This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
FOURS199.91 199.93 199.87 999.56 5799.10 1699.81 25
TSAR-MVS + MP.99.58 499.50 899.81 3699.91 199.66 5399.63 7799.39 21098.91 4699.78 3599.85 4299.36 299.94 5798.84 9999.88 3799.82 40
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
HPM-MVS_fast99.51 1199.40 1899.85 2599.91 199.79 3099.76 3699.56 5797.72 16899.76 4399.75 12299.13 1299.92 8099.07 6799.92 1399.85 22
MP-MVS-pluss99.37 4499.20 5799.88 599.90 499.87 1299.30 22499.52 8997.18 21999.60 9099.79 10098.79 4699.95 4898.83 10299.91 1899.83 35
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MTAPA99.52 1099.39 1999.89 499.90 499.86 1399.66 6599.47 16098.79 5899.68 6099.81 7698.43 7899.97 1498.88 8699.90 2599.83 35
HPM-MVScopyleft99.42 3499.28 4699.83 3299.90 499.72 4299.81 2099.54 7397.59 17999.68 6099.63 18298.91 3499.94 5798.58 13699.91 1899.84 26
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
HyFIR lowres test99.11 8598.92 9399.65 5999.90 499.37 8999.02 29099.91 397.67 17499.59 9399.75 12295.90 16399.73 18699.53 1699.02 16999.86 19
MSP-MVS99.42 3499.27 4899.88 599.89 899.80 2799.67 6099.50 12298.70 6399.77 3899.49 23198.21 8999.95 4898.46 15399.77 9399.88 12
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
CHOSEN 1792x268899.19 6499.10 6699.45 10899.89 898.52 19399.39 19899.94 198.73 6199.11 20099.89 2095.50 17699.94 5799.50 2099.97 599.89 6
ACMMPcopyleft99.45 2599.32 3299.82 3399.89 899.67 5199.62 8399.69 1898.12 12199.63 8099.84 5298.73 5799.96 2298.55 14599.83 7299.81 47
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
region2R99.48 1899.35 2699.87 1199.88 1199.80 2799.65 7199.66 2698.13 12099.66 6999.68 15898.96 2499.96 2298.62 12799.87 4099.84 26
MP-MVScopyleft99.33 4899.15 6199.87 1199.88 1199.82 2299.66 6599.46 16998.09 12699.48 11499.74 12798.29 8699.96 2297.93 19299.87 4099.82 40
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
mPP-MVS99.44 2999.30 4099.86 2099.88 1199.79 3099.69 5199.48 14298.12 12199.50 11099.75 12298.78 4799.97 1498.57 13999.89 3499.83 35
COLMAP_ROBcopyleft97.56 698.86 11398.75 11499.17 15099.88 1198.53 18999.34 21799.59 4497.55 18498.70 26599.89 2095.83 16599.90 10198.10 17899.90 2599.08 200
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
ZNCC-MVS99.47 2199.33 3099.87 1199.87 1599.81 2599.64 7399.67 2298.08 13099.55 10299.64 17698.91 3499.96 2298.72 11499.90 2599.82 40
ACMMP_NAP99.47 2199.34 2899.88 599.87 1599.86 1399.47 16499.48 14298.05 13699.76 4399.86 3798.82 4399.93 7098.82 10699.91 1899.84 26
HFP-MVS99.49 1499.37 2299.86 2099.87 1599.80 2799.66 6599.67 2298.15 11799.68 6099.69 15299.06 1699.96 2298.69 11999.87 4099.84 26
ACMMPR99.49 1499.36 2499.86 2099.87 1599.79 3099.66 6599.67 2298.15 11799.67 6499.69 15298.95 2799.96 2298.69 11999.87 4099.84 26
PGM-MVS99.45 2599.31 3899.86 2099.87 1599.78 3699.58 10499.65 3197.84 15499.71 5499.80 8999.12 1399.97 1498.33 16399.87 4099.83 35
test_vis1_n_192098.63 14498.40 15199.31 12899.86 2097.94 22999.67 6099.62 3399.43 199.99 299.91 1187.29 342100.00 199.92 199.92 1399.98 1
GST-MVS99.40 4199.24 5399.85 2599.86 2099.79 3099.60 9099.67 2297.97 14299.63 8099.68 15898.52 7299.95 4898.38 15799.86 4899.81 47
AllTest98.87 11098.72 11599.31 12899.86 2098.48 19999.56 11499.61 3697.85 15299.36 14899.85 4295.95 15899.85 12996.66 28599.83 7299.59 133
TestCases99.31 12899.86 2098.48 19999.61 3697.85 15299.36 14899.85 4295.95 15899.85 12996.66 28599.83 7299.59 133
PVSNet_Blended_VisFu99.36 4599.28 4699.61 7099.86 2099.07 12799.47 16499.93 297.66 17599.71 5499.86 3797.73 10499.96 2299.47 2799.82 7699.79 60
DVP-MVScopyleft99.57 799.47 1299.88 599.85 2599.89 499.57 10899.37 22499.10 1699.81 2599.80 8998.94 2999.96 2298.93 8099.86 4899.81 47
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.85 2599.89 499.62 8399.50 12299.10 1699.86 1699.82 6398.94 29
XVS99.53 999.42 1599.87 1199.85 2599.83 1699.69 5199.68 1998.98 3699.37 14499.74 12798.81 4499.94 5798.79 10799.86 4899.84 26
X-MVStestdata96.55 29195.45 30899.87 1199.85 2599.83 1699.69 5199.68 1998.98 3699.37 14464.01 37898.81 4499.94 5798.79 10799.86 4899.84 26
114514_t98.93 10598.67 12199.72 5299.85 2599.53 7399.62 8399.59 4492.65 34899.71 5499.78 10698.06 9699.90 10198.84 9999.91 1899.74 78
CSCG99.32 4999.32 3299.32 12799.85 2598.29 20899.71 4899.66 2698.11 12399.41 13199.80 8998.37 8399.96 2298.99 7399.96 799.72 89
SED-MVS99.61 299.52 699.88 599.84 3199.90 299.60 9099.48 14299.08 2199.91 799.81 7699.20 799.96 2298.91 8399.85 5599.79 60
IU-MVS99.84 3199.88 899.32 25198.30 9699.84 1898.86 9499.85 5599.89 6
test_241102_ONE99.84 3199.90 299.48 14299.07 2399.91 799.74 12799.20 799.76 177
test_0728_SECOND99.91 299.84 3199.89 499.57 10899.51 10399.96 2298.93 8099.86 4899.88 12
dcpmvs_299.23 6399.58 298.16 27299.83 3594.68 33299.76 3699.52 8999.07 2399.98 499.88 2698.56 6999.93 7099.67 899.98 299.87 17
CP-MVS99.45 2599.32 3299.85 2599.83 3599.75 3999.69 5199.52 8998.07 13199.53 10599.63 18298.93 3399.97 1498.74 11199.91 1899.83 35
test_fmvs1_n98.41 15698.14 16699.21 14699.82 3797.71 24199.74 4299.49 13099.32 499.99 299.95 285.32 34999.97 1499.82 399.84 6399.96 3
SteuartSystems-ACMMP99.54 899.42 1599.87 1199.82 3799.81 2599.59 9699.51 10398.62 6799.79 3099.83 5699.28 499.97 1498.48 14999.90 2599.84 26
Skip Steuart: Steuart Systems R&D Blog.
RPSCF98.22 17098.62 13296.99 32099.82 3791.58 35799.72 4699.44 18896.61 26499.66 6999.89 2095.92 16199.82 15297.46 23999.10 16199.57 138
DeepC-MVS98.35 299.30 5199.19 5899.64 6499.82 3799.23 10499.62 8399.55 6598.94 4299.63 8099.95 295.82 16699.94 5799.37 3499.97 599.73 83
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
patch_mono-299.26 5899.62 198.16 27299.81 4194.59 33399.52 13499.64 3299.33 399.73 4899.90 1699.00 2299.99 299.69 699.98 299.89 6
test_one_060199.81 4199.88 899.49 13098.97 3999.65 7599.81 7699.09 14
test_part299.81 4199.83 1699.77 38
CPTT-MVS99.11 8598.90 9699.74 4999.80 4499.46 8299.59 9699.49 13097.03 23599.63 8099.69 15297.27 11699.96 2297.82 20299.84 6399.81 47
SF-MVS99.38 4399.24 5399.79 4199.79 4599.68 4899.57 10899.54 7397.82 15999.71 5499.80 8998.95 2799.93 7098.19 17299.84 6399.74 78
MCST-MVS99.43 3299.30 4099.82 3399.79 4599.74 4199.29 22899.40 20798.79 5899.52 10799.62 18798.91 3499.90 10198.64 12599.75 9899.82 40
DPE-MVScopyleft99.46 2399.32 3299.91 299.78 4799.88 899.36 20999.51 10398.73 6199.88 1199.84 5298.72 5899.96 2298.16 17699.87 4099.88 12
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
CS-MVS-test99.49 1499.48 1099.54 8299.78 4799.30 9699.89 299.58 4998.56 7199.73 4899.69 15298.55 7099.82 15299.69 699.85 5599.48 159
EI-MVSNet-UG-set99.58 499.57 399.64 6499.78 4799.14 11799.60 9099.45 18099.01 2899.90 999.83 5698.98 2399.93 7099.59 1199.95 899.86 19
EI-MVSNet-Vis-set99.58 499.56 599.64 6499.78 4799.15 11699.61 8999.45 18099.01 2899.89 1099.82 6399.01 1899.92 8099.56 1499.95 899.85 22
Vis-MVSNetpermissive99.12 8198.97 8799.56 7999.78 4799.10 12199.68 5799.66 2698.49 7799.86 1699.87 3294.77 20699.84 13599.19 5599.41 13499.74 78
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
F-COLMAP99.19 6499.04 7399.64 6499.78 4799.27 10099.42 18499.54 7397.29 21099.41 13199.59 19698.42 8099.93 7098.19 17299.69 10999.73 83
APDe-MVS99.66 199.57 399.92 199.77 5399.89 499.75 3999.56 5799.02 2699.88 1199.85 4299.18 1099.96 2299.22 5399.92 1399.90 4
MVS_111021_LR99.41 3899.33 3099.65 5999.77 5399.51 7798.94 30999.85 698.82 5399.65 7599.74 12798.51 7399.80 16398.83 10299.89 3499.64 120
DP-MVS99.16 7098.95 9199.78 4399.77 5399.53 7399.41 18699.50 12297.03 23599.04 21499.88 2697.39 11099.92 8098.66 12399.90 2599.87 17
SR-MVS-dyc-post99.45 2599.31 3899.85 2599.76 5699.82 2299.63 7799.52 8998.38 8699.76 4399.82 6398.53 7199.95 4898.61 13099.81 7999.77 68
RE-MVS-def99.34 2899.76 5699.82 2299.63 7799.52 8998.38 8699.76 4399.82 6398.75 5498.61 13099.81 7999.77 68
save fliter99.76 5699.59 6299.14 26399.40 20799.00 31
CS-MVS99.50 1299.48 1099.54 8299.76 5699.42 8599.90 199.55 6598.56 7199.78 3599.70 14298.65 6599.79 16699.65 999.78 9099.41 174
APD-MVS_3200maxsize99.48 1899.35 2699.85 2599.76 5699.83 1699.63 7799.54 7398.36 9099.79 3099.82 6398.86 3899.95 4898.62 12799.81 7999.78 66
PVSNet_BlendedMVS98.86 11398.80 10899.03 16499.76 5698.79 16999.28 23099.91 397.42 20099.67 6499.37 26497.53 10799.88 11698.98 7497.29 25898.42 316
PVSNet_Blended99.08 9098.97 8799.42 11399.76 5698.79 16998.78 32599.91 396.74 25299.67 6499.49 23197.53 10799.88 11698.98 7499.85 5599.60 129
MSDG98.98 10198.80 10899.53 9099.76 5699.19 10698.75 32899.55 6597.25 21399.47 11599.77 11397.82 10199.87 12096.93 27299.90 2599.54 142
SR-MVS99.43 3299.29 4499.86 2099.75 6499.83 1699.59 9699.62 3398.21 10899.73 4899.79 10098.68 6199.96 2298.44 15499.77 9399.79 60
HPM-MVS++copyleft99.39 4299.23 5599.87 1199.75 6499.84 1599.43 17799.51 10398.68 6599.27 16899.53 21998.64 6699.96 2298.44 15499.80 8399.79 60
新几何199.75 4799.75 6499.59 6299.54 7396.76 25199.29 16399.64 17698.43 7899.94 5796.92 27499.66 11499.72 89
test22299.75 6499.49 7898.91 31399.49 13096.42 28199.34 15499.65 17098.28 8799.69 10999.72 89
testdata99.54 8299.75 6498.95 14899.51 10397.07 23199.43 12499.70 14298.87 3799.94 5797.76 20899.64 11799.72 89
CDPH-MVS99.13 7598.91 9599.80 3899.75 6499.71 4499.15 26199.41 19996.60 26699.60 9099.55 21098.83 4299.90 10197.48 23699.83 7299.78 66
APD-MVScopyleft99.27 5699.08 6999.84 3199.75 6499.79 3099.50 14599.50 12297.16 22199.77 3899.82 6398.78 4799.94 5797.56 22999.86 4899.80 56
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
test250696.81 28796.65 28597.29 31499.74 7192.21 35599.60 9085.06 38299.13 1299.77 3899.93 687.82 34099.85 12999.38 3299.38 13599.80 56
test111198.04 19498.11 17097.83 29499.74 7193.82 34199.58 10495.40 37199.12 1499.65 7599.93 690.73 30799.84 13599.43 3099.38 13599.82 40
ECVR-MVScopyleft98.04 19498.05 17998.00 28499.74 7194.37 33699.59 9694.98 37299.13 1299.66 6999.93 690.67 30899.84 13599.40 3199.38 13599.80 56
旧先验199.74 7199.59 6299.54 7399.69 15298.47 7599.68 11299.73 83
SD-MVS99.41 3899.52 699.05 16299.74 7199.68 4899.46 16799.52 8999.11 1599.88 1199.91 1199.43 197.70 35998.72 11499.93 1299.77 68
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DP-MVS Recon99.12 8198.95 9199.65 5999.74 7199.70 4699.27 23599.57 5296.40 28399.42 12799.68 15898.75 5499.80 16397.98 18999.72 10499.44 170
PAPM_NR99.04 9498.84 10599.66 5599.74 7199.44 8499.39 19899.38 21697.70 17099.28 16499.28 28798.34 8499.85 12996.96 26999.45 13199.69 99
SMA-MVScopyleft99.44 2999.30 4099.85 2599.73 7899.83 1699.56 11499.47 16097.45 19599.78 3599.82 6399.18 1099.91 9098.79 10799.89 3499.81 47
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
原ACMM199.65 5999.73 7899.33 9199.47 16097.46 19299.12 19899.66 16998.67 6399.91 9097.70 21799.69 10999.71 96
IS-MVSNet99.05 9398.87 10099.57 7799.73 7899.32 9299.75 3999.20 27898.02 14099.56 9899.86 3796.54 14099.67 20998.09 17999.13 15799.73 83
PVSNet96.02 1798.85 12098.84 10598.89 19199.73 7897.28 25098.32 35599.60 4197.86 15099.50 11099.57 20496.75 13499.86 12398.56 14299.70 10899.54 142
9.1499.10 6699.72 8299.40 19499.51 10397.53 18899.64 7999.78 10698.84 4199.91 9097.63 22099.82 76
thres100view90097.76 23897.45 24398.69 22099.72 8297.86 23399.59 9698.74 33197.93 14599.26 17298.62 33791.75 28899.83 14693.22 33898.18 21398.37 322
thres600view797.86 22297.51 23698.92 18299.72 8297.95 22799.59 9698.74 33197.94 14499.27 16898.62 33791.75 28899.86 12393.73 33398.19 21298.96 217
DELS-MVS99.48 1899.42 1599.65 5999.72 8299.40 8899.05 28199.66 2699.14 1199.57 9799.80 8998.46 7699.94 5799.57 1399.84 6399.60 129
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MVS_111021_HR99.41 3899.32 3299.66 5599.72 8299.47 8198.95 30799.85 698.82 5399.54 10399.73 13398.51 7399.74 18098.91 8399.88 3799.77 68
ZD-MVS99.71 8799.79 3099.61 3696.84 24899.56 9899.54 21598.58 6799.96 2296.93 27299.75 98
Anonymous2023121197.88 21897.54 23398.90 18899.71 8798.53 18999.48 15999.57 5294.16 33498.81 24899.68 15893.23 25099.42 24998.84 9994.42 31998.76 232
XVG-OURS-SEG-HR98.69 13798.62 13298.89 19199.71 8797.74 23699.12 26699.54 7398.44 8399.42 12799.71 13894.20 22899.92 8098.54 14698.90 17799.00 211
Vis-MVSNet (Re-imp)98.87 11098.72 11599.31 12899.71 8798.88 15799.80 2499.44 18897.91 14799.36 14899.78 10695.49 17799.43 24897.91 19399.11 15899.62 125
PatchMatch-RL98.84 12398.62 13299.52 9699.71 8799.28 9899.06 27999.77 997.74 16799.50 11099.53 21995.41 17899.84 13597.17 25899.64 11799.44 170
h-mvs3397.70 25197.28 27098.97 17499.70 9297.27 25199.36 20999.45 18098.94 4299.66 6999.64 17694.93 19399.99 299.48 2584.36 36199.65 113
XVG-OURS98.73 13398.68 12098.88 19399.70 9297.73 23798.92 31199.55 6598.52 7599.45 11899.84 5295.27 18499.91 9098.08 18398.84 18199.00 211
TAPA-MVS97.07 1597.74 24497.34 26398.94 17899.70 9297.53 24499.25 24599.51 10391.90 35099.30 16099.63 18298.78 4799.64 22088.09 36299.87 4099.65 113
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
test_fmvs198.88 10998.79 11199.16 15199.69 9597.61 24399.55 12399.49 13099.32 499.98 499.91 1191.41 29899.96 2299.82 399.92 1399.90 4
tfpn200view997.72 24797.38 25698.72 21899.69 9597.96 22599.50 14598.73 33697.83 15599.17 19298.45 34291.67 29299.83 14693.22 33898.18 21398.37 322
thres40097.77 23797.38 25698.92 18299.69 9597.96 22599.50 14598.73 33697.83 15599.17 19298.45 34291.67 29299.83 14693.22 33898.18 21398.96 217
Test_1112_low_res98.89 10898.66 12499.57 7799.69 9598.95 14899.03 28799.47 16096.98 23799.15 19499.23 29596.77 13399.89 11198.83 10298.78 18699.86 19
1112_ss98.98 10198.77 11299.59 7299.68 9999.02 13299.25 24599.48 14297.23 21699.13 19699.58 20096.93 12999.90 10198.87 8998.78 18699.84 26
test_vis1_rt95.81 30695.65 30596.32 33299.67 10091.35 35899.49 15596.74 36698.25 10195.24 34798.10 34974.96 36399.90 10199.53 1698.85 18097.70 351
TEST999.67 10099.65 5699.05 28199.41 19996.22 29398.95 22799.49 23198.77 5099.91 90
train_agg99.02 9798.77 11299.77 4599.67 10099.65 5699.05 28199.41 19996.28 28798.95 22799.49 23198.76 5199.91 9097.63 22099.72 10499.75 74
test_899.67 10099.61 6099.03 28799.41 19996.28 28798.93 23199.48 23698.76 5199.91 90
agg_prior99.67 10099.62 5999.40 20798.87 24199.91 90
test_prior99.68 5499.67 10099.48 8099.56 5799.83 14699.74 78
TSAR-MVS + GP.99.36 4599.36 2499.36 12099.67 10098.61 18399.07 27699.33 24199.00 3199.82 2499.81 7699.06 1699.84 13599.09 6499.42 13399.65 113
OMC-MVS99.08 9099.04 7399.20 14799.67 10098.22 21199.28 23099.52 8998.07 13199.66 6999.81 7697.79 10299.78 17197.79 20499.81 7999.60 129
Anonymous2024052998.09 18597.68 22099.34 12199.66 10898.44 20299.40 19499.43 19493.67 33899.22 17999.89 2090.23 31499.93 7099.26 5198.33 20299.66 109
tttt051798.42 15498.14 16699.28 13899.66 10898.38 20699.74 4296.85 36397.68 17299.79 3099.74 12791.39 29999.89 11198.83 10299.56 12499.57 138
CHOSEN 280x42099.12 8199.13 6399.08 15799.66 10897.89 23098.43 34999.71 1398.88 4799.62 8499.76 11996.63 13799.70 20299.46 2899.99 199.66 109
casdiffmvs_mvgpermissive99.15 7199.02 7899.55 8199.66 10899.09 12299.64 7399.56 5798.26 10099.45 11899.87 3296.03 15599.81 15799.54 1599.15 15599.73 83
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline99.15 7199.02 7899.53 9099.66 10899.14 11799.72 4699.48 14298.35 9199.42 12799.84 5296.07 15399.79 16699.51 1999.14 15699.67 106
PLCcopyleft97.94 499.02 9798.85 10499.53 9099.66 10899.01 13499.24 24799.52 8996.85 24799.27 16899.48 23698.25 8899.91 9097.76 20899.62 12099.65 113
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
casdiffmvspermissive99.13 7598.98 8699.56 7999.65 11499.16 11199.56 11499.50 12298.33 9499.41 13199.86 3795.92 16199.83 14699.45 2999.16 15299.70 97
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
EPP-MVSNet99.13 7598.99 8399.53 9099.65 11499.06 12899.81 2099.33 24197.43 19899.60 9099.88 2697.14 11899.84 13599.13 6098.94 17299.69 99
thres20097.61 26197.28 27098.62 22399.64 11698.03 21999.26 24398.74 33197.68 17299.09 20698.32 34691.66 29499.81 15792.88 34298.22 20898.03 338
test1299.75 4799.64 11699.61 6099.29 26399.21 18298.38 8299.89 11199.74 10199.74 78
ab-mvs98.86 11398.63 12799.54 8299.64 11699.19 10699.44 17399.54 7397.77 16299.30 16099.81 7694.20 22899.93 7099.17 5898.82 18399.49 158
DPM-MVS98.95 10498.71 11799.66 5599.63 11999.55 6898.64 33899.10 28997.93 14599.42 12799.55 21098.67 6399.80 16395.80 30299.68 11299.61 127
thisisatest053098.35 16298.03 18199.31 12899.63 11998.56 18699.54 12796.75 36597.53 18899.73 4899.65 17091.25 30299.89 11198.62 12799.56 12499.48 159
xiu_mvs_v1_base_debu99.29 5399.27 4899.34 12199.63 11998.97 13999.12 26699.51 10398.86 4899.84 1899.47 23998.18 9199.99 299.50 2099.31 14399.08 200
xiu_mvs_v1_base99.29 5399.27 4899.34 12199.63 11998.97 13999.12 26699.51 10398.86 4899.84 1899.47 23998.18 9199.99 299.50 2099.31 14399.08 200
xiu_mvs_v1_base_debi99.29 5399.27 4899.34 12199.63 11998.97 13999.12 26699.51 10398.86 4899.84 1899.47 23998.18 9199.99 299.50 2099.31 14399.08 200
DeepC-MVS_fast98.69 199.49 1499.39 1999.77 4599.63 11999.59 6299.36 20999.46 16999.07 2399.79 3099.82 6398.85 3999.92 8098.68 12199.87 4099.82 40
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
UA-Net99.42 3499.29 4499.80 3899.62 12599.55 6899.50 14599.70 1598.79 5899.77 3899.96 197.45 10999.96 2298.92 8299.90 2599.89 6
CNVR-MVS99.42 3499.30 4099.78 4399.62 12599.71 4499.26 24399.52 8998.82 5399.39 13999.71 13898.96 2499.85 12998.59 13599.80 8399.77 68
WTY-MVS99.06 9298.88 9999.61 7099.62 12599.16 11199.37 20599.56 5798.04 13799.53 10599.62 18796.84 13099.94 5798.85 9698.49 19999.72 89
sss99.17 6899.05 7199.53 9099.62 12598.97 13999.36 20999.62 3397.83 15599.67 6499.65 17097.37 11399.95 4899.19 5599.19 15199.68 103
mvsany_test199.50 1299.46 1499.62 6999.61 12999.09 12298.94 30999.48 14299.10 1699.96 699.91 1198.85 3999.96 2299.72 599.58 12399.82 40
GeoE98.85 12098.62 13299.53 9099.61 12999.08 12599.80 2499.51 10397.10 22999.31 15899.78 10695.23 18899.77 17398.21 17099.03 16799.75 74
diffmvspermissive99.14 7399.02 7899.51 9899.61 12998.96 14399.28 23099.49 13098.46 7999.72 5399.71 13896.50 14199.88 11699.31 4299.11 15899.67 106
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
NCCC99.34 4799.19 5899.79 4199.61 12999.65 5699.30 22499.48 14298.86 4899.21 18299.63 18298.72 5899.90 10198.25 16899.63 11999.80 56
PCF-MVS97.08 1497.66 25897.06 27999.47 10599.61 12999.09 12298.04 36299.25 27091.24 35398.51 28599.70 14294.55 21899.91 9092.76 34599.85 5599.42 172
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
MSLP-MVS++99.46 2399.47 1299.44 11299.60 13499.16 11199.41 18699.71 1398.98 3699.45 11899.78 10699.19 999.54 23499.28 4799.84 6399.63 123
DeepPCF-MVS98.18 398.81 12499.37 2297.12 31899.60 13491.75 35698.61 33999.44 18899.35 299.83 2399.85 4298.70 6099.81 15799.02 7199.91 1899.81 47
tt080597.97 20897.77 20998.57 22999.59 13696.61 28899.45 16899.08 29298.21 10898.88 23899.80 8988.66 32899.70 20298.58 13697.72 22699.39 177
IterMVS-LS98.46 15198.42 14998.58 22899.59 13698.00 22199.37 20599.43 19496.94 24399.07 20899.59 19697.87 9999.03 31598.32 16595.62 29698.71 242
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS97.83 22897.77 20998.02 28199.58 13896.27 29999.02 29099.48 14297.22 21798.71 25999.70 14292.75 26099.13 30197.46 23996.00 28498.67 263
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CNLPA99.14 7398.99 8399.59 7299.58 13899.41 8799.16 25899.44 18898.45 8099.19 18899.49 23198.08 9599.89 11197.73 21299.75 9899.48 159
Anonymous20240521198.30 16697.98 18699.26 14099.57 14098.16 21399.41 18698.55 34396.03 30899.19 18899.74 12791.87 28599.92 8099.16 5998.29 20799.70 97
IterMVS-SCA-FT97.82 23197.75 21498.06 27899.57 14096.36 29699.02 29099.49 13097.18 21998.71 25999.72 13792.72 26399.14 29897.44 24195.86 29098.67 263
PS-MVSNAJ99.32 4999.32 3299.30 13399.57 14098.94 15198.97 30399.46 16998.92 4599.71 5499.24 29499.01 1899.98 899.35 3599.66 11498.97 215
MG-MVS99.13 7599.02 7899.45 10899.57 14098.63 18099.07 27699.34 23498.99 3399.61 8799.82 6397.98 9899.87 12097.00 26599.80 8399.85 22
OPU-MVS99.64 6499.56 14499.72 4299.60 9099.70 14299.27 599.42 24998.24 16999.80 8399.79 60
DROMVSNet99.44 2999.39 1999.58 7599.56 14499.49 7899.88 499.58 4998.38 8699.73 4899.69 15298.20 9099.70 20299.64 1099.82 7699.54 142
PHI-MVS99.30 5199.17 6099.70 5399.56 14499.52 7699.58 10499.80 897.12 22599.62 8499.73 13398.58 6799.90 10198.61 13099.91 1899.68 103
AdaColmapbinary99.01 10098.80 10899.66 5599.56 14499.54 7099.18 25699.70 1598.18 11599.35 15199.63 18296.32 14799.90 10197.48 23699.77 9399.55 140
FA-MVS(test-final)98.75 13198.53 14499.41 11499.55 14899.05 13099.80 2499.01 30096.59 26899.58 9499.59 19695.39 17999.90 10197.78 20599.49 12999.28 187
FE-MVS98.48 14998.17 16399.40 11599.54 14998.96 14399.68 5798.81 32495.54 31499.62 8499.70 14293.82 24199.93 7097.35 24599.46 13099.32 184
test_vis1_n97.92 21497.44 24899.34 12199.53 15098.08 21899.74 4299.49 13099.15 10100.00 199.94 479.51 36299.98 899.88 299.76 9699.97 2
APD_test195.87 30496.49 28994.00 33899.53 15084.01 36599.54 12799.32 25195.91 31097.99 31199.85 4285.49 34899.88 11691.96 34898.84 18198.12 333
ET-MVSNet_ETH3D96.49 29395.64 30699.05 16299.53 15098.82 16698.84 31997.51 36097.63 17784.77 36599.21 29992.09 28298.91 33398.98 7492.21 34299.41 174
xiu_mvs_v2_base99.26 5899.25 5299.29 13699.53 15098.91 15599.02 29099.45 18098.80 5799.71 5499.26 29298.94 2999.98 899.34 3999.23 14898.98 214
LFMVS97.90 21797.35 26099.54 8299.52 15499.01 13499.39 19898.24 34997.10 22999.65 7599.79 10084.79 35199.91 9099.28 4798.38 20199.69 99
VNet99.11 8598.90 9699.73 5199.52 15499.56 6699.41 18699.39 21099.01 2899.74 4799.78 10695.56 17499.92 8099.52 1898.18 21399.72 89
DVP-MVS++99.59 399.50 899.88 599.51 15699.88 899.87 999.51 10398.99 3399.88 1199.81 7699.27 599.96 2298.85 9699.80 8399.81 47
MSC_two_6792asdad99.87 1199.51 15699.76 3799.33 24199.96 2298.87 8999.84 6399.89 6
No_MVS99.87 1199.51 15699.76 3799.33 24199.96 2298.87 8999.84 6399.89 6
Fast-Effi-MVS+98.70 13598.43 14899.51 9899.51 15699.28 9899.52 13499.47 16096.11 30399.01 21799.34 27396.20 15199.84 13597.88 19598.82 18399.39 177
MVSFormer99.17 6899.12 6499.29 13699.51 15698.94 15199.88 499.46 16997.55 18499.80 2899.65 17097.39 11099.28 27799.03 6999.85 5599.65 113
lupinMVS99.13 7599.01 8299.46 10799.51 15698.94 15199.05 28199.16 28397.86 15099.80 2899.56 20797.39 11099.86 12398.94 7899.85 5599.58 137
GBi-Net97.68 25497.48 23898.29 26399.51 15697.26 25399.43 17799.48 14296.49 27299.07 20899.32 28090.26 31198.98 32297.10 26096.65 26998.62 286
test197.68 25497.48 23898.29 26399.51 15697.26 25399.43 17799.48 14296.49 27299.07 20899.32 28090.26 31198.98 32297.10 26096.65 26998.62 286
FMVSNet297.72 24797.36 25898.80 21299.51 15698.84 16299.45 16899.42 19696.49 27298.86 24599.29 28590.26 31198.98 32296.44 29096.56 27298.58 300
thisisatest051598.14 18097.79 20499.19 14899.50 16598.50 19698.61 33996.82 36496.95 24199.54 10399.43 24791.66 29499.86 12398.08 18399.51 12899.22 190
baseline198.31 16497.95 19099.38 11999.50 16598.74 17199.59 9698.93 30898.41 8499.14 19599.60 19494.59 21599.79 16698.48 14993.29 33299.61 127
iter_conf_final98.71 13498.61 13898.99 17099.49 16798.96 14399.63 7799.41 19998.19 11199.39 13999.77 11394.82 19999.38 25399.30 4597.52 23898.64 275
hse-mvs297.50 26897.14 27698.59 22599.49 16797.05 26499.28 23099.22 27498.94 4299.66 6999.42 24994.93 19399.65 21799.48 2583.80 36399.08 200
EIA-MVS99.18 6699.09 6899.45 10899.49 16799.18 10899.67 6099.53 8497.66 17599.40 13699.44 24598.10 9499.81 15798.94 7899.62 12099.35 180
test_yl98.86 11398.63 12799.54 8299.49 16799.18 10899.50 14599.07 29598.22 10699.61 8799.51 22595.37 18099.84 13598.60 13398.33 20299.59 133
DCV-MVSNet98.86 11398.63 12799.54 8299.49 16799.18 10899.50 14599.07 29598.22 10699.61 8799.51 22595.37 18099.84 13598.60 13398.33 20299.59 133
VDDNet97.55 26397.02 28099.16 15199.49 16798.12 21799.38 20399.30 25995.35 31699.68 6099.90 1682.62 35799.93 7099.31 4298.13 21799.42 172
MVS_Test99.10 8898.97 8799.48 10299.49 16799.14 11799.67 6099.34 23497.31 20899.58 9499.76 11997.65 10699.82 15298.87 8999.07 16499.46 167
BH-untuned98.42 15498.36 15298.59 22599.49 16796.70 28399.27 23599.13 28797.24 21598.80 25099.38 26195.75 16899.74 18097.07 26399.16 15299.33 183
AUN-MVS96.88 28596.31 29298.59 22599.48 17597.04 26799.27 23599.22 27497.44 19798.51 28599.41 25391.97 28399.66 21297.71 21583.83 36299.07 205
VDD-MVS97.73 24597.35 26098.88 19399.47 17697.12 25799.34 21798.85 32098.19 11199.67 6499.85 4282.98 35599.92 8099.49 2498.32 20699.60 129
ETV-MVS99.26 5899.21 5699.40 11599.46 17799.30 9699.56 11499.52 8998.52 7599.44 12399.27 29098.41 8199.86 12399.10 6399.59 12299.04 207
Effi-MVS+98.81 12498.59 13999.48 10299.46 17799.12 12098.08 36199.50 12297.50 19199.38 14299.41 25396.37 14699.81 15799.11 6298.54 19699.51 154
jason99.13 7599.03 7599.45 10899.46 17798.87 15899.12 26699.26 26898.03 13999.79 3099.65 17097.02 12499.85 12999.02 7199.90 2599.65 113
jason: jason.
TAMVS99.12 8199.08 6999.24 14399.46 17798.55 18799.51 13999.46 16998.09 12699.45 11899.82 6398.34 8499.51 23598.70 11698.93 17399.67 106
ACMH+97.24 1097.92 21497.78 20798.32 26099.46 17796.68 28599.56 11499.54 7398.41 8497.79 31999.87 3290.18 31599.66 21298.05 18797.18 26398.62 286
MIMVSNet97.73 24597.45 24398.57 22999.45 18297.50 24599.02 29098.98 30396.11 30399.41 13199.14 30590.28 31098.74 33995.74 30398.93 17399.47 165
test_fmvs297.25 27897.30 26897.09 31999.43 18393.31 34999.73 4598.87 31998.83 5299.28 16499.80 8984.45 35299.66 21297.88 19597.45 24898.30 324
alignmvs98.81 12498.56 14299.58 7599.43 18399.42 8599.51 13998.96 30698.61 6899.35 15198.92 32894.78 20399.77 17399.35 3598.11 21899.54 142
canonicalmvs99.02 9798.86 10399.51 9899.42 18599.32 9299.80 2499.48 14298.63 6699.31 15898.81 33197.09 12199.75 17999.27 5097.90 22299.47 165
HY-MVS97.30 798.85 12098.64 12699.47 10599.42 18599.08 12599.62 8399.36 22597.39 20399.28 16499.68 15896.44 14499.92 8098.37 15998.22 20899.40 176
CDS-MVSNet99.09 8999.03 7599.25 14199.42 18598.73 17299.45 16899.46 16998.11 12399.46 11799.77 11398.01 9799.37 25898.70 11698.92 17599.66 109
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
CANet99.25 6199.14 6299.59 7299.41 18899.16 11199.35 21499.57 5298.82 5399.51 10999.61 19196.46 14299.95 4899.59 1199.98 299.65 113
Fast-Effi-MVS+-dtu98.77 13098.83 10798.60 22499.41 18896.99 27199.52 13499.49 13098.11 12399.24 17499.34 27396.96 12899.79 16697.95 19199.45 13199.02 210
BH-RMVSNet98.41 15698.08 17599.40 11599.41 18898.83 16599.30 22498.77 32797.70 17098.94 22999.65 17092.91 25899.74 18096.52 28899.55 12699.64 120
ACMM97.58 598.37 16198.34 15498.48 24099.41 18897.10 25899.56 11499.45 18098.53 7499.04 21499.85 4293.00 25499.71 19698.74 11197.45 24898.64 275
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMH97.28 898.10 18497.99 18598.44 24999.41 18896.96 27599.60 9099.56 5798.09 12698.15 30499.91 1190.87 30699.70 20298.88 8697.45 24898.67 263
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
UniMVSNet_ETH3D97.32 27696.81 28398.87 19799.40 19397.46 24699.51 13999.53 8495.86 31198.54 28499.77 11382.44 35899.66 21298.68 12197.52 23899.50 157
PAPR98.63 14498.34 15499.51 9899.40 19399.03 13198.80 32399.36 22596.33 28499.00 22199.12 30998.46 7699.84 13595.23 31599.37 14299.66 109
API-MVS99.04 9499.03 7599.06 16099.40 19399.31 9599.55 12399.56 5798.54 7399.33 15599.39 26098.76 5199.78 17196.98 26799.78 9098.07 335
FMVSNet398.03 19697.76 21398.84 20599.39 19698.98 13699.40 19499.38 21696.67 25799.07 20899.28 28792.93 25598.98 32297.10 26096.65 26998.56 302
GA-MVS97.85 22397.47 24099.00 16899.38 19797.99 22298.57 34299.15 28497.04 23498.90 23599.30 28389.83 31799.38 25396.70 28298.33 20299.62 125
mvs_anonymous99.03 9698.99 8399.16 15199.38 19798.52 19399.51 13999.38 21697.79 16099.38 14299.81 7697.30 11499.45 23999.35 3598.99 17099.51 154
ACMP97.20 1198.06 18897.94 19298.45 24699.37 19997.01 26999.44 17399.49 13097.54 18798.45 28999.79 10091.95 28499.72 19097.91 19397.49 24598.62 286
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
MAR-MVS98.86 11398.63 12799.54 8299.37 19999.66 5399.45 16899.54 7396.61 26499.01 21799.40 25697.09 12199.86 12397.68 21999.53 12799.10 195
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
testgi97.65 25997.50 23798.13 27699.36 20196.45 29399.42 18499.48 14297.76 16397.87 31599.45 24491.09 30398.81 33694.53 32398.52 19799.13 194
EI-MVSNet98.67 14098.67 12198.68 22199.35 20297.97 22399.50 14599.38 21696.93 24499.20 18599.83 5697.87 9999.36 26298.38 15797.56 23598.71 242
CVMVSNet98.57 14698.67 12198.30 26299.35 20295.59 31199.50 14599.55 6598.60 6999.39 13999.83 5694.48 22099.45 23998.75 11098.56 19599.85 22
BH-w/o98.00 20397.89 19998.32 26099.35 20296.20 30199.01 29598.90 31596.42 28198.38 29399.00 31995.26 18699.72 19096.06 29698.61 18999.03 208
MVSTER98.49 14898.32 15699.00 16899.35 20299.02 13299.54 12799.38 21697.41 20199.20 18599.73 13393.86 24099.36 26298.87 8997.56 23598.62 286
miper_lstm_enhance98.00 20397.91 19498.28 26699.34 20697.43 24798.88 31599.36 22596.48 27698.80 25099.55 21095.98 15698.91 33397.27 24895.50 30098.51 305
iter_conf0598.55 14798.44 14798.87 19799.34 20698.60 18499.55 12399.42 19698.21 10899.37 14499.77 11393.55 24699.38 25399.30 4597.48 24698.63 283
Effi-MVS+-dtu98.78 12898.89 9898.47 24499.33 20896.91 27799.57 10899.30 25998.47 7899.41 13198.99 32096.78 13299.74 18098.73 11399.38 13598.74 237
CANet_DTU98.97 10398.87 10099.25 14199.33 20898.42 20599.08 27599.30 25999.16 999.43 12499.75 12295.27 18499.97 1498.56 14299.95 899.36 179
ADS-MVSNet298.02 19898.07 17897.87 29199.33 20895.19 32399.23 24899.08 29296.24 29199.10 20399.67 16494.11 23298.93 33296.81 27799.05 16599.48 159
ADS-MVSNet98.20 17398.08 17598.56 23299.33 20896.48 29299.23 24899.15 28496.24 29199.10 20399.67 16494.11 23299.71 19696.81 27799.05 16599.48 159
LPG-MVS_test98.22 17098.13 16898.49 23899.33 20897.05 26499.58 10499.55 6597.46 19299.24 17499.83 5692.58 27099.72 19098.09 17997.51 24098.68 256
LGP-MVS_train98.49 23899.33 20897.05 26499.55 6597.46 19299.24 17499.83 5692.58 27099.72 19098.09 17997.51 24098.68 256
FMVSNet196.84 28696.36 29198.29 26399.32 21497.26 25399.43 17799.48 14295.11 32098.55 28399.32 28083.95 35498.98 32295.81 30196.26 27998.62 286
PVSNet_094.43 1996.09 30295.47 30797.94 28799.31 21594.34 33897.81 36399.70 1597.12 22597.46 32398.75 33489.71 31899.79 16697.69 21881.69 36599.68 103
c3_l98.12 18398.04 18098.38 25599.30 21697.69 24298.81 32299.33 24196.67 25798.83 24699.34 27397.11 12098.99 32197.58 22495.34 30298.48 307
SCA98.19 17498.16 16498.27 26799.30 21695.55 31299.07 27698.97 30497.57 18299.43 12499.57 20492.72 26399.74 18097.58 22499.20 15099.52 148
LCM-MVSNet-Re97.83 22898.15 16596.87 32599.30 21692.25 35499.59 9698.26 34797.43 19896.20 34199.13 30696.27 14998.73 34098.17 17598.99 17099.64 120
MVS-HIRNet95.75 30795.16 31197.51 30899.30 21693.69 34598.88 31595.78 36985.09 36498.78 25392.65 36791.29 30199.37 25894.85 32099.85 5599.46 167
HQP_MVS98.27 16998.22 16298.44 24999.29 22096.97 27399.39 19899.47 16098.97 3999.11 20099.61 19192.71 26599.69 20797.78 20597.63 22898.67 263
plane_prior799.29 22097.03 268
ITE_SJBPF98.08 27799.29 22096.37 29598.92 31098.34 9298.83 24699.75 12291.09 30399.62 22695.82 30097.40 25498.25 328
DeepMVS_CXcopyleft93.34 34199.29 22082.27 36899.22 27485.15 36396.33 34099.05 31490.97 30599.73 18693.57 33597.77 22598.01 339
CLD-MVS98.16 17898.10 17198.33 25899.29 22096.82 28098.75 32899.44 18897.83 15599.13 19699.55 21092.92 25699.67 20998.32 16597.69 22798.48 307
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
plane_prior699.27 22596.98 27292.71 265
PMMVS98.80 12798.62 13299.34 12199.27 22598.70 17498.76 32799.31 25597.34 20599.21 18299.07 31197.20 11799.82 15298.56 14298.87 17899.52 148
eth_miper_zixun_eth98.05 19397.96 18898.33 25899.26 22797.38 24898.56 34499.31 25596.65 25998.88 23899.52 22296.58 13899.12 30597.39 24495.53 29998.47 309
D2MVS98.41 15698.50 14598.15 27599.26 22796.62 28799.40 19499.61 3697.71 16998.98 22399.36 26796.04 15499.67 20998.70 11697.41 25398.15 332
plane_prior199.26 227
XXY-MVS98.38 16098.09 17499.24 14399.26 22799.32 9299.56 11499.55 6597.45 19598.71 25999.83 5693.23 25099.63 22598.88 8696.32 27898.76 232
cl____98.01 20197.84 20298.55 23499.25 23197.97 22398.71 33299.34 23496.47 27898.59 28299.54 21595.65 17399.21 29397.21 25195.77 29198.46 313
DIV-MVS_self_test98.01 20197.85 20198.48 24099.24 23297.95 22798.71 33299.35 23096.50 27198.60 28199.54 21595.72 17099.03 31597.21 25195.77 29198.46 313
miper_ehance_all_eth98.18 17698.10 17198.41 25199.23 23397.72 23898.72 33199.31 25596.60 26698.88 23899.29 28597.29 11599.13 30197.60 22295.99 28598.38 321
NP-MVS99.23 23396.92 27699.40 256
LTVRE_ROB97.16 1298.02 19897.90 19598.40 25399.23 23396.80 28199.70 4999.60 4197.12 22598.18 30399.70 14291.73 29099.72 19098.39 15697.45 24898.68 256
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
MVS_030496.79 28896.52 28897.59 30599.22 23694.92 32999.04 28699.59 4496.49 27298.43 29098.99 32080.48 36199.39 25197.15 25999.27 14698.47 309
UGNet98.87 11098.69 11999.40 11599.22 23698.72 17399.44 17399.68 1999.24 799.18 19199.42 24992.74 26299.96 2299.34 3999.94 1199.53 147
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
VPNet97.84 22697.44 24899.01 16699.21 23898.94 15199.48 15999.57 5298.38 8699.28 16499.73 13388.89 32599.39 25199.19 5593.27 33398.71 242
IB-MVS95.67 1896.22 29795.44 30998.57 22999.21 23896.70 28398.65 33797.74 35896.71 25497.27 32798.54 34086.03 34599.92 8098.47 15286.30 35999.10 195
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
tfpnnormal97.84 22697.47 24098.98 17299.20 24099.22 10599.64 7399.61 3696.32 28598.27 30099.70 14293.35 24999.44 24495.69 30595.40 30198.27 326
QAPM98.67 14098.30 15899.80 3899.20 24099.67 5199.77 3399.72 1194.74 32898.73 25799.90 1695.78 16799.98 896.96 26999.88 3799.76 73
HQP-NCC99.19 24298.98 30098.24 10298.66 268
ACMP_Plane99.19 24298.98 30098.24 10298.66 268
HQP-MVS98.02 19897.90 19598.37 25699.19 24296.83 27898.98 30099.39 21098.24 10298.66 26899.40 25692.47 27499.64 22097.19 25597.58 23398.64 275
Patchmatch-test97.93 21197.65 22398.77 21599.18 24597.07 26299.03 28799.14 28696.16 29898.74 25699.57 20494.56 21799.72 19093.36 33799.11 15899.52 148
FIs98.78 12898.63 12799.23 14599.18 24599.54 7099.83 1699.59 4498.28 9798.79 25299.81 7696.75 13499.37 25899.08 6696.38 27698.78 227
baseline297.87 22097.55 23098.82 20899.18 24598.02 22099.41 18696.58 36896.97 23896.51 33899.17 30193.43 24799.57 23097.71 21599.03 16798.86 221
CR-MVSNet98.17 17797.93 19398.87 19799.18 24598.49 19799.22 25299.33 24196.96 23999.56 9899.38 26194.33 22499.00 32094.83 32198.58 19299.14 192
RPMNet96.72 28995.90 30099.19 14899.18 24598.49 19799.22 25299.52 8988.72 36199.56 9897.38 35594.08 23499.95 4886.87 36698.58 19299.14 192
LS3D99.27 5699.12 6499.74 4999.18 24599.75 3999.56 11499.57 5298.45 8099.49 11399.85 4297.77 10399.94 5798.33 16399.84 6399.52 148
tpm cat197.39 27497.36 25897.50 30999.17 25193.73 34399.43 17799.31 25591.27 35298.71 25999.08 31094.31 22699.77 17396.41 29298.50 19899.00 211
3Dnovator+97.12 1399.18 6698.97 8799.82 3399.17 25199.68 4899.81 2099.51 10399.20 898.72 25899.89 2095.68 17299.97 1498.86 9499.86 4899.81 47
VPA-MVSNet98.29 16797.95 19099.30 13399.16 25399.54 7099.50 14599.58 4998.27 9999.35 15199.37 26492.53 27299.65 21799.35 3594.46 31798.72 240
tpmrst98.33 16398.48 14697.90 29099.16 25394.78 33099.31 22299.11 28897.27 21199.45 11899.59 19695.33 18299.84 13598.48 14998.61 18999.09 199
PatchmatchNetpermissive98.31 16498.36 15298.19 27099.16 25395.32 32099.27 23598.92 31097.37 20499.37 14499.58 20094.90 19699.70 20297.43 24299.21 14999.54 142
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
tpm297.44 27397.34 26397.74 30099.15 25694.36 33799.45 16898.94 30793.45 34398.90 23599.44 24591.35 30099.59 22997.31 24698.07 21999.29 186
CostFormer97.72 24797.73 21697.71 30199.15 25694.02 34099.54 12799.02 29994.67 32999.04 21499.35 27092.35 28099.77 17398.50 14897.94 22199.34 182
TransMVSNet (Re)97.15 28196.58 28698.86 20199.12 25898.85 16199.49 15598.91 31395.48 31597.16 33199.80 8993.38 24899.11 30694.16 33091.73 34398.62 286
3Dnovator97.25 999.24 6299.05 7199.81 3699.12 25899.66 5399.84 1399.74 1099.09 2098.92 23299.90 1695.94 16099.98 898.95 7799.92 1399.79 60
XVG-ACMP-BASELINE97.83 22897.71 21898.20 26999.11 26096.33 29799.41 18699.52 8998.06 13599.05 21399.50 22889.64 32099.73 18697.73 21297.38 25698.53 303
FMVSNet596.43 29596.19 29497.15 31599.11 26095.89 30699.32 22099.52 8994.47 33398.34 29699.07 31187.54 34197.07 36392.61 34695.72 29498.47 309
MDTV_nov1_ep1398.32 15699.11 26094.44 33599.27 23598.74 33197.51 19099.40 13699.62 18794.78 20399.76 17797.59 22398.81 185
Patchmtry97.75 24297.40 25598.81 21099.10 26398.87 15899.11 27299.33 24194.83 32698.81 24899.38 26194.33 22499.02 31796.10 29595.57 29798.53 303
dp97.75 24297.80 20397.59 30599.10 26393.71 34499.32 22098.88 31796.48 27699.08 20799.55 21092.67 26899.82 15296.52 28898.58 19299.24 189
cl2297.85 22397.64 22598.48 24099.09 26597.87 23198.60 34199.33 24197.11 22898.87 24199.22 29692.38 27999.17 29798.21 17095.99 28598.42 316
Baseline_NR-MVSNet97.76 23897.45 24398.68 22199.09 26598.29 20899.41 18698.85 32095.65 31398.63 27699.67 16494.82 19999.10 30898.07 18692.89 33798.64 275
FC-MVSNet-test98.75 13198.62 13299.15 15499.08 26799.45 8399.86 1299.60 4198.23 10598.70 26599.82 6396.80 13199.22 28899.07 6796.38 27698.79 226
mvsmamba98.92 10698.87 10099.08 15799.07 26899.16 11199.88 499.51 10398.15 11799.40 13699.89 2097.12 11999.33 26899.38 3297.40 25498.73 239
USDC97.34 27597.20 27497.75 29999.07 26895.20 32298.51 34699.04 29897.99 14198.31 29799.86 3789.02 32399.55 23395.67 30797.36 25798.49 306
TinyColmap97.12 28296.89 28297.83 29499.07 26895.52 31598.57 34298.74 33197.58 18197.81 31899.79 10088.16 33599.56 23195.10 31697.21 26198.39 320
pm-mvs197.68 25497.28 27098.88 19399.06 27198.62 18199.50 14599.45 18096.32 28597.87 31599.79 10092.47 27499.35 26597.54 23193.54 33098.67 263
TR-MVS97.76 23897.41 25498.82 20899.06 27197.87 23198.87 31798.56 34296.63 26398.68 26799.22 29692.49 27399.65 21795.40 31297.79 22498.95 219
PAPM97.59 26297.09 27899.07 15999.06 27198.26 21098.30 35699.10 28994.88 32598.08 30699.34 27396.27 14999.64 22089.87 35598.92 17599.31 185
nrg03098.64 14398.42 14999.28 13899.05 27499.69 4799.81 2099.46 16998.04 13799.01 21799.82 6396.69 13699.38 25399.34 3994.59 31698.78 227
tpmvs97.98 20598.02 18397.84 29399.04 27594.73 33199.31 22299.20 27896.10 30798.76 25599.42 24994.94 19299.81 15796.97 26898.45 20098.97 215
OpenMVScopyleft96.50 1698.47 15098.12 16999.52 9699.04 27599.53 7399.82 1799.72 1194.56 33198.08 30699.88 2694.73 20999.98 897.47 23899.76 9699.06 206
WR-MVS_H98.13 18197.87 20098.90 18899.02 27798.84 16299.70 4999.59 4497.27 21198.40 29299.19 30095.53 17599.23 28598.34 16293.78 32898.61 295
tpm97.67 25797.55 23098.03 27999.02 27795.01 32699.43 17798.54 34496.44 27999.12 19899.34 27391.83 28799.60 22897.75 21096.46 27499.48 159
UniMVSNet (Re)98.29 16798.00 18499.13 15599.00 27999.36 9099.49 15599.51 10397.95 14398.97 22599.13 30696.30 14899.38 25398.36 16193.34 33198.66 271
v1097.85 22397.52 23498.86 20198.99 28098.67 17699.75 3999.41 19995.70 31298.98 22399.41 25394.75 20899.23 28596.01 29894.63 31598.67 263
PS-CasMVS97.93 21197.59 22998.95 17798.99 28099.06 12899.68 5799.52 8997.13 22398.31 29799.68 15892.44 27899.05 31298.51 14794.08 32598.75 234
PatchT97.03 28496.44 29098.79 21398.99 28098.34 20799.16 25899.07 29592.13 34999.52 10797.31 35894.54 21998.98 32288.54 36098.73 18899.03 208
V4298.06 18897.79 20498.86 20198.98 28398.84 16299.69 5199.34 23496.53 27099.30 16099.37 26494.67 21299.32 27197.57 22894.66 31498.42 316
LF4IMVS97.52 26597.46 24297.70 30298.98 28395.55 31299.29 22898.82 32398.07 13198.66 26899.64 17689.97 31699.61 22797.01 26496.68 26897.94 345
CP-MVSNet98.09 18597.78 20799.01 16698.97 28599.24 10399.67 6099.46 16997.25 21398.48 28899.64 17693.79 24299.06 31198.63 12694.10 32498.74 237
miper_enhance_ethall98.16 17898.08 17598.41 25198.96 28697.72 23898.45 34899.32 25196.95 24198.97 22599.17 30197.06 12399.22 28897.86 19895.99 28598.29 325
v897.95 21097.63 22698.93 18098.95 28798.81 16899.80 2499.41 19996.03 30899.10 20399.42 24994.92 19599.30 27596.94 27194.08 32598.66 271
TESTMET0.1,197.55 26397.27 27398.40 25398.93 28896.53 29098.67 33497.61 35996.96 23998.64 27599.28 28788.63 33099.45 23997.30 24799.38 13599.21 191
UniMVSNet_NR-MVSNet98.22 17097.97 18798.96 17598.92 28998.98 13699.48 15999.53 8497.76 16398.71 25999.46 24396.43 14599.22 28898.57 13992.87 33898.69 251
RRT_MVS98.70 13598.66 12498.83 20798.90 29098.45 20199.89 299.28 26597.76 16398.94 22999.92 1096.98 12699.25 28299.28 4797.00 26698.80 225
v2v48298.06 18897.77 20998.92 18298.90 29098.82 16699.57 10899.36 22596.65 25999.19 18899.35 27094.20 22899.25 28297.72 21494.97 31098.69 251
131498.68 13998.54 14399.11 15698.89 29298.65 17899.27 23599.49 13096.89 24597.99 31199.56 20797.72 10599.83 14697.74 21199.27 14698.84 223
bld_raw_dy_0_6498.69 13798.58 14098.99 17098.88 29398.96 14399.80 2499.41 19997.91 14799.32 15699.87 3295.70 17199.31 27499.09 6497.27 25998.71 242
OPM-MVS98.19 17498.10 17198.45 24698.88 29397.07 26299.28 23099.38 21698.57 7099.22 17999.81 7692.12 28199.66 21298.08 18397.54 23798.61 295
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
v119297.81 23397.44 24898.91 18698.88 29398.68 17599.51 13999.34 23496.18 29699.20 18599.34 27394.03 23599.36 26295.32 31495.18 30598.69 251
EPMVS97.82 23197.65 22398.35 25798.88 29395.98 30499.49 15594.71 37497.57 18299.26 17299.48 23692.46 27799.71 19697.87 19799.08 16399.35 180
v114497.98 20597.69 21998.85 20498.87 29798.66 17799.54 12799.35 23096.27 28999.23 17899.35 27094.67 21299.23 28596.73 28095.16 30698.68 256
DU-MVS98.08 18797.79 20498.96 17598.87 29798.98 13699.41 18699.45 18097.87 14998.71 25999.50 22894.82 19999.22 28898.57 13992.87 33898.68 256
NR-MVSNet97.97 20897.61 22799.02 16598.87 29799.26 10199.47 16499.42 19697.63 17797.08 33399.50 22895.07 19199.13 30197.86 19893.59 32998.68 256
WR-MVS98.06 18897.73 21699.06 16098.86 30099.25 10299.19 25599.35 23097.30 20998.66 26899.43 24793.94 23799.21 29398.58 13694.28 32198.71 242
v124097.69 25297.32 26698.79 21398.85 30198.43 20399.48 15999.36 22596.11 30399.27 16899.36 26793.76 24499.24 28494.46 32495.23 30498.70 247
test_040296.64 29096.24 29397.85 29298.85 30196.43 29499.44 17399.26 26893.52 34096.98 33599.52 22288.52 33199.20 29592.58 34797.50 24297.93 346
v14419297.92 21497.60 22898.87 19798.83 30398.65 17899.55 12399.34 23496.20 29499.32 15699.40 25694.36 22399.26 28196.37 29395.03 30998.70 247
v192192097.80 23597.45 24398.84 20598.80 30498.53 18999.52 13499.34 23496.15 30099.24 17499.47 23993.98 23699.29 27695.40 31295.13 30798.69 251
gg-mvs-nofinetune96.17 30095.32 31098.73 21798.79 30598.14 21599.38 20394.09 37591.07 35598.07 30991.04 37189.62 32199.35 26596.75 27999.09 16298.68 256
test-LLR98.06 18897.90 19598.55 23498.79 30597.10 25898.67 33497.75 35697.34 20598.61 27998.85 32994.45 22199.45 23997.25 24999.38 13599.10 195
test-mter97.49 27197.13 27798.55 23498.79 30597.10 25898.67 33497.75 35696.65 25998.61 27998.85 32988.23 33499.45 23997.25 24999.38 13599.10 195
PS-MVSNAJss98.92 10698.92 9398.90 18898.78 30898.53 18999.78 3199.54 7398.07 13199.00 22199.76 11999.01 1899.37 25899.13 6097.23 26098.81 224
MVS97.28 27796.55 28799.48 10298.78 30898.95 14899.27 23599.39 21083.53 36598.08 30699.54 21596.97 12799.87 12094.23 32899.16 15299.63 123
TranMVSNet+NR-MVSNet97.93 21197.66 22298.76 21698.78 30898.62 18199.65 7199.49 13097.76 16398.49 28799.60 19494.23 22798.97 32998.00 18892.90 33698.70 247
PEN-MVS97.76 23897.44 24898.72 21898.77 31198.54 18899.78 3199.51 10397.06 23398.29 29999.64 17692.63 26998.89 33598.09 17993.16 33498.72 240
v7n97.87 22097.52 23498.92 18298.76 31298.58 18599.84 1399.46 16996.20 29498.91 23399.70 14294.89 19799.44 24496.03 29793.89 32798.75 234
v14897.79 23697.55 23098.50 23798.74 31397.72 23899.54 12799.33 24196.26 29098.90 23599.51 22594.68 21199.14 29897.83 20193.15 33598.63 283
JIA-IIPM97.50 26897.02 28098.93 18098.73 31497.80 23599.30 22498.97 30491.73 35198.91 23394.86 36595.10 19099.71 19697.58 22497.98 22099.28 187
Gipumacopyleft90.99 32990.15 33493.51 34098.73 31490.12 36093.98 36999.45 18079.32 36792.28 35994.91 36469.61 36597.98 35387.42 36395.67 29592.45 367
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
EU-MVSNet97.98 20598.03 18197.81 29798.72 31696.65 28699.66 6599.66 2698.09 12698.35 29599.82 6395.25 18798.01 35297.41 24395.30 30398.78 227
K. test v397.10 28396.79 28498.01 28298.72 31696.33 29799.87 997.05 36297.59 17996.16 34299.80 8988.71 32699.04 31396.69 28396.55 27398.65 273
OurMVSNet-221017-097.88 21897.77 20998.19 27098.71 31896.53 29099.88 499.00 30197.79 16098.78 25399.94 491.68 29199.35 26597.21 25196.99 26798.69 251
test_djsdf98.67 14098.57 14198.98 17298.70 31998.91 15599.88 499.46 16997.55 18499.22 17999.88 2695.73 16999.28 27799.03 6997.62 23098.75 234
pmmvs696.53 29296.09 29697.82 29698.69 32095.47 31699.37 20599.47 16093.46 34297.41 32499.78 10687.06 34399.33 26896.92 27492.70 34098.65 273
lessismore_v097.79 29898.69 32095.44 31894.75 37395.71 34699.87 3288.69 32799.32 27195.89 29994.93 31298.62 286
mvs_tets98.40 15998.23 16198.91 18698.67 32298.51 19599.66 6599.53 8498.19 11198.65 27499.81 7692.75 26099.44 24499.31 4297.48 24698.77 230
SixPastTwentyTwo97.50 26897.33 26598.03 27998.65 32396.23 30099.77 3398.68 33997.14 22297.90 31499.93 690.45 30999.18 29697.00 26596.43 27598.67 263
UnsupCasMVSNet_eth96.44 29496.12 29597.40 31198.65 32395.65 30999.36 20999.51 10397.13 22396.04 34498.99 32088.40 33298.17 34896.71 28190.27 35198.40 319
DTE-MVSNet97.51 26797.19 27598.46 24598.63 32598.13 21699.84 1399.48 14296.68 25697.97 31399.67 16492.92 25698.56 34196.88 27692.60 34198.70 247
our_test_397.65 25997.68 22097.55 30798.62 32694.97 32798.84 31999.30 25996.83 25098.19 30299.34 27397.01 12599.02 31795.00 31996.01 28398.64 275
ppachtmachnet_test97.49 27197.45 24397.61 30498.62 32695.24 32198.80 32399.46 16996.11 30398.22 30199.62 18796.45 14398.97 32993.77 33295.97 28898.61 295
pmmvs498.13 18197.90 19598.81 21098.61 32898.87 15898.99 29799.21 27796.44 27999.06 21299.58 20095.90 16399.11 30697.18 25796.11 28298.46 313
jajsoiax98.43 15398.28 15998.88 19398.60 32998.43 20399.82 1799.53 8498.19 11198.63 27699.80 8993.22 25299.44 24499.22 5397.50 24298.77 230
cascas97.69 25297.43 25298.48 24098.60 32997.30 24998.18 36099.39 21092.96 34698.41 29198.78 33393.77 24399.27 28098.16 17698.61 18998.86 221
pmmvs597.52 26597.30 26898.16 27298.57 33196.73 28299.27 23598.90 31596.14 30198.37 29499.53 21991.54 29799.14 29897.51 23395.87 28998.63 283
GG-mvs-BLEND98.45 24698.55 33298.16 21399.43 17793.68 37697.23 32898.46 34189.30 32299.22 28895.43 31198.22 20897.98 343
gm-plane-assit98.54 33392.96 35194.65 33099.15 30499.64 22097.56 229
anonymousdsp98.44 15298.28 15998.94 17898.50 33498.96 14399.77 3399.50 12297.07 23198.87 24199.77 11394.76 20799.28 27798.66 12397.60 23198.57 301
N_pmnet94.95 31595.83 30292.31 34498.47 33579.33 37299.12 26692.81 37993.87 33697.68 32099.13 30693.87 23999.01 31991.38 35096.19 28098.59 299
MS-PatchMatch97.24 28097.32 26696.99 32098.45 33693.51 34898.82 32199.32 25197.41 20198.13 30599.30 28388.99 32499.56 23195.68 30699.80 8397.90 348
test0.0.03 197.71 25097.42 25398.56 23298.41 33797.82 23498.78 32598.63 34097.34 20598.05 31098.98 32394.45 22198.98 32295.04 31897.15 26498.89 220
EPNet_dtu98.03 19697.96 18898.23 26898.27 33895.54 31499.23 24898.75 32899.02 2697.82 31799.71 13896.11 15299.48 23693.04 34199.65 11699.69 99
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MDA-MVSNet-bldmvs94.96 31493.98 32097.92 28898.24 33997.27 25199.15 26199.33 24193.80 33780.09 37299.03 31688.31 33397.86 35693.49 33694.36 32098.62 286
MDA-MVSNet_test_wron95.45 30994.60 31598.01 28298.16 34097.21 25699.11 27299.24 27293.49 34180.73 37198.98 32393.02 25398.18 34794.22 32994.45 31898.64 275
new_pmnet96.38 29696.03 29797.41 31098.13 34195.16 32599.05 28199.20 27893.94 33597.39 32598.79 33291.61 29699.04 31390.43 35395.77 29198.05 337
EGC-MVSNET82.80 33677.86 34297.62 30397.91 34296.12 30299.33 21999.28 2658.40 37925.05 38099.27 29084.11 35399.33 26889.20 35798.22 20897.42 356
YYNet195.36 31194.51 31797.92 28897.89 34397.10 25899.10 27499.23 27393.26 34480.77 37099.04 31592.81 25998.02 35194.30 32594.18 32398.64 275
DSMNet-mixed97.25 27897.35 26096.95 32397.84 34493.61 34799.57 10896.63 36796.13 30298.87 24198.61 33994.59 21597.70 35995.08 31798.86 17999.55 140
testf190.42 33090.68 33289.65 35097.78 34573.97 37799.13 26498.81 32489.62 35791.80 36198.93 32662.23 37098.80 33786.61 36791.17 34596.19 362
APD_test290.42 33090.68 33289.65 35097.78 34573.97 37799.13 26498.81 32489.62 35791.80 36198.93 32662.23 37098.80 33786.61 36791.17 34596.19 362
EG-PatchMatch MVS95.97 30395.69 30496.81 32697.78 34592.79 35299.16 25898.93 30896.16 29894.08 35499.22 29682.72 35699.47 23795.67 30797.50 24298.17 331
Anonymous2024052196.20 29995.89 30197.13 31797.72 34894.96 32899.79 3099.29 26393.01 34597.20 33099.03 31689.69 31998.36 34591.16 35196.13 28198.07 335
MVP-Stereo97.81 23397.75 21497.99 28597.53 34996.60 28998.96 30498.85 32097.22 21797.23 32899.36 26795.28 18399.46 23895.51 30999.78 9097.92 347
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
test20.0396.12 30195.96 29996.63 32897.44 35095.45 31799.51 13999.38 21696.55 26996.16 34299.25 29393.76 24496.17 36887.35 36494.22 32298.27 326
UnsupCasMVSNet_bld93.53 32492.51 32796.58 33097.38 35193.82 34198.24 35799.48 14291.10 35493.10 35896.66 36074.89 36498.37 34494.03 33187.71 35797.56 354
MIMVSNet195.51 30895.04 31296.92 32497.38 35195.60 31099.52 13499.50 12293.65 33996.97 33699.17 30185.28 35096.56 36788.36 36195.55 29898.60 298
OpenMVS_ROBcopyleft92.34 2094.38 32093.70 32496.41 33197.38 35193.17 35099.06 27998.75 32886.58 36294.84 35298.26 34781.53 35999.32 27189.01 35897.87 22396.76 359
Anonymous2023120696.22 29796.03 29796.79 32797.31 35494.14 33999.63 7799.08 29296.17 29797.04 33499.06 31393.94 23797.76 35886.96 36595.06 30898.47 309
CMPMVSbinary69.68 2394.13 32194.90 31391.84 34597.24 35580.01 37198.52 34599.48 14289.01 35991.99 36099.67 16485.67 34799.13 30195.44 31097.03 26596.39 361
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
EPNet98.86 11398.71 11799.30 13397.20 35698.18 21299.62 8398.91 31399.28 698.63 27699.81 7695.96 15799.99 299.24 5299.72 10499.73 83
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
KD-MVS_2432*160094.62 31693.72 32297.31 31297.19 35795.82 30798.34 35299.20 27895.00 32397.57 32198.35 34487.95 33798.10 34992.87 34377.00 36998.01 339
miper_refine_blended94.62 31693.72 32297.31 31297.19 35795.82 30798.34 35299.20 27895.00 32397.57 32198.35 34487.95 33798.10 34992.87 34377.00 36998.01 339
KD-MVS_self_test95.00 31394.34 31896.96 32297.07 35995.39 31999.56 11499.44 18895.11 32097.13 33297.32 35791.86 28697.27 36290.35 35481.23 36698.23 330
test_fmvs392.10 32691.77 32993.08 34296.19 36086.25 36399.82 1798.62 34196.65 25995.19 34996.90 35955.05 37495.93 37096.63 28790.92 34997.06 358
CL-MVSNet_self_test94.49 31893.97 32196.08 33396.16 36193.67 34698.33 35499.38 21695.13 31897.33 32698.15 34892.69 26796.57 36688.67 35979.87 36797.99 342
test_method91.10 32891.36 33090.31 34995.85 36273.72 37994.89 36899.25 27068.39 37195.82 34599.02 31880.50 36098.95 33193.64 33494.89 31398.25 328
mvsany_test393.77 32393.45 32594.74 33795.78 36388.01 36299.64 7398.25 34898.28 9794.31 35397.97 35168.89 36698.51 34397.50 23490.37 35097.71 349
Patchmatch-RL test95.84 30595.81 30395.95 33495.61 36490.57 35998.24 35798.39 34695.10 32295.20 34898.67 33694.78 20397.77 35796.28 29490.02 35299.51 154
PM-MVS92.96 32592.23 32895.14 33695.61 36489.98 36199.37 20598.21 35094.80 32795.04 35197.69 35265.06 36797.90 35594.30 32589.98 35397.54 355
pmmvs-eth3d95.34 31294.73 31497.15 31595.53 36695.94 30599.35 21499.10 28995.13 31893.55 35697.54 35388.15 33697.91 35494.58 32289.69 35497.61 352
test_f91.90 32791.26 33193.84 33995.52 36785.92 36499.69 5198.53 34595.31 31793.87 35596.37 36255.33 37398.27 34695.70 30490.98 34897.32 357
new-patchmatchnet94.48 31994.08 31995.67 33595.08 36892.41 35399.18 25699.28 26594.55 33293.49 35797.37 35687.86 33997.01 36491.57 34988.36 35597.61 352
pmmvs394.09 32293.25 32696.60 32994.76 36994.49 33498.92 31198.18 35289.66 35696.48 33998.06 35086.28 34497.33 36189.68 35687.20 35897.97 344
test_vis3_rt87.04 33285.81 33590.73 34893.99 37081.96 36999.76 3690.23 38192.81 34781.35 36991.56 36940.06 37899.07 31094.27 32788.23 35691.15 369
ambc93.06 34392.68 37182.36 36798.47 34798.73 33695.09 35097.41 35455.55 37299.10 30896.42 29191.32 34497.71 349
EMVS80.02 33979.22 34182.43 35791.19 37276.40 37497.55 36692.49 38066.36 37483.01 36891.27 37064.63 36885.79 37665.82 37560.65 37385.08 372
E-PMN80.61 33879.88 34082.81 35590.75 37376.38 37597.69 36495.76 37066.44 37383.52 36692.25 36862.54 36987.16 37568.53 37461.40 37284.89 373
PMMVS286.87 33385.37 33791.35 34790.21 37483.80 36698.89 31497.45 36183.13 36691.67 36395.03 36348.49 37694.70 37185.86 36977.62 36895.54 364
TDRefinement95.42 31094.57 31697.97 28689.83 37596.11 30399.48 15998.75 32896.74 25296.68 33799.88 2688.65 32999.71 19698.37 15982.74 36498.09 334
LCM-MVSNet86.80 33485.22 33891.53 34687.81 37680.96 37098.23 35998.99 30271.05 36990.13 36496.51 36148.45 37796.88 36590.51 35285.30 36096.76 359
FPMVS84.93 33585.65 33682.75 35686.77 37763.39 38198.35 35198.92 31074.11 36883.39 36798.98 32350.85 37592.40 37384.54 37094.97 31092.46 366
wuyk23d40.18 34341.29 34836.84 35986.18 37849.12 38379.73 37222.81 38427.64 37625.46 37928.45 37921.98 38248.89 37855.80 37623.56 37812.51 376
MVEpermissive76.82 2176.91 34174.31 34584.70 35385.38 37976.05 37696.88 36793.17 37767.39 37271.28 37489.01 37321.66 38487.69 37471.74 37372.29 37190.35 370
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
ANet_high77.30 34074.86 34484.62 35475.88 38077.61 37397.63 36593.15 37888.81 36064.27 37589.29 37236.51 37983.93 37775.89 37252.31 37492.33 368
PMVScopyleft70.75 2275.98 34274.97 34379.01 35870.98 38155.18 38293.37 37098.21 35065.08 37561.78 37693.83 36621.74 38392.53 37278.59 37191.12 34789.34 371
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
tmp_tt82.80 33681.52 33986.66 35266.61 38268.44 38092.79 37197.92 35468.96 37080.04 37399.85 4285.77 34696.15 36997.86 19843.89 37595.39 365
test12339.01 34542.50 34728.53 36039.17 38320.91 38498.75 32819.17 38519.83 37838.57 37766.67 37533.16 38015.42 37937.50 37829.66 37749.26 374
testmvs39.17 34443.78 34625.37 36136.04 38416.84 38598.36 35026.56 38320.06 37738.51 37867.32 37429.64 38115.30 38037.59 37739.90 37643.98 375
test_blank0.13 3490.17 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3811.57 3800.00 3850.00 3810.00 3790.00 3790.00 377
eth-test20.00 385
eth-test0.00 385
uanet_test0.02 3500.03 3530.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.27 3810.00 3850.00 3810.00 3790.00 3790.00 377
DCPMVS0.02 3500.03 3530.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.27 3810.00 3850.00 3810.00 3790.00 3790.00 377
cdsmvs_eth3d_5k24.64 34632.85 3490.00 3620.00 3850.00 3860.00 37399.51 1030.00 3800.00 38199.56 20796.58 1380.00 3810.00 3790.00 3790.00 377
pcd_1.5k_mvsjas8.27 34811.03 3510.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.27 38199.01 180.00 3810.00 3790.00 3790.00 377
sosnet-low-res0.02 3500.03 3530.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.27 3810.00 3850.00 3810.00 3790.00 3790.00 377
sosnet0.02 3500.03 3530.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.27 3810.00 3850.00 3810.00 3790.00 3790.00 377
uncertanet0.02 3500.03 3530.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.27 3810.00 3850.00 3810.00 3790.00 3790.00 377
Regformer0.02 3500.03 3530.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.27 3810.00 3850.00 3810.00 3790.00 3790.00 377
ab-mvs-re8.30 34711.06 3500.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 38199.58 2000.00 3850.00 3810.00 3790.00 3790.00 377
uanet0.02 3500.03 3530.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.27 3810.00 3850.00 3810.00 3790.00 3790.00 377
PC_three_145298.18 11599.84 1899.70 14299.31 398.52 34298.30 16799.80 8399.81 47
test_241102_TWO99.48 14299.08 2199.88 1199.81 7698.94 2999.96 2298.91 8399.84 6399.88 12
test_0728_THIRD98.99 3399.81 2599.80 8999.09 1499.96 2298.85 9699.90 2599.88 12
GSMVS99.52 148
sam_mvs194.86 19899.52 148
sam_mvs94.72 210
MTGPAbinary99.47 160
test_post199.23 24865.14 37794.18 23199.71 19697.58 224
test_post65.99 37694.65 21499.73 186
patchmatchnet-post98.70 33594.79 20299.74 180
MTMP99.54 12798.88 317
test9_res97.49 23599.72 10499.75 74
agg_prior297.21 25199.73 10399.75 74
test_prior499.56 6698.99 297
test_prior298.96 30498.34 9299.01 21799.52 22298.68 6197.96 19099.74 101
旧先验298.96 30496.70 25599.47 11599.94 5798.19 172
新几何299.01 295
无先验98.99 29799.51 10396.89 24599.93 7097.53 23299.72 89
原ACMM298.95 307
testdata299.95 4896.67 284
segment_acmp98.96 24
testdata198.85 31898.32 95
plane_prior599.47 16099.69 20797.78 20597.63 22898.67 263
plane_prior499.61 191
plane_prior397.00 27098.69 6499.11 200
plane_prior299.39 19898.97 39
plane_prior96.97 27399.21 25498.45 8097.60 231
n20.00 386
nn0.00 386
door-mid98.05 353
test1199.35 230
door97.92 354
HQP5-MVS96.83 278
BP-MVS97.19 255
HQP4-MVS98.66 26899.64 22098.64 275
HQP3-MVS99.39 21097.58 233
HQP2-MVS92.47 274
MDTV_nov1_ep13_2view95.18 32499.35 21496.84 24899.58 9495.19 18997.82 20299.46 167
ACMMP++_ref97.19 262
ACMMP++97.43 252
Test By Simon98.75 54