This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort by
DVP-MVS++95.79 196.42 195.06 197.84 298.17 297.03 492.84 396.68 192.83 395.90 594.38 492.90 595.98 294.85 596.93 398.99 1
DVP-MVScopyleft95.56 396.26 394.73 396.93 1698.19 196.62 792.81 596.15 291.73 595.01 795.31 293.41 195.95 394.77 896.90 498.46 2
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
SED-MVS95.61 296.36 294.73 396.84 1998.15 397.08 392.92 295.64 391.84 495.98 495.33 192.83 796.00 194.94 396.90 498.45 3
MSP-MVS95.12 695.83 594.30 696.82 2197.94 596.98 592.37 1195.40 490.59 1296.16 393.71 692.70 894.80 1794.77 896.37 1497.99 8
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
DeepPCF-MVS88.51 292.64 2894.42 1790.56 3994.84 4396.92 1891.31 6189.61 3195.16 584.55 4689.91 2991.45 2190.15 3595.12 1194.81 792.90 15397.58 13
APDe-MVS95.23 595.69 694.70 597.12 1097.81 697.19 292.83 495.06 690.98 996.47 292.77 1093.38 295.34 994.21 1696.68 998.17 5
SMA-MVScopyleft94.70 795.35 793.93 1197.57 397.57 895.98 1291.91 1394.50 790.35 1393.46 1792.72 1191.89 1795.89 495.22 195.88 3198.10 6
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
SD-MVS94.53 1095.22 893.73 1495.69 3597.03 1495.77 2191.95 1294.41 891.35 794.97 893.34 891.80 1994.72 2093.99 2095.82 3898.07 7
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DPE-MVScopyleft95.53 496.13 494.82 296.81 2298.05 497.42 193.09 194.31 991.49 697.12 195.03 393.27 395.55 694.58 1296.86 698.25 4
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
TSAR-MVS + MP.94.48 1194.97 993.90 1295.53 3697.01 1596.69 690.71 2394.24 1090.92 1094.97 892.19 1593.03 494.83 1693.60 2796.51 1397.97 9
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
HFP-MVS94.02 1594.22 1893.78 1397.25 796.85 2095.81 1990.94 2294.12 1190.29 1594.09 1489.98 3092.52 1193.94 3393.49 3295.87 3397.10 23
SF-MVS94.61 894.96 1094.20 996.75 2497.07 1295.82 1892.60 793.98 1291.09 895.89 692.54 1291.93 1594.40 2793.56 2997.04 297.27 17
ACMMPR93.72 1893.94 2093.48 1797.07 1196.93 1795.78 2090.66 2593.88 1389.24 2093.53 1689.08 3792.24 1293.89 3593.50 3095.88 3196.73 30
HPM-MVS++copyleft94.60 994.91 1194.24 897.86 196.53 3296.14 992.51 893.87 1490.76 1193.45 1893.84 592.62 995.11 1294.08 1995.58 5497.48 14
CNVR-MVS94.37 1294.65 1294.04 1097.29 697.11 1196.00 1192.43 1093.45 1589.85 1890.92 2593.04 992.59 1095.77 594.82 696.11 2597.42 16
TSAR-MVS + ACMM92.97 2394.51 1491.16 3695.88 3396.59 3095.09 2890.45 2993.42 1683.01 5494.68 1090.74 2588.74 4294.75 1993.78 2493.82 13497.63 12
ACMMP_NAP93.94 1694.49 1593.30 1997.03 1397.31 1095.96 1391.30 1893.41 1788.55 2393.00 1990.33 2791.43 2595.53 794.41 1495.53 5797.47 15
NCCC93.69 1993.66 2393.72 1597.37 596.66 2995.93 1792.50 993.40 1888.35 2487.36 3492.33 1492.18 1394.89 1594.09 1896.00 2796.91 26
OMC-MVS90.23 4590.40 4590.03 4493.45 5595.29 5091.89 5486.34 5093.25 1984.94 4481.72 5386.65 4988.90 3991.69 6790.27 8094.65 9893.95 80
DeepC-MVS_fast88.76 193.10 2293.02 2993.19 2197.13 996.51 3395.35 2591.19 1993.14 2088.14 2585.26 3989.49 3491.45 2295.17 1095.07 295.85 3696.48 34
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
TSAR-MVS + GP.92.71 2793.91 2191.30 3491.96 7296.00 3993.43 4087.94 4092.53 2186.27 3893.57 1591.94 1891.44 2493.29 4492.89 4496.78 797.15 21
CSCG92.76 2593.16 2792.29 2896.30 2797.74 794.67 3288.98 3592.46 2289.73 1986.67 3692.15 1788.69 4392.26 5992.92 4395.40 6297.89 10
APD-MVScopyleft94.37 1294.47 1694.26 797.18 896.99 1696.53 892.68 692.45 2389.96 1694.53 1191.63 2092.89 694.58 2293.82 2396.31 1897.26 18
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CP-MVS93.25 2193.26 2693.24 2096.84 1996.51 3395.52 2390.61 2692.37 2488.88 2190.91 2689.52 3391.91 1693.64 4092.78 4595.69 4597.09 24
MCST-MVS93.81 1794.06 1993.53 1696.79 2396.85 2095.95 1491.69 1692.20 2587.17 3190.83 2793.41 791.96 1494.49 2593.50 3097.61 197.12 22
DeepC-MVS87.86 392.26 3091.86 3392.73 2496.18 2896.87 1995.19 2791.76 1592.17 2686.58 3481.79 5185.85 5090.88 3094.57 2394.61 1095.80 3997.18 19
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SteuartSystems-ACMMP94.06 1494.65 1293.38 1896.97 1597.36 996.12 1091.78 1492.05 2787.34 2994.42 1290.87 2491.87 1895.47 894.59 1196.21 2397.77 11
Skip Steuart: Steuart Systems R&D Blog.
CNLPA88.40 5887.00 7390.03 4493.73 5394.28 6989.56 7885.81 5291.87 2887.55 2869.53 12181.49 6989.23 3789.45 10788.59 11894.31 11793.82 83
TSAR-MVS + COLMAP88.40 5889.09 5387.60 7192.72 6793.92 7692.21 4985.57 5491.73 2973.72 10191.75 2373.22 12087.64 5491.49 6989.71 9693.73 13791.82 125
ACMMPcopyleft92.03 3292.16 3191.87 3395.88 3396.55 3194.47 3489.49 3291.71 3085.26 4191.52 2484.48 5690.21 3492.82 5291.63 5795.92 3096.42 36
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
TAPA-MVS84.37 788.91 5488.93 5488.89 5693.00 6394.85 6292.00 5184.84 5991.68 3180.05 7279.77 6384.56 5588.17 4890.11 9789.00 11495.30 6892.57 111
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
X-MVS92.36 2992.75 3091.90 3296.89 1796.70 2595.25 2690.48 2891.50 3283.95 4888.20 3188.82 3989.11 3893.75 3893.43 3395.75 4396.83 28
DPM-MVS91.72 3491.48 3492.00 3095.53 3695.75 4595.94 1591.07 2091.20 3385.58 3981.63 5590.74 2588.40 4693.40 4293.75 2595.45 6193.85 82
CPTT-MVS91.39 3690.95 4091.91 3195.06 3895.24 5395.02 2988.98 3591.02 3486.71 3384.89 4188.58 4291.60 2190.82 8789.67 9794.08 12196.45 35
MP-MVScopyleft93.35 2093.59 2493.08 2297.39 496.82 2295.38 2490.71 2390.82 3588.07 2692.83 2190.29 2891.32 2794.03 3093.19 3995.61 5297.16 20
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PHI-MVS92.05 3193.74 2290.08 4294.96 4097.06 1393.11 4487.71 4390.71 3680.78 6992.40 2291.03 2287.68 5394.32 2894.48 1396.21 2396.16 41
train_agg92.87 2493.53 2592.09 2996.88 1895.38 4995.94 1590.59 2790.65 3783.65 5194.31 1391.87 1990.30 3293.38 4392.42 5095.17 7496.73 30
3Dnovator+86.06 491.60 3590.86 4292.47 2696.00 3296.50 3594.70 3187.83 4290.49 3889.92 1774.68 9189.35 3590.66 3194.02 3194.14 1795.67 4796.85 27
canonicalmvs89.36 5189.92 4688.70 5991.38 7895.92 4191.81 5682.61 9890.37 3982.73 5782.09 4979.28 8588.30 4791.17 7593.59 2895.36 6497.04 25
MVS_111021_LR90.14 4690.89 4189.26 5393.23 5794.05 7490.43 6684.65 6190.16 4084.52 4790.14 2883.80 5987.99 4992.50 5690.92 6694.74 9294.70 66
PGM-MVS92.76 2593.03 2892.45 2797.03 1396.67 2895.73 2287.92 4190.15 4186.53 3592.97 2088.33 4391.69 2093.62 4193.03 4095.83 3796.41 37
MSLP-MVS++92.02 3391.40 3692.75 2396.01 3195.88 4293.73 3989.00 3389.89 4290.31 1481.28 5788.85 3891.45 2292.88 5194.24 1596.00 2796.76 29
3Dnovator85.17 590.48 4189.90 4891.16 3694.88 4295.74 4693.82 3685.36 5589.28 4387.81 2774.34 9487.40 4788.56 4493.07 4793.74 2696.53 1295.71 48
PLCcopyleft83.76 988.61 5786.83 7590.70 3894.22 4792.63 9791.50 5887.19 4689.16 4486.87 3275.51 8680.87 7289.98 3690.01 9889.20 10894.41 11390.45 146
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
AdaColmapbinary90.29 4388.38 5892.53 2596.10 3095.19 5492.98 4591.40 1789.08 4588.65 2278.35 7181.44 7091.30 2890.81 8890.21 8194.72 9493.59 88
CDPH-MVS91.14 3892.01 3290.11 4196.18 2896.18 3794.89 3088.80 3788.76 4677.88 8589.18 3087.71 4687.29 6093.13 4693.31 3795.62 5095.84 46
HQP-MVS89.13 5389.58 5188.60 6193.53 5493.67 7793.29 4287.58 4488.53 4775.50 9087.60 3380.32 7587.07 6190.66 9389.95 8994.62 10096.35 40
CS-MVS-test90.29 4390.96 3989.51 5193.18 5895.87 4389.18 8383.72 7588.32 4884.82 4584.89 4185.23 5390.25 3394.04 2992.66 4995.94 2995.69 49
CLD-MVS88.66 5588.52 5688.82 5791.37 7994.22 7092.82 4782.08 10188.27 4985.14 4281.86 5078.53 9085.93 6991.17 7590.61 7495.55 5595.00 58
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
CANet91.33 3791.46 3591.18 3595.01 3996.71 2493.77 3787.39 4587.72 5087.26 3081.77 5289.73 3187.32 5994.43 2693.86 2296.31 1896.02 44
MVS_111021_HR90.56 4091.29 3889.70 4894.71 4595.63 4791.81 5686.38 4987.53 5181.29 6487.96 3285.43 5287.69 5293.90 3492.93 4296.33 1695.69 49
NP-MVS87.47 52
CS-MVS90.34 4290.58 4490.07 4393.11 5995.82 4490.57 6483.62 7687.07 5385.35 4082.98 4583.47 6091.37 2694.94 1393.37 3696.37 1496.41 37
ACMP83.90 888.32 6188.06 6188.62 6092.18 7093.98 7591.28 6285.24 5686.69 5481.23 6585.62 3875.13 10587.01 6389.83 10089.77 9494.79 8895.43 55
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
MVS_030490.88 3991.35 3790.34 4093.91 5096.79 2394.49 3386.54 4886.57 5582.85 5581.68 5489.70 3287.57 5594.64 2193.93 2196.67 1196.15 42
diffmvspermissive86.52 7486.76 7786.23 7788.31 11692.63 9789.58 7781.61 10586.14 5680.26 7179.00 6777.27 9783.58 7788.94 11289.06 11194.05 12394.29 73
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
ACMM83.27 1087.68 6886.09 8189.54 5093.26 5692.19 10391.43 5986.74 4786.02 5782.85 5575.63 8575.14 10488.41 4590.68 9289.99 8694.59 10192.97 96
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
LGP-MVS_train88.25 6288.55 5587.89 6792.84 6693.66 7893.35 4185.22 5785.77 5874.03 10086.60 3776.29 10186.62 6591.20 7390.58 7695.29 6995.75 47
EPNet89.60 4989.91 4789.24 5496.45 2693.61 7992.95 4688.03 3985.74 5983.36 5287.29 3583.05 6380.98 9892.22 6091.85 5593.69 13995.58 53
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
QAPM89.49 5089.58 5189.38 5294.73 4495.94 4092.35 4885.00 5885.69 6080.03 7376.97 7887.81 4587.87 5092.18 6392.10 5396.33 1696.40 39
DROMVSNet89.96 4790.77 4389.01 5590.54 9095.15 5591.34 6081.43 10685.27 6183.08 5382.83 4687.22 4890.97 2994.79 1893.38 3496.73 896.71 32
MAR-MVS88.39 6088.44 5788.33 6694.90 4195.06 5890.51 6583.59 7985.27 6179.07 7777.13 7682.89 6487.70 5192.19 6292.32 5194.23 11894.20 78
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
ETV-MVS89.22 5289.76 4988.60 6191.60 7694.61 6689.48 8083.46 8585.20 6381.58 6282.75 4782.59 6588.80 4094.57 2393.28 3896.68 995.31 56
casdiffmvspermissive87.45 7087.15 7287.79 7090.15 10194.22 7089.96 7183.93 7185.08 6480.91 6675.81 8477.88 9586.08 6791.86 6690.86 6795.74 4494.37 71
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline84.89 9086.06 8283.52 11087.25 12789.67 13787.76 10775.68 16584.92 6578.40 7980.10 6080.98 7180.20 11286.69 14087.05 13491.86 16492.99 95
PVSNet_BlendedMVS88.19 6388.00 6388.42 6392.71 6894.82 6389.08 8883.81 7284.91 6686.38 3679.14 6578.11 9282.66 8493.05 4891.10 6195.86 3494.86 62
PVSNet_Blended88.19 6388.00 6388.42 6392.71 6894.82 6389.08 8883.81 7284.91 6686.38 3679.14 6578.11 9282.66 8493.05 4891.10 6195.86 3494.86 62
LS3D85.96 7984.37 9687.81 6894.13 4893.27 8590.26 6989.00 3384.91 6672.84 10971.74 10772.47 12287.45 5789.53 10689.09 11093.20 14989.60 149
casdiffmvs_mvgpermissive87.97 6587.63 7088.37 6590.55 8994.42 6791.82 5584.69 6084.05 6982.08 6176.57 7979.00 8685.49 7192.35 5792.29 5295.55 5594.70 66
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
RPSCF83.46 10483.36 10383.59 10887.75 11987.35 16484.82 14879.46 13083.84 7078.12 8182.69 4879.87 7882.60 8682.47 18581.13 18888.78 18986.13 176
MVS_Test86.93 7287.24 7186.56 7590.10 10293.47 8190.31 6780.12 12083.55 7178.12 8179.58 6479.80 8085.45 7290.17 9690.59 7595.29 6993.53 89
FA-MVS(training)85.65 8285.79 8685.48 8590.44 9593.47 8188.66 9773.11 17483.34 7282.26 5871.79 10678.39 9183.14 8191.00 8289.47 10295.28 7193.06 94
DCV-MVSNet85.88 8186.17 7985.54 8489.10 11089.85 13089.34 8180.70 11183.04 7378.08 8376.19 8279.00 8682.42 8789.67 10390.30 7993.63 14295.12 57
CANet_DTU85.43 8387.72 6982.76 11690.95 8593.01 9089.99 7075.46 16682.67 7464.91 14783.14 4480.09 7780.68 10292.03 6591.03 6394.57 10392.08 119
test250685.20 8684.11 9886.47 7691.84 7395.28 5189.18 8384.49 6382.59 7575.34 9474.66 9258.07 18681.68 9193.76 3692.71 4696.28 2191.71 127
ECVR-MVScopyleft85.25 8584.47 9486.16 7891.84 7395.28 5189.18 8384.49 6382.59 7573.49 10366.12 13769.28 13581.68 9193.76 3692.71 4696.28 2191.58 134
EIA-MVS87.94 6688.05 6287.81 6891.46 7795.00 6088.67 9582.81 9082.53 7780.81 6880.04 6180.20 7687.48 5692.58 5591.61 5895.63 4994.36 72
DELS-MVS89.71 4889.68 5089.74 4693.75 5296.22 3693.76 3885.84 5182.53 7785.05 4378.96 6884.24 5784.25 7694.91 1494.91 495.78 4296.02 44
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
OpenMVScopyleft82.53 1187.71 6786.84 7488.73 5894.42 4695.06 5891.02 6383.49 8282.50 7982.24 6067.62 13285.48 5185.56 7091.19 7491.30 6095.67 4794.75 64
PCF-MVS84.60 688.66 5587.75 6889.73 4793.06 6296.02 3893.22 4390.00 3082.44 8080.02 7477.96 7485.16 5487.36 5888.54 11688.54 11994.72 9495.61 52
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
DI_MVS_plusplus_trai86.41 7585.54 8887.42 7289.24 10793.13 8692.16 5082.65 9682.30 8180.75 7068.30 12880.41 7485.01 7390.56 9490.07 8494.70 9694.01 79
ET-MVSNet_ETH3D84.65 9285.58 8783.56 10974.99 21092.62 9990.29 6880.38 11382.16 8273.01 10883.41 4371.10 12787.05 6287.77 12490.17 8295.62 5091.82 125
thisisatest053085.15 8885.86 8384.33 9589.19 10992.57 10087.22 11880.11 12182.15 8374.41 9778.15 7273.80 11479.90 11690.99 8389.58 9895.13 7893.75 85
tttt051785.11 8985.81 8484.30 9689.24 10792.68 9687.12 12280.11 12181.98 8474.31 9978.08 7373.57 11679.90 11691.01 8189.58 9895.11 8093.77 84
test111184.86 9184.21 9785.61 8391.75 7595.14 5688.63 9884.57 6281.88 8571.21 11265.66 14368.51 13981.19 9593.74 3992.68 4896.31 1891.86 124
MVSTER86.03 7886.12 8085.93 8088.62 11389.93 12889.33 8279.91 12581.87 8681.35 6381.07 5874.91 10680.66 10392.13 6490.10 8395.68 4692.80 101
EPP-MVSNet86.55 7387.76 6785.15 8790.52 9194.41 6887.24 11782.32 10081.79 8773.60 10278.57 7082.41 6682.07 8991.23 7190.39 7895.14 7795.48 54
UGNet85.90 8088.23 5983.18 11288.96 11194.10 7287.52 11083.60 7881.66 8877.90 8480.76 5983.19 6266.70 18991.13 8090.71 7294.39 11496.06 43
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
PMMVS81.65 12184.05 9978.86 15378.56 20182.63 19583.10 15967.22 19781.39 8970.11 11984.91 4079.74 8182.12 8887.31 12785.70 15892.03 16286.67 174
SCA79.51 14280.15 13378.75 15586.58 13387.70 16183.07 16068.53 19281.31 9066.40 13673.83 9675.38 10279.30 12780.49 19279.39 19388.63 19182.96 190
GBi-Net84.51 9584.80 9184.17 9984.20 16289.95 12589.70 7480.37 11481.17 9175.50 9069.63 11779.69 8279.75 12090.73 8990.72 6995.52 5891.71 127
test184.51 9584.80 9184.17 9984.20 16289.95 12589.70 7480.37 11481.17 9175.50 9069.63 11779.69 8279.75 12090.73 8990.72 6995.52 5891.71 127
FMVSNet384.44 9784.64 9384.21 9884.32 16190.13 12389.85 7380.37 11481.17 9175.50 9069.63 11779.69 8279.62 12389.72 10290.52 7795.59 5391.58 134
USDC80.69 12879.89 13781.62 12886.48 13489.11 14986.53 12878.86 13781.15 9463.48 15572.98 10259.12 18481.16 9687.10 12985.01 16493.23 14884.77 183
IS_MVSNet86.18 7688.18 6083.85 10591.02 8294.72 6587.48 11182.46 9981.05 9570.28 11776.98 7782.20 6876.65 14493.97 3293.38 3495.18 7394.97 59
EPMVS77.53 16378.07 15676.90 17086.89 13184.91 18582.18 17066.64 20081.00 9664.11 15172.75 10469.68 13374.42 16079.36 19778.13 19687.14 19780.68 199
Vis-MVSNet (Re-imp)83.65 10386.81 7679.96 14690.46 9492.71 9484.84 14782.00 10280.93 9762.44 16276.29 8182.32 6765.54 19292.29 5891.66 5694.49 10891.47 136
PatchmatchNetpermissive78.67 15378.85 14778.46 16086.85 13286.03 17283.77 15668.11 19580.88 9866.19 13772.90 10373.40 11878.06 13479.25 19877.71 19887.75 19481.75 193
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
PatchMatch-RL83.34 10581.36 11785.65 8190.33 9889.52 14084.36 15181.82 10380.87 9979.29 7574.04 9562.85 16086.05 6888.40 11987.04 13592.04 16186.77 171
EPNet_dtu81.98 11683.82 10179.83 14894.10 4985.97 17387.29 11584.08 7080.61 10059.96 18081.62 5677.19 9862.91 19687.21 12886.38 14790.66 17887.77 166
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MSDG83.87 10081.02 12287.19 7392.17 7189.80 13289.15 8685.72 5380.61 10079.24 7666.66 13568.75 13882.69 8387.95 12387.44 12894.19 11985.92 178
CostFormer80.94 12780.21 13181.79 12587.69 12188.58 15687.47 11270.66 18380.02 10277.88 8573.03 10171.40 12578.24 13379.96 19479.63 19088.82 18888.84 153
Anonymous2023121184.42 9883.02 10486.05 7988.85 11292.70 9588.92 9483.40 8779.99 10378.31 8055.83 19078.92 8883.33 8089.06 11189.76 9593.50 14494.90 60
CHOSEN 1792x268882.16 11480.91 12583.61 10791.14 8092.01 10489.55 7979.15 13479.87 10470.29 11652.51 19872.56 12181.39 9388.87 11488.17 12290.15 18292.37 118
baseline184.54 9484.43 9584.67 9090.62 8791.16 11088.63 9883.75 7479.78 10571.16 11375.14 8874.10 11077.84 13791.56 6890.67 7396.04 2688.58 155
FC-MVSNet-train85.18 8785.31 8985.03 8890.67 8691.62 10787.66 10983.61 7779.75 10674.37 9878.69 6971.21 12678.91 12991.23 7189.96 8894.96 8294.69 68
GG-mvs-BLEND57.56 20982.61 10928.34 2160.22 22490.10 12479.37 1860.14 22279.56 1070.40 22571.25 11083.40 610.30 22286.27 14783.87 17389.59 18583.83 185
PVSNet_Blended_VisFu87.40 7187.80 6586.92 7492.86 6495.40 4888.56 10183.45 8679.55 10882.26 5874.49 9384.03 5879.24 12892.97 5091.53 5995.15 7696.65 33
Effi-MVS+85.33 8485.08 9085.63 8289.69 10493.42 8389.90 7280.31 11879.32 10972.48 11173.52 10074.03 11186.55 6690.99 8389.98 8794.83 8794.27 77
GeoE84.62 9383.98 10085.35 8689.34 10692.83 9388.34 10278.95 13579.29 11077.16 8968.10 12974.56 10783.40 7989.31 10989.23 10794.92 8394.57 70
ADS-MVSNet74.53 19075.69 18373.17 19281.57 19380.71 20379.27 18763.03 20979.27 11159.94 18167.86 13068.32 14371.08 17377.33 20276.83 20084.12 20979.53 200
FMVSNet283.87 10083.73 10284.05 10384.20 16289.95 12589.70 7480.21 11979.17 11274.89 9565.91 13877.49 9679.75 12090.87 8691.00 6595.52 5891.71 127
MDTV_nov1_ep1379.14 14779.49 14378.74 15685.40 14686.89 16884.32 15370.29 18578.85 11369.42 12375.37 8773.29 11975.64 14980.61 19179.48 19287.36 19581.91 192
Anonymous20240521182.75 10889.58 10592.97 9189.04 9184.13 6978.72 11457.18 18676.64 10083.13 8289.55 10589.92 9093.38 14794.28 76
pmmvs479.99 13378.08 15582.22 12283.04 17787.16 16784.95 14478.80 13978.64 11574.53 9664.61 15259.41 18079.45 12584.13 17484.54 17192.53 15788.08 161
tpmrst76.55 17275.99 17977.20 16687.32 12683.05 19182.86 16165.62 20278.61 11667.22 13369.19 12265.71 14775.87 14876.75 20475.33 20384.31 20783.28 188
CHOSEN 280x42080.28 13181.66 11378.67 15782.92 18079.24 20785.36 14266.79 19978.11 11770.32 11575.03 9079.87 7881.09 9789.07 11083.16 17885.54 20487.17 168
Fast-Effi-MVS+83.77 10282.98 10584.69 8987.98 11791.87 10588.10 10577.70 14978.10 11873.04 10769.13 12368.51 13986.66 6490.49 9589.85 9294.67 9792.88 98
baseline282.80 10882.86 10782.73 11787.68 12290.50 11684.92 14678.93 13678.07 11973.06 10675.08 8969.77 13277.31 14088.90 11386.94 13694.50 10690.74 140
MS-PatchMatch81.79 12081.44 11682.19 12390.35 9789.29 14488.08 10675.36 16777.60 12069.00 12664.37 15478.87 8977.14 14388.03 12285.70 15893.19 15086.24 175
tpm cat177.78 16175.28 18780.70 13887.14 12985.84 17585.81 13570.40 18477.44 12178.80 7863.72 15564.01 15476.55 14575.60 20675.21 20485.51 20585.12 180
COLMAP_ROBcopyleft76.78 1580.50 13078.49 14982.85 11490.96 8489.65 13886.20 13283.40 8777.15 12266.54 13562.27 15965.62 14877.89 13685.23 16184.70 16892.11 16084.83 182
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
FC-MVSNet-test76.53 17381.62 11470.58 19784.99 15485.73 17674.81 19978.85 13877.00 12339.13 21575.90 8373.50 11754.08 20486.54 14385.99 15591.65 16686.68 172
IterMVS-LS83.28 10682.95 10683.65 10688.39 11588.63 15586.80 12678.64 14076.56 12473.43 10472.52 10575.35 10380.81 10086.43 14688.51 12093.84 13392.66 106
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IB-MVS79.09 1282.60 11182.19 11083.07 11391.08 8193.55 8080.90 17881.35 10776.56 12480.87 6764.81 15169.97 13168.87 17985.64 15490.06 8595.36 6494.74 65
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
HyFIR lowres test81.62 12479.45 14484.14 10191.00 8393.38 8488.27 10378.19 14376.28 12670.18 11848.78 20273.69 11583.52 7887.05 13187.83 12693.68 14089.15 152
UniMVSNet (Re)81.22 12581.08 12181.39 13085.35 14791.76 10684.93 14582.88 8976.13 12765.02 14664.94 14963.09 15775.17 15287.71 12589.04 11294.97 8194.88 61
UniMVSNet_NR-MVSNet81.87 11781.33 11882.50 11885.31 14891.30 10885.70 13684.25 6675.89 12864.21 14966.95 13464.65 15180.22 11087.07 13089.18 10995.27 7294.29 73
DU-MVS81.20 12680.30 13082.25 12184.98 15590.94 11285.70 13683.58 8075.74 12964.21 14965.30 14659.60 17980.22 11086.89 13389.31 10494.77 9094.29 73
NR-MVSNet80.25 13279.98 13680.56 14185.20 15090.94 11285.65 13883.58 8075.74 12961.36 17365.30 14656.75 19372.38 16888.46 11888.80 11695.16 7593.87 81
Baseline_NR-MVSNet79.84 13678.37 15381.55 12984.98 15586.66 16985.06 14383.49 8275.57 13163.31 15658.22 18560.97 16978.00 13586.89 13387.13 13294.47 10993.15 92
OPM-MVS87.56 6985.80 8589.62 4993.90 5194.09 7394.12 3588.18 3875.40 13277.30 8876.41 8077.93 9488.79 4192.20 6190.82 6895.40 6293.72 86
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
thres100view90082.55 11281.01 12484.34 9490.30 9992.27 10189.04 9182.77 9175.14 13369.56 12065.72 14063.13 15579.62 12389.97 9989.26 10694.73 9391.61 133
tfpn200view982.86 10781.46 11584.48 9290.30 9993.09 8789.05 9082.71 9275.14 13369.56 12065.72 14063.13 15580.38 10991.15 7789.51 10094.91 8492.50 115
dps78.02 15875.94 18080.44 14386.06 13786.62 17082.58 16269.98 18775.14 13377.76 8769.08 12459.93 17578.47 13179.47 19677.96 19787.78 19383.40 187
CR-MVSNet78.71 15278.86 14678.55 15885.85 14185.15 18282.30 16768.23 19374.71 13665.37 14364.39 15369.59 13477.18 14185.10 16684.87 16592.34 15988.21 159
RPMNet77.07 16677.63 16276.42 17385.56 14585.15 18281.37 17265.27 20474.71 13660.29 17963.71 15666.59 14573.64 16282.71 18382.12 18592.38 15888.39 157
Vis-MVSNetpermissive84.38 9986.68 7881.70 12687.65 12394.89 6188.14 10480.90 11074.48 13868.23 12977.53 7580.72 7369.98 17692.68 5391.90 5495.33 6794.58 69
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
thres20082.77 10981.25 11984.54 9190.38 9693.05 8889.13 8782.67 9474.40 13969.53 12265.69 14263.03 15880.63 10491.15 7789.42 10394.88 8592.04 121
thres40082.68 11081.15 12084.47 9390.52 9192.89 9288.95 9382.71 9274.33 14069.22 12565.31 14562.61 16180.63 10490.96 8589.50 10194.79 8892.45 117
TranMVSNet+NR-MVSNet80.52 12979.84 13881.33 13284.92 15790.39 11785.53 14184.22 6874.27 14160.68 17864.93 15059.96 17477.48 13986.75 13889.28 10595.12 7993.29 90
TDRefinement79.05 14877.05 16781.39 13088.45 11489.00 15186.92 12382.65 9674.21 14264.41 14859.17 17859.16 18274.52 15885.23 16185.09 16391.37 17087.51 167
thres600view782.53 11381.02 12284.28 9790.61 8893.05 8888.57 10082.67 9474.12 14368.56 12865.09 14862.13 16680.40 10891.15 7789.02 11394.88 8592.59 109
PatchT76.42 17477.81 16074.80 18578.46 20284.30 18771.82 20565.03 20673.89 14465.37 14361.58 16266.70 14477.18 14185.10 16684.87 16590.94 17788.21 159
ACMH+79.08 1381.84 11980.06 13483.91 10489.92 10390.62 11486.21 13183.48 8473.88 14565.75 14066.38 13665.30 14984.63 7485.90 15187.25 13193.45 14591.13 139
Effi-MVS+-dtu82.05 11581.76 11282.38 12087.72 12090.56 11586.90 12578.05 14573.85 14666.85 13471.29 10971.90 12482.00 9086.64 14185.48 16092.76 15592.58 110
test-LLR79.47 14379.84 13879.03 15287.47 12482.40 19881.24 17578.05 14573.72 14762.69 15973.76 9774.42 10873.49 16384.61 17082.99 18091.25 17287.01 169
TESTMET0.1,177.78 16179.84 13875.38 18180.86 19682.40 19881.24 17562.72 21073.72 14762.69 15973.76 9774.42 10873.49 16384.61 17082.99 18091.25 17287.01 169
test-mter77.79 16080.02 13575.18 18281.18 19582.85 19380.52 18162.03 21173.62 14962.16 16473.55 9973.83 11373.81 16184.67 16983.34 17791.37 17088.31 158
IterMVS-SCA-FT79.41 14480.20 13278.49 15985.88 13886.26 17183.95 15471.94 17873.55 15061.94 16670.48 11470.50 12875.23 15085.81 15384.61 17091.99 16390.18 147
IterMVS78.79 15179.71 14177.71 16385.26 14985.91 17484.54 15069.84 18973.38 15161.25 17470.53 11370.35 12974.43 15985.21 16383.80 17590.95 17688.77 154
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
UA-Net86.07 7787.78 6684.06 10292.85 6595.11 5787.73 10884.38 6573.22 15273.18 10579.99 6289.22 3671.47 17293.22 4593.03 4094.76 9190.69 141
FMVSNet575.50 18676.07 17674.83 18476.16 20681.19 20181.34 17370.21 18673.20 15361.59 17158.97 18068.33 14268.50 18085.87 15285.85 15691.18 17579.11 202
test0.0.03 176.03 17978.51 14873.12 19387.47 12485.13 18476.32 19678.05 14573.19 15450.98 20270.64 11169.28 13555.53 20085.33 15984.38 17290.39 18081.63 194
Fast-Effi-MVS+-dtu79.95 13480.69 12679.08 15186.36 13589.14 14885.85 13472.28 17772.85 15559.32 18370.43 11568.42 14177.57 13886.14 14886.44 14693.11 15191.39 137
thisisatest051579.76 13880.59 12878.80 15484.40 16088.91 15379.48 18476.94 15572.29 15667.33 13267.82 13165.99 14670.80 17488.50 11787.84 12493.86 13292.75 104
tpm76.30 17876.05 17876.59 17286.97 13083.01 19283.83 15567.06 19871.83 15763.87 15369.56 12062.88 15973.41 16579.79 19578.59 19484.41 20686.68 172
v879.90 13578.39 15281.66 12783.97 16689.81 13187.16 12077.40 15171.49 15867.71 13061.24 16462.49 16279.83 11985.48 15886.17 15093.89 13092.02 123
V4279.59 14078.43 15180.94 13682.79 18389.71 13586.66 12776.73 15871.38 15967.42 13161.01 16662.30 16478.39 13285.56 15686.48 14493.65 14192.60 108
PM-MVS74.17 19273.10 19375.41 18076.07 20782.53 19677.56 19471.69 17971.04 16061.92 16761.23 16547.30 21374.82 15681.78 18879.80 18990.42 17988.05 162
MIMVSNet74.69 18975.60 18473.62 19076.02 20885.31 18181.21 17767.43 19671.02 16159.07 18554.48 19164.07 15266.14 19186.52 14486.64 14191.83 16581.17 196
pmnet_mix0271.95 19571.83 19872.10 19481.40 19480.63 20473.78 20172.85 17670.90 16254.89 19162.17 16057.42 19062.92 19576.80 20373.98 20786.74 20080.87 198
FMVSNet181.64 12280.61 12782.84 11582.36 18789.20 14688.67 9579.58 12870.79 16372.63 11058.95 18172.26 12379.34 12690.73 8990.72 6994.47 10991.62 132
v2v48279.84 13678.07 15681.90 12483.75 16790.21 12287.17 11979.85 12670.65 16465.93 13961.93 16160.07 17380.82 9985.25 16086.71 13993.88 13191.70 131
TinyColmap76.73 16873.95 19279.96 14685.16 15285.64 17882.34 16678.19 14370.63 16562.06 16560.69 17049.61 21080.81 10085.12 16583.69 17691.22 17482.27 191
v1079.62 13978.19 15481.28 13383.73 16889.69 13687.27 11676.86 15670.50 16665.46 14160.58 17160.47 17180.44 10786.91 13286.63 14293.93 12792.55 112
GA-MVS79.52 14179.71 14179.30 15085.68 14290.36 11884.55 14978.44 14170.47 16757.87 18868.52 12761.38 16776.21 14689.40 10887.89 12393.04 15289.96 148
ACMH78.52 1481.86 11880.45 12983.51 11190.51 9391.22 10985.62 13984.23 6770.29 16862.21 16369.04 12564.05 15384.48 7587.57 12688.45 12194.01 12592.54 113
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
WR-MVS76.63 17078.02 15875.02 18384.14 16589.76 13478.34 19180.64 11269.56 16952.32 19761.26 16361.24 16860.66 19784.45 17287.07 13393.99 12692.77 102
v14878.59 15476.84 17080.62 14083.61 17089.16 14783.65 15779.24 13369.38 17069.34 12459.88 17560.41 17275.19 15183.81 17684.63 16992.70 15690.63 143
v114479.38 14577.83 15981.18 13483.62 16990.23 12087.15 12178.35 14269.13 17164.02 15260.20 17359.41 18080.14 11486.78 13686.57 14393.81 13592.53 114
CDS-MVSNet81.63 12382.09 11181.09 13587.21 12890.28 11987.46 11380.33 11769.06 17270.66 11471.30 10873.87 11267.99 18289.58 10489.87 9192.87 15490.69 141
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
CVMVSNet76.70 16978.46 15074.64 18783.34 17284.48 18681.83 17174.58 16868.88 17351.23 20169.77 11670.05 13067.49 18584.27 17383.81 17489.38 18687.96 163
MDTV_nov1_ep13_2view73.21 19472.91 19473.56 19180.01 19784.28 18878.62 18966.43 20168.64 17459.12 18460.39 17259.69 17869.81 17778.82 20077.43 19987.36 19581.11 197
v119278.94 14977.33 16380.82 13783.25 17389.90 12986.91 12477.72 14868.63 17562.61 16159.17 17857.53 18980.62 10686.89 13386.47 14593.79 13692.75 104
v192192078.57 15576.99 16880.41 14482.93 17989.63 13986.38 13077.14 15368.31 17661.80 16958.89 18256.79 19280.19 11386.50 14586.05 15494.02 12492.76 103
v14419278.81 15077.22 16580.67 13982.95 17889.79 13386.40 12977.42 15068.26 17763.13 15759.50 17658.13 18580.08 11585.93 15086.08 15294.06 12292.83 100
CP-MVSNet76.36 17776.41 17376.32 17582.73 18488.64 15479.39 18579.62 12767.21 17853.70 19360.72 16955.22 19967.91 18483.52 17886.34 14894.55 10493.19 91
v124078.15 15776.53 17180.04 14582.85 18289.48 14285.61 14076.77 15767.05 17961.18 17658.37 18456.16 19679.89 11886.11 14986.08 15293.92 12892.47 116
WR-MVS_H75.84 18376.93 16974.57 18882.86 18189.50 14178.34 19179.36 13266.90 18052.51 19660.20 17359.71 17659.73 19883.61 17785.77 15794.65 9892.84 99
pmmvs-eth3d74.32 19171.96 19777.08 16877.33 20482.71 19478.41 19076.02 16366.65 18165.98 13854.23 19449.02 21273.14 16782.37 18682.69 18291.61 16786.05 177
PEN-MVS76.02 18076.07 17675.95 17883.17 17587.97 15979.65 18280.07 12466.57 18251.45 19960.94 16755.47 19866.81 18882.72 18286.80 13894.59 10192.03 122
N_pmnet66.85 20266.63 20367.11 20378.73 20074.66 21170.53 20671.07 18166.46 18346.54 20651.68 20051.91 20855.48 20174.68 20772.38 20880.29 21274.65 208
DTE-MVSNet75.14 18775.44 18674.80 18583.18 17487.19 16678.25 19380.11 12166.05 18448.31 20460.88 16854.67 20064.54 19382.57 18486.17 15094.43 11290.53 145
PS-CasMVS75.90 18275.86 18175.96 17782.59 18588.46 15779.23 18879.56 12966.00 18552.77 19559.48 17754.35 20367.14 18783.37 17986.23 14994.47 10993.10 93
v7n77.22 16576.23 17578.38 16181.89 19089.10 15082.24 16976.36 15965.96 18661.21 17556.56 18855.79 19775.07 15486.55 14286.68 14093.52 14392.95 97
anonymousdsp77.94 15979.00 14576.71 17179.03 19987.83 16079.58 18372.87 17565.80 18758.86 18765.82 13962.48 16375.99 14786.77 13788.66 11793.92 12895.68 51
tmp_tt32.73 21543.96 22121.15 22326.71 2218.99 22065.67 18851.39 20056.01 18942.64 21611.76 21956.60 21550.81 21653.55 219
SixPastTwentyTwo76.02 18075.72 18276.36 17483.38 17187.54 16275.50 19876.22 16065.50 18957.05 18970.64 11153.97 20474.54 15780.96 19082.12 18591.44 16889.35 151
pmmvs576.93 16776.33 17477.62 16481.97 18988.40 15881.32 17474.35 17065.42 19061.42 17263.07 15757.95 18773.23 16685.60 15585.35 16293.41 14688.55 156
TAMVS76.42 17477.16 16675.56 17983.05 17685.55 17980.58 18071.43 18065.40 19161.04 17767.27 13369.22 13767.99 18284.88 16884.78 16789.28 18783.01 189
UniMVSNet_ETH3D79.24 14676.47 17282.48 11985.66 14390.97 11186.08 13381.63 10464.48 19268.94 12754.47 19257.65 18878.83 13085.20 16488.91 11593.72 13893.60 87
Anonymous2023120670.80 19770.59 20171.04 19681.60 19282.49 19774.64 20075.87 16464.17 19349.27 20344.85 20853.59 20654.68 20383.07 18082.34 18490.17 18183.65 186
testgi71.92 19674.20 19169.27 19984.58 15983.06 19073.40 20274.39 16964.04 19446.17 20768.90 12657.15 19148.89 20884.07 17583.08 17988.18 19279.09 203
EU-MVSNet69.98 19972.30 19667.28 20275.67 20979.39 20673.12 20369.94 18863.59 19542.80 21162.93 15856.71 19455.07 20279.13 19978.55 19587.06 19885.82 179
pm-mvs178.51 15677.75 16179.40 14984.83 15889.30 14383.55 15879.38 13162.64 19663.68 15458.73 18364.68 15070.78 17589.79 10187.84 12494.17 12091.28 138
CMPMVSbinary56.49 1773.84 19371.73 19976.31 17685.20 15085.67 17775.80 19773.23 17362.26 19765.40 14253.40 19659.70 17771.77 17180.25 19379.56 19186.45 20181.28 195
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
MVS-HIRNet68.83 20066.39 20471.68 19577.58 20375.52 21066.45 21065.05 20562.16 19862.84 15844.76 20956.60 19571.96 17078.04 20175.06 20586.18 20372.56 209
FPMVS63.63 20660.08 21167.78 20180.01 19771.50 21372.88 20469.41 19161.82 19953.11 19445.12 20742.11 21750.86 20666.69 21163.84 21280.41 21169.46 211
tfpnnormal77.46 16474.86 18980.49 14286.34 13688.92 15284.33 15281.26 10861.39 20061.70 17051.99 19953.66 20574.84 15588.63 11587.38 13094.50 10692.08 119
new_pmnet59.28 20861.47 21056.73 20961.66 21568.29 21559.57 21454.91 21260.83 20134.38 21844.66 21043.65 21549.90 20771.66 20971.56 21079.94 21369.67 210
ambc61.92 20870.98 21273.54 21263.64 21360.06 20252.23 19838.44 21219.17 22357.12 19982.33 18775.03 20683.21 21084.89 181
test_method41.78 21248.10 21334.42 21410.74 22319.78 22444.64 21817.73 21959.83 20338.67 21635.82 21554.41 20234.94 21462.87 21443.13 21759.81 21760.82 214
TransMVSNet (Re)76.57 17175.16 18878.22 16285.60 14487.24 16582.46 16381.23 10959.80 20459.05 18657.07 18759.14 18366.60 19088.09 12186.82 13794.37 11587.95 164
EG-PatchMatch MVS76.40 17675.47 18577.48 16585.86 14090.22 12182.45 16473.96 17259.64 20559.60 18252.75 19762.20 16568.44 18188.23 12087.50 12794.55 10487.78 165
MDA-MVSNet-bldmvs66.22 20364.49 20668.24 20061.67 21482.11 20070.07 20776.16 16159.14 20647.94 20554.35 19335.82 22067.33 18664.94 21375.68 20286.30 20279.36 201
test20.0368.31 20170.05 20266.28 20482.41 18680.84 20267.35 20976.11 16258.44 20740.80 21453.77 19554.54 20142.28 21183.07 18081.96 18788.73 19077.76 205
new-patchmatchnet63.80 20563.31 20764.37 20576.49 20575.99 20963.73 21270.99 18257.27 20843.08 21045.86 20643.80 21445.13 21073.20 20870.68 21186.80 19976.34 207
DeepMVS_CXcopyleft48.31 21948.03 21726.08 21856.42 20925.77 22047.51 20331.31 22151.30 20548.49 21753.61 21861.52 213
MIMVSNet165.00 20466.24 20563.55 20658.41 21780.01 20569.00 20874.03 17155.81 21041.88 21236.81 21349.48 21147.89 20981.32 18982.40 18390.08 18377.88 204
Gipumacopyleft49.17 21147.05 21451.65 21059.67 21648.39 21841.98 21963.47 20855.64 21133.33 21914.90 21713.78 22441.34 21269.31 21072.30 20970.11 21555.00 216
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
pmmvs674.83 18872.89 19577.09 16782.11 18887.50 16380.88 17976.97 15452.79 21261.91 16846.66 20460.49 17069.28 17886.74 13985.46 16191.39 16990.56 144
gg-mvs-nofinetune75.64 18577.26 16473.76 18987.92 11892.20 10287.32 11464.67 20751.92 21335.35 21746.44 20577.05 9971.97 16992.64 5491.02 6495.34 6689.53 150
LTVRE_ROB74.41 1675.78 18474.72 19077.02 16985.88 13889.22 14582.44 16577.17 15250.57 21445.45 20865.44 14452.29 20781.25 9485.50 15787.42 12989.94 18492.62 107
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
gm-plane-assit70.29 19870.65 20069.88 19885.03 15378.50 20858.41 21565.47 20350.39 21540.88 21349.60 20150.11 20975.14 15391.43 7089.78 9394.32 11684.73 184
pmmvs361.89 20761.74 20962.06 20764.30 21370.83 21464.22 21152.14 21548.78 21644.47 20941.67 21141.70 21863.03 19476.06 20576.02 20184.18 20877.14 206
PMVScopyleft50.48 1855.81 21051.93 21260.33 20872.90 21149.34 21748.78 21669.51 19043.49 21754.25 19236.26 21441.04 21939.71 21365.07 21260.70 21376.85 21467.58 212
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
PMMVS241.68 21344.74 21538.10 21146.97 22052.32 21640.63 22048.08 21635.51 2187.36 22426.86 21624.64 22216.72 21855.24 21659.03 21468.85 21659.59 215
EMVS30.49 21625.44 21836.39 21351.47 21829.89 22220.17 22354.00 21426.49 21912.02 22313.94 2208.84 22534.37 21525.04 22034.37 21946.29 22139.53 219
E-PMN31.40 21426.80 21736.78 21251.39 21929.96 22120.20 22254.17 21325.93 22012.75 22214.73 2188.58 22634.10 21627.36 21937.83 21848.07 22043.18 218
MVEpermissive30.17 1930.88 21533.52 21627.80 21723.78 22239.16 22018.69 22446.90 21721.88 22115.39 22114.37 2197.31 22724.41 21741.63 21856.22 21537.64 22254.07 217
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
testmvs1.03 2171.63 2190.34 2180.09 2250.35 2250.61 2260.16 2211.49 2220.10 2263.15 2210.15 2280.86 2211.32 2211.18 2200.20 2233.76 221
test1230.87 2181.40 2200.25 2190.03 2260.25 2260.35 2270.08 2231.21 2230.05 2272.84 2220.03 2290.89 2200.43 2221.16 2210.13 2243.87 220
uanet_test0.00 2190.00 2210.00 2200.00 2270.00 2270.00 2280.00 2240.00 2240.00 2280.00 2230.00 2300.00 2230.00 2230.00 2220.00 2250.00 222
sosnet-low-res0.00 2190.00 2210.00 2200.00 2270.00 2270.00 2280.00 2240.00 2240.00 2280.00 2230.00 2300.00 2230.00 2230.00 2220.00 2250.00 222
sosnet0.00 2190.00 2210.00 2200.00 2270.00 2270.00 2280.00 2240.00 2240.00 2280.00 2230.00 2300.00 2230.00 2230.00 2220.00 2250.00 222
RE-MVS-def56.08 190
9.1492.16 16
SR-MVS96.58 2590.99 2192.40 13
our_test_381.81 19183.96 18976.61 195
MTAPA92.97 291.03 22
MTMP93.14 190.21 29
Patchmatch-RL test8.55 225
XVS93.11 5996.70 2591.91 5283.95 4888.82 3995.79 40
X-MVStestdata93.11 5996.70 2591.91 5283.95 4888.82 3995.79 40
mPP-MVS97.06 1288.08 44
Patchmtry85.54 18082.30 16768.23 19365.37 143