196.60 993.28 2096.87 896.64 2997.27 296.64 3596.33 3698.44 3898.56 24
DPM-MVS95.07 3594.84 4095.34 3497.44 4397.49 6897.76 2695.52 2494.88 3488.92 4787.25 6196.44 3094.41 4495.78 5596.11 4597.99 8895.95 126
CP-MVS96.68 2096.59 2696.77 1798.85 2198.58 2298.18 1595.51 2695.34 2592.94 2395.21 2896.25 3196.79 1596.44 4295.77 5198.35 4698.56 24
XVS95.68 6498.66 1494.96 6488.03 5496.06 3298.46 34
X-MVStestdata95.68 6498.66 1494.96 6488.03 5496.06 3298.46 34
X-MVS96.07 2696.33 2895.77 2998.94 1698.66 1497.94 2395.41 3095.12 2888.03 5493.00 3396.06 3295.85 2996.65 3496.35 3298.47 3298.48 32
MSLP-MVS++96.05 2795.63 3196.55 2198.33 2998.17 4496.94 3794.61 3494.70 3894.37 1089.20 5295.96 3596.81 1395.57 5897.33 598.24 6398.47 33
ACMMPR96.92 1796.96 1996.87 1598.99 1298.78 1198.38 1095.52 2496.57 1092.81 2496.06 2095.90 3697.07 596.60 3796.34 3598.46 3498.42 35
CPTT-MVS95.54 3195.07 3796.10 2597.88 3697.98 5097.92 2494.86 3294.56 3992.16 2691.01 4195.71 3796.97 1094.56 8393.50 9296.81 15798.14 47
UA-Net90.81 8792.58 6488.74 11594.87 7997.44 6992.61 11188.22 9382.35 16178.93 12185.20 7895.61 3879.56 18796.52 3896.57 2498.23 6494.37 155
mPP-MVS98.76 2395.49 39
DeepC-MVS_fast93.32 196.48 2296.42 2796.56 2098.70 2598.31 3897.97 2295.76 2096.31 1492.01 2791.43 4095.42 4096.46 2297.65 1197.69 198.49 3198.12 49
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PGM-MVS96.16 2496.33 2895.95 2699.04 798.63 1998.32 1292.76 4293.42 4990.49 3796.30 1695.31 4196.71 1896.46 4096.02 4898.38 4598.19 44
CDPH-MVS94.80 4195.50 3393.98 4698.34 2898.06 4797.41 3093.23 3992.81 5482.98 10092.51 3494.82 4293.53 6096.08 5096.30 3898.42 4097.94 56
3Dnovator+90.56 595.06 3694.56 4595.65 3198.11 3298.15 4597.19 3391.59 5195.11 3093.23 2281.99 10394.71 4395.43 3696.48 3996.88 1898.35 4698.63 19
CANet94.85 3894.92 3994.78 3797.25 4798.52 2897.20 3291.81 4893.25 5191.06 3186.29 6894.46 4492.99 6797.02 2496.68 2098.34 4898.20 43
QAPM94.13 4994.33 4993.90 4797.82 3798.37 3796.47 4290.89 5892.73 5785.63 8285.35 7693.87 4594.17 4995.71 5795.90 5098.40 4298.42 35
CSCG95.68 3095.46 3595.93 2798.71 2499.07 797.13 3593.55 3795.48 2493.35 1990.61 4593.82 4695.16 3794.60 8295.57 5597.70 10899.08 10
MVS_030494.30 4794.68 4393.86 5096.33 5998.48 3097.41 3091.20 5392.75 5586.96 6686.03 7193.81 4792.64 7296.89 2796.54 2598.61 2298.24 41
EC-MVSNet94.19 4895.05 3893.18 5893.56 10497.65 6495.34 5986.37 11892.05 6188.71 5089.91 4893.32 4896.14 2797.29 1796.42 2698.98 398.70 15
PCF-MVS90.19 892.98 5792.07 7394.04 4396.39 5897.87 5196.03 4895.47 2987.16 11885.09 9384.81 8093.21 4993.46 6291.98 13591.98 13197.78 10097.51 73
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
3Dnovator90.28 794.70 4294.34 4895.11 3598.06 3398.21 4296.89 3891.03 5794.72 3791.45 2982.87 9493.10 5094.61 4296.24 4897.08 1398.63 2198.16 45
OMC-MVS94.49 4594.36 4794.64 3997.17 4897.73 6195.49 5592.25 4496.18 1590.34 3888.51 5592.88 5194.90 4194.92 7094.17 7597.69 11096.15 118
MVS_111021_HR94.84 3995.91 3093.60 5297.35 4498.46 3395.08 6291.19 5494.18 4285.97 7495.38 2692.56 5293.61 5996.61 3696.25 3998.40 4297.92 58
TAPA-MVS90.35 693.69 5393.52 5193.90 4796.89 5297.62 6596.15 4591.67 5094.94 3285.97 7487.72 6091.96 5394.40 4593.76 10193.06 10998.30 5495.58 136
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
DeepC-MVS92.10 395.22 3494.77 4195.75 3097.77 3898.54 2597.63 2895.96 1795.07 3188.85 4885.35 7691.85 5495.82 3096.88 2897.10 1298.44 3898.63 19
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ACMMPcopyleft95.54 3195.49 3495.61 3298.27 3198.53 2697.16 3494.86 3294.88 3489.34 4395.36 2791.74 5595.50 3595.51 5994.16 7698.50 2998.22 42
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
UGNet91.52 7893.41 5389.32 10994.13 8597.15 7891.83 12789.01 8390.62 7585.86 7886.83 6291.73 5677.40 19294.68 7994.43 7197.71 10698.40 37
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
CS-MVS-test94.63 4395.28 3693.88 4996.56 5698.67 1393.41 10089.31 8094.27 4189.64 4290.84 4391.64 5795.58 3397.04 2396.17 4198.77 1598.32 38
GG-mvs-BLEND62.84 21290.21 9430.91 2210.57 23094.45 11986.99 1830.34 22788.71 1070.98 23081.55 10891.58 580.86 22792.66 12091.43 14195.73 17491.11 184
MVS_111021_LR94.84 3995.57 3294.00 4497.11 4997.72 6394.88 6691.16 5595.24 2788.74 4996.03 2191.52 5994.33 4895.96 5295.01 6497.79 9897.49 74
CHOSEN 280x42090.77 9092.14 7289.17 11193.86 9792.81 16593.16 10380.22 18190.21 8484.67 9589.89 4991.38 6090.57 9794.94 6992.11 12692.52 20193.65 165
Vis-MVSNet (Re-imp)90.54 9492.76 6287.94 12593.73 10196.94 8692.17 12087.91 9888.77 10676.12 13183.68 8790.80 6179.49 18896.34 4596.35 3298.21 6696.46 105
ETV-MVS93.80 5194.57 4492.91 6693.98 9097.50 6793.62 9588.70 8791.95 6287.57 6090.21 4790.79 6294.56 4397.20 1996.35 3299.02 197.98 53
PLCcopyleft90.69 494.32 4692.99 5895.87 2897.91 3496.49 9495.95 5194.12 3594.94 3294.09 1285.90 7290.77 6395.58 3394.52 8493.32 9997.55 11795.00 148
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
CNLPA93.69 5392.50 6595.06 3697.11 4997.36 7093.88 8893.30 3895.64 2293.44 1880.32 11290.73 6494.99 4093.58 10393.33 9797.67 11296.57 103
IS_MVSNet91.87 7293.35 5490.14 10394.09 8797.73 6193.09 10588.12 9588.71 10779.98 11784.49 8190.63 6587.49 13197.07 2196.96 1698.07 7997.88 62
PVSNet_Blended_VisFu91.92 7192.39 6991.36 9095.45 7297.85 5492.25 11789.54 7688.53 11087.47 6179.82 11490.53 6685.47 15296.31 4695.16 6397.99 8898.56 24
AdaColmapbinary95.02 3793.71 5096.54 2298.51 2697.76 5996.69 4095.94 1993.72 4893.50 1689.01 5390.53 6696.49 2194.51 8593.76 8598.07 7996.69 98
EPP-MVSNet92.13 6793.06 5791.05 9293.66 10397.30 7192.18 11887.90 9990.24 8383.63 9786.14 7090.52 6890.76 9294.82 7594.38 7298.18 7097.98 53
OpenMVScopyleft88.18 1192.51 6391.61 8093.55 5397.74 3998.02 4995.66 5390.46 6189.14 10386.50 7075.80 13790.38 6992.69 7194.99 6795.30 5998.27 5897.63 67
EPNet93.92 5094.40 4693.36 5497.89 3596.55 9296.08 4792.14 4591.65 6689.16 4594.07 3090.17 7087.78 12695.24 6494.97 6597.09 13698.15 46
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CS-MVS94.53 4494.73 4294.31 4296.30 6098.53 2694.98 6389.24 8293.37 5090.24 3988.96 5489.76 7196.09 2897.48 1396.42 2698.99 298.59 23
DELS-MVS93.71 5293.47 5294.00 4496.82 5398.39 3696.80 3991.07 5689.51 10089.94 4183.80 8689.29 7290.95 9097.32 1497.65 298.42 4098.32 38
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
EIA-MVS92.72 6192.96 6092.44 7293.86 9797.76 5993.13 10488.65 8989.78 9686.68 6886.69 6587.57 7393.74 5796.07 5195.32 5898.58 2397.53 72
FA-MVS(training)90.79 8991.33 8390.17 10193.76 10097.22 7592.74 10977.79 19190.60 7788.03 5478.80 11887.41 7491.00 8995.40 6293.43 9597.70 10896.46 105
Vis-MVSNetpermissive89.36 11091.49 8286.88 13692.10 12597.60 6692.16 12185.89 12184.21 14675.20 13382.58 9887.13 7577.40 19295.90 5495.63 5398.51 2697.36 78
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
baseline91.19 8191.89 7690.38 9492.76 11795.04 11393.55 9784.54 13692.92 5285.71 8186.68 6686.96 7689.28 11092.00 13492.62 11796.46 16296.99 90
CANet_DTU90.74 9292.93 6188.19 12194.36 8196.61 9094.34 7484.66 13390.66 7368.75 17190.41 4686.89 7789.78 10295.46 6094.87 6697.25 12695.62 134
PMMVS89.88 10291.19 8688.35 11989.73 15291.97 18590.62 13381.92 16890.57 7880.58 11592.16 3586.85 7891.17 8692.31 12791.35 14296.11 16893.11 172
MAR-MVS92.71 6292.63 6392.79 6797.70 4097.15 7893.75 9187.98 9790.71 7285.76 8086.28 6986.38 7994.35 4794.95 6895.49 5697.22 12797.44 75
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
GBi-Net90.21 9890.11 9790.32 9688.66 16293.65 13994.25 7785.78 12390.03 8885.56 8477.38 12386.13 8089.38 10793.97 9594.16 7698.31 5195.47 138
test190.21 9890.11 9790.32 9688.66 16293.65 13994.25 7785.78 12390.03 8885.56 8477.38 12386.13 8089.38 10793.97 9594.16 7698.31 5195.47 138
FMVSNet390.19 10090.06 9990.34 9588.69 16193.85 13194.58 6785.78 12390.03 8885.56 8477.38 12386.13 8089.22 11393.29 11394.36 7398.20 6795.40 142
MS-PatchMatch87.63 12287.61 12787.65 12993.95 9294.09 12792.60 11281.52 17386.64 12376.41 13073.46 15185.94 8385.01 15692.23 13190.00 17196.43 16490.93 186
EPNet_dtu88.32 11990.61 9185.64 14896.79 5492.27 17792.03 12490.31 6289.05 10465.44 19289.43 5085.90 8474.22 20192.76 11792.09 12795.02 19092.76 174
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
RPSCF89.68 10589.24 10490.20 9992.97 11392.93 16192.30 11587.69 10790.44 8085.12 9291.68 3985.84 8590.69 9387.34 19086.07 19292.46 20290.37 190
DCV-MVSNet91.24 8091.26 8491.22 9192.84 11693.44 14393.82 8986.75 11591.33 7085.61 8384.00 8585.46 8691.27 8492.91 11693.62 8797.02 14098.05 52
MVS_Test91.81 7492.19 7191.37 8993.24 10796.95 8594.43 7086.25 11991.45 6983.45 9886.31 6785.15 8792.93 6893.99 9494.71 6997.92 9296.77 96
gg-mvs-nofinetune81.83 19183.58 16479.80 19891.57 13196.54 9393.79 9068.80 21562.71 21943.01 22455.28 21185.06 8883.65 16696.13 4994.86 6797.98 9194.46 153
DI_MVS_plusplus_trai91.05 8390.15 9692.11 7692.67 12196.61 9096.03 4888.44 9190.25 8285.92 7673.73 14684.89 8991.92 7894.17 9194.07 8097.68 11197.31 81
Anonymous2023121189.82 10388.18 11791.74 8092.52 12296.09 10493.38 10189.30 8188.95 10585.90 7764.55 19684.39 9092.41 7592.24 13093.06 10996.93 14997.95 55
HyFIR lowres test87.87 12186.42 13889.57 10695.56 6796.99 8492.37 11484.15 14086.64 12377.17 12757.65 20883.97 9191.08 8892.09 13392.44 11997.09 13695.16 145
FMVSNet289.61 10689.14 10690.16 10288.66 16293.65 13994.25 7785.44 12788.57 10984.96 9473.53 14983.82 9289.38 10794.23 8994.68 7098.31 5195.47 138
SCA86.25 13487.52 13084.77 15791.59 13093.90 13089.11 16373.25 20890.38 8172.84 14483.26 8983.79 9388.49 12386.07 19785.56 19593.33 19489.67 195
CDS-MVSNet88.34 11888.71 11087.90 12690.70 14594.54 11692.38 11386.02 12080.37 17079.42 11979.30 11583.43 9482.04 17593.39 11094.01 8196.86 15595.93 128
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
FC-MVSNet-test86.15 13789.10 10782.71 18689.83 15093.18 15387.88 17684.69 13286.54 12562.18 20282.39 10183.31 9574.18 20292.52 12491.86 13397.50 11993.88 162
CHOSEN 1792x268888.57 11687.82 12389.44 10895.46 7096.89 8793.74 9285.87 12289.63 9777.42 12661.38 20283.31 9588.80 12193.44 10993.16 10595.37 18596.95 92
Anonymous20240521188.00 11993.16 10996.38 9993.58 9689.34 7987.92 11465.04 19183.03 9792.07 7792.67 11993.33 9796.96 14497.63 67
test-LLR86.88 12988.28 11485.24 15291.22 13592.07 18187.41 17983.62 14784.58 13969.33 16783.00 9182.79 9884.24 16092.26 12889.81 17495.64 17893.44 166
TESTMET0.1,186.11 13988.28 11483.59 17387.80 17392.07 18187.41 17977.12 19384.58 13969.33 16783.00 9182.79 9884.24 16092.26 12889.81 17495.64 17893.44 166
LS3D91.97 6990.98 8993.12 6097.03 5197.09 8195.33 6095.59 2292.47 5879.26 12081.60 10682.77 10094.39 4694.28 8794.23 7497.14 13394.45 154
HQP-MVS92.39 6592.49 6692.29 7595.65 6695.94 10695.64 5492.12 4692.46 5979.65 11891.97 3782.68 10192.92 7093.47 10892.77 11497.74 10498.12 49
thisisatest053091.04 8491.74 7790.21 9892.93 11597.00 8392.06 12387.63 11090.74 7181.51 10486.81 6382.48 10289.23 11194.81 7693.03 11197.90 9397.33 80
test-mter86.09 14088.38 11383.43 17687.89 17292.61 16986.89 18477.11 19484.30 14468.62 17382.57 9982.45 10384.34 15992.40 12590.11 16895.74 17394.21 158
MDTV_nov1_ep1386.64 13387.50 13185.65 14790.73 14393.69 13789.96 14878.03 19089.48 10176.85 12884.92 7982.42 10486.14 14686.85 19486.15 19192.17 20388.97 198
sasdasda93.08 5593.09 5593.07 6294.24 8297.86 5295.45 5787.86 10394.00 4487.47 6188.32 5682.37 10595.13 3893.96 9896.41 2998.27 5898.73 13
canonicalmvs93.08 5593.09 5593.07 6294.24 8297.86 5295.45 5787.86 10394.00 4487.47 6188.32 5682.37 10595.13 3893.96 9896.41 2998.27 5898.73 13
tttt051791.01 8591.71 7890.19 10092.98 11197.07 8291.96 12687.63 11090.61 7681.42 10586.76 6482.26 10789.23 11194.86 7493.03 11197.90 9397.36 78
casdiffmvs_mvgpermissive91.94 7091.25 8592.75 6893.41 10697.19 7795.48 5689.77 7089.86 9486.41 7181.02 11082.23 10892.93 6895.44 6195.61 5498.51 2697.40 77
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MGCFI-Net92.75 6092.98 5992.48 7094.18 8497.77 5895.28 6187.77 10593.88 4785.28 9188.19 5882.17 10994.14 5093.86 10096.32 3798.20 6798.69 16
PVSNet_BlendedMVS92.80 5892.44 6793.23 5596.02 6297.83 5693.74 9290.58 5991.86 6390.69 3585.87 7482.04 11090.01 10096.39 4395.26 6098.34 4897.81 63
PVSNet_Blended92.80 5892.44 6793.23 5596.02 6297.83 5693.74 9290.58 5991.86 6390.69 3585.87 7482.04 11090.01 10096.39 4395.26 6098.34 4897.81 63
PatchmatchNetpermissive85.70 14386.65 13584.60 16091.79 12793.40 14489.27 15973.62 20390.19 8572.63 14682.74 9781.93 11287.64 12884.99 20084.29 20292.64 20089.00 197
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
CLD-MVS92.50 6491.96 7593.13 5993.93 9496.24 10095.69 5288.77 8692.92 5289.01 4688.19 5881.74 11393.13 6593.63 10293.08 10798.23 6497.91 60
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
IterMVS-LS88.60 11588.45 11288.78 11492.02 12692.44 17592.00 12583.57 14986.52 12678.90 12278.61 12081.34 11489.12 11490.68 15693.18 10497.10 13596.35 110
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MVSTER91.73 7591.61 8091.86 7993.18 10894.56 11594.37 7287.90 9990.16 8788.69 5189.23 5181.28 11588.92 11995.75 5693.95 8298.12 7496.37 109
casdiffmvspermissive91.72 7691.16 8792.38 7493.16 10997.15 7893.95 8489.49 7791.58 6886.03 7380.75 11180.95 11693.16 6495.25 6395.22 6298.50 2997.23 83
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MSDG90.42 9688.25 11692.94 6596.67 5594.41 12193.96 8392.91 4189.59 9886.26 7276.74 13080.92 11790.43 9892.60 12292.08 12897.44 12291.41 180
diffmvspermissive91.37 7991.09 8891.70 8192.71 12096.47 9594.03 8288.78 8592.74 5685.43 8983.63 8880.37 11891.76 8193.39 11093.78 8497.50 11997.23 83
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline190.81 8790.29 9391.42 8693.67 10295.86 10793.94 8689.69 7489.29 10282.85 10182.91 9380.30 11989.60 10395.05 6694.79 6898.80 1293.82 163
OPM-MVS91.08 8289.34 10293.11 6196.18 6196.13 10396.39 4392.39 4382.97 15781.74 10382.55 10080.20 12093.97 5494.62 8093.23 10098.00 8795.73 132
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
LGP-MVS_train91.83 7392.04 7491.58 8295.46 7096.18 10295.97 5089.85 6890.45 7977.76 12391.92 3880.07 12192.34 7694.27 8893.47 9398.11 7697.90 61
test0.0.03 185.58 14587.69 12683.11 17991.22 13592.54 17285.60 19583.62 14785.66 13367.84 17882.79 9679.70 12273.51 20591.15 14890.79 14796.88 15391.23 183
ACMM88.76 1091.70 7790.43 9293.19 5795.56 6795.14 11293.35 10291.48 5292.26 6087.12 6484.02 8479.34 12393.99 5294.07 9392.68 11597.62 11695.50 137
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMP89.13 992.03 6891.70 7992.41 7394.92 7796.44 9893.95 8489.96 6791.81 6585.48 8790.97 4279.12 12492.42 7493.28 11492.55 11897.76 10297.74 66
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
GeoE89.29 11288.68 11189.99 10492.75 11996.03 10593.07 10783.79 14586.98 12081.34 10674.72 14278.92 12591.22 8593.31 11293.21 10397.78 10097.60 71
FMVSNet584.47 16284.72 15784.18 16783.30 20988.43 20688.09 17479.42 18484.25 14574.14 13873.15 15578.74 12683.65 16691.19 14691.19 14496.46 16286.07 207
IterMVS-SCA-FT85.44 14986.71 13483.97 17090.59 14690.84 19889.73 15478.34 18784.07 15066.40 18777.27 12878.66 12783.06 16891.20 14590.10 16995.72 17594.78 149
CVMVSNet83.83 17085.53 15181.85 19389.60 15390.92 19687.81 17783.21 15380.11 17360.16 20676.47 13178.57 12876.79 19489.76 16990.13 16493.51 19392.75 175
baseline288.97 11489.50 10188.36 11891.14 13795.30 10990.13 14485.17 13087.24 11780.80 11284.46 8278.44 12985.60 14993.54 10691.87 13297.31 12495.66 133
FC-MVSNet-train90.55 9390.19 9590.97 9393.78 9995.16 11192.11 12288.85 8487.64 11583.38 9984.36 8378.41 13089.53 10494.69 7893.15 10698.15 7197.92 58
IterMVS85.25 15186.49 13783.80 17190.42 14790.77 20190.02 14678.04 18984.10 14866.27 18877.28 12778.41 13083.01 16990.88 15089.72 17895.04 18994.24 156
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EPMVS85.77 14286.24 14085.23 15392.76 11793.78 13389.91 15073.60 20490.19 8574.22 13682.18 10278.06 13287.55 13085.61 19985.38 19793.32 19588.48 202
FMVSNet187.33 12586.00 14588.89 11287.13 18892.83 16493.08 10684.46 13781.35 16682.20 10266.33 18277.96 13388.96 11693.97 9594.16 7697.54 11895.38 143
CR-MVSNet85.48 14786.29 13984.53 16291.08 14092.10 17989.18 16173.30 20684.75 13771.08 15573.12 15677.91 13486.27 14491.48 14090.75 15096.27 16693.94 160
ET-MVSNet_ETH3D89.93 10190.84 9088.87 11379.60 21596.19 10194.43 7086.56 11690.63 7480.75 11390.71 4477.78 13593.73 5891.36 14393.45 9498.15 7195.77 131
IB-MVS85.10 1487.98 12087.97 12187.99 12494.55 8096.86 8884.52 19688.21 9486.48 12888.54 5274.41 14577.74 13674.10 20389.65 17392.85 11398.06 8197.80 65
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
RPMNet84.82 15685.90 14783.56 17491.10 13892.10 17988.73 17071.11 21184.75 13768.79 17073.56 14877.62 13785.33 15390.08 16689.43 18096.32 16593.77 164
Effi-MVS+89.79 10489.83 10089.74 10592.98 11196.45 9793.48 9984.24 13887.62 11676.45 12981.76 10477.56 13893.48 6194.61 8193.59 8897.82 9797.22 85
TSAR-MVS + COLMAP92.39 6592.31 7092.47 7195.35 7496.46 9696.13 4692.04 4795.33 2680.11 11694.95 2977.35 13994.05 5194.49 8693.08 10797.15 13194.53 152
Effi-MVS+-dtu87.51 12488.13 11886.77 13891.10 13894.90 11490.91 13182.67 15783.47 15371.55 15081.11 10977.04 14089.41 10692.65 12191.68 13895.00 19196.09 120
ADS-MVSNet84.08 16684.95 15483.05 18291.53 13491.75 18888.16 17370.70 21289.96 9169.51 16678.83 11776.97 14186.29 14384.08 20484.60 20092.13 20588.48 202
COLMAP_ROBcopyleft84.39 1587.61 12386.03 14389.46 10795.54 6994.48 11891.77 12890.14 6687.16 11875.50 13273.41 15276.86 14287.33 13390.05 16789.76 17796.48 16190.46 189
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
TAMVS84.94 15584.95 15484.93 15688.82 15893.18 15388.44 17281.28 17577.16 18973.76 14075.43 14076.57 14382.04 17590.59 15790.79 14795.22 18790.94 185
CostFormer86.78 13186.05 14287.62 13192.15 12493.20 15291.55 12975.83 19688.11 11385.29 9081.76 10476.22 14487.80 12584.45 20285.21 19893.12 19693.42 168
PatchT83.86 16985.51 15281.94 19288.41 16591.56 19178.79 21071.57 21084.08 14971.08 15570.62 16276.13 14586.27 14491.48 14090.75 15095.52 18393.94 160
Fast-Effi-MVS+-dtu86.25 13487.70 12584.56 16190.37 14893.70 13690.54 13478.14 18883.50 15265.37 19381.59 10775.83 14686.09 14891.70 13891.70 13696.88 15395.84 130
thisisatest051585.70 14387.00 13384.19 16688.16 16993.67 13884.20 19884.14 14183.39 15572.91 14376.79 12974.75 14778.82 19092.57 12391.26 14396.94 14696.56 104
ECVR-MVScopyleft90.77 9089.27 10392.52 6994.97 7598.30 3994.53 6890.25 6489.91 9285.80 7973.64 14774.31 14890.69 9396.75 3296.10 4698.87 895.91 129
test111190.47 9589.10 10792.07 7794.92 7798.30 3994.17 8190.30 6389.56 9983.92 9673.25 15473.66 14990.26 9996.77 3096.14 4498.87 896.04 122
Fast-Effi-MVS+88.56 11787.99 12089.22 11091.56 13295.21 11092.29 11682.69 15686.82 12177.73 12476.24 13573.39 15093.36 6394.22 9093.64 8697.65 11396.43 107
PatchMatch-RL90.30 9788.93 10991.89 7895.41 7395.68 10890.94 13088.67 8889.80 9586.95 6785.90 7272.51 15192.46 7393.56 10592.18 12496.93 14992.89 173
MIMVSNet82.97 18284.00 16281.77 19482.23 21192.25 17887.40 18172.73 20981.48 16569.55 16568.79 17172.42 15281.82 17892.23 13192.25 12296.89 15288.61 200
anonymousdsp84.51 15985.85 14982.95 18386.30 19993.51 14285.77 19380.38 18078.25 18463.42 19973.51 15072.20 15384.64 15893.21 11592.16 12597.19 12998.14 47
tpmrst83.72 17283.45 16684.03 16992.21 12391.66 18988.74 16973.58 20588.14 11272.67 14577.37 12672.11 15486.34 14282.94 20782.05 20690.63 21189.86 194
ACMH+85.75 1287.19 12886.02 14488.56 11793.42 10594.41 12189.91 15087.66 10983.45 15472.25 14876.42 13471.99 15590.78 9189.86 16890.94 14597.32 12395.11 147
ACMH85.51 1387.31 12686.59 13688.14 12293.96 9194.51 11789.00 16687.99 9681.58 16470.15 16178.41 12171.78 15690.60 9691.30 14491.99 13097.17 13096.58 102
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
pm-mvs184.55 15883.46 16585.82 14488.16 16993.39 14589.05 16585.36 12974.03 20372.43 14765.08 19071.11 15782.30 17493.48 10791.70 13697.64 11495.43 141
tpm cat184.13 16581.99 18586.63 14091.74 12891.50 19290.68 13275.69 19786.12 12985.44 8872.39 15770.72 15885.16 15480.89 21181.56 20791.07 20990.71 187
MVS-HIRNet78.16 20177.57 20578.83 20085.83 20187.76 20876.67 21170.22 21375.82 19967.39 18055.61 21070.52 15981.96 17786.67 19585.06 19990.93 21081.58 213
thres100view90089.36 11087.61 12791.39 8793.90 9596.86 8894.35 7389.66 7585.87 13081.15 10876.46 13270.38 16091.17 8694.09 9293.43 9598.13 7396.16 117
tfpn200view989.55 10787.86 12291.53 8493.90 9597.26 7294.31 7689.74 7185.87 13081.15 10876.46 13270.38 16091.76 8194.92 7093.51 8998.28 5796.61 100
UniMVSNet_NR-MVSNet86.80 13085.86 14887.89 12788.17 16894.07 12890.15 14288.51 9084.20 14773.45 14172.38 15870.30 16288.95 11790.25 16192.21 12398.12 7497.62 69
thres20089.49 10887.72 12491.55 8393.95 9297.25 7394.34 7489.74 7185.66 13381.18 10776.12 13670.19 16391.80 7994.92 7093.51 8998.27 5896.40 108
thres40089.40 10987.58 12991.53 8494.06 8997.21 7694.19 8089.83 6985.69 13281.08 11075.50 13969.76 16491.80 7994.79 7793.51 8998.20 6796.60 101
dmvs_re87.31 12686.10 14188.74 11589.84 14994.28 12492.66 11089.41 7882.61 15974.69 13474.69 14369.47 16587.78 12692.38 12693.23 10098.03 8396.02 124
thres600view789.28 11387.47 13291.39 8794.12 8697.25 7393.94 8689.74 7185.62 13580.63 11475.24 14169.33 16691.66 8394.92 7093.23 10098.27 5896.72 97
tpm83.16 17883.64 16382.60 18890.75 14291.05 19588.49 17173.99 20182.36 16067.08 18478.10 12268.79 16784.17 16285.95 19885.96 19391.09 20893.23 170
MDTV_nov1_ep13_2view80.43 19580.94 19579.84 19784.82 20690.87 19784.23 19773.80 20280.28 17264.33 19670.05 16868.77 16879.67 18584.83 20183.50 20492.17 20388.25 204
EG-PatchMatch MVS81.70 19381.31 19282.15 19188.75 15993.81 13287.14 18278.89 18671.57 20764.12 19861.20 20468.46 16976.73 19691.48 14090.77 14997.28 12591.90 177
GA-MVS85.08 15285.65 15084.42 16389.77 15194.25 12589.26 16084.62 13481.19 16762.25 20175.72 13868.44 17084.14 16393.57 10491.68 13896.49 16094.71 151
UniMVSNet (Re)86.22 13685.46 15387.11 13388.34 16694.42 12089.65 15687.10 11484.39 14374.61 13570.41 16668.10 17185.10 15591.17 14791.79 13497.84 9697.94 56
TDRefinement84.97 15483.39 16986.81 13792.97 11394.12 12692.18 11887.77 10582.78 15871.31 15368.43 17268.07 17281.10 18389.70 17289.03 18495.55 18291.62 178
USDC86.73 13285.96 14687.63 13091.64 12993.97 12992.76 10884.58 13588.19 11170.67 15880.10 11367.86 17389.43 10591.81 13689.77 17696.69 15990.05 193
dps85.00 15383.21 17387.08 13490.73 14392.55 17189.34 15875.29 19884.94 13687.01 6579.27 11667.69 17487.27 13484.22 20383.56 20392.83 19990.25 191
V4284.48 16183.36 17185.79 14687.14 18793.28 14990.03 14583.98 14380.30 17171.20 15466.90 17967.17 17585.55 15089.35 17490.27 16196.82 15696.27 115
v884.45 16383.30 17285.80 14587.53 18092.95 15990.31 13882.46 16180.46 16971.43 15166.99 17767.16 17686.14 14689.26 17790.22 16396.94 14696.06 121
pmmvs680.90 19478.77 20083.38 17785.84 20091.61 19086.01 19182.54 15964.17 21670.43 16054.14 21567.06 17780.73 18490.50 15989.17 18394.74 19294.75 150
WR-MVS83.14 17983.38 17082.87 18487.55 17993.29 14886.36 18984.21 13980.05 17466.41 18666.91 17866.92 17875.66 19988.96 18190.56 15597.05 13896.96 91
CMPMVSbinary61.19 1779.86 19877.46 20682.66 18791.54 13391.82 18783.25 19981.57 17270.51 21168.64 17259.89 20766.77 17979.63 18684.00 20584.30 20191.34 20784.89 210
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
pmnet_mix0280.14 19780.21 19880.06 19686.61 19689.66 20380.40 20782.20 16582.29 16261.35 20371.52 15966.67 18076.75 19582.55 20880.18 21193.05 19788.62 199
Baseline_NR-MVSNet85.28 15083.42 16887.46 13287.77 17590.80 20089.90 15287.69 10783.93 15174.16 13764.72 19466.43 18187.48 13290.14 16290.83 14697.73 10597.11 88
pmmvs486.00 14184.28 16088.00 12387.80 17392.01 18489.94 14984.91 13186.79 12280.98 11173.41 15266.34 18288.12 12489.31 17688.90 18596.24 16793.20 171
testgi81.94 19084.09 16179.43 19989.53 15590.83 19982.49 20281.75 17180.59 16859.46 20882.82 9565.75 18367.97 20790.10 16589.52 17995.39 18489.03 196
v1084.18 16483.17 17485.37 14987.34 18292.68 16790.32 13781.33 17479.93 17769.23 16966.33 18265.74 18487.03 13590.84 15190.38 15896.97 14296.29 114
tmp_tt50.24 21768.55 22146.86 22648.90 22518.28 22486.51 12768.32 17470.19 16765.33 18526.69 22374.37 21666.80 21870.72 224
TranMVSNet+NR-MVSNet85.57 14684.41 15986.92 13587.67 17893.34 14690.31 13888.43 9283.07 15670.11 16269.99 16965.28 18686.96 13689.73 17092.27 12198.06 8197.17 87
WR-MVS_H82.86 18482.66 17883.10 18087.44 18193.33 14785.71 19483.20 15477.36 18868.20 17666.37 18165.23 18776.05 19889.35 17490.13 16497.99 8896.89 94
v2v48284.51 15983.05 17586.20 14387.25 18493.28 14990.22 14085.40 12879.94 17669.78 16467.74 17465.15 18887.57 12989.12 17990.55 15696.97 14295.60 135
v114484.03 16882.88 17685.37 14987.17 18693.15 15690.18 14183.31 15278.83 18067.85 17765.99 18464.99 18986.79 13890.75 15390.33 16096.90 15196.15 118
EU-MVSNet78.43 20080.25 19776.30 20483.81 20887.27 21280.99 20579.52 18376.01 19654.12 21570.44 16564.87 19067.40 20986.23 19685.54 19691.95 20691.41 180
DU-MVS86.12 13884.81 15687.66 12887.77 17593.78 13390.15 14287.87 10184.40 14173.45 14170.59 16364.82 19188.95 11790.14 16292.33 12097.76 10297.62 69
v14883.61 17382.10 18285.37 14987.34 18292.94 16087.48 17885.72 12678.92 17973.87 13965.71 18764.69 19281.78 17987.82 18689.35 18196.01 16995.26 144
TransMVSNet (Re)82.67 18580.93 19684.69 15988.71 16091.50 19287.90 17587.15 11371.54 20968.24 17563.69 19864.67 19378.51 19191.65 13990.73 15297.64 11492.73 176
test250690.93 8689.20 10592.95 6494.97 7598.30 3994.53 6890.25 6489.91 9288.39 5383.23 9064.17 19490.69 9396.75 3296.10 4698.87 895.97 125
v14419283.48 17582.23 18084.94 15586.65 19492.84 16289.63 15782.48 16077.87 18567.36 18165.33 18963.50 19586.51 14089.72 17189.99 17297.03 13996.35 110
v119283.56 17482.35 17984.98 15486.84 19392.84 16290.01 14782.70 15578.54 18166.48 18564.88 19262.91 19686.91 13790.72 15490.25 16296.94 14696.32 112
SixPastTwentyTwo83.12 18083.44 16782.74 18587.71 17793.11 15782.30 20382.33 16279.24 17864.33 19678.77 11962.75 19784.11 16488.11 18587.89 18795.70 17694.21 158
pmmvs583.37 17682.68 17784.18 16787.13 18893.18 15386.74 18582.08 16676.48 19367.28 18271.26 16062.70 19884.71 15790.77 15290.12 16797.15 13194.24 156
v192192083.30 17782.09 18384.70 15886.59 19792.67 16889.82 15382.23 16478.32 18265.76 19064.64 19562.35 19986.78 13990.34 16090.02 17097.02 14096.31 113
N_pmnet77.55 20476.68 20778.56 20185.43 20487.30 21178.84 20981.88 16978.30 18360.61 20461.46 20162.15 20074.03 20482.04 20980.69 21090.59 21284.81 211
NR-MVSNet85.46 14884.54 15886.52 14188.33 16793.78 13390.45 13587.87 10184.40 14171.61 14970.59 16362.09 20182.79 17191.75 13791.75 13598.10 7797.44 75
UniMVSNet_ETH3D84.57 15781.40 19188.28 12089.34 15694.38 12390.33 13686.50 11774.74 20277.52 12559.90 20662.04 20288.78 12288.82 18392.65 11697.22 12797.24 82
test_method58.10 21664.61 21650.51 21628.26 22841.71 22761.28 22132.07 22375.92 19852.04 21847.94 21761.83 20351.80 21779.83 21263.95 22177.60 22181.05 214
v124082.88 18381.66 18784.29 16486.46 19892.52 17489.06 16481.82 17077.16 18965.09 19464.17 19761.50 20486.36 14190.12 16490.13 16496.95 14596.04 122
test20.0376.41 20578.49 20273.98 20685.64 20287.50 20975.89 21280.71 17970.84 21051.07 22068.06 17361.40 20554.99 21688.28 18487.20 18995.58 18186.15 206
tfpnnormal83.80 17181.26 19386.77 13889.60 15393.26 15189.72 15587.60 11272.78 20470.44 15960.53 20561.15 20685.55 15092.72 11891.44 14097.71 10696.92 93
TinyColmap84.04 16782.01 18486.42 14290.87 14191.84 18688.89 16884.07 14282.11 16369.89 16371.08 16160.81 20789.04 11590.52 15889.19 18295.76 17288.50 201
v7n82.25 18981.54 18983.07 18185.55 20392.58 17086.68 18781.10 17876.54 19265.97 18962.91 19960.56 20882.36 17391.07 14990.35 15996.77 15896.80 95
CP-MVSNet83.11 18182.15 18184.23 16587.20 18592.70 16686.42 18883.53 15077.83 18667.67 17966.89 18060.53 20982.47 17289.23 17890.65 15498.08 7897.20 86
PEN-MVS82.49 18781.58 18883.56 17486.93 19192.05 18386.71 18683.84 14476.94 19164.68 19567.24 17560.11 21081.17 18287.78 18790.70 15398.02 8596.21 116
DTE-MVSNet81.76 19281.04 19482.60 18886.63 19591.48 19485.97 19283.70 14676.45 19562.44 20067.16 17659.98 21178.98 18987.15 19189.93 17397.88 9595.12 146
Anonymous2023120678.09 20278.11 20378.07 20285.19 20589.17 20480.99 20581.24 17775.46 20058.25 21054.78 21459.90 21266.73 21088.94 18288.26 18696.01 16990.25 191
LTVRE_ROB81.71 1682.44 18881.84 18683.13 17889.01 15792.99 15888.90 16782.32 16366.26 21554.02 21674.68 14459.62 21388.87 12090.71 15592.02 12995.68 17796.62 99
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
PS-CasMVS82.53 18681.54 18983.68 17287.08 19092.54 17286.20 19083.46 15176.46 19465.73 19165.71 18759.41 21481.61 18089.06 18090.55 15698.03 8397.07 89
gm-plane-assit77.65 20378.50 20176.66 20387.96 17185.43 21464.70 22074.50 19964.15 21751.26 21961.32 20358.17 21584.11 16495.16 6593.83 8397.45 12191.41 180
MIMVSNet173.19 20773.70 20872.60 20965.42 22386.69 21375.56 21379.65 18267.87 21455.30 21245.24 21956.41 21663.79 21286.98 19287.66 18895.85 17185.04 209
new_pmnet72.29 20973.25 20971.16 21175.35 21781.38 21673.72 21669.27 21475.97 19749.84 22156.27 20956.12 21769.08 20681.73 21080.86 20989.72 21580.44 215
pmmvs-eth3d79.78 19977.58 20482.34 19081.57 21387.46 21082.92 20081.28 17575.33 20171.34 15261.88 20052.41 21881.59 18187.56 18886.90 19095.36 18691.48 179
PM-MVS80.29 19679.30 19981.45 19581.91 21288.23 20782.61 20179.01 18579.99 17567.15 18369.07 17051.39 21982.92 17087.55 18985.59 19495.08 18893.28 169
FPMVS69.87 21167.10 21473.10 20884.09 20778.35 21979.40 20876.41 19571.92 20557.71 21154.06 21650.04 22056.72 21471.19 21768.70 21784.25 21775.43 217
PMVScopyleft56.77 1861.27 21358.64 21764.35 21275.66 21654.60 22453.62 22374.23 20053.69 22158.37 20944.27 22049.38 22144.16 22069.51 21965.35 21980.07 21973.66 218
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
new-patchmatchnet72.32 20871.09 21173.74 20781.17 21484.86 21572.21 21777.48 19268.32 21354.89 21455.10 21249.31 22263.68 21379.30 21376.46 21493.03 19884.32 212
WB-MVS60.76 21466.86 21553.64 21482.24 21072.70 22048.70 22682.04 16763.91 21812.91 22964.77 19349.00 22322.74 22475.95 21575.36 21573.22 22366.33 221
pmmvs371.13 21071.06 21271.21 21073.54 21980.19 21771.69 21864.86 21762.04 22052.10 21754.92 21348.00 22475.03 20083.75 20683.24 20590.04 21485.27 208
DeepMVS_CXcopyleft71.82 22168.37 21948.05 22277.38 18746.88 22265.77 18647.03 22567.48 20864.27 22176.89 22276.72 216
MDA-MVSNet-bldmvs73.81 20672.56 21075.28 20572.52 22088.87 20574.95 21482.67 15771.57 20755.02 21365.96 18542.84 22676.11 19770.61 21881.47 20890.38 21386.59 205
PMMVS253.68 21755.72 21951.30 21558.84 22467.02 22254.23 22260.97 22047.50 22219.42 22634.81 22131.97 22730.88 22265.84 22069.99 21683.47 21872.92 219
ambc67.96 21373.69 21879.79 21873.82 21571.61 20659.80 20746.00 21820.79 22866.15 21186.92 19380.11 21289.13 21690.50 188
Gipumacopyleft58.52 21556.17 21861.27 21367.14 22258.06 22352.16 22468.40 21669.00 21245.02 22322.79 22220.57 22955.11 21576.27 21479.33 21379.80 22067.16 220
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
EMVS39.04 22034.32 22244.54 21958.25 22539.35 22827.61 22862.55 21935.99 22316.40 22820.04 22514.77 23044.80 21833.12 22444.10 22357.61 22652.89 224
E-PMN40.00 21835.74 22144.98 21857.69 22639.15 22928.05 22762.70 21835.52 22417.78 22720.90 22314.36 23144.47 21935.89 22347.86 22259.15 22556.47 223
MVEpermissive39.81 1939.52 21941.58 22037.11 22033.93 22749.06 22526.45 22954.22 22129.46 22524.15 22520.77 22410.60 23234.42 22151.12 22265.27 22049.49 22764.81 222
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
testmvs4.35 2216.54 2231.79 2220.60 2291.82 2303.06 2310.95 2257.22 2260.88 23112.38 2261.25 2333.87 2266.09 2255.58 2241.40 22811.42 226
test1233.48 2225.31 2241.34 2230.20 2311.52 2312.17 2320.58 2266.13 2270.31 2329.85 2270.31 2343.90 2252.65 2265.28 2250.87 22911.46 225
uanet_test0.00 2230.00 2250.00 2240.00 2320.00 2320.00 2330.00 2280.00 2280.00 2330.00 2280.00 2350.00 2280.00 2270.00 2260.00 2300.00 227
sosnet-low-res0.00 2230.00 2250.00 2240.00 2320.00 2320.00 2330.00 2280.00 2280.00 2330.00 2280.00 2350.00 2280.00 2270.00 2260.00 2300.00 227
sosnet0.00 2230.00 2250.00 2240.00 2320.00 2320.00 2330.00 2280.00 2280.00 2330.00 2280.00 2350.00 2280.00 2270.00 2260.00 2300.00 227
RE-MVS-def60.19 205
our_test_386.93 19189.77 20281.61 204
Patchmatch-RL test18.47 230
NP-MVS91.63 67
Patchmtry92.39 17689.18 16173.30 20671.08 155