This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DeepC-MVS_fast88.76 193.10 2293.02 2993.19 2197.13 996.51 3395.35 2591.19 1993.14 2088.14 2585.26 4089.49 3591.45 2295.17 1095.07 295.85 3696.48 36
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DeepPCF-MVS88.51 292.64 2894.42 1790.56 3994.84 4496.92 1891.31 6389.61 3195.16 584.55 4789.91 2991.45 2290.15 3595.12 1194.81 792.90 15797.58 13
DeepC-MVS87.86 392.26 3091.86 3392.73 2496.18 2996.87 1995.19 2791.76 1592.17 2686.58 3481.79 5485.85 5190.88 3094.57 2394.61 1095.80 3997.18 19
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
3Dnovator+86.06 491.60 3590.86 4292.47 2696.00 3396.50 3594.70 3287.83 4290.49 3889.92 1774.68 9489.35 3690.66 3194.02 3194.14 1795.67 4796.85 29
3Dnovator85.17 590.48 4189.90 4991.16 3694.88 4395.74 4893.82 3785.36 5589.28 4587.81 2774.34 9787.40 4888.56 4493.07 4793.74 2696.53 1295.71 50
PCF-MVS84.60 688.66 5687.75 7089.73 4793.06 6396.02 3893.22 4490.00 3082.44 8280.02 7677.96 7785.16 5587.36 5988.54 11988.54 12294.72 9895.61 54
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
TAPA-MVS84.37 788.91 5588.93 5688.89 5693.00 6494.85 6592.00 5284.84 5991.68 3180.05 7479.77 6684.56 5688.17 4990.11 9989.00 11795.30 7092.57 114
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
ACMP83.90 888.32 6388.06 6388.62 6192.18 7193.98 7891.28 6485.24 5686.69 5681.23 6785.62 3975.13 10887.01 6489.83 10289.77 9694.79 9295.43 57
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
PLCcopyleft83.76 988.61 5886.83 7790.70 3894.22 4892.63 10091.50 6087.19 4689.16 4686.87 3275.51 8980.87 7389.98 3690.01 10089.20 11194.41 11790.45 150
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
ACMM83.27 1087.68 7086.09 8389.54 5093.26 5792.19 10691.43 6186.74 4786.02 5982.85 5675.63 8875.14 10788.41 4590.68 9489.99 8894.59 10592.97 99
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
OpenMVScopyleft82.53 1187.71 6986.84 7688.73 5894.42 4795.06 6191.02 6683.49 8282.50 8182.24 6267.62 13585.48 5285.56 7391.19 7491.30 6295.67 4794.75 66
IB-MVS79.09 1282.60 11382.19 11283.07 11591.08 8493.55 8380.90 18281.35 11076.56 12680.87 6964.81 15569.97 13468.87 18385.64 15790.06 8795.36 6594.74 67
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
ACMH+79.08 1381.84 12180.06 13683.91 10689.92 10690.62 11786.21 13583.48 8473.88 14765.75 14366.38 13965.30 15284.63 7785.90 15487.25 13493.45 14991.13 143
ACMH78.52 1481.86 12080.45 13183.51 11390.51 9691.22 11285.62 14384.23 6770.29 17162.21 16769.04 12864.05 15684.48 7887.57 12988.45 12494.01 12992.54 116
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
COLMAP_ROBcopyleft76.78 1580.50 13378.49 15282.85 11690.96 8789.65 14186.20 13683.40 8777.15 12466.54 13862.27 16365.62 15177.89 13985.23 16484.70 17192.11 16484.83 186
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
LTVRE_ROB74.41 1675.78 18774.72 19377.02 17285.88 14289.22 14882.44 16977.17 15550.57 21745.45 21265.44 14852.29 21181.25 9785.50 16087.42 13289.94 18892.62 110
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
CMPMVSbinary56.49 1773.84 19671.73 20276.31 17985.20 15485.67 18175.80 20173.23 17762.26 20065.40 14553.40 20159.70 18171.77 17580.25 19679.56 19486.45 20581.28 199
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
PMVScopyleft50.48 1855.81 21351.93 21660.33 21172.90 21649.34 22248.78 22069.51 19443.49 22154.25 19636.26 21941.04 22339.71 21765.07 21660.70 21776.85 21867.58 216
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive30.17 1930.88 21933.52 22027.80 22123.78 22739.16 22518.69 22946.90 22121.88 22515.39 22514.37 2247.31 23224.41 22141.63 22256.22 21937.64 22754.07 222
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
MGCFI-Net88.38 6289.72 5186.83 7691.21 8295.59 5091.14 6582.37 10290.25 4175.33 9781.89 5279.13 8885.69 7290.98 8693.23 4095.23 7596.94 27
sasdasda89.36 5189.92 4688.70 5991.38 7995.92 4291.81 5782.61 9990.37 3982.73 5882.09 5079.28 8688.30 4791.17 7593.59 2895.36 6597.04 25
WB-MVS52.27 21457.26 21546.45 21475.64 21465.62 22040.45 22575.80 16847.10 2209.11 22853.83 19938.98 22414.47 22369.44 21368.29 21563.24 22157.56 220
dmvs_re81.08 12979.92 13982.44 12286.66 13687.70 16487.91 11083.30 8972.86 15765.29 14965.76 14363.43 15876.69 14788.93 11589.50 10394.80 9191.23 142
TPM-MVS96.31 2796.02 3894.89 3086.52 3687.18 3692.17 1686.76 6595.56 5593.85 84
Ray Leroy Khuboni and Hongjun Xu: Textureless Resilient Propagation Matching in Multiple View Stereosis (TPM-MVS). SATNAC 2025
FA-MVS(training)85.65 8485.79 8885.48 8790.44 9893.47 8488.66 10073.11 17883.34 7482.26 6071.79 10978.39 9483.14 8491.00 8389.47 10595.28 7393.06 97
test250685.20 8884.11 10086.47 7891.84 7495.28 5489.18 8684.49 6382.59 7775.34 9674.66 9558.07 19081.68 9493.76 3692.71 4896.28 2191.71 130
test111184.86 9384.21 9985.61 8591.75 7695.14 5988.63 10184.57 6281.88 8771.21 11565.66 14768.51 14281.19 9893.74 3992.68 5096.31 1891.86 127
ECVR-MVScopyleft85.25 8784.47 9686.16 8091.84 7495.28 5489.18 8684.49 6382.59 7773.49 10666.12 14069.28 13881.68 9493.76 3692.71 4896.28 2191.58 137
DVP-MVS++95.79 196.42 195.06 197.84 298.17 297.03 492.84 396.68 192.83 395.90 594.38 492.90 595.98 294.85 596.93 398.99 1
GeoE84.62 9583.98 10285.35 8889.34 10992.83 9688.34 10578.95 13879.29 11277.16 9168.10 13274.56 11083.40 8289.31 11189.23 11094.92 8694.57 72
test_method41.78 21648.10 21734.42 21810.74 22819.78 22944.64 22217.73 22359.83 20638.67 22035.82 22054.41 20634.94 21862.87 21843.13 22159.81 22260.82 218
pmnet_mix0271.95 19871.83 20172.10 19781.40 19880.63 20873.78 20572.85 18070.90 16554.89 19562.17 16457.42 19462.92 19976.80 20673.98 21086.74 20480.87 202
RE-MVS-def56.08 194
SED-MVS95.61 296.36 294.73 396.84 1998.15 397.08 392.92 295.64 391.84 495.98 495.33 192.83 796.00 194.94 396.90 498.45 3
SF-MVS94.61 894.96 1094.20 996.75 2497.07 1295.82 1892.60 793.98 1291.09 895.89 692.54 1291.93 1594.40 2793.56 3097.04 297.27 17
9.1492.16 17
uanet_test0.00 2230.00 2250.00 2240.00 2320.00 2320.00 2330.00 2280.00 2280.00 2330.00 2280.00 2350.00 2280.00 2270.00 2260.00 2300.00 227
ET-MVSNet_ETH3D84.65 9485.58 8983.56 11174.99 21592.62 10290.29 7180.38 11682.16 8473.01 11183.41 4471.10 13087.05 6387.77 12790.17 8495.62 5091.82 128
UniMVSNet_ETH3D79.24 14976.47 17582.48 12185.66 14790.97 11486.08 13781.63 10764.48 19568.94 13054.47 19657.65 19278.83 13385.20 16788.91 11893.72 14293.60 90
EIA-MVS87.94 6888.05 6487.81 6991.46 7895.00 6388.67 9882.81 9182.53 7980.81 7080.04 6480.20 7787.48 5792.58 5591.61 6095.63 4994.36 74
ETV-MVS89.22 5389.76 5088.60 6291.60 7794.61 6989.48 8383.46 8585.20 6581.58 6482.75 4882.59 6688.80 4094.57 2393.28 3996.68 995.31 58
CS-MVS90.34 4290.58 4490.07 4393.11 6095.82 4690.57 6783.62 7687.07 5585.35 4182.98 4683.47 6191.37 2694.94 1393.37 3796.37 1496.41 39
DVP-MVScopyleft95.56 396.26 394.73 396.93 1698.19 196.62 792.81 596.15 291.73 595.01 795.31 293.41 195.95 394.77 896.90 498.46 2
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
SR-MVS96.58 2590.99 2192.40 13
DPM-MVS91.72 3491.48 3492.00 3095.53 3795.75 4795.94 1591.07 2091.20 3385.58 4081.63 5890.74 2688.40 4693.40 4293.75 2595.45 6293.85 84
thisisatest053085.15 9085.86 8584.33 9789.19 11292.57 10387.22 12280.11 12482.15 8574.41 10078.15 7573.80 11779.90 11990.99 8489.58 10095.13 8193.75 88
Anonymous20240521182.75 11089.58 10892.97 9489.04 9484.13 6978.72 11657.18 19076.64 10383.13 8589.55 10789.92 9293.38 15194.28 78
DCV-MVSNet85.88 8386.17 8185.54 8689.10 11389.85 13389.34 8480.70 11483.04 7578.08 8576.19 8579.00 8982.42 9089.67 10590.30 8193.63 14695.12 59
tttt051785.11 9185.81 8684.30 9889.24 11092.68 9987.12 12680.11 12481.98 8674.31 10278.08 7673.57 11979.90 11991.01 8289.58 10095.11 8393.77 87
our_test_381.81 19583.96 19376.61 199
thisisatest051579.76 14180.59 13078.80 15784.40 16488.91 15679.48 18876.94 15872.29 15967.33 13567.82 13465.99 14970.80 17888.50 12087.84 12793.86 13692.75 107
SMA-MVScopyleft94.70 795.35 793.93 1197.57 397.57 895.98 1291.91 1394.50 790.35 1393.46 1792.72 1191.89 1795.89 495.22 195.88 3198.10 6
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DPE-MVScopyleft95.53 496.13 494.82 296.81 2298.05 497.42 193.09 194.31 991.49 697.12 195.03 393.27 395.55 694.58 1296.86 698.25 4
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
thres100view90082.55 11481.01 12684.34 9690.30 10292.27 10489.04 9482.77 9275.14 13569.56 12365.72 14463.13 15979.62 12689.97 10189.26 10994.73 9791.61 136
tfpnnormal77.46 16774.86 19280.49 14586.34 14088.92 15584.33 15681.26 11161.39 20361.70 17451.99 20453.66 20974.84 15988.63 11887.38 13394.50 11092.08 122
tfpn200view982.86 10981.46 11784.48 9490.30 10293.09 9089.05 9382.71 9375.14 13569.56 12365.72 14463.13 15980.38 11291.15 7889.51 10294.91 8792.50 118
CHOSEN 280x42080.28 13481.66 11578.67 16082.92 18479.24 21185.36 14666.79 20378.11 11970.32 11875.03 9379.87 7981.09 10089.07 11283.16 18185.54 20887.17 172
CANet91.33 3791.46 3591.18 3595.01 4096.71 2493.77 3887.39 4587.72 5287.26 3081.77 5589.73 3287.32 6094.43 2693.86 2296.31 1896.02 46
Fast-Effi-MVS+-dtu79.95 13780.69 12879.08 15486.36 13989.14 15185.85 13872.28 18172.85 15859.32 18770.43 11868.42 14477.57 14186.14 15186.44 14993.11 15591.39 140
Effi-MVS+-dtu82.05 11781.76 11482.38 12387.72 12390.56 11886.90 12978.05 14873.85 14866.85 13771.29 11271.90 12782.00 9386.64 14485.48 16392.76 15992.58 113
CANet_DTU85.43 8587.72 7182.76 11890.95 8893.01 9389.99 7375.46 17082.67 7664.91 15183.14 4580.09 7880.68 10592.03 6591.03 6594.57 10792.08 122
MVS_030490.88 3991.35 3790.34 4093.91 5196.79 2394.49 3486.54 4886.57 5782.85 5681.68 5789.70 3387.57 5694.64 2193.93 2196.67 1196.15 44
MSP-MVS95.12 695.83 594.30 696.82 2197.94 596.98 592.37 1195.40 490.59 1296.16 393.71 692.70 894.80 1794.77 896.37 1497.99 8
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
IterMVS-SCA-FT79.41 14780.20 13478.49 16285.88 14286.26 17583.95 15871.94 18273.55 15261.94 17070.48 11770.50 13175.23 15485.81 15684.61 17391.99 16790.18 151
TSAR-MVS + MP.94.48 1194.97 993.90 1295.53 3797.01 1596.69 690.71 2394.24 1090.92 1094.97 892.19 1593.03 494.83 1693.60 2796.51 1397.97 9
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
OPM-MVS87.56 7185.80 8789.62 4993.90 5294.09 7694.12 3688.18 3875.40 13477.30 9076.41 8377.93 9788.79 4192.20 6190.82 7095.40 6393.72 89
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
ACMMP_NAP93.94 1694.49 1593.30 1997.03 1397.31 1095.96 1391.30 1893.41 1788.55 2393.00 1990.33 2891.43 2595.53 794.41 1495.53 5897.47 15
ambc61.92 21170.98 21773.54 21663.64 21760.06 20552.23 20238.44 21719.17 22857.12 20382.33 19075.03 20983.21 21484.89 185
CS-MVS-test90.29 4390.96 3989.51 5193.18 5995.87 4589.18 8683.72 7588.32 5084.82 4684.89 4285.23 5490.25 3394.04 2992.66 5195.94 2995.69 51
Effi-MVS+85.33 8685.08 9285.63 8489.69 10793.42 8689.90 7580.31 12179.32 11172.48 11473.52 10374.03 11486.55 6890.99 8489.98 8994.83 9094.27 79
new-patchmatchnet63.80 20863.31 21064.37 20876.49 20975.99 21363.73 21670.99 18657.27 21143.08 21445.86 21143.80 21845.13 21473.20 21170.68 21486.80 20376.34 211
pmmvs674.83 19172.89 19877.09 17082.11 19287.50 16780.88 18376.97 15752.79 21561.91 17246.66 20960.49 17469.28 18286.74 14285.46 16491.39 17390.56 148
pmmvs576.93 17076.33 17777.62 16781.97 19388.40 16181.32 17874.35 17465.42 19361.42 17663.07 16157.95 19173.23 17085.60 15885.35 16593.41 15088.55 160
Fast-Effi-MVS+83.77 10482.98 10784.69 9187.98 12091.87 10888.10 10877.70 15278.10 12073.04 11069.13 12668.51 14286.66 6690.49 9789.85 9494.67 10192.88 101
Anonymous2023121184.42 10083.02 10686.05 8188.85 11592.70 9888.92 9783.40 8779.99 10578.31 8255.83 19478.92 9183.33 8389.06 11389.76 9793.50 14894.90 62
pmmvs-eth3d74.32 19471.96 20077.08 17177.33 20882.71 19878.41 19476.02 16666.65 18465.98 14154.23 19849.02 21673.14 17182.37 18982.69 18591.61 17186.05 181
GG-mvs-BLEND57.56 21282.61 11128.34 2200.22 22990.10 12779.37 1900.14 22679.56 1090.40 23071.25 11383.40 620.30 22786.27 15083.87 17689.59 18983.83 189
Anonymous2023120670.80 20070.59 20471.04 19981.60 19682.49 20174.64 20475.87 16764.17 19649.27 20744.85 21353.59 21054.68 20783.07 18382.34 18790.17 18583.65 190
MTAPA92.97 291.03 23
MTMP93.14 190.21 30
gm-plane-assit70.29 20170.65 20369.88 20185.03 15778.50 21258.41 21965.47 20750.39 21840.88 21749.60 20650.11 21375.14 15791.43 7089.78 9594.32 12084.73 188
train_agg92.87 2493.53 2592.09 2996.88 1895.38 5295.94 1590.59 2790.65 3783.65 5294.31 1391.87 2090.30 3293.38 4392.42 5295.17 7796.73 32
gg-mvs-nofinetune75.64 18877.26 16773.76 19287.92 12192.20 10587.32 11864.67 21151.92 21635.35 22146.44 21077.05 10271.97 17392.64 5491.02 6695.34 6889.53 154
SCA79.51 14580.15 13578.75 15886.58 13787.70 16483.07 16468.53 19681.31 9266.40 13973.83 9975.38 10579.30 13080.49 19579.39 19688.63 19582.96 194
MS-PatchMatch81.79 12281.44 11882.19 12690.35 10089.29 14788.08 10975.36 17177.60 12269.00 12964.37 15878.87 9277.14 14688.03 12585.70 16193.19 15486.24 179
Patchmatch-RL test8.55 230
tmp_tt32.73 21943.96 22621.15 22826.71 2268.99 22465.67 19151.39 20456.01 19342.64 22011.76 22456.60 21950.81 22053.55 224
canonicalmvs89.36 5189.92 4688.70 5991.38 7995.92 4291.81 5782.61 9990.37 3982.73 5882.09 5079.28 8688.30 4791.17 7593.59 2895.36 6597.04 25
anonymousdsp77.94 16279.00 14876.71 17479.03 20387.83 16379.58 18772.87 17965.80 19058.86 19165.82 14262.48 16775.99 15186.77 14088.66 12093.92 13295.68 53
v14419278.81 15377.22 16880.67 14282.95 18289.79 13686.40 13377.42 15368.26 18063.13 16159.50 18058.13 18980.08 11885.93 15386.08 15594.06 12692.83 103
v192192078.57 15876.99 17180.41 14782.93 18389.63 14286.38 13477.14 15668.31 17961.80 17358.89 18656.79 19680.19 11686.50 14886.05 15794.02 12892.76 106
FC-MVSNet-train85.18 8985.31 9185.03 9090.67 8991.62 11087.66 11383.61 7779.75 10874.37 10178.69 7271.21 12978.91 13291.23 7189.96 9094.96 8594.69 70
UA-Net86.07 7987.78 6884.06 10492.85 6695.11 6087.73 11284.38 6573.22 15473.18 10879.99 6589.22 3771.47 17693.22 4593.03 4294.76 9590.69 145
v119278.94 15277.33 16680.82 14083.25 17789.90 13286.91 12877.72 15168.63 17862.61 16559.17 18257.53 19380.62 10986.89 13686.47 14893.79 14092.75 107
FC-MVSNet-test76.53 17681.62 11670.58 20084.99 15885.73 18074.81 20378.85 14177.00 12539.13 21975.90 8673.50 12054.08 20886.54 14685.99 15891.65 17086.68 176
v114479.38 14877.83 16281.18 13783.62 17390.23 12387.15 12578.35 14569.13 17464.02 15660.20 17759.41 18480.14 11786.78 13986.57 14693.81 13992.53 117
sosnet-low-res0.00 2230.00 2250.00 2240.00 2320.00 2320.00 2330.00 2280.00 2280.00 2330.00 2280.00 2350.00 2280.00 2270.00 2260.00 2300.00 227
HFP-MVS94.02 1594.22 1893.78 1397.25 796.85 2095.81 1990.94 2294.12 1190.29 1594.09 1489.98 3192.52 1193.94 3393.49 3395.87 3397.10 23
v14878.59 15776.84 17380.62 14383.61 17489.16 15083.65 16179.24 13669.38 17369.34 12759.88 17960.41 17675.19 15583.81 17984.63 17292.70 16090.63 147
sosnet0.00 2230.00 2250.00 2240.00 2320.00 2320.00 2330.00 2280.00 2280.00 2330.00 2280.00 2350.00 2280.00 2270.00 2260.00 2300.00 227
v7n77.22 16876.23 17878.38 16481.89 19489.10 15382.24 17376.36 16265.96 18961.21 17956.56 19255.79 20175.07 15886.55 14586.68 14393.52 14792.95 100
DI_MVS_plusplus_trai86.41 7785.54 9087.42 7389.24 11093.13 8992.16 5182.65 9782.30 8380.75 7268.30 13180.41 7585.01 7690.56 9690.07 8694.70 10094.01 81
HPM-MVS++copyleft94.60 994.91 1194.24 897.86 196.53 3296.14 992.51 893.87 1490.76 1193.45 1893.84 592.62 995.11 1294.08 1995.58 5497.48 14
XVS93.11 6096.70 2591.91 5383.95 4988.82 4095.79 40
v124078.15 16076.53 17480.04 14882.85 18689.48 14585.61 14476.77 16067.05 18261.18 18058.37 18856.16 20079.89 12186.11 15286.08 15593.92 13292.47 119
pm-mvs178.51 15977.75 16479.40 15284.83 16289.30 14683.55 16279.38 13462.64 19963.68 15858.73 18764.68 15370.78 17989.79 10387.84 12794.17 12491.28 141
X-MVStestdata93.11 6096.70 2591.91 5383.95 4988.82 4095.79 40
X-MVS92.36 2992.75 3091.90 3296.89 1796.70 2595.25 2690.48 2891.50 3283.95 4988.20 3188.82 4089.11 3893.75 3893.43 3495.75 4396.83 30
v879.90 13878.39 15581.66 13083.97 17089.81 13487.16 12477.40 15471.49 16167.71 13361.24 16862.49 16679.83 12285.48 16186.17 15393.89 13492.02 126
v1079.62 14278.19 15781.28 13683.73 17289.69 13987.27 12076.86 15970.50 16965.46 14460.58 17560.47 17580.44 11086.91 13586.63 14593.93 13192.55 115
v2v48279.84 13978.07 15981.90 12783.75 17190.21 12587.17 12379.85 12970.65 16765.93 14261.93 16560.07 17780.82 10285.25 16386.71 14293.88 13591.70 134
V4279.59 14378.43 15480.94 13982.79 18789.71 13886.66 13176.73 16171.38 16267.42 13461.01 17062.30 16878.39 13585.56 15986.48 14793.65 14592.60 111
SD-MVS94.53 1095.22 893.73 1495.69 3697.03 1495.77 2191.95 1294.41 891.35 794.97 893.34 891.80 1994.72 2093.99 2095.82 3898.07 7
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
GA-MVS79.52 14479.71 14479.30 15385.68 14690.36 12184.55 15378.44 14470.47 17057.87 19268.52 13061.38 17176.21 15089.40 11087.89 12693.04 15689.96 152
MSLP-MVS++92.02 3391.40 3692.75 2396.01 3295.88 4493.73 4089.00 3389.89 4490.31 1481.28 6088.85 3991.45 2292.88 5194.24 1596.00 2796.76 31
APDe-MVScopyleft95.23 595.69 694.70 597.12 1097.81 697.19 292.83 495.06 690.98 996.47 292.77 1093.38 295.34 994.21 1696.68 998.17 5
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
TSAR-MVS + COLMAP88.40 5989.09 5587.60 7292.72 6893.92 7992.21 5085.57 5491.73 2973.72 10491.75 2373.22 12387.64 5591.49 6989.71 9893.73 14191.82 128
CVMVSNet76.70 17278.46 15374.64 19083.34 17684.48 19081.83 17574.58 17268.88 17651.23 20569.77 11970.05 13367.49 18984.27 17683.81 17789.38 19087.96 167
TSAR-MVS + ACMM92.97 2394.51 1491.16 3695.88 3496.59 3095.09 2890.45 2993.42 1683.01 5594.68 1090.74 2688.74 4294.75 1993.78 2493.82 13897.63 12
pmmvs479.99 13678.08 15882.22 12583.04 18187.16 17184.95 14878.80 14278.64 11774.53 9964.61 15659.41 18479.45 12884.13 17784.54 17492.53 16188.08 165
EU-MVSNet69.98 20272.30 19967.28 20575.67 21379.39 21073.12 20769.94 19263.59 19842.80 21562.93 16256.71 19855.07 20679.13 20278.55 19887.06 20285.82 183
test-LLR79.47 14679.84 14179.03 15587.47 12782.40 20281.24 17978.05 14873.72 14962.69 16373.76 10074.42 11173.49 16784.61 17382.99 18391.25 17687.01 173
TESTMET0.1,177.78 16479.84 14175.38 18480.86 20082.40 20281.24 17962.72 21473.72 14962.69 16373.76 10074.42 11173.49 16784.61 17382.99 18391.25 17687.01 173
test-mter77.79 16380.02 13775.18 18581.18 19982.85 19780.52 18562.03 21573.62 15162.16 16873.55 10273.83 11673.81 16584.67 17283.34 18091.37 17488.31 162
ACMMPR93.72 1893.94 2093.48 1797.07 1196.93 1795.78 2090.66 2593.88 1389.24 2093.53 1689.08 3892.24 1293.89 3593.50 3195.88 3196.73 32
testgi71.92 19974.20 19469.27 20284.58 16383.06 19473.40 20674.39 17364.04 19746.17 21168.90 12957.15 19548.89 21284.07 17883.08 18288.18 19679.09 207
test20.0368.31 20470.05 20566.28 20782.41 19080.84 20667.35 21376.11 16558.44 21040.80 21853.77 20054.54 20542.28 21583.07 18381.96 19088.73 19477.76 209
thres600view782.53 11581.02 12484.28 9990.61 9193.05 9188.57 10382.67 9574.12 14568.56 13165.09 15262.13 17080.40 11191.15 7889.02 11694.88 8892.59 112
ADS-MVSNet74.53 19375.69 18673.17 19581.57 19780.71 20779.27 19163.03 21379.27 11359.94 18567.86 13368.32 14671.08 17777.33 20576.83 20384.12 21379.53 204
MP-MVScopyleft93.35 2093.59 2493.08 2297.39 496.82 2295.38 2490.71 2390.82 3588.07 2692.83 2190.29 2991.32 2794.03 3093.19 4195.61 5297.16 20
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
testmvs1.03 2211.63 2230.34 2220.09 2300.35 2300.61 2310.16 2251.49 2260.10 2313.15 2260.15 2330.86 2261.32 2251.18 2240.20 2283.76 226
thres40082.68 11281.15 12284.47 9590.52 9492.89 9588.95 9682.71 9374.33 14269.22 12865.31 14962.61 16580.63 10790.96 8789.50 10394.79 9292.45 120
test1230.87 2221.40 2240.25 2230.03 2310.25 2310.35 2320.08 2271.21 2270.05 2322.84 2270.03 2340.89 2250.43 2261.16 2250.13 2293.87 225
thres20082.77 11181.25 12184.54 9390.38 9993.05 9189.13 9082.67 9574.40 14169.53 12565.69 14663.03 16280.63 10791.15 7889.42 10694.88 8892.04 124
test0.0.03 176.03 18278.51 15173.12 19687.47 12785.13 18876.32 20078.05 14873.19 15650.98 20670.64 11469.28 13855.53 20485.33 16284.38 17590.39 18481.63 198
pmmvs361.89 21061.74 21262.06 21064.30 21870.83 21864.22 21552.14 21948.78 21944.47 21341.67 21641.70 22263.03 19876.06 20876.02 20484.18 21277.14 210
EMVS30.49 22025.44 22236.39 21751.47 22329.89 22720.17 22854.00 21826.49 22312.02 22713.94 2258.84 23034.37 21925.04 22434.37 22346.29 22639.53 224
E-PMN31.40 21826.80 22136.78 21651.39 22429.96 22620.20 22754.17 21725.93 22412.75 22614.73 2238.58 23134.10 22027.36 22337.83 22248.07 22543.18 223
PGM-MVS92.76 2593.03 2892.45 2797.03 1396.67 2895.73 2287.92 4190.15 4386.53 3592.97 2088.33 4491.69 2093.62 4193.03 4295.83 3796.41 39
MCST-MVS93.81 1794.06 1993.53 1696.79 2396.85 2095.95 1491.69 1692.20 2587.17 3190.83 2793.41 791.96 1494.49 2593.50 3197.61 197.12 22
MVS_Test86.93 7487.24 7386.56 7790.10 10593.47 8490.31 7080.12 12383.55 7378.12 8379.58 6779.80 8185.45 7590.17 9890.59 7795.29 7193.53 92
MDA-MVSNet-bldmvs66.22 20664.49 20968.24 20361.67 21982.11 20470.07 21176.16 16459.14 20947.94 20954.35 19735.82 22567.33 19064.94 21775.68 20586.30 20679.36 205
CDPH-MVS91.14 3892.01 3290.11 4196.18 2996.18 3794.89 3088.80 3788.76 4877.88 8789.18 3087.71 4787.29 6193.13 4693.31 3895.62 5095.84 48
casdiffmvspermissive87.45 7287.15 7487.79 7190.15 10494.22 7389.96 7483.93 7185.08 6680.91 6875.81 8777.88 9886.08 6991.86 6690.86 6995.74 4494.37 73
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
diffmvspermissive86.52 7686.76 7986.23 7988.31 11992.63 10089.58 8081.61 10886.14 5880.26 7379.00 7077.27 10083.58 8088.94 11489.06 11494.05 12794.29 75
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline282.80 11082.86 10982.73 11987.68 12590.50 11984.92 15078.93 13978.07 12173.06 10975.08 9269.77 13577.31 14388.90 11686.94 13994.50 11090.74 144
baseline184.54 9684.43 9784.67 9290.62 9091.16 11388.63 10183.75 7479.78 10771.16 11675.14 9174.10 11377.84 14091.56 6890.67 7596.04 2688.58 159
PMMVS241.68 21744.74 21938.10 21546.97 22552.32 22140.63 22448.08 22035.51 2227.36 22926.86 22124.64 22716.72 22255.24 22059.03 21868.85 22059.59 219
PM-MVS74.17 19573.10 19675.41 18376.07 21182.53 20077.56 19871.69 18371.04 16361.92 17161.23 16947.30 21774.82 16081.78 19179.80 19290.42 18388.05 166
PS-CasMVS75.90 18575.86 18475.96 18082.59 18988.46 16079.23 19279.56 13266.00 18852.77 19959.48 18154.35 20767.14 19183.37 18286.23 15294.47 11393.10 96
UniMVSNet_NR-MVSNet81.87 11981.33 12082.50 12085.31 15291.30 11185.70 14084.25 6675.89 13064.21 15366.95 13764.65 15480.22 11387.07 13389.18 11295.27 7494.29 75
PEN-MVS76.02 18376.07 17975.95 18183.17 17987.97 16279.65 18680.07 12766.57 18551.45 20360.94 17155.47 20266.81 19282.72 18586.80 14194.59 10592.03 125
TransMVSNet (Re)76.57 17475.16 19178.22 16585.60 14887.24 16982.46 16781.23 11259.80 20759.05 19057.07 19159.14 18766.60 19488.09 12486.82 14094.37 11987.95 168
DTE-MVSNet75.14 19075.44 18974.80 18883.18 17887.19 17078.25 19780.11 12466.05 18748.31 20860.88 17254.67 20464.54 19782.57 18786.17 15394.43 11690.53 149
DU-MVS81.20 12880.30 13282.25 12484.98 15990.94 11585.70 14083.58 8075.74 13164.21 15365.30 15059.60 18380.22 11386.89 13689.31 10794.77 9494.29 75
UniMVSNet (Re)81.22 12781.08 12381.39 13385.35 15191.76 10984.93 14982.88 9076.13 12965.02 15064.94 15363.09 16175.17 15687.71 12889.04 11594.97 8494.88 63
CP-MVSNet76.36 18076.41 17676.32 17882.73 18888.64 15779.39 18979.62 13067.21 18153.70 19760.72 17355.22 20367.91 18883.52 18186.34 15194.55 10893.19 94
WR-MVS_H75.84 18676.93 17274.57 19182.86 18589.50 14478.34 19579.36 13566.90 18352.51 20060.20 17759.71 18059.73 20283.61 18085.77 16094.65 10292.84 102
WR-MVS76.63 17378.02 16175.02 18684.14 16989.76 13778.34 19580.64 11569.56 17252.32 20161.26 16761.24 17260.66 20184.45 17587.07 13693.99 13092.77 105
NR-MVSNet80.25 13579.98 13880.56 14485.20 15490.94 11585.65 14283.58 8075.74 13161.36 17765.30 15056.75 19772.38 17288.46 12188.80 11995.16 7893.87 83
Baseline_NR-MVSNet79.84 13978.37 15681.55 13284.98 15986.66 17385.06 14783.49 8275.57 13363.31 16058.22 18960.97 17378.00 13886.89 13687.13 13594.47 11393.15 95
TranMVSNet+NR-MVSNet80.52 13279.84 14181.33 13584.92 16190.39 12085.53 14584.22 6874.27 14360.68 18264.93 15459.96 17877.48 14286.75 14189.28 10895.12 8293.29 93
TSAR-MVS + GP.92.71 2793.91 2191.30 3491.96 7396.00 4093.43 4187.94 4092.53 2186.27 3993.57 1591.94 1991.44 2493.29 4492.89 4696.78 797.15 21
mPP-MVS97.06 1288.08 45
SixPastTwentyTwo76.02 18375.72 18576.36 17783.38 17587.54 16675.50 20276.22 16365.50 19257.05 19370.64 11453.97 20874.54 16180.96 19382.12 18891.44 17289.35 155
casdiffmvs_mvgpermissive87.97 6787.63 7288.37 6690.55 9294.42 7091.82 5684.69 6084.05 7182.08 6376.57 8279.00 8985.49 7492.35 5792.29 5495.55 5694.70 68
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
LGP-MVS_train88.25 6488.55 5787.89 6892.84 6793.66 8193.35 4285.22 5785.77 6074.03 10386.60 3876.29 10486.62 6791.20 7390.58 7895.29 7195.75 49
baseline84.89 9286.06 8483.52 11287.25 13089.67 14087.76 11175.68 16984.92 6778.40 8180.10 6380.98 7280.20 11586.69 14387.05 13791.86 16892.99 98
EPNet_dtu81.98 11883.82 10379.83 15194.10 5085.97 17787.29 11984.08 7080.61 10259.96 18481.62 5977.19 10162.91 20087.21 13186.38 15090.66 18287.77 170
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CHOSEN 1792x268882.16 11680.91 12783.61 10991.14 8392.01 10789.55 8279.15 13779.87 10670.29 11952.51 20372.56 12481.39 9688.87 11788.17 12590.15 18692.37 121
EPNet89.60 4989.91 4889.24 5496.45 2693.61 8292.95 4788.03 3985.74 6183.36 5387.29 3583.05 6480.98 10192.22 6091.85 5793.69 14395.58 55
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
APD-MVScopyleft94.37 1294.47 1694.26 797.18 896.99 1696.53 892.68 692.45 2389.96 1694.53 1191.63 2192.89 694.58 2293.82 2396.31 1897.26 18
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CNVR-MVS94.37 1294.65 1294.04 1097.29 697.11 1196.00 1192.43 1093.45 1589.85 1890.92 2593.04 992.59 1095.77 594.82 696.11 2597.42 16
NCCC93.69 1993.66 2393.72 1597.37 596.66 2995.93 1792.50 993.40 1888.35 2487.36 3492.33 1492.18 1394.89 1594.09 1896.00 2796.91 28
CP-MVS93.25 2193.26 2693.24 2096.84 1996.51 3395.52 2390.61 2692.37 2488.88 2190.91 2689.52 3491.91 1693.64 4092.78 4795.69 4597.09 24
NP-MVS87.47 54
EG-PatchMatch MVS76.40 17975.47 18877.48 16885.86 14490.22 12482.45 16873.96 17659.64 20859.60 18652.75 20262.20 16968.44 18588.23 12387.50 13094.55 10887.78 169
tpm cat177.78 16475.28 19080.70 14187.14 13285.84 17985.81 13970.40 18877.44 12378.80 8063.72 15964.01 15776.55 14975.60 20975.21 20785.51 20985.12 184
SteuartSystems-ACMMP94.06 1494.65 1293.38 1896.97 1597.36 996.12 1091.78 1492.05 2787.34 2994.42 1290.87 2591.87 1895.47 894.59 1196.21 2397.77 11
Skip Steuart: Steuart Systems R&D Blog.
CostFormer80.94 13080.21 13381.79 12887.69 12488.58 15987.47 11670.66 18780.02 10477.88 8773.03 10471.40 12878.24 13679.96 19779.63 19388.82 19288.84 157
CR-MVSNet78.71 15578.86 14978.55 16185.85 14585.15 18682.30 17168.23 19774.71 13865.37 14664.39 15769.59 13777.18 14485.10 16984.87 16892.34 16388.21 163
Patchmtry85.54 18482.30 17168.23 19765.37 146
PatchT76.42 17777.81 16374.80 18878.46 20684.30 19171.82 20965.03 21073.89 14665.37 14661.58 16666.70 14777.18 14485.10 16984.87 16890.94 18188.21 163
tpmrst76.55 17575.99 18277.20 16987.32 12983.05 19582.86 16565.62 20678.61 11867.22 13669.19 12565.71 15075.87 15276.75 20775.33 20684.31 21183.28 192
tpm76.30 18176.05 18176.59 17586.97 13383.01 19683.83 15967.06 20271.83 16063.87 15769.56 12362.88 16373.41 16979.79 19878.59 19784.41 21086.68 176
DELS-MVS89.71 4889.68 5289.74 4693.75 5396.22 3693.76 3985.84 5182.53 7985.05 4478.96 7184.24 5884.25 7994.91 1494.91 495.78 4296.02 46
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
RPMNet77.07 16977.63 16576.42 17685.56 14985.15 18681.37 17665.27 20874.71 13860.29 18363.71 16066.59 14873.64 16682.71 18682.12 18892.38 16288.39 161
MVSTER86.03 8086.12 8285.93 8288.62 11689.93 13189.33 8579.91 12881.87 8881.35 6581.07 6174.91 10980.66 10692.13 6490.10 8595.68 4692.80 104
CPTT-MVS91.39 3690.95 4091.91 3195.06 3995.24 5695.02 2988.98 3591.02 3486.71 3384.89 4288.58 4391.60 2190.82 8989.67 9994.08 12596.45 37
GBi-Net84.51 9784.80 9384.17 10184.20 16689.95 12889.70 7780.37 11781.17 9375.50 9269.63 12079.69 8379.75 12390.73 9190.72 7195.52 5991.71 130
PVSNet_Blended_VisFu87.40 7387.80 6786.92 7592.86 6595.40 5188.56 10483.45 8679.55 11082.26 6074.49 9684.03 5979.24 13192.97 5091.53 6195.15 7996.65 35
PVSNet_BlendedMVS88.19 6588.00 6588.42 6492.71 6994.82 6689.08 9183.81 7284.91 6886.38 3779.14 6878.11 9582.66 8793.05 4891.10 6395.86 3494.86 64
PVSNet_Blended88.19 6588.00 6588.42 6492.71 6994.82 6689.08 9183.81 7284.91 6886.38 3779.14 6878.11 9582.66 8793.05 4891.10 6395.86 3494.86 64
FMVSNet575.50 18976.07 17974.83 18776.16 21081.19 20581.34 17770.21 19073.20 15561.59 17558.97 18468.33 14568.50 18485.87 15585.85 15991.18 17979.11 206
test184.51 9784.80 9384.17 10184.20 16689.95 12889.70 7780.37 11781.17 9375.50 9269.63 12079.69 8379.75 12390.73 9190.72 7195.52 5991.71 130
new_pmnet59.28 21161.47 21356.73 21261.66 22068.29 21959.57 21854.91 21660.83 20434.38 22244.66 21543.65 21949.90 21171.66 21271.56 21379.94 21769.67 214
FMVSNet384.44 9984.64 9584.21 10084.32 16590.13 12689.85 7680.37 11781.17 9375.50 9269.63 12079.69 8379.62 12689.72 10490.52 7995.59 5391.58 137
dps78.02 16175.94 18380.44 14686.06 14186.62 17482.58 16669.98 19175.14 13577.76 8969.08 12759.93 17978.47 13479.47 19977.96 20087.78 19783.40 191
FMVSNet283.87 10283.73 10484.05 10584.20 16689.95 12889.70 7780.21 12279.17 11474.89 9865.91 14177.49 9979.75 12390.87 8891.00 6795.52 5991.71 130
FMVSNet181.64 12480.61 12982.84 11782.36 19189.20 14988.67 9879.58 13170.79 16672.63 11358.95 18572.26 12679.34 12990.73 9190.72 7194.47 11391.62 135
N_pmnet66.85 20566.63 20667.11 20678.73 20474.66 21570.53 21071.07 18566.46 18646.54 21051.68 20551.91 21255.48 20574.68 21072.38 21180.29 21674.65 212
UGNet85.90 8288.23 6183.18 11488.96 11494.10 7587.52 11483.60 7881.66 9077.90 8680.76 6283.19 6366.70 19391.13 8190.71 7494.39 11896.06 45
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
EC-MVSNet89.96 4790.77 4389.01 5590.54 9395.15 5891.34 6281.43 10985.27 6383.08 5482.83 4787.22 4990.97 2994.79 1893.38 3596.73 896.71 34
MDTV_nov1_ep13_2view73.21 19772.91 19773.56 19480.01 20184.28 19278.62 19366.43 20568.64 17759.12 18860.39 17659.69 18269.81 18178.82 20377.43 20287.36 19981.11 201
MDTV_nov1_ep1379.14 15079.49 14678.74 15985.40 15086.89 17284.32 15770.29 18978.85 11569.42 12675.37 9073.29 12275.64 15380.61 19479.48 19587.36 19981.91 196
MIMVSNet165.00 20766.24 20863.55 20958.41 22280.01 20969.00 21274.03 17555.81 21341.88 21636.81 21849.48 21547.89 21381.32 19282.40 18690.08 18777.88 208
MIMVSNet74.69 19275.60 18773.62 19376.02 21285.31 18581.21 18167.43 20071.02 16459.07 18954.48 19564.07 15566.14 19586.52 14786.64 14491.83 16981.17 200
IterMVS-LS83.28 10882.95 10883.65 10888.39 11888.63 15886.80 13078.64 14376.56 12673.43 10772.52 10875.35 10680.81 10386.43 14988.51 12393.84 13792.66 109
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CDS-MVSNet81.63 12582.09 11381.09 13887.21 13190.28 12287.46 11780.33 12069.06 17570.66 11771.30 11173.87 11567.99 18689.58 10689.87 9392.87 15890.69 145
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
IterMVS78.79 15479.71 14477.71 16685.26 15385.91 17884.54 15469.84 19373.38 15361.25 17870.53 11670.35 13274.43 16385.21 16683.80 17890.95 18088.77 158
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MVS_111021_LR90.14 4690.89 4189.26 5393.23 5894.05 7790.43 6984.65 6190.16 4284.52 4890.14 2883.80 6087.99 5092.50 5690.92 6894.74 9694.70 68
HQP-MVS89.13 5489.58 5388.60 6293.53 5593.67 8093.29 4387.58 4488.53 4975.50 9287.60 3380.32 7687.07 6290.66 9589.95 9194.62 10496.35 42
QAPM89.49 5089.58 5389.38 5294.73 4595.94 4192.35 4985.00 5885.69 6280.03 7576.97 8187.81 4687.87 5192.18 6392.10 5596.33 1696.40 41
Vis-MVSNetpermissive84.38 10186.68 8081.70 12987.65 12694.89 6488.14 10780.90 11374.48 14068.23 13277.53 7880.72 7469.98 18092.68 5391.90 5695.33 6994.58 71
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
MVS-HIRNet68.83 20366.39 20771.68 19877.58 20775.52 21466.45 21465.05 20962.16 20162.84 16244.76 21456.60 19971.96 17478.04 20475.06 20886.18 20772.56 213
HyFIR lowres test81.62 12679.45 14784.14 10391.00 8693.38 8788.27 10678.19 14676.28 12870.18 12148.78 20773.69 11883.52 8187.05 13487.83 12993.68 14489.15 156
EPMVS77.53 16678.07 15976.90 17386.89 13484.91 18982.18 17466.64 20481.00 9864.11 15572.75 10769.68 13674.42 16479.36 20078.13 19987.14 20180.68 203
TAMVS76.42 17777.16 16975.56 18283.05 18085.55 18380.58 18471.43 18465.40 19461.04 18167.27 13669.22 14067.99 18684.88 17184.78 17089.28 19183.01 193
IS_MVSNet86.18 7888.18 6283.85 10791.02 8594.72 6887.48 11582.46 10181.05 9770.28 12076.98 8082.20 6976.65 14893.97 3293.38 3595.18 7694.97 61
RPSCF83.46 10683.36 10583.59 11087.75 12287.35 16884.82 15279.46 13383.84 7278.12 8382.69 4979.87 7982.60 8982.47 18881.13 19188.78 19386.13 180
Vis-MVSNet (Re-imp)83.65 10586.81 7879.96 14990.46 9792.71 9784.84 15182.00 10580.93 9962.44 16676.29 8482.32 6865.54 19692.29 5891.66 5894.49 11291.47 139
MVS_111021_HR90.56 4091.29 3889.70 4894.71 4695.63 4991.81 5786.38 4987.53 5381.29 6687.96 3285.43 5387.69 5393.90 3492.93 4496.33 1695.69 51
CSCG92.76 2593.16 2792.29 2896.30 2897.74 794.67 3388.98 3592.46 2289.73 1986.67 3792.15 1888.69 4392.26 5992.92 4595.40 6397.89 10
PatchMatch-RL83.34 10781.36 11985.65 8390.33 10189.52 14384.36 15581.82 10680.87 10179.29 7774.04 9862.85 16486.05 7088.40 12287.04 13892.04 16586.77 175
TDRefinement79.05 15177.05 17081.39 13388.45 11789.00 15486.92 12782.65 9774.21 14464.41 15259.17 18259.16 18674.52 16285.23 16485.09 16691.37 17487.51 171
USDC80.69 13179.89 14081.62 13186.48 13889.11 15286.53 13278.86 14081.15 9663.48 15972.98 10559.12 18881.16 9987.10 13285.01 16793.23 15284.77 187
EPP-MVSNet86.55 7587.76 6985.15 8990.52 9494.41 7187.24 12182.32 10381.79 8973.60 10578.57 7382.41 6782.07 9291.23 7190.39 8095.14 8095.48 56
PMMVS81.65 12384.05 10178.86 15678.56 20582.63 19983.10 16367.22 20181.39 9170.11 12284.91 4179.74 8282.12 9187.31 13085.70 16192.03 16686.67 178
ACMMPcopyleft92.03 3292.16 3191.87 3395.88 3496.55 3194.47 3589.49 3291.71 3085.26 4291.52 2484.48 5790.21 3492.82 5291.63 5995.92 3096.42 38
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CNLPA88.40 5987.00 7590.03 4493.73 5494.28 7289.56 8185.81 5291.87 2887.55 2869.53 12481.49 7089.23 3789.45 10988.59 12194.31 12193.82 86
PatchmatchNetpermissive78.67 15678.85 15078.46 16386.85 13586.03 17683.77 16068.11 19980.88 10066.19 14072.90 10673.40 12178.06 13779.25 20177.71 20187.75 19881.75 197
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
PHI-MVS92.05 3193.74 2290.08 4294.96 4197.06 1393.11 4587.71 4390.71 3680.78 7192.40 2291.03 2387.68 5494.32 2894.48 1396.21 2396.16 43
OMC-MVS90.23 4590.40 4590.03 4493.45 5695.29 5391.89 5586.34 5093.25 1984.94 4581.72 5686.65 5088.90 3991.69 6790.27 8294.65 10293.95 82
AdaColmapbinary90.29 4388.38 6092.53 2596.10 3195.19 5792.98 4691.40 1789.08 4788.65 2278.35 7481.44 7191.30 2890.81 9090.21 8394.72 9893.59 91
DeepMVS_CXcopyleft48.31 22448.03 22126.08 22256.42 21225.77 22447.51 20831.31 22651.30 20948.49 22153.61 22361.52 217
TinyColmap76.73 17173.95 19579.96 14985.16 15685.64 18282.34 17078.19 14670.63 16862.06 16960.69 17449.61 21480.81 10385.12 16883.69 17991.22 17882.27 195
MAR-MVS88.39 6188.44 5988.33 6794.90 4295.06 6190.51 6883.59 7985.27 6379.07 7977.13 7982.89 6587.70 5292.19 6292.32 5394.23 12294.20 80
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
MSDG83.87 10281.02 12487.19 7492.17 7289.80 13589.15 8985.72 5380.61 10279.24 7866.66 13868.75 14182.69 8687.95 12687.44 13194.19 12385.92 182
LS3D85.96 8184.37 9887.81 6994.13 4993.27 8890.26 7289.00 3384.91 6872.84 11271.74 11072.47 12587.45 5889.53 10889.09 11393.20 15389.60 153
CLD-MVS88.66 5688.52 5888.82 5791.37 8194.22 7392.82 4882.08 10488.27 5185.14 4381.86 5378.53 9385.93 7191.17 7590.61 7695.55 5695.00 60
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
FPMVS63.63 20960.08 21467.78 20480.01 20171.50 21772.88 20869.41 19561.82 20253.11 19845.12 21242.11 22150.86 21066.69 21563.84 21680.41 21569.46 215
Gipumacopyleft49.17 21547.05 21851.65 21359.67 22148.39 22341.98 22363.47 21255.64 21433.33 22314.90 22213.78 22941.34 21669.31 21472.30 21270.11 21955.00 221
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015