This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort by
DVP-MVScopyleft98.86 498.97 398.75 299.43 1299.63 199.25 1297.81 298.62 297.69 197.59 2099.90 298.93 598.99 498.42 1199.37 5799.62 4
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
SED-MVS98.90 299.07 298.69 399.38 1899.61 299.33 897.80 498.25 897.60 298.87 499.89 398.67 1799.02 298.26 1799.36 5999.61 6
PLCcopyleft94.95 397.37 3396.77 5198.07 2098.97 3198.21 8997.94 4596.85 3597.66 2597.58 393.33 5896.84 4798.01 3697.13 7196.20 8599.09 10398.01 128
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
APDe-MVS98.87 398.96 498.77 199.58 299.53 799.44 197.81 298.22 1097.33 498.70 599.33 1098.86 898.96 698.40 1399.63 599.57 9
MTMP97.18 598.83 26
CNLPA96.90 4296.28 5797.64 2898.56 4198.63 7796.85 6696.60 3697.73 1997.08 689.78 9996.28 5597.80 3996.73 8396.63 7498.94 12298.14 124
SF-MVS98.39 1398.45 1798.33 1099.45 999.05 3798.27 3797.65 997.73 1997.02 798.18 1299.25 1598.11 3298.15 3897.62 4699.45 3699.19 43
DVP-MVS++98.92 199.18 198.61 499.47 599.61 299.39 397.82 198.80 196.86 898.90 299.92 198.67 1799.02 298.20 1999.43 4599.82 1
DPE-MVScopyleft98.75 598.91 698.57 599.21 2399.54 699.42 297.78 697.49 3196.84 998.94 199.82 598.59 2198.90 1098.22 1899.56 1799.48 14
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MTAPA96.83 1099.12 21
CNVR-MVS98.47 1198.46 1698.48 799.40 1499.05 3799.02 1997.54 1697.73 1996.65 1197.20 2999.13 2098.85 998.91 998.10 2399.41 4899.08 55
MSLP-MVS++98.04 2397.93 3298.18 1699.10 2799.09 3698.34 3696.99 3297.54 2996.60 1294.82 5098.45 3498.89 697.46 6198.77 499.17 9199.37 20
AdaColmapbinary97.53 3096.93 4798.24 1499.21 2398.77 6598.47 3497.34 2396.68 5296.52 1395.11 4896.12 5798.72 1497.19 6996.24 8399.17 9198.39 112
MSP-MVS98.73 698.93 598.50 699.44 1199.57 499.36 497.65 998.14 1296.51 1498.49 799.65 898.67 1798.60 1498.42 1199.40 5199.63 2
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
SD-MVS98.52 898.77 998.23 1598.15 4899.26 2698.79 2697.59 1598.52 396.25 1597.99 1599.75 699.01 398.27 3297.97 3199.59 799.63 2
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
APD-MVScopyleft98.36 1598.32 2398.41 899.47 599.26 2699.12 1597.77 796.73 5096.12 1697.27 2898.88 2498.46 2598.47 1898.39 1499.52 2099.22 39
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CPTT-MVS97.78 2697.54 3598.05 2198.91 3499.05 3799.00 2096.96 3397.14 4195.92 1795.50 4398.78 2898.99 497.20 6796.07 8798.54 15799.04 64
SMA-MVScopyleft98.66 798.89 798.39 999.60 199.41 1299.00 2097.63 1297.78 1895.83 1898.33 1199.83 498.85 998.93 898.56 699.41 4899.40 18
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
TSAR-MVS + MP.98.49 998.78 898.15 1998.14 4999.17 3399.34 697.18 2998.44 595.72 1997.84 1699.28 1298.87 799.05 198.05 2699.66 299.60 7
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
CSCG97.44 3297.18 4397.75 2799.47 599.52 898.55 3195.41 4097.69 2395.72 1994.29 5495.53 6298.10 3396.20 10797.38 5599.24 7699.62 4
CP-MVS98.32 1798.34 2298.29 1299.34 2099.30 2299.15 1497.35 2197.49 3195.58 2197.72 1898.62 3398.82 1198.29 2897.67 4599.51 2599.28 28
3Dnovator+93.91 797.23 3597.22 4097.24 3298.89 3598.85 6198.26 3893.25 5697.99 1595.56 2290.01 9798.03 4098.05 3497.91 4798.43 1099.44 4299.35 22
HFP-MVS98.48 1098.62 1198.32 1199.39 1799.33 2199.27 1097.42 1898.27 795.25 2398.34 1098.83 2699.08 198.26 3398.08 2599.48 2899.26 33
NCCC98.10 2198.05 3098.17 1899.38 1899.05 3799.00 2097.53 1798.04 1495.12 2494.80 5199.18 1898.58 2298.49 1797.78 4299.39 5398.98 72
ACMMPR98.40 1298.49 1398.28 1399.41 1399.40 1399.36 497.35 2198.30 695.02 2597.79 1798.39 3699.04 298.26 3398.10 2399.50 2799.22 39
HPM-MVS++copyleft98.34 1698.47 1598.18 1699.46 899.15 3499.10 1697.69 897.67 2494.93 2697.62 1999.70 798.60 2098.45 2097.46 5199.31 6699.26 33
test250694.32 8693.00 11595.87 5196.16 7699.39 1596.96 6192.80 6495.22 9394.47 2791.55 8070.45 19395.25 9098.29 2897.98 2999.59 798.10 126
OMC-MVS97.00 3996.92 4897.09 3498.69 3898.66 7297.85 4695.02 4298.09 1394.47 2793.15 5996.90 4597.38 4697.16 7096.82 7299.13 9897.65 141
SteuartSystems-ACMMP98.38 1498.71 1097.99 2399.34 2099.46 1099.34 697.33 2497.31 3594.25 2998.06 1399.17 1998.13 3198.98 598.46 999.55 1899.54 11
Skip Steuart: Steuart Systems R&D Blog.
TSAR-MVS + GP.97.45 3198.36 1996.39 4195.56 8698.93 5397.74 4893.31 5397.61 2794.24 3098.44 999.19 1798.03 3597.60 5697.41 5399.44 4299.33 24
DeepC-MVS_fast96.13 198.13 2098.27 2597.97 2499.16 2699.03 4399.05 1897.24 2698.22 1094.17 3195.82 3998.07 3898.69 1698.83 1198.80 299.52 2099.10 52
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
3Dnovator93.79 897.08 3797.20 4196.95 3799.09 2899.03 4398.20 3993.33 5297.99 1593.82 3290.61 9196.80 4897.82 3797.90 4898.78 399.47 3199.26 33
MCST-MVS98.20 1898.36 1998.01 2299.40 1499.05 3799.00 2097.62 1397.59 2893.70 3397.42 2799.30 1198.77 1398.39 2697.48 5099.59 799.31 27
PVSNet_BlendedMVS95.41 6195.28 7195.57 5697.42 5999.02 4595.89 9993.10 5996.16 6293.12 3491.99 7185.27 12394.66 9998.09 4397.34 5699.24 7699.08 55
PVSNet_Blended95.41 6195.28 7195.57 5697.42 5999.02 4595.89 9993.10 5996.16 6293.12 3491.99 7185.27 12394.66 9998.09 4397.34 5699.24 7699.08 55
CANet96.84 4597.20 4196.42 4097.92 5299.24 3098.60 2993.51 5197.11 4293.07 3691.16 8397.24 4496.21 7298.24 3598.05 2699.22 8299.35 22
PGM-MVS97.81 2598.11 2897.46 2999.55 399.34 2099.32 994.51 4596.21 6193.07 3698.05 1497.95 4198.82 1198.22 3697.89 3799.48 2899.09 54
MVSTER94.89 6795.07 7894.68 8094.71 11296.68 12797.00 5990.57 9795.18 9593.05 3895.21 4686.41 11593.72 11797.59 5795.88 9699.00 11598.50 104
MP-MVScopyleft98.09 2298.30 2497.84 2699.34 2099.19 3299.23 1397.40 1997.09 4393.03 3997.58 2298.85 2598.57 2398.44 2297.69 4499.48 2899.23 37
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
CS-MVS96.87 4397.41 3996.24 4597.42 5999.48 997.30 5591.83 8097.17 3993.02 4094.80 5194.45 6698.16 3098.61 1397.85 3999.69 199.50 12
IB-MVS89.56 1591.71 12392.50 12390.79 12895.94 8298.44 8387.05 19891.38 8993.15 12692.98 4184.78 13485.14 12678.27 20592.47 17794.44 14099.10 10299.08 55
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
EPNet96.27 5396.97 4695.46 5998.47 4298.28 8697.41 5293.67 4995.86 7492.86 4297.51 2493.79 7091.76 13997.03 7497.03 6498.61 15399.28 28
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
DELS-MVS96.06 5496.04 6196.07 4997.77 5499.25 2898.10 4193.26 5494.42 10792.79 4388.52 10893.48 7295.06 9398.51 1698.83 199.45 3699.28 28
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PHI-MVS97.78 2698.44 1897.02 3698.73 3799.25 2898.11 4095.54 3996.66 5392.79 4398.52 699.38 997.50 4497.84 4998.39 1499.45 3699.03 65
dps90.11 14789.37 16090.98 12393.89 12896.21 14093.49 13677.61 19691.95 14892.74 4588.85 10378.77 15792.37 13287.71 20587.71 20295.80 19594.38 187
ACMMP_NAP98.20 1898.49 1397.85 2599.50 499.40 1399.26 1197.64 1197.47 3392.62 4697.59 2099.09 2298.71 1598.82 1297.86 3899.40 5199.19 43
ECVR-MVScopyleft94.14 8892.96 11695.52 5896.16 7699.39 1596.96 6192.80 6495.22 9392.38 4781.48 15280.31 14995.25 9098.29 2897.98 2999.59 798.05 127
CS-MVS-test97.00 3997.85 3396.00 5097.77 5499.56 596.35 8591.95 7597.54 2992.20 4896.14 3596.00 6098.19 2898.46 1997.78 4299.57 1499.45 16
ACMMPcopyleft97.37 3397.48 3797.25 3198.88 3699.28 2498.47 3496.86 3497.04 4592.15 4997.57 2396.05 5997.67 4097.27 6595.99 9299.46 3299.14 51
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DeepPCF-MVS95.28 297.00 3998.35 2195.42 6097.30 6298.94 5194.82 11796.03 3898.24 992.11 5095.80 4098.64 3295.51 8598.95 798.66 596.78 18999.20 42
DROMVSNet96.49 4997.63 3495.16 6494.75 11098.69 7097.39 5488.97 11896.34 5792.02 5196.04 3796.46 5098.21 2698.41 2497.96 3299.61 699.55 10
MAR-MVS95.50 5695.60 6595.39 6198.67 3998.18 9295.89 9989.81 10794.55 10591.97 5292.99 6190.21 9097.30 4796.79 8097.49 4998.72 14398.99 70
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
CLD-MVS94.79 7194.36 8895.30 6295.21 9697.46 10697.23 5692.24 7296.43 5591.77 5392.69 6584.31 13196.06 7395.52 12595.03 11999.31 6699.06 60
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
MVS_111021_LR97.16 3698.01 3196.16 4698.47 4298.98 4896.94 6393.89 4897.64 2691.44 5498.89 396.41 5197.20 4998.02 4597.29 6099.04 11498.85 87
DPM-MVS96.86 4496.82 5096.91 3898.08 5098.20 9098.52 3397.20 2897.24 3891.42 5591.84 7598.45 3497.25 4897.07 7297.40 5498.95 12197.55 144
test111193.94 9392.78 11795.29 6396.14 7899.42 1196.79 7092.85 6395.08 9791.39 5680.69 15779.86 15295.00 9498.28 3198.00 2899.58 1198.11 125
PatchMatch-RL94.69 7594.41 8695.02 6797.63 5898.15 9394.50 12491.99 7495.32 8791.31 5795.47 4483.44 13896.02 7596.56 8995.23 11498.69 14696.67 168
CHOSEN 280x42095.46 5997.01 4593.66 9597.28 6397.98 9796.40 8385.39 15896.10 6691.07 5896.53 3296.34 5495.61 8297.65 5596.95 6796.21 19097.49 145
FA-MVS(training)93.94 9395.16 7492.53 10794.87 10598.57 8095.42 10779.49 19195.37 8590.98 5986.54 12094.26 6895.44 8797.80 5395.19 11698.97 11898.38 113
Anonymous2023121193.49 10592.33 13294.84 7594.78 10998.00 9696.11 9091.85 7794.86 10090.91 6074.69 17789.18 9896.73 6294.82 14095.51 10698.67 14799.24 36
XVS96.60 6899.35 1796.82 6790.85 6198.72 2999.46 32
X-MVStestdata96.60 6899.35 1796.82 6790.85 6198.72 2999.46 32
X-MVS97.84 2498.19 2797.42 3099.40 1499.35 1799.06 1797.25 2597.38 3490.85 6196.06 3698.72 2998.53 2498.41 2498.15 2299.46 3299.28 28
canonicalmvs95.25 6595.45 6995.00 6895.27 9498.72 6896.89 6489.82 10696.51 5490.84 6493.72 5786.01 11897.66 4195.78 11997.94 3499.54 1999.50 12
QAPM96.78 4797.14 4496.36 4299.05 2999.14 3598.02 4293.26 5497.27 3790.84 6491.16 8397.31 4397.64 4297.70 5498.20 1999.33 6199.18 46
train_agg97.65 2998.06 2997.18 3398.94 3298.91 5698.98 2497.07 3196.71 5190.66 6697.43 2699.08 2398.20 2797.96 4697.14 6299.22 8299.19 43
MSDG94.82 6993.73 10396.09 4798.34 4597.43 10897.06 5896.05 3795.84 7590.56 6786.30 12789.10 10095.55 8496.13 11095.61 10399.00 11595.73 176
ETV-MVS96.31 5197.47 3894.96 7094.79 10798.78 6496.08 9191.41 8896.16 6290.50 6895.76 4196.20 5697.39 4598.42 2397.82 4099.57 1499.18 46
GBi-Net93.81 9794.18 9293.38 10091.34 15595.86 15196.22 8688.68 12095.23 9090.40 6986.39 12391.16 8194.40 10596.52 9296.30 7999.21 8597.79 133
test193.81 9794.18 9293.38 10091.34 15595.86 15196.22 8688.68 12095.23 9090.40 6986.39 12391.16 8194.40 10596.52 9296.30 7999.21 8597.79 133
FMVSNet393.79 9994.17 9493.35 10291.21 15895.99 14496.62 7588.68 12095.23 9090.40 6986.39 12391.16 8194.11 10995.96 11296.67 7399.07 10697.79 133
PVSNet_Blended_VisFu94.77 7395.54 6793.87 9196.48 7198.97 4994.33 12691.84 7894.93 9990.37 7285.04 13394.99 6390.87 15498.12 4197.30 5899.30 6899.45 16
DeepC-MVS94.87 496.76 4896.50 5497.05 3598.21 4799.28 2498.67 2797.38 2097.31 3590.36 7389.19 10193.58 7198.19 2898.31 2798.50 799.51 2599.36 21
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DCV-MVSNet94.76 7495.12 7794.35 8595.10 10095.81 15596.46 8289.49 11296.33 5890.16 7492.55 6790.26 8995.83 7795.52 12596.03 9099.06 10999.33 24
ACMM92.75 1094.41 8493.84 10195.09 6696.41 7396.80 12194.88 11693.54 5096.41 5690.16 7492.31 6983.11 14096.32 7096.22 10594.65 12999.22 8297.35 150
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
UGNet94.92 6696.63 5292.93 10496.03 8098.63 7794.53 12391.52 8696.23 6090.03 7692.87 6496.10 5886.28 18696.68 8596.60 7599.16 9499.32 26
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
baseline194.59 7794.47 8594.72 7895.16 9797.97 9896.07 9291.94 7694.86 10089.98 7791.60 7985.87 12095.64 8097.07 7296.90 6899.52 2097.06 160
CostFormer90.69 13590.48 15390.93 12494.18 12296.08 14394.03 12978.20 19493.47 12389.96 7890.97 8880.30 15093.72 11787.66 20688.75 19895.51 19996.12 172
MVS_111021_HR97.04 3898.20 2695.69 5498.44 4499.29 2396.59 7793.20 5797.70 2289.94 7998.46 896.89 4696.71 6398.11 4297.95 3399.27 7299.01 68
FMVSNet293.30 10893.36 11193.22 10391.34 15595.86 15196.22 8688.24 12695.15 9689.92 8081.64 15089.36 9594.40 10596.77 8196.98 6699.21 8597.79 133
MVS_030496.31 5196.91 4995.62 5597.21 6499.20 3198.55 3193.10 5997.04 4589.73 8190.30 9396.35 5295.71 7898.14 3997.93 3699.38 5499.40 18
RPSCF94.05 9094.00 9794.12 8896.20 7596.41 13596.61 7691.54 8595.83 7689.73 8196.94 3092.80 7595.35 8991.63 18990.44 19195.27 20293.94 193
EPP-MVSNet95.27 6496.18 6094.20 8794.88 10498.64 7594.97 11390.70 9595.34 8689.67 8391.66 7893.84 6995.42 8897.32 6497.00 6599.58 1199.47 15
TAPA-MVS94.18 596.38 5096.49 5596.25 4398.26 4698.66 7298.00 4394.96 4397.17 3989.48 8492.91 6396.35 5297.53 4396.59 8895.90 9599.28 7097.82 132
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
EIA-MVS95.50 5696.19 5994.69 7994.83 10698.88 6095.93 9691.50 8794.47 10689.43 8593.14 6092.72 7697.05 5597.82 5297.13 6399.43 4599.15 49
tpm cat188.90 16287.78 17890.22 13493.88 12995.39 16993.79 13278.11 19592.55 13689.43 8581.31 15379.84 15391.40 14284.95 20986.34 20794.68 20994.09 190
TSAR-MVS + ACMM97.71 2898.60 1296.66 3998.64 4099.05 3798.85 2597.23 2798.45 489.40 8797.51 2499.27 1496.88 5998.53 1597.81 4198.96 12099.59 8
casdiffmvspermissive94.38 8594.15 9694.64 8194.70 11498.51 8196.03 9491.66 8395.70 7889.36 8886.48 12285.03 12896.60 6697.40 6297.30 5899.52 2098.67 95
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
DI_MVS_plusplus_trai94.01 9193.63 10594.44 8394.54 11698.26 8897.51 5190.63 9695.88 7389.34 8980.54 15989.36 9595.48 8696.33 10196.27 8299.17 9198.78 93
baseline94.83 6895.82 6393.68 9494.75 11097.80 9996.51 8088.53 12397.02 4789.34 8992.93 6292.18 7894.69 9895.78 11996.08 8698.27 16898.97 76
casdiffmvs_mvgpermissive94.55 7894.26 9094.88 7294.96 10298.51 8197.11 5791.82 8194.28 11089.20 9186.60 11986.85 11196.56 6797.47 6097.25 6199.64 498.83 89
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
OpenMVScopyleft92.33 1195.50 5695.22 7395.82 5398.98 3098.97 4997.67 4993.04 6294.64 10389.18 9284.44 13894.79 6496.79 6097.23 6697.61 4799.24 7698.88 83
ACMP92.88 994.43 8294.38 8794.50 8296.01 8197.69 10195.85 10292.09 7395.74 7789.12 9395.14 4782.62 14394.77 9595.73 12194.67 12899.14 9799.06 60
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
PCF-MVS93.95 695.65 5595.14 7596.25 4397.73 5798.73 6797.59 5097.13 3092.50 13789.09 9489.85 9896.65 4996.90 5894.97 13994.89 12399.08 10498.38 113
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
diffmvspermissive94.31 8794.21 9194.42 8494.64 11598.28 8696.36 8491.56 8496.77 4988.89 9588.97 10284.23 13296.01 7696.05 11196.41 7899.05 11398.79 92
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
thres100view90093.55 10492.47 12794.81 7695.33 9098.74 6696.78 7192.30 7192.63 13388.29 9687.21 11278.01 16096.78 6196.38 9795.92 9399.38 5498.40 111
tfpn200view993.64 10092.57 12094.89 7195.33 9098.94 5196.82 6792.31 6892.63 13388.29 9687.21 11278.01 16097.12 5396.82 7795.85 9799.45 3698.56 99
thres20093.62 10192.54 12194.88 7295.36 8998.93 5396.75 7292.31 6892.84 13088.28 9886.99 11477.81 16297.13 5196.82 7795.92 9399.45 3698.49 105
FC-MVSNet-train93.85 9693.91 9893.78 9394.94 10396.79 12494.29 12791.13 9093.84 11888.26 9990.40 9285.23 12594.65 10196.54 9195.31 11199.38 5499.28 28
thres40093.56 10392.43 12894.87 7495.40 8898.91 5696.70 7492.38 6792.93 12988.19 10086.69 11777.35 16397.13 5196.75 8295.85 9799.42 4798.56 99
thres600view793.49 10592.37 13194.79 7795.42 8798.93 5396.58 7892.31 6893.04 12787.88 10186.62 11876.94 16697.09 5496.82 7795.63 10299.45 3698.63 97
PMMVS94.61 7695.56 6693.50 9794.30 12196.74 12594.91 11589.56 11195.58 8387.72 10296.15 3492.86 7496.06 7395.47 12795.02 12098.43 16597.09 156
FMVSNet191.54 12790.93 14892.26 11090.35 16595.27 17395.22 11087.16 13791.37 15487.62 10375.45 17283.84 13594.43 10396.52 9296.30 7998.82 13297.74 139
IS_MVSNet95.28 6396.43 5693.94 8995.30 9299.01 4795.90 9791.12 9194.13 11387.50 10491.23 8294.45 6694.17 10898.45 2098.50 799.65 399.23 37
CDPH-MVS96.84 4597.49 3696.09 4798.92 3398.85 6198.61 2895.09 4196.00 6987.29 10595.45 4597.42 4297.16 5097.83 5097.94 3499.44 4298.92 78
ET-MVSNet_ETH3D93.34 10794.33 8992.18 11183.26 21297.66 10296.72 7389.89 10595.62 8187.17 10696.00 3883.69 13796.99 5693.78 15595.34 11099.06 10998.18 123
MVS_Test94.82 6995.66 6493.84 9294.79 10798.35 8596.49 8189.10 11796.12 6587.09 10792.58 6690.61 8796.48 6896.51 9596.89 6999.11 10198.54 101
thisisatest053094.54 7995.47 6893.46 9894.51 11798.65 7494.66 12090.72 9395.69 8086.90 10893.80 5589.44 9494.74 9696.98 7694.86 12499.19 8998.85 87
tttt051794.52 8095.44 7093.44 9994.51 11798.68 7194.61 12290.72 9395.61 8286.84 10993.78 5689.26 9794.74 9697.02 7594.86 12499.20 8898.87 85
baseline293.01 11094.17 9491.64 11692.83 14397.49 10593.40 13887.53 13293.67 12086.07 11091.83 7686.58 11291.36 14396.38 9795.06 11898.67 14798.20 122
TSAR-MVS + COLMAP94.79 7194.51 8495.11 6596.50 7097.54 10397.99 4494.54 4497.81 1785.88 11196.73 3181.28 14896.99 5696.29 10295.21 11598.76 14296.73 167
OPM-MVS93.61 10292.43 12895.00 6896.94 6797.34 10997.78 4794.23 4689.64 16985.53 11288.70 10582.81 14196.28 7196.28 10395.00 12299.24 7697.22 153
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
pmmvs490.55 13889.91 15591.30 12190.26 16794.95 18192.73 14987.94 12993.44 12485.35 11382.28 14976.09 16893.02 12893.56 16092.26 18398.51 15996.77 166
Vis-MVSNet (Re-imp)94.46 8196.24 5892.40 10895.23 9598.64 7595.56 10590.99 9294.42 10785.02 11490.88 8994.65 6588.01 17698.17 3798.37 1699.57 1498.53 102
CDS-MVSNet92.77 11293.60 10691.80 11492.63 14596.80 12195.24 10989.14 11690.30 16684.58 11586.76 11590.65 8690.42 16295.89 11496.49 7698.79 13998.32 118
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
FMVSNet590.36 14090.93 14889.70 14187.99 20092.25 20592.03 16683.51 17592.20 14684.13 11685.59 13086.48 11392.43 13194.61 14194.52 13798.13 17190.85 206
GeoE92.52 11692.64 11992.39 10993.96 12697.76 10096.01 9585.60 15593.23 12583.94 11781.56 15184.80 12995.63 8196.22 10595.83 9999.19 8999.07 59
COLMAP_ROBcopyleft90.49 1493.27 10992.71 11893.93 9097.75 5697.44 10796.07 9293.17 5895.40 8483.86 11883.76 14288.72 10293.87 11394.25 15194.11 14598.87 12895.28 182
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
HQP-MVS94.43 8294.57 8394.27 8696.41 7397.23 11296.89 6493.98 4795.94 7183.68 11995.01 4984.46 13095.58 8395.47 12794.85 12799.07 10699.00 69
LS3D95.46 5995.14 7595.84 5297.91 5398.90 5898.58 3097.79 597.07 4483.65 12088.71 10488.64 10397.82 3797.49 5997.42 5299.26 7597.72 140
CHOSEN 1792x268892.66 11492.49 12492.85 10597.13 6598.89 5995.90 9788.50 12495.32 8783.31 12171.99 19588.96 10194.10 11096.69 8496.49 7698.15 17099.10 52
UA-Net93.96 9295.95 6291.64 11696.06 7998.59 7995.29 10890.00 10291.06 15782.87 12290.64 9098.06 3986.06 18798.14 3998.20 1999.58 1196.96 161
IterMVS-LS92.56 11593.18 11291.84 11393.90 12794.97 18094.99 11286.20 14794.18 11282.68 12385.81 12987.36 11094.43 10395.31 13196.02 9198.87 12898.60 98
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
HyFIR lowres test92.03 11891.55 14292.58 10697.13 6598.72 6894.65 12186.54 14393.58 12282.56 12467.75 20690.47 8895.67 7995.87 11595.54 10598.91 12598.93 77
UniMVSNet_ETH3D88.47 16686.00 19691.35 12091.55 15296.29 13892.53 15288.81 11985.58 19982.33 12567.63 20766.87 20894.04 11191.49 19095.24 11398.84 13198.92 78
MS-PatchMatch91.82 12192.51 12291.02 12295.83 8396.88 11795.05 11184.55 17193.85 11782.01 12682.51 14891.71 7990.52 16195.07 13793.03 16798.13 17194.52 184
MDTV_nov1_ep1391.57 12693.18 11289.70 14193.39 13596.97 11593.53 13580.91 18895.70 7881.86 12792.40 6889.93 9193.25 12591.97 18690.80 18995.25 20394.46 186
EPMVS90.88 13492.12 13489.44 14594.71 11297.24 11193.55 13476.81 19895.89 7281.77 12891.49 8186.47 11493.87 11390.21 19690.07 19395.92 19393.49 199
test0.0.03 191.97 11993.91 9889.72 14093.31 13796.40 13691.34 17687.06 13893.86 11681.67 12991.15 8589.16 9986.02 18895.08 13695.09 11798.91 12596.64 170
TAMVS90.54 13990.87 15090.16 13591.48 15396.61 12993.26 14186.08 14887.71 18581.66 13083.11 14684.04 13390.42 16294.54 14394.60 13198.04 17595.48 180
Fast-Effi-MVS+91.87 12092.08 13591.62 11892.91 14197.21 11394.93 11484.60 16993.61 12181.49 13183.50 14378.95 15596.62 6596.55 9096.22 8499.16 9498.51 103
Baseline_NR-MVSNet89.27 15688.01 17290.73 12989.26 18493.71 20092.71 15089.78 10890.73 16081.28 13273.53 18772.85 18292.30 13392.53 17593.84 15499.07 10698.88 83
LGP-MVS_train94.12 8994.62 8293.53 9696.44 7297.54 10397.40 5391.84 7894.66 10281.09 13395.70 4283.36 13995.10 9296.36 10095.71 10199.32 6399.03 65
UniMVSNet (Re)90.03 14889.61 15790.51 13189.97 17196.12 14292.32 15789.26 11490.99 15880.95 13478.25 16675.08 17391.14 14693.78 15593.87 15299.41 4899.21 41
tmp_tt66.88 21186.07 20773.86 21868.22 21833.38 22096.88 4880.67 13588.23 10978.82 15649.78 21782.68 21277.47 21483.19 219
Vis-MVSNetpermissive92.77 11295.00 8090.16 13594.10 12498.79 6394.76 11988.26 12592.37 14279.95 13688.19 11091.58 8084.38 19797.59 5797.58 4899.52 2098.91 81
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
ACMH+90.88 1291.41 12991.13 14591.74 11595.11 9996.95 11693.13 14389.48 11392.42 13979.93 13785.13 13278.02 15993.82 11593.49 16293.88 15198.94 12297.99 129
UniMVSNet_NR-MVSNet90.35 14189.96 15490.80 12789.66 17495.83 15492.48 15390.53 9890.96 15979.57 13879.33 16377.14 16493.21 12692.91 17194.50 13999.37 5799.05 62
DU-MVS89.67 15188.84 16290.63 13089.26 18495.61 16092.48 15389.91 10391.22 15579.57 13877.72 16771.18 19093.21 12692.53 17594.57 13399.35 6099.05 62
Effi-MVS+92.93 11193.86 10091.86 11294.07 12598.09 9595.59 10485.98 15094.27 11179.54 14091.12 8681.81 14596.71 6396.67 8696.06 8899.27 7298.98 72
NR-MVSNet89.34 15488.66 16390.13 13890.40 16395.61 16093.04 14589.91 10391.22 15578.96 14177.72 16768.90 20289.16 17294.24 15293.95 14999.32 6398.99 70
ACMH90.77 1391.51 12891.63 14191.38 11995.62 8596.87 11991.76 17189.66 10991.58 15278.67 14286.73 11678.12 15893.77 11694.59 14294.54 13698.78 14098.98 72
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
PatchmatchNetpermissive90.56 13792.49 12488.31 15793.83 13096.86 12092.42 15576.50 20095.96 7078.31 14391.96 7389.66 9393.48 12190.04 19889.20 19795.32 20093.73 197
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
SCA90.92 13393.04 11488.45 15493.72 13297.33 11092.77 14776.08 20396.02 6878.26 14491.96 7390.86 8493.99 11290.98 19390.04 19495.88 19494.06 192
pm-mvs189.19 15889.02 16189.38 14690.40 16395.74 15892.05 16588.10 12886.13 19577.70 14573.72 18679.44 15488.97 17395.81 11894.51 13899.08 10497.78 138
v14887.51 18086.79 18988.36 15589.39 18195.21 17589.84 18988.20 12787.61 18777.56 14673.38 18970.32 19686.80 18290.70 19492.31 18198.37 16697.98 131
ADS-MVSNet89.80 14991.33 14488.00 16694.43 11996.71 12692.29 15974.95 20896.07 6777.39 14788.67 10686.09 11793.26 12488.44 20289.57 19695.68 19693.81 196
FC-MVSNet-test91.63 12493.82 10289.08 14892.02 15096.40 13693.26 14187.26 13593.72 11977.26 14888.61 10789.86 9285.50 19095.72 12395.02 12099.16 9497.44 147
thisisatest051590.12 14692.06 13687.85 16990.03 16996.17 14187.83 19587.45 13391.71 15177.15 14985.40 13184.01 13485.74 18995.41 12993.30 16398.88 12798.43 107
TranMVSNet+NR-MVSNet89.23 15788.48 16690.11 13989.07 19095.25 17492.91 14690.43 9990.31 16577.10 15076.62 17071.57 18891.83 13892.12 18194.59 13299.32 6398.92 78
tpmrst88.86 16489.62 15687.97 16794.33 12095.98 14592.62 15176.36 20194.62 10476.94 15185.98 12882.80 14292.80 12986.90 20887.15 20494.77 20793.93 194
WR-MVS_H87.93 17387.85 17688.03 16589.62 17595.58 16490.47 18585.55 15687.20 19076.83 15274.42 18172.67 18486.37 18593.22 16693.04 16699.33 6198.83 89
MIMVSNet88.99 16191.07 14686.57 18686.78 20695.62 15991.20 17975.40 20690.65 16276.57 15384.05 14082.44 14491.01 14995.84 11695.38 10998.48 16193.50 198
TinyColmap89.42 15288.58 16490.40 13293.80 13195.45 16793.96 13186.54 14392.24 14576.49 15480.83 15570.44 19493.37 12294.45 14693.30 16398.26 16993.37 200
TDRefinement89.07 16088.15 16990.14 13795.16 9796.88 11795.55 10690.20 10089.68 16876.42 15576.67 16974.30 17684.85 19493.11 16791.91 18598.64 15294.47 185
tfpnnormal88.50 16587.01 18790.23 13391.36 15495.78 15792.74 14890.09 10183.65 20476.33 15671.46 19869.58 19991.84 13795.54 12494.02 14899.06 10999.03 65
USDC90.69 13590.52 15290.88 12594.17 12396.43 13495.82 10386.76 14093.92 11576.27 15786.49 12174.30 17693.67 11995.04 13893.36 16098.61 15394.13 189
CP-MVSNet87.89 17687.27 18288.62 15289.30 18295.06 17790.60 18485.78 15287.43 18975.98 15874.60 17868.14 20590.76 15593.07 16993.60 15799.30 6898.98 72
RPMNet90.19 14492.03 13788.05 16393.46 13395.95 14893.41 13774.59 20992.40 14075.91 15984.22 13986.41 11592.49 13094.42 14793.85 15398.44 16396.96 161
pmmvs-eth3d84.33 19982.94 20485.96 19284.16 20990.94 20886.55 19983.79 17384.25 20275.85 16070.64 20056.43 21887.44 18192.20 18090.41 19297.97 17695.68 177
Effi-MVS+-dtu91.78 12293.59 10789.68 14392.44 14797.11 11494.40 12584.94 16592.43 13875.48 16191.09 8783.75 13693.55 12096.61 8795.47 10797.24 18598.67 95
pmmvs685.98 19384.89 20187.25 18088.83 19594.35 19489.36 19185.30 16178.51 21375.44 16262.71 21275.41 17087.65 17893.58 15992.40 18096.89 18797.29 152
TransMVSNet (Re)87.73 17886.79 18988.83 15090.76 15994.40 19391.33 17789.62 11084.73 20175.41 16372.73 19171.41 18986.80 18294.53 14493.93 15099.06 10995.83 174
WR-MVS87.93 17388.09 17087.75 17089.26 18495.28 17190.81 18286.69 14188.90 17375.29 16474.31 18273.72 17985.19 19392.26 17893.32 16299.27 7298.81 91
CR-MVSNet90.16 14591.96 13888.06 16293.32 13695.95 14893.36 13975.99 20492.40 14075.19 16583.18 14485.37 12292.05 13495.21 13394.56 13498.47 16297.08 158
Patchmtry95.96 14793.36 13975.99 20475.19 165
PatchT89.13 15991.71 13986.11 19092.92 14095.59 16283.64 20675.09 20791.87 14975.19 16582.63 14785.06 12792.05 13495.21 13394.56 13497.76 17997.08 158
test-LLR91.62 12593.56 10889.35 14793.31 13796.57 13092.02 16787.06 13892.34 14375.05 16890.20 9488.64 10390.93 15096.19 10894.07 14697.75 18096.90 164
TESTMET0.1,191.07 13193.56 10888.17 15890.43 16296.57 13092.02 16782.83 18092.34 14375.05 16890.20 9488.64 10390.93 15096.19 10894.07 14697.75 18096.90 164
v888.21 17087.94 17588.51 15389.62 17595.01 17992.31 15884.99 16488.94 17274.70 17075.03 17473.51 18090.67 15892.11 18292.74 17598.80 13798.24 120
V4288.31 16887.95 17488.73 15189.44 17995.34 17092.23 16187.21 13688.83 17474.49 17174.89 17673.43 18190.41 16492.08 18492.77 17498.60 15598.33 116
test-mter90.95 13293.54 11087.93 16890.28 16696.80 12191.44 17382.68 18192.15 14774.37 17289.57 10088.23 10890.88 15396.37 9994.31 14297.93 17797.37 149
PS-CasMVS87.33 18386.68 19288.10 15989.22 18994.93 18290.35 18785.70 15386.44 19474.01 17373.43 18866.59 21190.04 16692.92 17093.52 15899.28 7098.91 81
PEN-MVS87.22 18586.50 19488.07 16088.88 19394.44 19290.99 18186.21 14586.53 19373.66 17474.97 17566.56 21289.42 17191.20 19293.48 15999.24 7698.31 119
v2v48288.25 16987.71 17988.88 14989.23 18895.28 17192.10 16387.89 13088.69 17773.31 17575.32 17371.64 18791.89 13692.10 18392.92 16998.86 13097.99 129
v1088.00 17187.96 17388.05 16389.44 17994.68 18792.36 15683.35 17689.37 17172.96 17673.98 18472.79 18391.35 14493.59 15792.88 17098.81 13598.42 109
testgi89.42 15291.50 14387.00 18392.40 14895.59 16289.15 19285.27 16292.78 13172.42 17791.75 7776.00 16984.09 19994.38 14893.82 15598.65 15196.15 171
DTE-MVSNet86.67 18886.09 19587.35 17988.45 19994.08 19890.65 18386.05 14986.13 19572.19 17874.58 18066.77 21087.61 17990.31 19593.12 16599.13 9897.62 143
CANet_DTU93.92 9596.57 5390.83 12695.63 8498.39 8496.99 6087.38 13496.26 5971.97 17996.31 3393.02 7394.53 10297.38 6396.83 7198.49 16097.79 133
Fast-Effi-MVS+-dtu91.19 13093.64 10488.33 15692.19 14996.46 13393.99 13081.52 18692.59 13571.82 18092.17 7085.54 12191.68 14095.73 12194.64 13098.80 13798.34 115
v114487.92 17587.79 17788.07 16089.27 18395.15 17692.17 16285.62 15488.52 17871.52 18173.80 18572.40 18591.06 14893.54 16192.80 17298.81 13598.33 116
pmmvs587.83 17788.09 17087.51 17889.59 17795.48 16589.75 19084.73 16786.07 19771.44 18280.57 15870.09 19790.74 15794.47 14592.87 17198.82 13297.10 155
CMPMVSbinary65.18 1784.76 19783.10 20386.69 18595.29 9395.05 17888.37 19385.51 15780.27 21171.31 18368.37 20473.85 17885.25 19187.72 20487.75 20194.38 21088.70 210
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
MVS-HIRNet85.36 19586.89 18883.57 19790.13 16894.51 19183.57 20772.61 21188.27 18171.22 18468.97 20281.81 14588.91 17493.08 16891.94 18494.97 20689.64 209
v14419287.40 18287.20 18487.64 17288.89 19294.88 18491.65 17284.70 16887.80 18471.17 18573.20 19070.91 19190.75 15692.69 17392.49 17898.71 14498.43 107
PM-MVS84.72 19884.47 20285.03 19384.67 20891.57 20786.27 20082.31 18387.65 18670.62 18676.54 17156.41 21988.75 17592.59 17489.85 19597.54 18396.66 169
v119287.51 18087.31 18187.74 17189.04 19194.87 18592.07 16485.03 16388.49 17970.32 18772.65 19270.35 19591.21 14593.59 15792.80 17298.78 14098.42 109
SixPastTwentyTwo88.37 16789.47 15887.08 18190.01 17095.93 15087.41 19685.32 15990.26 16770.26 18886.34 12671.95 18690.93 15092.89 17291.72 18698.55 15697.22 153
v7n86.43 18986.52 19386.33 18887.91 20194.93 18290.15 18883.05 17786.57 19270.21 18971.48 19766.78 20987.72 17794.19 15492.96 16898.92 12498.76 94
EPNet_dtu92.45 11795.02 7989.46 14498.02 5195.47 16694.79 11892.62 6694.97 9870.11 19094.76 5392.61 7784.07 20095.94 11395.56 10497.15 18695.82 175
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
IterMVS-SCA-FT90.24 14292.48 12687.63 17392.85 14294.30 19693.79 13281.47 18792.66 13269.95 19184.66 13688.38 10689.99 16795.39 13094.34 14197.74 18297.63 142
IterMVS90.20 14392.43 12887.61 17492.82 14494.31 19594.11 12881.54 18592.97 12869.90 19284.71 13588.16 10989.96 16895.25 13294.17 14497.31 18497.46 146
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v192192087.31 18487.13 18587.52 17788.87 19494.72 18691.96 16984.59 17088.28 18069.86 19372.50 19370.03 19891.10 14793.33 16492.61 17798.71 14498.44 106
EG-PatchMatch MVS86.68 18787.24 18386.02 19190.58 16196.26 13991.08 18081.59 18484.96 20069.80 19471.35 19975.08 17384.23 19894.24 15293.35 16198.82 13295.46 181
tpm87.95 17289.44 15986.21 18992.53 14694.62 19091.40 17476.36 20191.46 15369.80 19487.43 11175.14 17191.55 14189.85 20090.60 19095.61 19796.96 161
CVMVSNet89.77 15091.66 14087.56 17693.21 13995.45 16791.94 17089.22 11589.62 17069.34 19683.99 14185.90 11984.81 19594.30 15095.28 11296.85 18897.09 156
v124086.89 18686.75 19187.06 18288.75 19694.65 18991.30 17884.05 17287.49 18868.94 19771.96 19668.86 20390.65 15993.33 16492.72 17698.67 14798.24 120
MDTV_nov1_ep13_2view86.30 19088.27 16784.01 19687.71 20394.67 18888.08 19476.78 19990.59 16468.66 19880.46 16080.12 15187.58 18089.95 19988.20 20095.25 20393.90 195
anonymousdsp88.90 16291.00 14786.44 18788.74 19795.97 14690.40 18682.86 17988.77 17667.33 19981.18 15481.44 14790.22 16596.23 10494.27 14399.12 10099.16 48
N_pmnet84.80 19685.10 20084.45 19589.25 18792.86 20384.04 20586.21 14588.78 17566.73 20072.41 19474.87 17585.21 19288.32 20386.45 20595.30 20192.04 203
GA-MVS89.28 15590.75 15187.57 17591.77 15196.48 13292.29 15987.58 13190.61 16365.77 20184.48 13776.84 16789.46 17095.84 11693.68 15698.52 15897.34 151
pmnet_mix0286.12 19287.12 18684.96 19489.82 17294.12 19784.88 20486.63 14291.78 15065.60 20280.76 15676.98 16586.61 18487.29 20784.80 21096.21 19094.09 190
ambc73.83 21276.23 21685.13 21582.27 20984.16 20365.58 20352.82 21523.31 22673.55 20991.41 19185.26 20992.97 21294.70 183
EU-MVSNet85.62 19487.65 18083.24 19988.54 19892.77 20487.12 19785.32 15986.71 19164.54 20478.52 16575.11 17278.35 20492.25 17992.28 18295.58 19895.93 173
DeepMVS_CXcopyleft86.86 21379.50 21270.43 21490.73 16063.66 20580.36 16160.83 21479.68 20376.23 21389.46 21486.53 212
MIMVSNet180.03 20580.93 20678.97 20572.46 21890.73 20980.81 21182.44 18280.39 21063.64 20657.57 21364.93 21376.37 20691.66 18891.55 18798.07 17489.70 208
RE-MVS-def63.50 207
Anonymous2023120683.84 20085.19 19982.26 20087.38 20492.87 20285.49 20283.65 17486.07 19763.44 20868.42 20369.01 20175.45 20893.34 16392.44 17998.12 17394.20 188
test_method72.96 20978.68 20966.28 21250.17 22264.90 22075.45 21650.90 21987.89 18262.54 20962.98 21168.34 20470.45 21091.90 18782.41 21188.19 21692.35 201
MDA-MVSNet-bldmvs80.11 20480.24 20779.94 20377.01 21593.21 20178.86 21385.94 15182.71 20860.86 21079.71 16251.77 22183.71 20175.60 21486.37 20693.28 21192.35 201
PMVScopyleft63.12 1867.27 21166.39 21468.30 21077.98 21460.24 22159.53 22176.82 19766.65 21760.74 21154.39 21459.82 21651.24 21673.92 21770.52 21783.48 21879.17 216
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
FPMVS75.84 20874.59 21177.29 20886.92 20583.89 21685.01 20380.05 19082.91 20760.61 21265.25 20960.41 21563.86 21375.60 21473.60 21687.29 21780.47 214
test20.0382.92 20285.52 19779.90 20487.75 20291.84 20682.80 20882.99 17882.65 20960.32 21378.90 16470.50 19267.10 21292.05 18590.89 18898.44 16391.80 204
LTVRE_ROB87.32 1687.55 17988.25 16886.73 18490.66 16095.80 15693.05 14484.77 16683.35 20560.32 21383.12 14567.39 20693.32 12394.36 14994.86 12498.28 16798.87 85
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
new_pmnet81.53 20382.68 20580.20 20283.47 21189.47 21282.21 21078.36 19287.86 18360.14 21567.90 20569.43 20082.03 20289.22 20187.47 20394.99 20587.39 211
new-patchmatchnet78.49 20778.19 21078.84 20684.13 21090.06 21077.11 21580.39 18979.57 21259.64 21666.01 20855.65 22075.62 20784.55 21080.70 21296.14 19290.77 207
gm-plane-assit83.26 20185.29 19880.89 20189.52 17889.89 21170.26 21778.24 19377.11 21458.01 21774.16 18366.90 20790.63 16097.20 6796.05 8998.66 15095.68 177
pmmvs379.16 20680.12 20878.05 20779.36 21386.59 21478.13 21473.87 21076.42 21557.51 21870.59 20157.02 21784.66 19690.10 19788.32 19994.75 20891.77 205
Gipumacopyleft68.35 21066.71 21370.27 20974.16 21768.78 21963.93 22071.77 21383.34 20654.57 21934.37 21731.88 22368.69 21183.30 21185.53 20888.48 21579.78 215
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
gg-mvs-nofinetune86.17 19188.57 16583.36 19893.44 13498.15 9396.58 7872.05 21274.12 21649.23 22064.81 21090.85 8589.90 16997.83 5096.84 7098.97 11897.41 148
PMMVS264.36 21365.94 21562.52 21367.37 21977.44 21764.39 21969.32 21761.47 21834.59 22146.09 21641.03 22248.02 21974.56 21678.23 21391.43 21382.76 213
MVEpermissive50.86 1949.54 21651.43 21647.33 21644.14 22359.20 22236.45 22460.59 21841.47 22131.14 22229.58 21817.06 22748.52 21862.22 21874.63 21563.12 22275.87 217
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN50.67 21447.85 21753.96 21464.13 22150.98 22438.06 22269.51 21551.40 22024.60 22329.46 22024.39 22556.07 21548.17 21959.70 21871.40 22070.84 218
EMVS49.98 21546.76 21853.74 21564.96 22051.29 22337.81 22369.35 21651.83 21922.69 22429.57 21925.06 22457.28 21444.81 22056.11 21970.32 22168.64 219
testmvs12.09 21716.94 2196.42 2183.15 2246.08 2259.51 2263.84 22121.46 2225.31 22527.49 2216.76 22810.89 22017.06 22115.01 2205.84 22324.75 220
GG-mvs-BLEND66.17 21294.91 8132.63 2171.32 22596.64 12891.40 1740.85 22394.39 1092.20 22690.15 9695.70 612.27 22296.39 9695.44 10897.78 17895.68 177
test1239.58 21813.53 2204.97 2191.31 2265.47 2268.32 2272.95 22218.14 2232.03 22720.82 2222.34 22910.60 22110.00 22214.16 2214.60 22423.77 221
uanet_test0.00 2190.00 2210.00 2200.00 2270.00 2270.00 2280.00 2240.00 2240.00 2280.00 2230.00 2300.00 2230.00 2230.00 2220.00 2250.00 222
sosnet-low-res0.00 2190.00 2210.00 2200.00 2270.00 2270.00 2280.00 2240.00 2240.00 2280.00 2230.00 2300.00 2230.00 2230.00 2220.00 2250.00 222
sosnet0.00 2190.00 2210.00 2200.00 2270.00 2270.00 2280.00 2240.00 2240.00 2280.00 2230.00 2300.00 2230.00 2230.00 2220.00 2250.00 222
9.1499.28 12
SR-MVS99.45 997.61 1499.20 16
Anonymous20240521192.18 13395.04 10198.20 9096.14 8991.79 8293.93 11474.60 17888.38 10696.48 6895.17 13595.82 10099.00 11599.15 49
our_test_389.78 17393.84 19985.59 201
Patchmatch-RL test34.61 225
mPP-MVS99.21 2398.29 37
NP-MVS95.32 87