This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DVP-MVS++95.79 196.42 195.06 197.84 298.17 297.03 492.84 396.68 192.83 395.90 594.38 492.90 595.98 294.85 596.93 398.99 1
SED-MVS95.61 296.36 294.73 396.84 1998.15 397.08 392.92 295.64 391.84 495.98 495.33 192.83 796.00 194.94 396.90 498.45 3
DVP-MVScopyleft95.56 396.26 394.73 396.93 1698.19 196.62 792.81 596.15 291.73 595.01 795.31 293.41 195.95 394.77 896.90 498.46 2
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
DPE-MVScopyleft95.53 496.13 494.82 296.81 2298.05 497.42 193.09 194.31 991.49 697.12 195.03 393.27 395.55 694.58 1296.86 698.25 4
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
APDe-MVScopyleft95.23 595.69 694.70 597.12 1097.81 697.19 292.83 495.06 690.98 996.47 292.77 1093.38 295.34 994.21 1696.68 998.17 5
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
MSP-MVS95.12 695.83 594.30 696.82 2197.94 596.98 592.37 1195.40 490.59 1296.16 393.71 692.70 894.80 1794.77 896.37 1497.99 8
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
SMA-MVScopyleft94.70 795.35 793.93 1197.57 397.57 895.98 1291.91 1394.50 790.35 1393.46 1792.72 1191.89 1795.89 495.22 195.88 3198.10 6
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
SF-MVS94.61 894.96 1094.20 996.75 2497.07 1295.82 1892.60 793.98 1291.09 895.89 692.54 1291.93 1594.40 2793.56 3097.04 297.27 17
HPM-MVS++copyleft94.60 994.91 1194.24 897.86 196.53 3296.14 992.51 893.87 1490.76 1193.45 1893.84 592.62 995.11 1294.08 1995.58 5497.48 14
SD-MVS94.53 1095.22 893.73 1495.69 3697.03 1495.77 2191.95 1294.41 891.35 794.97 893.34 891.80 1994.72 2093.99 2095.82 3898.07 7
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
TSAR-MVS + MP.94.48 1194.97 993.90 1295.53 3797.01 1596.69 690.71 2394.24 1090.92 1094.97 892.19 1593.03 494.83 1693.60 2796.51 1397.97 9
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
APD-MVScopyleft94.37 1294.47 1694.26 797.18 896.99 1696.53 892.68 692.45 2389.96 1694.53 1191.63 2192.89 694.58 2293.82 2396.31 1897.26 18
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CNVR-MVS94.37 1294.65 1294.04 1097.29 697.11 1196.00 1192.43 1093.45 1589.85 1890.92 2593.04 992.59 1095.77 594.82 696.11 2597.42 16
SteuartSystems-ACMMP94.06 1494.65 1293.38 1896.97 1597.36 996.12 1091.78 1492.05 2787.34 2994.42 1290.87 2591.87 1895.47 894.59 1196.21 2397.77 11
Skip Steuart: Steuart Systems R&D Blog.
HFP-MVS94.02 1594.22 1893.78 1397.25 796.85 2095.81 1990.94 2294.12 1190.29 1594.09 1489.98 3192.52 1193.94 3393.49 3395.87 3397.10 23
ACMMP_NAP93.94 1694.49 1593.30 1997.03 1397.31 1095.96 1391.30 1893.41 1788.55 2393.00 1990.33 2891.43 2595.53 794.41 1495.53 5897.47 15
MCST-MVS93.81 1794.06 1993.53 1696.79 2396.85 2095.95 1491.69 1692.20 2587.17 3190.83 2793.41 791.96 1494.49 2593.50 3197.61 197.12 22
ACMMPR93.72 1893.94 2093.48 1797.07 1196.93 1795.78 2090.66 2593.88 1389.24 2093.53 1689.08 3892.24 1293.89 3593.50 3195.88 3196.73 32
NCCC93.69 1993.66 2393.72 1597.37 596.66 2995.93 1792.50 993.40 1888.35 2487.36 3492.33 1492.18 1394.89 1594.09 1896.00 2796.91 28
MP-MVScopyleft93.35 2093.59 2493.08 2297.39 496.82 2295.38 2490.71 2390.82 3588.07 2692.83 2190.29 2991.32 2794.03 3093.19 4195.61 5297.16 20
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
CP-MVS93.25 2193.26 2693.24 2096.84 1996.51 3395.52 2390.61 2692.37 2488.88 2190.91 2689.52 3491.91 1693.64 4092.78 4795.69 4597.09 24
DeepC-MVS_fast88.76 193.10 2293.02 2993.19 2197.13 996.51 3395.35 2591.19 1993.14 2088.14 2585.26 4089.49 3591.45 2295.17 1095.07 295.85 3696.48 36
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
TSAR-MVS + ACMM92.97 2394.51 1491.16 3695.88 3496.59 3095.09 2890.45 2993.42 1683.01 5594.68 1090.74 2688.74 4294.75 1993.78 2493.82 13897.63 12
train_agg92.87 2493.53 2592.09 2996.88 1895.38 5295.94 1590.59 2790.65 3783.65 5294.31 1391.87 2090.30 3293.38 4392.42 5295.17 7796.73 32
PGM-MVS92.76 2593.03 2892.45 2797.03 1396.67 2895.73 2287.92 4190.15 4386.53 3592.97 2088.33 4491.69 2093.62 4193.03 4295.83 3796.41 39
CSCG92.76 2593.16 2792.29 2896.30 2897.74 794.67 3388.98 3592.46 2289.73 1986.67 3792.15 1888.69 4392.26 5992.92 4595.40 6397.89 10
TSAR-MVS + GP.92.71 2793.91 2191.30 3491.96 7396.00 4093.43 4187.94 4092.53 2186.27 3993.57 1591.94 1991.44 2493.29 4492.89 4696.78 797.15 21
DeepPCF-MVS88.51 292.64 2894.42 1790.56 3994.84 4496.92 1891.31 6389.61 3195.16 584.55 4789.91 2991.45 2290.15 3595.12 1194.81 792.90 15797.58 13
X-MVS92.36 2992.75 3091.90 3296.89 1796.70 2595.25 2690.48 2891.50 3283.95 4988.20 3188.82 4089.11 3893.75 3893.43 3495.75 4396.83 30
DeepC-MVS87.86 392.26 3091.86 3392.73 2496.18 2996.87 1995.19 2791.76 1592.17 2686.58 3481.79 5485.85 5190.88 3094.57 2394.61 1095.80 3997.18 19
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PHI-MVS92.05 3193.74 2290.08 4294.96 4197.06 1393.11 4587.71 4390.71 3680.78 7192.40 2291.03 2387.68 5494.32 2894.48 1396.21 2396.16 43
ACMMPcopyleft92.03 3292.16 3191.87 3395.88 3496.55 3194.47 3589.49 3291.71 3085.26 4291.52 2484.48 5790.21 3492.82 5291.63 5995.92 3096.42 38
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
MSLP-MVS++92.02 3391.40 3692.75 2396.01 3295.88 4493.73 4089.00 3389.89 4490.31 1481.28 6088.85 3991.45 2292.88 5194.24 1596.00 2796.76 31
DPM-MVS91.72 3491.48 3492.00 3095.53 3795.75 4795.94 1591.07 2091.20 3385.58 4081.63 5890.74 2688.40 4693.40 4293.75 2595.45 6293.85 84
3Dnovator+86.06 491.60 3590.86 4292.47 2696.00 3396.50 3594.70 3287.83 4290.49 3889.92 1774.68 9489.35 3690.66 3194.02 3194.14 1795.67 4796.85 29
CPTT-MVS91.39 3690.95 4091.91 3195.06 3995.24 5695.02 2988.98 3591.02 3486.71 3384.89 4288.58 4391.60 2190.82 8989.67 9994.08 12596.45 37
CANet91.33 3791.46 3591.18 3595.01 4096.71 2493.77 3887.39 4587.72 5287.26 3081.77 5589.73 3287.32 6094.43 2693.86 2296.31 1896.02 46
CDPH-MVS91.14 3892.01 3290.11 4196.18 2996.18 3794.89 3088.80 3788.76 4877.88 8789.18 3087.71 4787.29 6193.13 4693.31 3895.62 5095.84 48
MVS_030490.88 3991.35 3790.34 4093.91 5196.79 2394.49 3486.54 4886.57 5782.85 5681.68 5789.70 3387.57 5694.64 2193.93 2196.67 1196.15 44
MVS_111021_HR90.56 4091.29 3889.70 4894.71 4695.63 4991.81 5786.38 4987.53 5381.29 6687.96 3285.43 5387.69 5393.90 3492.93 4496.33 1695.69 51
3Dnovator85.17 590.48 4189.90 4991.16 3694.88 4395.74 4893.82 3785.36 5589.28 4587.81 2774.34 9787.40 4888.56 4493.07 4793.74 2696.53 1295.71 50
CS-MVS90.34 4290.58 4490.07 4393.11 6095.82 4690.57 6783.62 7687.07 5585.35 4182.98 4683.47 6191.37 2694.94 1393.37 3796.37 1496.41 39
CS-MVS-test90.29 4390.96 3989.51 5193.18 5995.87 4589.18 8683.72 7588.32 5084.82 4684.89 4285.23 5490.25 3394.04 2992.66 5195.94 2995.69 51
AdaColmapbinary90.29 4388.38 6092.53 2596.10 3195.19 5792.98 4691.40 1789.08 4788.65 2278.35 7481.44 7191.30 2890.81 9090.21 8394.72 9893.59 91
OMC-MVS90.23 4590.40 4590.03 4493.45 5695.29 5391.89 5586.34 5093.25 1984.94 4581.72 5686.65 5088.90 3991.69 6790.27 8294.65 10293.95 82
MVS_111021_LR90.14 4690.89 4189.26 5393.23 5894.05 7790.43 6984.65 6190.16 4284.52 4890.14 2883.80 6087.99 5092.50 5690.92 6894.74 9694.70 68
EC-MVSNet89.96 4790.77 4389.01 5590.54 9395.15 5891.34 6281.43 10985.27 6383.08 5482.83 4787.22 4990.97 2994.79 1893.38 3596.73 896.71 34
DELS-MVS89.71 4889.68 5289.74 4693.75 5396.22 3693.76 3985.84 5182.53 7985.05 4478.96 7184.24 5884.25 7994.91 1494.91 495.78 4296.02 46
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
EPNet89.60 4989.91 4889.24 5496.45 2693.61 8292.95 4788.03 3985.74 6183.36 5387.29 3583.05 6480.98 10192.22 6091.85 5793.69 14395.58 55
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
QAPM89.49 5089.58 5389.38 5294.73 4595.94 4192.35 4985.00 5885.69 6280.03 7576.97 8187.81 4687.87 5192.18 6392.10 5596.33 1696.40 41
sasdasda89.36 5189.92 4688.70 5991.38 7995.92 4291.81 5782.61 9990.37 3982.73 5882.09 5079.28 8688.30 4791.17 7593.59 2895.36 6597.04 25
canonicalmvs89.36 5189.92 4688.70 5991.38 7995.92 4291.81 5782.61 9990.37 3982.73 5882.09 5079.28 8688.30 4791.17 7593.59 2895.36 6597.04 25
ETV-MVS89.22 5389.76 5088.60 6291.60 7794.61 6989.48 8383.46 8585.20 6581.58 6482.75 4882.59 6688.80 4094.57 2393.28 3996.68 995.31 58
HQP-MVS89.13 5489.58 5388.60 6293.53 5593.67 8093.29 4387.58 4488.53 4975.50 9287.60 3380.32 7687.07 6290.66 9589.95 9194.62 10496.35 42
TAPA-MVS84.37 788.91 5588.93 5688.89 5693.00 6494.85 6592.00 5284.84 5991.68 3180.05 7479.77 6684.56 5688.17 4990.11 9989.00 11795.30 7092.57 114
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
PCF-MVS84.60 688.66 5687.75 7089.73 4793.06 6396.02 3893.22 4490.00 3082.44 8280.02 7677.96 7785.16 5587.36 5988.54 11988.54 12294.72 9895.61 54
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
CLD-MVS88.66 5688.52 5888.82 5791.37 8194.22 7392.82 4882.08 10488.27 5185.14 4381.86 5378.53 9385.93 7191.17 7590.61 7695.55 5695.00 60
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
PLCcopyleft83.76 988.61 5886.83 7790.70 3894.22 4892.63 10091.50 6087.19 4689.16 4686.87 3275.51 8980.87 7389.98 3690.01 10089.20 11194.41 11790.45 150
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
TSAR-MVS + COLMAP88.40 5989.09 5587.60 7292.72 6893.92 7992.21 5085.57 5491.73 2973.72 10491.75 2373.22 12387.64 5591.49 6989.71 9893.73 14191.82 128
CNLPA88.40 5987.00 7590.03 4493.73 5494.28 7289.56 8185.81 5291.87 2887.55 2869.53 12481.49 7089.23 3789.45 10988.59 12194.31 12193.82 86
MAR-MVS88.39 6188.44 5988.33 6794.90 4295.06 6190.51 6883.59 7985.27 6379.07 7977.13 7982.89 6587.70 5292.19 6292.32 5394.23 12294.20 80
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
MGCFI-Net88.38 6289.72 5186.83 7691.21 8295.59 5091.14 6582.37 10290.25 4175.33 9781.89 5279.13 8885.69 7290.98 8693.23 4095.23 7596.94 27
ACMP83.90 888.32 6388.06 6388.62 6192.18 7193.98 7891.28 6485.24 5686.69 5681.23 6785.62 3975.13 10887.01 6489.83 10289.77 9694.79 9295.43 57
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
LGP-MVS_train88.25 6488.55 5787.89 6892.84 6793.66 8193.35 4285.22 5785.77 6074.03 10386.60 3876.29 10486.62 6791.20 7390.58 7895.29 7195.75 49
PVSNet_BlendedMVS88.19 6588.00 6588.42 6492.71 6994.82 6689.08 9183.81 7284.91 6886.38 3779.14 6878.11 9582.66 8793.05 4891.10 6395.86 3494.86 64
PVSNet_Blended88.19 6588.00 6588.42 6492.71 6994.82 6689.08 9183.81 7284.91 6886.38 3779.14 6878.11 9582.66 8793.05 4891.10 6395.86 3494.86 64
casdiffmvs_mvgpermissive87.97 6787.63 7288.37 6690.55 9294.42 7091.82 5684.69 6084.05 7182.08 6376.57 8279.00 8985.49 7492.35 5792.29 5495.55 5694.70 68
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
EIA-MVS87.94 6888.05 6487.81 6991.46 7895.00 6388.67 9882.81 9182.53 7980.81 7080.04 6480.20 7787.48 5792.58 5591.61 6095.63 4994.36 74
OpenMVScopyleft82.53 1187.71 6986.84 7688.73 5894.42 4795.06 6191.02 6683.49 8282.50 8182.24 6267.62 13585.48 5285.56 7391.19 7491.30 6295.67 4794.75 66
ACMM83.27 1087.68 7086.09 8389.54 5093.26 5792.19 10691.43 6186.74 4786.02 5982.85 5675.63 8875.14 10788.41 4590.68 9489.99 8894.59 10592.97 99
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
OPM-MVS87.56 7185.80 8789.62 4993.90 5294.09 7694.12 3688.18 3875.40 13477.30 9076.41 8377.93 9788.79 4192.20 6190.82 7095.40 6393.72 89
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
casdiffmvspermissive87.45 7287.15 7487.79 7190.15 10494.22 7389.96 7483.93 7185.08 6680.91 6875.81 8777.88 9886.08 6991.86 6690.86 6995.74 4494.37 73
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PVSNet_Blended_VisFu87.40 7387.80 6786.92 7592.86 6595.40 5188.56 10483.45 8679.55 11082.26 6074.49 9684.03 5979.24 13192.97 5091.53 6195.15 7996.65 35
MVS_Test86.93 7487.24 7386.56 7790.10 10593.47 8490.31 7080.12 12383.55 7378.12 8379.58 6779.80 8185.45 7590.17 9890.59 7795.29 7193.53 92
EPP-MVSNet86.55 7587.76 6985.15 8990.52 9494.41 7187.24 12182.32 10381.79 8973.60 10578.57 7382.41 6782.07 9291.23 7190.39 8095.14 8095.48 56
diffmvspermissive86.52 7686.76 7986.23 7988.31 11992.63 10089.58 8081.61 10886.14 5880.26 7379.00 7077.27 10083.58 8088.94 11489.06 11494.05 12794.29 75
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
DI_MVS_plusplus_trai86.41 7785.54 9087.42 7389.24 11093.13 8992.16 5182.65 9782.30 8380.75 7268.30 13180.41 7585.01 7690.56 9690.07 8694.70 10094.01 81
IS_MVSNet86.18 7888.18 6283.85 10791.02 8594.72 6887.48 11582.46 10181.05 9770.28 12076.98 8082.20 6976.65 14893.97 3293.38 3595.18 7694.97 61
UA-Net86.07 7987.78 6884.06 10492.85 6695.11 6087.73 11284.38 6573.22 15473.18 10879.99 6589.22 3771.47 17693.22 4593.03 4294.76 9590.69 145
MVSTER86.03 8086.12 8285.93 8288.62 11689.93 13189.33 8579.91 12881.87 8881.35 6581.07 6174.91 10980.66 10692.13 6490.10 8595.68 4692.80 104
LS3D85.96 8184.37 9887.81 6994.13 4993.27 8890.26 7289.00 3384.91 6872.84 11271.74 11072.47 12587.45 5889.53 10889.09 11393.20 15389.60 153
UGNet85.90 8288.23 6183.18 11488.96 11494.10 7587.52 11483.60 7881.66 9077.90 8680.76 6283.19 6366.70 19391.13 8190.71 7494.39 11896.06 45
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
DCV-MVSNet85.88 8386.17 8185.54 8689.10 11389.85 13389.34 8480.70 11483.04 7578.08 8576.19 8579.00 8982.42 9089.67 10590.30 8193.63 14695.12 59
FA-MVS(training)85.65 8485.79 8885.48 8790.44 9893.47 8488.66 10073.11 17883.34 7482.26 6071.79 10978.39 9483.14 8491.00 8389.47 10595.28 7393.06 97
CANet_DTU85.43 8587.72 7182.76 11890.95 8893.01 9389.99 7375.46 17082.67 7664.91 15183.14 4580.09 7880.68 10592.03 6591.03 6594.57 10792.08 122
Effi-MVS+85.33 8685.08 9285.63 8489.69 10793.42 8689.90 7580.31 12179.32 11172.48 11473.52 10374.03 11486.55 6890.99 8489.98 8994.83 9094.27 79
ECVR-MVScopyleft85.25 8784.47 9686.16 8091.84 7495.28 5489.18 8684.49 6382.59 7773.49 10666.12 14069.28 13881.68 9493.76 3692.71 4896.28 2191.58 137
test250685.20 8884.11 10086.47 7891.84 7495.28 5489.18 8684.49 6382.59 7775.34 9674.66 9558.07 19081.68 9493.76 3692.71 4896.28 2191.71 130
FC-MVSNet-train85.18 8985.31 9185.03 9090.67 8991.62 11087.66 11383.61 7779.75 10874.37 10178.69 7271.21 12978.91 13291.23 7189.96 9094.96 8594.69 70
thisisatest053085.15 9085.86 8584.33 9789.19 11292.57 10387.22 12280.11 12482.15 8574.41 10078.15 7573.80 11779.90 11990.99 8489.58 10095.13 8193.75 88
tttt051785.11 9185.81 8684.30 9889.24 11092.68 9987.12 12680.11 12481.98 8674.31 10278.08 7673.57 11979.90 11991.01 8289.58 10095.11 8393.77 87
baseline84.89 9286.06 8483.52 11287.25 13089.67 14087.76 11175.68 16984.92 6778.40 8180.10 6380.98 7280.20 11586.69 14387.05 13791.86 16892.99 98
test111184.86 9384.21 9985.61 8591.75 7695.14 5988.63 10184.57 6281.88 8771.21 11565.66 14768.51 14281.19 9893.74 3992.68 5096.31 1891.86 127
ET-MVSNet_ETH3D84.65 9485.58 8983.56 11174.99 21592.62 10290.29 7180.38 11682.16 8473.01 11183.41 4471.10 13087.05 6387.77 12790.17 8495.62 5091.82 128
GeoE84.62 9583.98 10285.35 8889.34 10992.83 9688.34 10578.95 13879.29 11277.16 9168.10 13274.56 11083.40 8289.31 11189.23 11094.92 8694.57 72
baseline184.54 9684.43 9784.67 9290.62 9091.16 11388.63 10183.75 7479.78 10771.16 11675.14 9174.10 11377.84 14091.56 6890.67 7596.04 2688.58 159
GBi-Net84.51 9784.80 9384.17 10184.20 16689.95 12889.70 7780.37 11781.17 9375.50 9269.63 12079.69 8379.75 12390.73 9190.72 7195.52 5991.71 130
test184.51 9784.80 9384.17 10184.20 16689.95 12889.70 7780.37 11781.17 9375.50 9269.63 12079.69 8379.75 12390.73 9190.72 7195.52 5991.71 130
FMVSNet384.44 9984.64 9584.21 10084.32 16590.13 12689.85 7680.37 11781.17 9375.50 9269.63 12079.69 8379.62 12689.72 10490.52 7995.59 5391.58 137
Anonymous2023121184.42 10083.02 10686.05 8188.85 11592.70 9888.92 9783.40 8779.99 10578.31 8255.83 19478.92 9183.33 8389.06 11389.76 9793.50 14894.90 62
Vis-MVSNetpermissive84.38 10186.68 8081.70 12987.65 12694.89 6488.14 10780.90 11374.48 14068.23 13277.53 7880.72 7469.98 18092.68 5391.90 5695.33 6994.58 71
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
FMVSNet283.87 10283.73 10484.05 10584.20 16689.95 12889.70 7780.21 12279.17 11474.89 9865.91 14177.49 9979.75 12390.87 8891.00 6795.52 5991.71 130
MSDG83.87 10281.02 12487.19 7492.17 7289.80 13589.15 8985.72 5380.61 10279.24 7866.66 13868.75 14182.69 8687.95 12687.44 13194.19 12385.92 182
Fast-Effi-MVS+83.77 10482.98 10784.69 9187.98 12091.87 10888.10 10877.70 15278.10 12073.04 11069.13 12668.51 14286.66 6690.49 9789.85 9494.67 10192.88 101
Vis-MVSNet (Re-imp)83.65 10586.81 7879.96 14990.46 9792.71 9784.84 15182.00 10580.93 9962.44 16676.29 8482.32 6865.54 19692.29 5891.66 5894.49 11291.47 139
RPSCF83.46 10683.36 10583.59 11087.75 12287.35 16884.82 15279.46 13383.84 7278.12 8382.69 4979.87 7982.60 8982.47 18881.13 19188.78 19386.13 180
PatchMatch-RL83.34 10781.36 11985.65 8390.33 10189.52 14384.36 15581.82 10680.87 10179.29 7774.04 9862.85 16486.05 7088.40 12287.04 13892.04 16586.77 175
IterMVS-LS83.28 10882.95 10883.65 10888.39 11888.63 15886.80 13078.64 14376.56 12673.43 10772.52 10875.35 10680.81 10386.43 14988.51 12393.84 13792.66 109
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
tfpn200view982.86 10981.46 11784.48 9490.30 10293.09 9089.05 9382.71 9375.14 13569.56 12365.72 14463.13 15980.38 11291.15 7889.51 10294.91 8792.50 118
baseline282.80 11082.86 10982.73 11987.68 12590.50 11984.92 15078.93 13978.07 12173.06 10975.08 9269.77 13577.31 14388.90 11686.94 13994.50 11090.74 144
thres20082.77 11181.25 12184.54 9390.38 9993.05 9189.13 9082.67 9574.40 14169.53 12565.69 14663.03 16280.63 10791.15 7889.42 10694.88 8892.04 124
thres40082.68 11281.15 12284.47 9590.52 9492.89 9588.95 9682.71 9374.33 14269.22 12865.31 14962.61 16580.63 10790.96 8789.50 10394.79 9292.45 120
IB-MVS79.09 1282.60 11382.19 11283.07 11591.08 8493.55 8380.90 18281.35 11076.56 12680.87 6964.81 15569.97 13468.87 18385.64 15790.06 8795.36 6594.74 67
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
thres100view90082.55 11481.01 12684.34 9690.30 10292.27 10489.04 9482.77 9275.14 13569.56 12365.72 14463.13 15979.62 12689.97 10189.26 10994.73 9791.61 136
thres600view782.53 11581.02 12484.28 9990.61 9193.05 9188.57 10382.67 9574.12 14568.56 13165.09 15262.13 17080.40 11191.15 7889.02 11694.88 8892.59 112
CHOSEN 1792x268882.16 11680.91 12783.61 10991.14 8392.01 10789.55 8279.15 13779.87 10670.29 11952.51 20372.56 12481.39 9688.87 11788.17 12590.15 18692.37 121
Effi-MVS+-dtu82.05 11781.76 11482.38 12387.72 12390.56 11886.90 12978.05 14873.85 14866.85 13771.29 11271.90 12782.00 9386.64 14485.48 16392.76 15992.58 113
EPNet_dtu81.98 11883.82 10379.83 15194.10 5085.97 17787.29 11984.08 7080.61 10259.96 18481.62 5977.19 10162.91 20087.21 13186.38 15090.66 18287.77 170
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
UniMVSNet_NR-MVSNet81.87 11981.33 12082.50 12085.31 15291.30 11185.70 14084.25 6675.89 13064.21 15366.95 13764.65 15480.22 11387.07 13389.18 11295.27 7494.29 75
ACMH78.52 1481.86 12080.45 13183.51 11390.51 9691.22 11285.62 14384.23 6770.29 17162.21 16769.04 12864.05 15684.48 7887.57 12988.45 12494.01 12992.54 116
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMH+79.08 1381.84 12180.06 13683.91 10689.92 10690.62 11786.21 13583.48 8473.88 14765.75 14366.38 13965.30 15284.63 7785.90 15487.25 13493.45 14991.13 143
MS-PatchMatch81.79 12281.44 11882.19 12690.35 10089.29 14788.08 10975.36 17177.60 12269.00 12964.37 15878.87 9277.14 14688.03 12585.70 16193.19 15486.24 179
PMMVS81.65 12384.05 10178.86 15678.56 20582.63 19983.10 16367.22 20181.39 9170.11 12284.91 4179.74 8282.12 9187.31 13085.70 16192.03 16686.67 178
FMVSNet181.64 12480.61 12982.84 11782.36 19189.20 14988.67 9879.58 13170.79 16672.63 11358.95 18572.26 12679.34 12990.73 9190.72 7194.47 11391.62 135
CDS-MVSNet81.63 12582.09 11381.09 13887.21 13190.28 12287.46 11780.33 12069.06 17570.66 11771.30 11173.87 11567.99 18689.58 10689.87 9392.87 15890.69 145
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
HyFIR lowres test81.62 12679.45 14784.14 10391.00 8693.38 8788.27 10678.19 14676.28 12870.18 12148.78 20773.69 11883.52 8187.05 13487.83 12993.68 14489.15 156
UniMVSNet (Re)81.22 12781.08 12381.39 13385.35 15191.76 10984.93 14982.88 9076.13 12965.02 15064.94 15363.09 16175.17 15687.71 12889.04 11594.97 8494.88 63
DU-MVS81.20 12880.30 13282.25 12484.98 15990.94 11585.70 14083.58 8075.74 13164.21 15365.30 15059.60 18380.22 11386.89 13689.31 10794.77 9494.29 75
dmvs_re81.08 12979.92 13982.44 12286.66 13687.70 16487.91 11083.30 8972.86 15765.29 14965.76 14363.43 15876.69 14788.93 11589.50 10394.80 9191.23 142
CostFormer80.94 13080.21 13381.79 12887.69 12488.58 15987.47 11670.66 18780.02 10477.88 8773.03 10471.40 12878.24 13679.96 19779.63 19388.82 19288.84 157
USDC80.69 13179.89 14081.62 13186.48 13889.11 15286.53 13278.86 14081.15 9663.48 15972.98 10559.12 18881.16 9987.10 13285.01 16793.23 15284.77 187
TranMVSNet+NR-MVSNet80.52 13279.84 14181.33 13584.92 16190.39 12085.53 14584.22 6874.27 14360.68 18264.93 15459.96 17877.48 14286.75 14189.28 10895.12 8293.29 93
COLMAP_ROBcopyleft76.78 1580.50 13378.49 15282.85 11690.96 8789.65 14186.20 13683.40 8777.15 12466.54 13862.27 16365.62 15177.89 13985.23 16484.70 17192.11 16484.83 186
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
CHOSEN 280x42080.28 13481.66 11578.67 16082.92 18479.24 21185.36 14666.79 20378.11 11970.32 11875.03 9379.87 7981.09 10089.07 11283.16 18185.54 20887.17 172
NR-MVSNet80.25 13579.98 13880.56 14485.20 15490.94 11585.65 14283.58 8075.74 13161.36 17765.30 15056.75 19772.38 17288.46 12188.80 11995.16 7893.87 83
pmmvs479.99 13678.08 15882.22 12583.04 18187.16 17184.95 14878.80 14278.64 11774.53 9964.61 15659.41 18479.45 12884.13 17784.54 17492.53 16188.08 165
Fast-Effi-MVS+-dtu79.95 13780.69 12879.08 15486.36 13989.14 15185.85 13872.28 18172.85 15859.32 18770.43 11868.42 14477.57 14186.14 15186.44 14993.11 15591.39 140
v879.90 13878.39 15581.66 13083.97 17089.81 13487.16 12477.40 15471.49 16167.71 13361.24 16862.49 16679.83 12285.48 16186.17 15393.89 13492.02 126
v2v48279.84 13978.07 15981.90 12783.75 17190.21 12587.17 12379.85 12970.65 16765.93 14261.93 16560.07 17780.82 10285.25 16386.71 14293.88 13591.70 134
Baseline_NR-MVSNet79.84 13978.37 15681.55 13284.98 15986.66 17385.06 14783.49 8275.57 13363.31 16058.22 18960.97 17378.00 13886.89 13687.13 13594.47 11393.15 95
thisisatest051579.76 14180.59 13078.80 15784.40 16488.91 15679.48 18876.94 15872.29 15967.33 13567.82 13465.99 14970.80 17888.50 12087.84 12793.86 13692.75 107
v1079.62 14278.19 15781.28 13683.73 17289.69 13987.27 12076.86 15970.50 16965.46 14460.58 17560.47 17580.44 11086.91 13586.63 14593.93 13192.55 115
V4279.59 14378.43 15480.94 13982.79 18789.71 13886.66 13176.73 16171.38 16267.42 13461.01 17062.30 16878.39 13585.56 15986.48 14793.65 14592.60 111
GA-MVS79.52 14479.71 14479.30 15385.68 14690.36 12184.55 15378.44 14470.47 17057.87 19268.52 13061.38 17176.21 15089.40 11087.89 12693.04 15689.96 152
SCA79.51 14580.15 13578.75 15886.58 13787.70 16483.07 16468.53 19681.31 9266.40 13973.83 9975.38 10579.30 13080.49 19579.39 19688.63 19582.96 194
test-LLR79.47 14679.84 14179.03 15587.47 12782.40 20281.24 17978.05 14873.72 14962.69 16373.76 10074.42 11173.49 16784.61 17382.99 18391.25 17687.01 173
IterMVS-SCA-FT79.41 14780.20 13478.49 16285.88 14286.26 17583.95 15871.94 18273.55 15261.94 17070.48 11770.50 13175.23 15485.81 15684.61 17391.99 16790.18 151
v114479.38 14877.83 16281.18 13783.62 17390.23 12387.15 12578.35 14569.13 17464.02 15660.20 17759.41 18480.14 11786.78 13986.57 14693.81 13992.53 117
UniMVSNet_ETH3D79.24 14976.47 17582.48 12185.66 14790.97 11486.08 13781.63 10764.48 19568.94 13054.47 19657.65 19278.83 13385.20 16788.91 11893.72 14293.60 90
MDTV_nov1_ep1379.14 15079.49 14678.74 15985.40 15086.89 17284.32 15770.29 18978.85 11569.42 12675.37 9073.29 12275.64 15380.61 19479.48 19587.36 19981.91 196
TDRefinement79.05 15177.05 17081.39 13388.45 11789.00 15486.92 12782.65 9774.21 14464.41 15259.17 18259.16 18674.52 16285.23 16485.09 16691.37 17487.51 171
v119278.94 15277.33 16680.82 14083.25 17789.90 13286.91 12877.72 15168.63 17862.61 16559.17 18257.53 19380.62 10986.89 13686.47 14893.79 14092.75 107
v14419278.81 15377.22 16880.67 14282.95 18289.79 13686.40 13377.42 15368.26 18063.13 16159.50 18058.13 18980.08 11885.93 15386.08 15594.06 12692.83 103
IterMVS78.79 15479.71 14477.71 16685.26 15385.91 17884.54 15469.84 19373.38 15361.25 17870.53 11670.35 13274.43 16385.21 16683.80 17890.95 18088.77 158
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CR-MVSNet78.71 15578.86 14978.55 16185.85 14585.15 18682.30 17168.23 19774.71 13865.37 14664.39 15769.59 13777.18 14485.10 16984.87 16892.34 16388.21 163
PatchmatchNetpermissive78.67 15678.85 15078.46 16386.85 13586.03 17683.77 16068.11 19980.88 10066.19 14072.90 10673.40 12178.06 13779.25 20177.71 20187.75 19881.75 197
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
v14878.59 15776.84 17380.62 14383.61 17489.16 15083.65 16179.24 13669.38 17369.34 12759.88 17960.41 17675.19 15583.81 17984.63 17292.70 16090.63 147
v192192078.57 15876.99 17180.41 14782.93 18389.63 14286.38 13477.14 15668.31 17961.80 17358.89 18656.79 19680.19 11686.50 14886.05 15794.02 12892.76 106
pm-mvs178.51 15977.75 16479.40 15284.83 16289.30 14683.55 16279.38 13462.64 19963.68 15858.73 18764.68 15370.78 17989.79 10387.84 12794.17 12491.28 141
v124078.15 16076.53 17480.04 14882.85 18689.48 14585.61 14476.77 16067.05 18261.18 18058.37 18856.16 20079.89 12186.11 15286.08 15593.92 13292.47 119
dps78.02 16175.94 18380.44 14686.06 14186.62 17482.58 16669.98 19175.14 13577.76 8969.08 12759.93 17978.47 13479.47 19977.96 20087.78 19783.40 191
anonymousdsp77.94 16279.00 14876.71 17479.03 20387.83 16379.58 18772.87 17965.80 19058.86 19165.82 14262.48 16775.99 15186.77 14088.66 12093.92 13295.68 53
test-mter77.79 16380.02 13775.18 18581.18 19982.85 19780.52 18562.03 21573.62 15162.16 16873.55 10273.83 11673.81 16584.67 17283.34 18091.37 17488.31 162
TESTMET0.1,177.78 16479.84 14175.38 18480.86 20082.40 20281.24 17962.72 21473.72 14962.69 16373.76 10074.42 11173.49 16784.61 17382.99 18391.25 17687.01 173
tpm cat177.78 16475.28 19080.70 14187.14 13285.84 17985.81 13970.40 18877.44 12378.80 8063.72 15964.01 15776.55 14975.60 20975.21 20785.51 20985.12 184
EPMVS77.53 16678.07 15976.90 17386.89 13484.91 18982.18 17466.64 20481.00 9864.11 15572.75 10769.68 13674.42 16479.36 20078.13 19987.14 20180.68 203
tfpnnormal77.46 16774.86 19280.49 14586.34 14088.92 15584.33 15681.26 11161.39 20361.70 17451.99 20453.66 20974.84 15988.63 11887.38 13394.50 11092.08 122
v7n77.22 16876.23 17878.38 16481.89 19489.10 15382.24 17376.36 16265.96 18961.21 17956.56 19255.79 20175.07 15886.55 14586.68 14393.52 14792.95 100
RPMNet77.07 16977.63 16576.42 17685.56 14985.15 18681.37 17665.27 20874.71 13860.29 18363.71 16066.59 14873.64 16682.71 18682.12 18892.38 16288.39 161
pmmvs576.93 17076.33 17777.62 16781.97 19388.40 16181.32 17874.35 17465.42 19361.42 17663.07 16157.95 19173.23 17085.60 15885.35 16593.41 15088.55 160
TinyColmap76.73 17173.95 19579.96 14985.16 15685.64 18282.34 17078.19 14670.63 16862.06 16960.69 17449.61 21480.81 10385.12 16883.69 17991.22 17882.27 195
CVMVSNet76.70 17278.46 15374.64 19083.34 17684.48 19081.83 17574.58 17268.88 17651.23 20569.77 11970.05 13367.49 18984.27 17683.81 17789.38 19087.96 167
WR-MVS76.63 17378.02 16175.02 18684.14 16989.76 13778.34 19580.64 11569.56 17252.32 20161.26 16761.24 17260.66 20184.45 17587.07 13693.99 13092.77 105
TransMVSNet (Re)76.57 17475.16 19178.22 16585.60 14887.24 16982.46 16781.23 11259.80 20759.05 19057.07 19159.14 18766.60 19488.09 12486.82 14094.37 11987.95 168
tpmrst76.55 17575.99 18277.20 16987.32 12983.05 19582.86 16565.62 20678.61 11867.22 13669.19 12565.71 15075.87 15276.75 20775.33 20684.31 21183.28 192
FC-MVSNet-test76.53 17681.62 11670.58 20084.99 15885.73 18074.81 20378.85 14177.00 12539.13 21975.90 8673.50 12054.08 20886.54 14685.99 15891.65 17086.68 176
PatchT76.42 17777.81 16374.80 18878.46 20684.30 19171.82 20965.03 21073.89 14665.37 14661.58 16666.70 14777.18 14485.10 16984.87 16890.94 18188.21 163
TAMVS76.42 17777.16 16975.56 18283.05 18085.55 18380.58 18471.43 18465.40 19461.04 18167.27 13669.22 14067.99 18684.88 17184.78 17089.28 19183.01 193
EG-PatchMatch MVS76.40 17975.47 18877.48 16885.86 14490.22 12482.45 16873.96 17659.64 20859.60 18652.75 20262.20 16968.44 18588.23 12387.50 13094.55 10887.78 169
CP-MVSNet76.36 18076.41 17676.32 17882.73 18888.64 15779.39 18979.62 13067.21 18153.70 19760.72 17355.22 20367.91 18883.52 18186.34 15194.55 10893.19 94
tpm76.30 18176.05 18176.59 17586.97 13383.01 19683.83 15967.06 20271.83 16063.87 15769.56 12362.88 16373.41 16979.79 19878.59 19784.41 21086.68 176
test0.0.03 176.03 18278.51 15173.12 19687.47 12785.13 18876.32 20078.05 14873.19 15650.98 20670.64 11469.28 13855.53 20485.33 16284.38 17590.39 18481.63 198
PEN-MVS76.02 18376.07 17975.95 18183.17 17987.97 16279.65 18680.07 12766.57 18551.45 20360.94 17155.47 20266.81 19282.72 18586.80 14194.59 10592.03 125
SixPastTwentyTwo76.02 18375.72 18576.36 17783.38 17587.54 16675.50 20276.22 16365.50 19257.05 19370.64 11453.97 20874.54 16180.96 19382.12 18891.44 17289.35 155
PS-CasMVS75.90 18575.86 18475.96 18082.59 18988.46 16079.23 19279.56 13266.00 18852.77 19959.48 18154.35 20767.14 19183.37 18286.23 15294.47 11393.10 96
WR-MVS_H75.84 18676.93 17274.57 19182.86 18589.50 14478.34 19579.36 13566.90 18352.51 20060.20 17759.71 18059.73 20283.61 18085.77 16094.65 10292.84 102
LTVRE_ROB74.41 1675.78 18774.72 19377.02 17285.88 14289.22 14882.44 16977.17 15550.57 21745.45 21265.44 14852.29 21181.25 9785.50 16087.42 13289.94 18892.62 110
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
gg-mvs-nofinetune75.64 18877.26 16773.76 19287.92 12192.20 10587.32 11864.67 21151.92 21635.35 22146.44 21077.05 10271.97 17392.64 5491.02 6695.34 6889.53 154
FMVSNet575.50 18976.07 17974.83 18776.16 21081.19 20581.34 17770.21 19073.20 15561.59 17558.97 18468.33 14568.50 18485.87 15585.85 15991.18 17979.11 206
DTE-MVSNet75.14 19075.44 18974.80 18883.18 17887.19 17078.25 19780.11 12466.05 18748.31 20860.88 17254.67 20464.54 19782.57 18786.17 15394.43 11690.53 149
pmmvs674.83 19172.89 19877.09 17082.11 19287.50 16780.88 18376.97 15752.79 21561.91 17246.66 20960.49 17469.28 18286.74 14285.46 16491.39 17390.56 148
MIMVSNet74.69 19275.60 18773.62 19376.02 21285.31 18581.21 18167.43 20071.02 16459.07 18954.48 19564.07 15566.14 19586.52 14786.64 14491.83 16981.17 200
ADS-MVSNet74.53 19375.69 18673.17 19581.57 19780.71 20779.27 19163.03 21379.27 11359.94 18567.86 13368.32 14671.08 17777.33 20576.83 20384.12 21379.53 204
pmmvs-eth3d74.32 19471.96 20077.08 17177.33 20882.71 19878.41 19476.02 16666.65 18465.98 14154.23 19849.02 21673.14 17182.37 18982.69 18591.61 17186.05 181
PM-MVS74.17 19573.10 19675.41 18376.07 21182.53 20077.56 19871.69 18371.04 16361.92 17161.23 16947.30 21774.82 16081.78 19179.80 19290.42 18388.05 166
CMPMVSbinary56.49 1773.84 19671.73 20276.31 17985.20 15485.67 18175.80 20173.23 17762.26 20065.40 14553.40 20159.70 18171.77 17580.25 19679.56 19486.45 20581.28 199
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
MDTV_nov1_ep13_2view73.21 19772.91 19773.56 19480.01 20184.28 19278.62 19366.43 20568.64 17759.12 18860.39 17659.69 18269.81 18178.82 20377.43 20287.36 19981.11 201
pmnet_mix0271.95 19871.83 20172.10 19781.40 19880.63 20873.78 20572.85 18070.90 16554.89 19562.17 16457.42 19462.92 19976.80 20673.98 21086.74 20480.87 202
testgi71.92 19974.20 19469.27 20284.58 16383.06 19473.40 20674.39 17364.04 19746.17 21168.90 12957.15 19548.89 21284.07 17883.08 18288.18 19679.09 207
Anonymous2023120670.80 20070.59 20471.04 19981.60 19682.49 20174.64 20475.87 16764.17 19649.27 20744.85 21353.59 21054.68 20783.07 18382.34 18790.17 18583.65 190
gm-plane-assit70.29 20170.65 20369.88 20185.03 15778.50 21258.41 21965.47 20750.39 21840.88 21749.60 20650.11 21375.14 15791.43 7089.78 9594.32 12084.73 188
EU-MVSNet69.98 20272.30 19967.28 20575.67 21379.39 21073.12 20769.94 19263.59 19842.80 21562.93 16256.71 19855.07 20679.13 20278.55 19887.06 20285.82 183
MVS-HIRNet68.83 20366.39 20771.68 19877.58 20775.52 21466.45 21465.05 20962.16 20162.84 16244.76 21456.60 19971.96 17478.04 20475.06 20886.18 20772.56 213
test20.0368.31 20470.05 20566.28 20782.41 19080.84 20667.35 21376.11 16558.44 21040.80 21853.77 20054.54 20542.28 21583.07 18381.96 19088.73 19477.76 209
N_pmnet66.85 20566.63 20667.11 20678.73 20474.66 21570.53 21071.07 18566.46 18646.54 21051.68 20551.91 21255.48 20574.68 21072.38 21180.29 21674.65 212
MDA-MVSNet-bldmvs66.22 20664.49 20968.24 20361.67 21982.11 20470.07 21176.16 16459.14 20947.94 20954.35 19735.82 22567.33 19064.94 21775.68 20586.30 20679.36 205
MIMVSNet165.00 20766.24 20863.55 20958.41 22280.01 20969.00 21274.03 17555.81 21341.88 21636.81 21849.48 21547.89 21381.32 19282.40 18690.08 18777.88 208
new-patchmatchnet63.80 20863.31 21064.37 20876.49 20975.99 21363.73 21670.99 18657.27 21143.08 21445.86 21143.80 21845.13 21473.20 21170.68 21486.80 20376.34 211
FPMVS63.63 20960.08 21467.78 20480.01 20171.50 21772.88 20869.41 19561.82 20253.11 19845.12 21242.11 22150.86 21066.69 21563.84 21680.41 21569.46 215
pmmvs361.89 21061.74 21262.06 21064.30 21870.83 21864.22 21552.14 21948.78 21944.47 21341.67 21641.70 22263.03 19876.06 20876.02 20484.18 21277.14 210
new_pmnet59.28 21161.47 21356.73 21261.66 22068.29 21959.57 21854.91 21660.83 20434.38 22244.66 21543.65 21949.90 21171.66 21271.56 21379.94 21769.67 214
GG-mvs-BLEND57.56 21282.61 11128.34 2200.22 22990.10 12779.37 1900.14 22679.56 1090.40 23071.25 11383.40 620.30 22786.27 15083.87 17689.59 18983.83 189
PMVScopyleft50.48 1855.81 21351.93 21660.33 21172.90 21649.34 22248.78 22069.51 19443.49 22154.25 19636.26 21941.04 22339.71 21765.07 21660.70 21776.85 21867.58 216
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
WB-MVS52.27 21457.26 21546.45 21475.64 21465.62 22040.45 22575.80 16847.10 2209.11 22853.83 19938.98 22414.47 22369.44 21368.29 21563.24 22157.56 220
Gipumacopyleft49.17 21547.05 21851.65 21359.67 22148.39 22341.98 22363.47 21255.64 21433.33 22314.90 22213.78 22941.34 21669.31 21472.30 21270.11 21955.00 221
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test_method41.78 21648.10 21734.42 21810.74 22819.78 22944.64 22217.73 22359.83 20638.67 22035.82 22054.41 20634.94 21862.87 21843.13 22159.81 22260.82 218
PMMVS241.68 21744.74 21938.10 21546.97 22552.32 22140.63 22448.08 22035.51 2227.36 22926.86 22124.64 22716.72 22255.24 22059.03 21868.85 22059.59 219
E-PMN31.40 21826.80 22136.78 21651.39 22429.96 22620.20 22754.17 21725.93 22412.75 22614.73 2238.58 23134.10 22027.36 22337.83 22248.07 22543.18 223
MVEpermissive30.17 1930.88 21933.52 22027.80 22123.78 22739.16 22518.69 22946.90 22121.88 22515.39 22514.37 2247.31 23224.41 22141.63 22256.22 21937.64 22754.07 222
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
EMVS30.49 22025.44 22236.39 21751.47 22329.89 22720.17 22854.00 21826.49 22312.02 22713.94 2258.84 23034.37 21925.04 22434.37 22346.29 22639.53 224
testmvs1.03 2211.63 2230.34 2220.09 2300.35 2300.61 2310.16 2251.49 2260.10 2313.15 2260.15 2330.86 2261.32 2251.18 2240.20 2283.76 226
test1230.87 2221.40 2240.25 2230.03 2310.25 2310.35 2320.08 2271.21 2270.05 2322.84 2270.03 2340.89 2250.43 2261.16 2250.13 2293.87 225
uanet_test0.00 2230.00 2250.00 2240.00 2320.00 2320.00 2330.00 2280.00 2280.00 2330.00 2280.00 2350.00 2280.00 2270.00 2260.00 2300.00 227
sosnet-low-res0.00 2230.00 2250.00 2240.00 2320.00 2320.00 2330.00 2280.00 2280.00 2330.00 2280.00 2350.00 2280.00 2270.00 2260.00 2300.00 227
sosnet0.00 2230.00 2250.00 2240.00 2320.00 2320.00 2330.00 2280.00 2280.00 2330.00 2280.00 2350.00 2280.00 2270.00 2260.00 2300.00 227
TPM-MVS96.31 2796.02 3894.89 3086.52 3687.18 3692.17 1686.76 6595.56 5593.85 84
Ray Leroy Khuboni and Hongjun Xu: Textureless Resilient Propagation Matching in Multiple View Stereosis (TPM-MVS). SATNAC 2025
RE-MVS-def56.08 194
9.1492.16 17
SR-MVS96.58 2590.99 2192.40 13
Anonymous20240521182.75 11089.58 10892.97 9489.04 9484.13 6978.72 11657.18 19076.64 10383.13 8589.55 10789.92 9293.38 15194.28 78
our_test_381.81 19583.96 19376.61 199
ambc61.92 21170.98 21773.54 21663.64 21760.06 20552.23 20238.44 21719.17 22857.12 20382.33 19075.03 20983.21 21484.89 185
MTAPA92.97 291.03 23
MTMP93.14 190.21 30
Patchmatch-RL test8.55 230
tmp_tt32.73 21943.96 22621.15 22826.71 2268.99 22465.67 19151.39 20456.01 19342.64 22011.76 22456.60 21950.81 22053.55 224
XVS93.11 6096.70 2591.91 5383.95 4988.82 4095.79 40
X-MVStestdata93.11 6096.70 2591.91 5383.95 4988.82 4095.79 40
mPP-MVS97.06 1288.08 45
NP-MVS87.47 54
Patchmtry85.54 18482.30 17168.23 19765.37 146
DeepMVS_CXcopyleft48.31 22448.03 22126.08 22256.42 21225.77 22447.51 20831.31 22651.30 20948.49 22153.61 22361.52 217