This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort by
SED-MVS95.61 296.36 294.73 396.84 1998.15 397.08 392.92 295.64 391.84 495.98 495.33 192.83 796.00 194.94 396.90 498.45 3
DVP-MVS++95.79 196.42 195.06 197.84 298.17 297.03 492.84 396.68 192.83 395.90 594.38 492.90 595.98 294.85 596.93 398.99 1
DVP-MVScopyleft95.56 396.26 394.73 396.93 1698.19 196.62 792.81 596.15 291.73 595.01 795.31 293.41 195.95 394.77 896.90 498.46 2
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
SMA-MVScopyleft94.70 795.35 793.93 1197.57 397.57 895.98 1291.91 1394.50 790.35 1393.46 1792.72 1191.89 1795.89 495.22 195.88 3198.10 6
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
CNVR-MVS94.37 1294.65 1294.04 1097.29 697.11 1196.00 1192.43 1093.45 1589.85 1890.92 2593.04 992.59 1095.77 594.82 696.11 2597.42 16
DPE-MVScopyleft95.53 496.13 494.82 296.81 2298.05 497.42 193.09 194.31 991.49 697.12 195.03 393.27 395.55 694.58 1296.86 698.25 4
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
ACMMP_NAP93.94 1694.49 1593.30 1997.03 1397.31 1095.96 1391.30 1893.41 1788.55 2393.00 1990.33 2791.43 2595.53 794.41 1495.53 5797.47 15
SteuartSystems-ACMMP94.06 1494.65 1293.38 1896.97 1597.36 996.12 1091.78 1492.05 2787.34 2994.42 1290.87 2491.87 1895.47 894.59 1196.21 2397.77 11
Skip Steuart: Steuart Systems R&D Blog.
APDe-MVS95.23 595.69 694.70 597.12 1097.81 697.19 292.83 495.06 690.98 996.47 292.77 1093.38 295.34 994.21 1696.68 998.17 5
DeepC-MVS_fast88.76 193.10 2293.02 2993.19 2197.13 996.51 3395.35 2591.19 1993.14 2088.14 2585.26 3989.49 3491.45 2295.17 1095.07 295.85 3696.48 34
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DeepPCF-MVS88.51 292.64 2894.42 1790.56 3994.84 4396.92 1891.31 6189.61 3195.16 584.55 4689.91 2991.45 2190.15 3595.12 1194.81 792.90 15397.58 13
HPM-MVS++copyleft94.60 994.91 1194.24 897.86 196.53 3296.14 992.51 893.87 1490.76 1193.45 1893.84 592.62 995.11 1294.08 1995.58 5497.48 14
CS-MVS90.34 4290.58 4490.07 4393.11 5995.82 4490.57 6483.62 7687.07 5385.35 4082.98 4583.47 6091.37 2694.94 1393.37 3696.37 1496.41 37
DELS-MVS89.71 4889.68 5089.74 4693.75 5296.22 3693.76 3885.84 5182.53 7785.05 4378.96 6884.24 5784.25 7694.91 1494.91 495.78 4296.02 44
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
NCCC93.69 1993.66 2393.72 1597.37 596.66 2995.93 1792.50 993.40 1888.35 2487.36 3492.33 1492.18 1394.89 1594.09 1896.00 2796.91 26
TSAR-MVS + MP.94.48 1194.97 993.90 1295.53 3697.01 1596.69 690.71 2394.24 1090.92 1094.97 892.19 1593.03 494.83 1693.60 2796.51 1397.97 9
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
MSP-MVS95.12 695.83 594.30 696.82 2197.94 596.98 592.37 1195.40 490.59 1296.16 393.71 692.70 894.80 1794.77 896.37 1497.99 8
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
DROMVSNet89.96 4790.77 4389.01 5590.54 9095.15 5591.34 6081.43 10685.27 6183.08 5382.83 4687.22 4890.97 2994.79 1893.38 3496.73 896.71 32
TSAR-MVS + ACMM92.97 2394.51 1491.16 3695.88 3396.59 3095.09 2890.45 2993.42 1683.01 5494.68 1090.74 2588.74 4294.75 1993.78 2493.82 13497.63 12
SD-MVS94.53 1095.22 893.73 1495.69 3597.03 1495.77 2191.95 1294.41 891.35 794.97 893.34 891.80 1994.72 2093.99 2095.82 3898.07 7
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
MVS_030490.88 3991.35 3790.34 4093.91 5096.79 2394.49 3386.54 4886.57 5582.85 5581.68 5489.70 3287.57 5594.64 2193.93 2196.67 1196.15 42
APD-MVScopyleft94.37 1294.47 1694.26 797.18 896.99 1696.53 892.68 692.45 2389.96 1694.53 1191.63 2092.89 694.58 2293.82 2396.31 1897.26 18
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
ETV-MVS89.22 5289.76 4988.60 6191.60 7694.61 6689.48 8083.46 8585.20 6381.58 6282.75 4782.59 6588.80 4094.57 2393.28 3896.68 995.31 56
DeepC-MVS87.86 392.26 3091.86 3392.73 2496.18 2896.87 1995.19 2791.76 1592.17 2686.58 3481.79 5185.85 5090.88 3094.57 2394.61 1095.80 3997.18 19
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MCST-MVS93.81 1794.06 1993.53 1696.79 2396.85 2095.95 1491.69 1692.20 2587.17 3190.83 2793.41 791.96 1494.49 2593.50 3097.61 197.12 22
CANet91.33 3791.46 3591.18 3595.01 3996.71 2493.77 3787.39 4587.72 5087.26 3081.77 5289.73 3187.32 5994.43 2693.86 2296.31 1896.02 44
SF-MVS94.61 894.96 1094.20 996.75 2497.07 1295.82 1892.60 793.98 1291.09 895.89 692.54 1291.93 1594.40 2793.56 2997.04 297.27 17
PHI-MVS92.05 3193.74 2290.08 4294.96 4097.06 1393.11 4487.71 4390.71 3680.78 6992.40 2291.03 2287.68 5394.32 2894.48 1396.21 2396.16 41
CS-MVS-test90.29 4390.96 3989.51 5193.18 5895.87 4389.18 8383.72 7588.32 4884.82 4584.89 4185.23 5390.25 3394.04 2992.66 4995.94 2995.69 49
MP-MVScopyleft93.35 2093.59 2493.08 2297.39 496.82 2295.38 2490.71 2390.82 3588.07 2692.83 2190.29 2891.32 2794.03 3093.19 3995.61 5297.16 20
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
3Dnovator+86.06 491.60 3590.86 4292.47 2696.00 3296.50 3594.70 3187.83 4290.49 3889.92 1774.68 9189.35 3590.66 3194.02 3194.14 1795.67 4796.85 27
IS_MVSNet86.18 7688.18 6083.85 10591.02 8294.72 6587.48 11182.46 9981.05 9570.28 11776.98 7782.20 6876.65 14493.97 3293.38 3495.18 7394.97 59
HFP-MVS94.02 1594.22 1893.78 1397.25 796.85 2095.81 1990.94 2294.12 1190.29 1594.09 1489.98 3092.52 1193.94 3393.49 3295.87 3397.10 23
MVS_111021_HR90.56 4091.29 3889.70 4894.71 4595.63 4791.81 5686.38 4987.53 5181.29 6487.96 3285.43 5287.69 5293.90 3492.93 4296.33 1695.69 49
ACMMPR93.72 1893.94 2093.48 1797.07 1196.93 1795.78 2090.66 2593.88 1389.24 2093.53 1689.08 3792.24 1293.89 3593.50 3095.88 3196.73 30
test250685.20 8684.11 9886.47 7691.84 7395.28 5189.18 8384.49 6382.59 7575.34 9474.66 9258.07 18681.68 9193.76 3692.71 4696.28 2191.71 127
ECVR-MVScopyleft85.25 8584.47 9486.16 7891.84 7395.28 5189.18 8384.49 6382.59 7573.49 10366.12 13769.28 13581.68 9193.76 3692.71 4696.28 2191.58 134
X-MVS92.36 2992.75 3091.90 3296.89 1796.70 2595.25 2690.48 2891.50 3283.95 4888.20 3188.82 3989.11 3893.75 3893.43 3395.75 4396.83 28
test111184.86 9184.21 9785.61 8391.75 7595.14 5688.63 9884.57 6281.88 8571.21 11265.66 14368.51 13981.19 9593.74 3992.68 4896.31 1891.86 124
CP-MVS93.25 2193.26 2693.24 2096.84 1996.51 3395.52 2390.61 2692.37 2488.88 2190.91 2689.52 3391.91 1693.64 4092.78 4595.69 4597.09 24
PGM-MVS92.76 2593.03 2892.45 2797.03 1396.67 2895.73 2287.92 4190.15 4186.53 3592.97 2088.33 4391.69 2093.62 4193.03 4095.83 3796.41 37
DPM-MVS91.72 3491.48 3492.00 3095.53 3695.75 4595.94 1591.07 2091.20 3385.58 3981.63 5590.74 2588.40 4693.40 4293.75 2595.45 6193.85 82
train_agg92.87 2493.53 2592.09 2996.88 1895.38 4995.94 1590.59 2790.65 3783.65 5194.31 1391.87 1990.30 3293.38 4392.42 5095.17 7496.73 30
TSAR-MVS + GP.92.71 2793.91 2191.30 3491.96 7296.00 3993.43 4087.94 4092.53 2186.27 3893.57 1591.94 1891.44 2493.29 4492.89 4496.78 797.15 21
UA-Net86.07 7787.78 6684.06 10292.85 6595.11 5787.73 10884.38 6573.22 15273.18 10579.99 6289.22 3671.47 17293.22 4593.03 4094.76 9190.69 141
CDPH-MVS91.14 3892.01 3290.11 4196.18 2896.18 3794.89 3088.80 3788.76 4677.88 8589.18 3087.71 4687.29 6093.13 4693.31 3795.62 5095.84 46
3Dnovator85.17 590.48 4189.90 4891.16 3694.88 4295.74 4693.82 3685.36 5589.28 4387.81 2774.34 9487.40 4788.56 4493.07 4793.74 2696.53 1295.71 48
PVSNet_BlendedMVS88.19 6388.00 6388.42 6392.71 6894.82 6389.08 8883.81 7284.91 6686.38 3679.14 6578.11 9282.66 8493.05 4891.10 6195.86 3494.86 62
PVSNet_Blended88.19 6388.00 6388.42 6392.71 6894.82 6389.08 8883.81 7284.91 6686.38 3679.14 6578.11 9282.66 8493.05 4891.10 6195.86 3494.86 62
PVSNet_Blended_VisFu87.40 7187.80 6586.92 7492.86 6495.40 4888.56 10183.45 8679.55 10882.26 5874.49 9384.03 5879.24 12892.97 5091.53 5995.15 7696.65 33
MSLP-MVS++92.02 3391.40 3692.75 2396.01 3195.88 4293.73 3989.00 3389.89 4290.31 1481.28 5788.85 3891.45 2292.88 5194.24 1596.00 2796.76 29
ACMMPcopyleft92.03 3292.16 3191.87 3395.88 3396.55 3194.47 3489.49 3291.71 3085.26 4191.52 2484.48 5690.21 3492.82 5291.63 5795.92 3096.42 36
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
Vis-MVSNetpermissive84.38 9986.68 7881.70 12687.65 12394.89 6188.14 10480.90 11074.48 13868.23 12977.53 7580.72 7369.98 17692.68 5391.90 5495.33 6794.58 69
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
gg-mvs-nofinetune75.64 18577.26 16473.76 18987.92 11892.20 10287.32 11464.67 20751.92 21335.35 21746.44 20577.05 9971.97 16992.64 5491.02 6495.34 6689.53 150
EIA-MVS87.94 6688.05 6287.81 6891.46 7795.00 6088.67 9582.81 9082.53 7780.81 6880.04 6180.20 7687.48 5692.58 5591.61 5895.63 4994.36 72
MVS_111021_LR90.14 4690.89 4189.26 5393.23 5794.05 7490.43 6684.65 6190.16 4084.52 4790.14 2883.80 5987.99 4992.50 5690.92 6694.74 9294.70 66
casdiffmvs_mvgpermissive87.97 6587.63 7088.37 6590.55 8994.42 6791.82 5584.69 6084.05 6982.08 6176.57 7979.00 8685.49 7192.35 5792.29 5295.55 5594.70 66
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Vis-MVSNet (Re-imp)83.65 10386.81 7679.96 14690.46 9492.71 9484.84 14782.00 10280.93 9762.44 16276.29 8182.32 6765.54 19292.29 5891.66 5694.49 10891.47 136
CSCG92.76 2593.16 2792.29 2896.30 2797.74 794.67 3288.98 3592.46 2289.73 1986.67 3692.15 1788.69 4392.26 5992.92 4395.40 6297.89 10
EPNet89.60 4989.91 4789.24 5496.45 2693.61 7992.95 4688.03 3985.74 5983.36 5287.29 3583.05 6380.98 9892.22 6091.85 5593.69 13995.58 53
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
OPM-MVS87.56 6985.80 8589.62 4993.90 5194.09 7394.12 3588.18 3875.40 13277.30 8876.41 8077.93 9488.79 4192.20 6190.82 6895.40 6293.72 86
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
MAR-MVS88.39 6088.44 5788.33 6694.90 4195.06 5890.51 6583.59 7985.27 6179.07 7777.13 7682.89 6487.70 5192.19 6292.32 5194.23 11894.20 78
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
QAPM89.49 5089.58 5189.38 5294.73 4495.94 4092.35 4885.00 5885.69 6080.03 7376.97 7887.81 4587.87 5092.18 6392.10 5396.33 1696.40 39
MVSTER86.03 7886.12 8085.93 8088.62 11389.93 12889.33 8279.91 12581.87 8681.35 6381.07 5874.91 10680.66 10392.13 6490.10 8395.68 4692.80 101
CANet_DTU85.43 8387.72 6982.76 11690.95 8593.01 9089.99 7075.46 16682.67 7464.91 14783.14 4480.09 7780.68 10292.03 6591.03 6394.57 10392.08 119
casdiffmvspermissive87.45 7087.15 7287.79 7090.15 10194.22 7089.96 7183.93 7185.08 6480.91 6675.81 8477.88 9586.08 6791.86 6690.86 6795.74 4494.37 71
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
OMC-MVS90.23 4590.40 4590.03 4493.45 5595.29 5091.89 5486.34 5093.25 1984.94 4481.72 5386.65 4988.90 3991.69 6790.27 8094.65 9893.95 80
baseline184.54 9484.43 9584.67 9090.62 8791.16 11088.63 9883.75 7479.78 10571.16 11375.14 8874.10 11077.84 13791.56 6890.67 7396.04 2688.58 155
TSAR-MVS + COLMAP88.40 5889.09 5387.60 7192.72 6793.92 7692.21 4985.57 5491.73 2973.72 10191.75 2373.22 12087.64 5491.49 6989.71 9693.73 13791.82 125
gm-plane-assit70.29 19870.65 20069.88 19885.03 15378.50 20858.41 21565.47 20350.39 21540.88 21349.60 20150.11 20975.14 15391.43 7089.78 9394.32 11684.73 184
FC-MVSNet-train85.18 8785.31 8985.03 8890.67 8691.62 10787.66 10983.61 7779.75 10674.37 9878.69 6971.21 12678.91 12991.23 7189.96 8894.96 8294.69 68
EPP-MVSNet86.55 7387.76 6785.15 8790.52 9194.41 6887.24 11782.32 10081.79 8773.60 10278.57 7082.41 6682.07 8991.23 7190.39 7895.14 7795.48 54
LGP-MVS_train88.25 6288.55 5587.89 6792.84 6693.66 7893.35 4185.22 5785.77 5874.03 10086.60 3776.29 10186.62 6591.20 7390.58 7695.29 6995.75 47
OpenMVScopyleft82.53 1187.71 6786.84 7488.73 5894.42 4695.06 5891.02 6383.49 8282.50 7982.24 6067.62 13285.48 5185.56 7091.19 7491.30 6095.67 4794.75 64
canonicalmvs89.36 5189.92 4688.70 5991.38 7895.92 4191.81 5682.61 9890.37 3982.73 5782.09 4979.28 8588.30 4791.17 7593.59 2895.36 6497.04 25
CLD-MVS88.66 5588.52 5688.82 5791.37 7994.22 7092.82 4782.08 10188.27 4985.14 4281.86 5078.53 9085.93 6991.17 7590.61 7495.55 5595.00 58
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
tfpn200view982.86 10781.46 11584.48 9290.30 9993.09 8789.05 9082.71 9275.14 13369.56 12065.72 14063.13 15580.38 10991.15 7789.51 10094.91 8492.50 115
thres600view782.53 11381.02 12284.28 9790.61 8893.05 8888.57 10082.67 9474.12 14368.56 12865.09 14862.13 16680.40 10891.15 7789.02 11394.88 8592.59 109
thres20082.77 10981.25 11984.54 9190.38 9693.05 8889.13 8782.67 9474.40 13969.53 12265.69 14263.03 15880.63 10491.15 7789.42 10394.88 8592.04 121
UGNet85.90 8088.23 5983.18 11288.96 11194.10 7287.52 11083.60 7881.66 8877.90 8480.76 5983.19 6266.70 18991.13 8090.71 7294.39 11496.06 43
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
tttt051785.11 8985.81 8484.30 9689.24 10792.68 9687.12 12280.11 12181.98 8474.31 9978.08 7373.57 11679.90 11691.01 8189.58 9895.11 8093.77 84
FA-MVS(training)85.65 8285.79 8685.48 8590.44 9593.47 8188.66 9773.11 17483.34 7282.26 5871.79 10678.39 9183.14 8191.00 8289.47 10295.28 7193.06 94
thisisatest053085.15 8885.86 8384.33 9589.19 10992.57 10087.22 11880.11 12182.15 8374.41 9778.15 7273.80 11479.90 11690.99 8389.58 9895.13 7893.75 85
Effi-MVS+85.33 8485.08 9085.63 8289.69 10493.42 8389.90 7280.31 11879.32 10972.48 11173.52 10074.03 11186.55 6690.99 8389.98 8794.83 8794.27 77
thres40082.68 11081.15 12084.47 9390.52 9192.89 9288.95 9382.71 9274.33 14069.22 12565.31 14562.61 16180.63 10490.96 8589.50 10194.79 8892.45 117
FMVSNet283.87 10083.73 10284.05 10384.20 16289.95 12589.70 7480.21 11979.17 11274.89 9565.91 13877.49 9679.75 12090.87 8691.00 6595.52 5891.71 127
CPTT-MVS91.39 3690.95 4091.91 3195.06 3895.24 5395.02 2988.98 3591.02 3486.71 3384.89 4188.58 4291.60 2190.82 8789.67 9794.08 12196.45 35
AdaColmapbinary90.29 4388.38 5892.53 2596.10 3095.19 5492.98 4591.40 1789.08 4588.65 2278.35 7181.44 7091.30 2890.81 8890.21 8194.72 9493.59 88
GBi-Net84.51 9584.80 9184.17 9984.20 16289.95 12589.70 7480.37 11481.17 9175.50 9069.63 11779.69 8279.75 12090.73 8990.72 6995.52 5891.71 127
test184.51 9584.80 9184.17 9984.20 16289.95 12589.70 7480.37 11481.17 9175.50 9069.63 11779.69 8279.75 12090.73 8990.72 6995.52 5891.71 127
FMVSNet181.64 12280.61 12782.84 11582.36 18789.20 14688.67 9579.58 12870.79 16372.63 11058.95 18172.26 12379.34 12690.73 8990.72 6994.47 10991.62 132
ACMM83.27 1087.68 6886.09 8189.54 5093.26 5692.19 10391.43 5986.74 4786.02 5782.85 5575.63 8575.14 10488.41 4590.68 9289.99 8694.59 10192.97 96
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
HQP-MVS89.13 5389.58 5188.60 6193.53 5493.67 7793.29 4287.58 4488.53 4775.50 9087.60 3380.32 7587.07 6190.66 9389.95 8994.62 10096.35 40
DI_MVS_plusplus_trai86.41 7585.54 8887.42 7289.24 10793.13 8692.16 5082.65 9682.30 8180.75 7068.30 12880.41 7485.01 7390.56 9490.07 8494.70 9694.01 79
Fast-Effi-MVS+83.77 10282.98 10584.69 8987.98 11791.87 10588.10 10577.70 14978.10 11873.04 10769.13 12368.51 13986.66 6490.49 9589.85 9294.67 9792.88 98
MVS_Test86.93 7287.24 7186.56 7590.10 10293.47 8190.31 6780.12 12083.55 7178.12 8179.58 6479.80 8085.45 7290.17 9690.59 7595.29 6993.53 89
TAPA-MVS84.37 788.91 5488.93 5488.89 5693.00 6394.85 6292.00 5184.84 5991.68 3180.05 7279.77 6384.56 5588.17 4890.11 9789.00 11495.30 6892.57 111
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
PLCcopyleft83.76 988.61 5786.83 7590.70 3894.22 4792.63 9791.50 5887.19 4689.16 4486.87 3275.51 8680.87 7289.98 3690.01 9889.20 10894.41 11390.45 146
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
thres100view90082.55 11281.01 12484.34 9490.30 9992.27 10189.04 9182.77 9175.14 13369.56 12065.72 14063.13 15579.62 12389.97 9989.26 10694.73 9391.61 133
ACMP83.90 888.32 6188.06 6188.62 6092.18 7093.98 7591.28 6285.24 5686.69 5481.23 6585.62 3875.13 10587.01 6389.83 10089.77 9494.79 8895.43 55
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
pm-mvs178.51 15677.75 16179.40 14984.83 15889.30 14383.55 15879.38 13162.64 19663.68 15458.73 18364.68 15070.78 17589.79 10187.84 12494.17 12091.28 138
FMVSNet384.44 9784.64 9384.21 9884.32 16190.13 12389.85 7380.37 11481.17 9175.50 9069.63 11779.69 8279.62 12389.72 10290.52 7795.59 5391.58 134
DCV-MVSNet85.88 8186.17 7985.54 8489.10 11089.85 13089.34 8180.70 11183.04 7378.08 8376.19 8279.00 8682.42 8789.67 10390.30 7993.63 14295.12 57
CDS-MVSNet81.63 12382.09 11181.09 13587.21 12890.28 11987.46 11380.33 11769.06 17270.66 11471.30 10873.87 11267.99 18289.58 10489.87 9192.87 15490.69 141
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
Anonymous20240521182.75 10889.58 10592.97 9189.04 9184.13 6978.72 11457.18 18676.64 10083.13 8289.55 10589.92 9093.38 14794.28 76
LS3D85.96 7984.37 9687.81 6894.13 4893.27 8590.26 6989.00 3384.91 6672.84 10971.74 10772.47 12287.45 5789.53 10689.09 11093.20 14989.60 149
CNLPA88.40 5887.00 7390.03 4493.73 5394.28 6989.56 7885.81 5291.87 2887.55 2869.53 12181.49 6989.23 3789.45 10788.59 11894.31 11793.82 83
GA-MVS79.52 14179.71 14179.30 15085.68 14290.36 11884.55 14978.44 14170.47 16757.87 18868.52 12761.38 16776.21 14689.40 10887.89 12393.04 15289.96 148
GeoE84.62 9383.98 10085.35 8689.34 10692.83 9388.34 10278.95 13579.29 11077.16 8968.10 12974.56 10783.40 7989.31 10989.23 10794.92 8394.57 70
CHOSEN 280x42080.28 13181.66 11378.67 15782.92 18079.24 20785.36 14266.79 19978.11 11770.32 11575.03 9079.87 7881.09 9789.07 11083.16 17885.54 20487.17 168
Anonymous2023121184.42 9883.02 10486.05 7988.85 11292.70 9588.92 9483.40 8779.99 10378.31 8055.83 19078.92 8883.33 8089.06 11189.76 9593.50 14494.90 60
diffmvspermissive86.52 7486.76 7786.23 7788.31 11692.63 9789.58 7781.61 10586.14 5680.26 7179.00 6777.27 9783.58 7788.94 11289.06 11194.05 12394.29 73
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline282.80 10882.86 10782.73 11787.68 12290.50 11684.92 14678.93 13678.07 11973.06 10675.08 8969.77 13277.31 14088.90 11386.94 13694.50 10690.74 140
CHOSEN 1792x268882.16 11480.91 12583.61 10791.14 8092.01 10489.55 7979.15 13479.87 10470.29 11652.51 19872.56 12181.39 9388.87 11488.17 12290.15 18292.37 118
tfpnnormal77.46 16474.86 18980.49 14286.34 13688.92 15284.33 15281.26 10861.39 20061.70 17051.99 19953.66 20574.84 15588.63 11587.38 13094.50 10692.08 119
PCF-MVS84.60 688.66 5587.75 6889.73 4793.06 6296.02 3893.22 4390.00 3082.44 8080.02 7477.96 7485.16 5487.36 5888.54 11688.54 11994.72 9495.61 52
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
thisisatest051579.76 13880.59 12878.80 15484.40 16088.91 15379.48 18476.94 15572.29 15667.33 13267.82 13165.99 14670.80 17488.50 11787.84 12493.86 13292.75 104
NR-MVSNet80.25 13279.98 13680.56 14185.20 15090.94 11285.65 13883.58 8075.74 12961.36 17365.30 14656.75 19372.38 16888.46 11888.80 11695.16 7593.87 81
PatchMatch-RL83.34 10581.36 11785.65 8190.33 9889.52 14084.36 15181.82 10380.87 9979.29 7574.04 9562.85 16086.05 6888.40 11987.04 13592.04 16186.77 171
EG-PatchMatch MVS76.40 17675.47 18577.48 16585.86 14090.22 12182.45 16473.96 17259.64 20559.60 18252.75 19762.20 16568.44 18188.23 12087.50 12794.55 10487.78 165
TransMVSNet (Re)76.57 17175.16 18878.22 16285.60 14487.24 16582.46 16381.23 10959.80 20459.05 18657.07 18759.14 18366.60 19088.09 12186.82 13794.37 11587.95 164
MS-PatchMatch81.79 12081.44 11682.19 12390.35 9789.29 14488.08 10675.36 16777.60 12069.00 12664.37 15478.87 8977.14 14388.03 12285.70 15893.19 15086.24 175
MSDG83.87 10081.02 12287.19 7392.17 7189.80 13289.15 8685.72 5380.61 10079.24 7666.66 13568.75 13882.69 8387.95 12387.44 12894.19 11985.92 178
ET-MVSNet_ETH3D84.65 9285.58 8783.56 10974.99 21092.62 9990.29 6880.38 11382.16 8273.01 10883.41 4371.10 12787.05 6287.77 12490.17 8295.62 5091.82 125
UniMVSNet (Re)81.22 12581.08 12181.39 13085.35 14791.76 10684.93 14582.88 8976.13 12765.02 14664.94 14963.09 15775.17 15287.71 12589.04 11294.97 8194.88 61
ACMH78.52 1481.86 11880.45 12983.51 11190.51 9391.22 10985.62 13984.23 6770.29 16862.21 16369.04 12564.05 15384.48 7587.57 12688.45 12194.01 12592.54 113
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
PMMVS81.65 12184.05 9978.86 15378.56 20182.63 19583.10 15967.22 19781.39 8970.11 11984.91 4079.74 8182.12 8887.31 12785.70 15892.03 16286.67 174
EPNet_dtu81.98 11683.82 10179.83 14894.10 4985.97 17387.29 11584.08 7080.61 10059.96 18081.62 5677.19 9862.91 19687.21 12886.38 14790.66 17887.77 166
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
USDC80.69 12879.89 13781.62 12886.48 13489.11 14986.53 12878.86 13781.15 9463.48 15572.98 10259.12 18481.16 9687.10 12985.01 16493.23 14884.77 183
UniMVSNet_NR-MVSNet81.87 11781.33 11882.50 11885.31 14891.30 10885.70 13684.25 6675.89 12864.21 14966.95 13464.65 15180.22 11087.07 13089.18 10995.27 7294.29 73
HyFIR lowres test81.62 12479.45 14484.14 10191.00 8393.38 8488.27 10378.19 14376.28 12670.18 11848.78 20273.69 11583.52 7887.05 13187.83 12693.68 14089.15 152
v1079.62 13978.19 15481.28 13383.73 16889.69 13687.27 11676.86 15670.50 16665.46 14160.58 17160.47 17180.44 10786.91 13286.63 14293.93 12792.55 112
v119278.94 14977.33 16380.82 13783.25 17389.90 12986.91 12477.72 14868.63 17562.61 16159.17 17857.53 18980.62 10686.89 13386.47 14593.79 13692.75 104
DU-MVS81.20 12680.30 13082.25 12184.98 15590.94 11285.70 13683.58 8075.74 12964.21 14965.30 14659.60 17980.22 11086.89 13389.31 10494.77 9094.29 73
Baseline_NR-MVSNet79.84 13678.37 15381.55 12984.98 15586.66 16985.06 14383.49 8275.57 13163.31 15658.22 18560.97 16978.00 13586.89 13387.13 13294.47 10993.15 92
v114479.38 14577.83 15981.18 13483.62 16990.23 12087.15 12178.35 14269.13 17164.02 15260.20 17359.41 18080.14 11486.78 13686.57 14393.81 13592.53 114
anonymousdsp77.94 15979.00 14576.71 17179.03 19987.83 16079.58 18372.87 17565.80 18758.86 18765.82 13962.48 16375.99 14786.77 13788.66 11793.92 12895.68 51
TranMVSNet+NR-MVSNet80.52 12979.84 13881.33 13284.92 15790.39 11785.53 14184.22 6874.27 14160.68 17864.93 15059.96 17477.48 13986.75 13889.28 10595.12 7993.29 90
pmmvs674.83 18872.89 19577.09 16782.11 18887.50 16380.88 17976.97 15452.79 21261.91 16846.66 20460.49 17069.28 17886.74 13985.46 16191.39 16990.56 144
baseline84.89 9086.06 8283.52 11087.25 12789.67 13787.76 10775.68 16584.92 6578.40 7980.10 6080.98 7180.20 11286.69 14087.05 13491.86 16492.99 95
Effi-MVS+-dtu82.05 11581.76 11282.38 12087.72 12090.56 11586.90 12578.05 14573.85 14666.85 13471.29 10971.90 12482.00 9086.64 14185.48 16092.76 15592.58 110
v7n77.22 16576.23 17578.38 16181.89 19089.10 15082.24 16976.36 15965.96 18661.21 17556.56 18855.79 19775.07 15486.55 14286.68 14093.52 14392.95 97
FC-MVSNet-test76.53 17381.62 11470.58 19784.99 15485.73 17674.81 19978.85 13877.00 12339.13 21575.90 8373.50 11754.08 20486.54 14385.99 15591.65 16686.68 172
MIMVSNet74.69 18975.60 18473.62 19076.02 20885.31 18181.21 17767.43 19671.02 16159.07 18554.48 19164.07 15266.14 19186.52 14486.64 14191.83 16581.17 196
v192192078.57 15576.99 16880.41 14482.93 17989.63 13986.38 13077.14 15368.31 17661.80 16958.89 18256.79 19280.19 11386.50 14586.05 15494.02 12492.76 103
IterMVS-LS83.28 10682.95 10683.65 10688.39 11588.63 15586.80 12678.64 14076.56 12473.43 10472.52 10575.35 10380.81 10086.43 14688.51 12093.84 13392.66 106
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
GG-mvs-BLEND57.56 20982.61 10928.34 2160.22 22490.10 12479.37 1860.14 22279.56 1070.40 22571.25 11083.40 610.30 22286.27 14783.87 17389.59 18583.83 185
Fast-Effi-MVS+-dtu79.95 13480.69 12679.08 15186.36 13589.14 14885.85 13472.28 17772.85 15559.32 18370.43 11568.42 14177.57 13886.14 14886.44 14693.11 15191.39 137
v124078.15 15776.53 17180.04 14582.85 18289.48 14285.61 14076.77 15767.05 17961.18 17658.37 18456.16 19679.89 11886.11 14986.08 15293.92 12892.47 116
v14419278.81 15077.22 16580.67 13982.95 17889.79 13386.40 12977.42 15068.26 17763.13 15759.50 17658.13 18580.08 11585.93 15086.08 15294.06 12292.83 100
ACMH+79.08 1381.84 11980.06 13483.91 10489.92 10390.62 11486.21 13183.48 8473.88 14565.75 14066.38 13665.30 14984.63 7485.90 15187.25 13193.45 14591.13 139
FMVSNet575.50 18676.07 17674.83 18476.16 20681.19 20181.34 17370.21 18673.20 15361.59 17158.97 18068.33 14268.50 18085.87 15285.85 15691.18 17579.11 202
IterMVS-SCA-FT79.41 14480.20 13278.49 15985.88 13886.26 17183.95 15471.94 17873.55 15061.94 16670.48 11470.50 12875.23 15085.81 15384.61 17091.99 16390.18 147
IB-MVS79.09 1282.60 11182.19 11083.07 11391.08 8193.55 8080.90 17881.35 10776.56 12480.87 6764.81 15169.97 13168.87 17985.64 15490.06 8595.36 6494.74 65
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
pmmvs576.93 16776.33 17477.62 16481.97 18988.40 15881.32 17474.35 17065.42 19061.42 17263.07 15757.95 18773.23 16685.60 15585.35 16293.41 14688.55 156
V4279.59 14078.43 15180.94 13682.79 18389.71 13586.66 12776.73 15871.38 15967.42 13161.01 16662.30 16478.39 13285.56 15686.48 14493.65 14192.60 108
LTVRE_ROB74.41 1675.78 18474.72 19077.02 16985.88 13889.22 14582.44 16577.17 15250.57 21445.45 20865.44 14452.29 20781.25 9485.50 15787.42 12989.94 18492.62 107
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
v879.90 13578.39 15281.66 12783.97 16689.81 13187.16 12077.40 15171.49 15867.71 13061.24 16462.49 16279.83 11985.48 15886.17 15093.89 13092.02 123
test0.0.03 176.03 17978.51 14873.12 19387.47 12485.13 18476.32 19678.05 14573.19 15450.98 20270.64 11169.28 13555.53 20085.33 15984.38 17290.39 18081.63 194
v2v48279.84 13678.07 15681.90 12483.75 16790.21 12287.17 11979.85 12670.65 16465.93 13961.93 16160.07 17380.82 9985.25 16086.71 13993.88 13191.70 131
TDRefinement79.05 14877.05 16781.39 13088.45 11489.00 15186.92 12382.65 9674.21 14264.41 14859.17 17859.16 18274.52 15885.23 16185.09 16391.37 17087.51 167
COLMAP_ROBcopyleft76.78 1580.50 13078.49 14982.85 11490.96 8489.65 13886.20 13283.40 8777.15 12266.54 13562.27 15965.62 14877.89 13685.23 16184.70 16892.11 16084.83 182
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
IterMVS78.79 15179.71 14177.71 16385.26 14985.91 17484.54 15069.84 18973.38 15161.25 17470.53 11370.35 12974.43 15985.21 16383.80 17590.95 17688.77 154
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
UniMVSNet_ETH3D79.24 14676.47 17282.48 11985.66 14390.97 11186.08 13381.63 10464.48 19268.94 12754.47 19257.65 18878.83 13085.20 16488.91 11593.72 13893.60 87
TinyColmap76.73 16873.95 19279.96 14685.16 15285.64 17882.34 16678.19 14370.63 16562.06 16560.69 17049.61 21080.81 10085.12 16583.69 17691.22 17482.27 191
CR-MVSNet78.71 15278.86 14678.55 15885.85 14185.15 18282.30 16768.23 19374.71 13665.37 14364.39 15369.59 13477.18 14185.10 16684.87 16592.34 15988.21 159
PatchT76.42 17477.81 16074.80 18578.46 20284.30 18771.82 20565.03 20673.89 14465.37 14361.58 16266.70 14477.18 14185.10 16684.87 16590.94 17788.21 159
TAMVS76.42 17477.16 16675.56 17983.05 17685.55 17980.58 18071.43 18065.40 19161.04 17767.27 13369.22 13767.99 18284.88 16884.78 16789.28 18783.01 189
test-mter77.79 16080.02 13575.18 18281.18 19582.85 19380.52 18162.03 21173.62 14962.16 16473.55 9973.83 11373.81 16184.67 16983.34 17791.37 17088.31 158
test-LLR79.47 14379.84 13879.03 15287.47 12482.40 19881.24 17578.05 14573.72 14762.69 15973.76 9774.42 10873.49 16384.61 17082.99 18091.25 17287.01 169
TESTMET0.1,177.78 16179.84 13875.38 18180.86 19682.40 19881.24 17562.72 21073.72 14762.69 15973.76 9774.42 10873.49 16384.61 17082.99 18091.25 17287.01 169
WR-MVS76.63 17078.02 15875.02 18384.14 16589.76 13478.34 19180.64 11269.56 16952.32 19761.26 16361.24 16860.66 19784.45 17287.07 13393.99 12692.77 102
CVMVSNet76.70 16978.46 15074.64 18783.34 17284.48 18681.83 17174.58 16868.88 17351.23 20169.77 11670.05 13067.49 18584.27 17383.81 17489.38 18687.96 163
pmmvs479.99 13378.08 15582.22 12283.04 17787.16 16784.95 14478.80 13978.64 11574.53 9664.61 15259.41 18079.45 12584.13 17484.54 17192.53 15788.08 161
testgi71.92 19674.20 19169.27 19984.58 15983.06 19073.40 20274.39 16964.04 19446.17 20768.90 12657.15 19148.89 20884.07 17583.08 17988.18 19279.09 203
v14878.59 15476.84 17080.62 14083.61 17089.16 14783.65 15779.24 13369.38 17069.34 12459.88 17560.41 17275.19 15183.81 17684.63 16992.70 15690.63 143
WR-MVS_H75.84 18376.93 16974.57 18882.86 18189.50 14178.34 19179.36 13266.90 18052.51 19660.20 17359.71 17659.73 19883.61 17785.77 15794.65 9892.84 99
CP-MVSNet76.36 17776.41 17376.32 17582.73 18488.64 15479.39 18579.62 12767.21 17853.70 19360.72 16955.22 19967.91 18483.52 17886.34 14894.55 10493.19 91
PS-CasMVS75.90 18275.86 18175.96 17782.59 18588.46 15779.23 18879.56 12966.00 18552.77 19559.48 17754.35 20367.14 18783.37 17986.23 14994.47 10993.10 93
Anonymous2023120670.80 19770.59 20171.04 19681.60 19282.49 19774.64 20075.87 16464.17 19349.27 20344.85 20853.59 20654.68 20383.07 18082.34 18490.17 18183.65 186
test20.0368.31 20170.05 20266.28 20482.41 18680.84 20267.35 20976.11 16258.44 20740.80 21453.77 19554.54 20142.28 21183.07 18081.96 18788.73 19077.76 205
PEN-MVS76.02 18076.07 17675.95 17883.17 17587.97 15979.65 18280.07 12466.57 18251.45 19960.94 16755.47 19866.81 18882.72 18286.80 13894.59 10192.03 122
RPMNet77.07 16677.63 16276.42 17385.56 14585.15 18281.37 17265.27 20474.71 13660.29 17963.71 15666.59 14573.64 16282.71 18382.12 18592.38 15888.39 157
DTE-MVSNet75.14 18775.44 18674.80 18583.18 17487.19 16678.25 19380.11 12166.05 18448.31 20460.88 16854.67 20064.54 19382.57 18486.17 15094.43 11290.53 145
RPSCF83.46 10483.36 10383.59 10887.75 11987.35 16484.82 14879.46 13083.84 7078.12 8182.69 4879.87 7882.60 8682.47 18581.13 18888.78 18986.13 176
pmmvs-eth3d74.32 19171.96 19777.08 16877.33 20482.71 19478.41 19076.02 16366.65 18165.98 13854.23 19449.02 21273.14 16782.37 18682.69 18291.61 16786.05 177
ambc61.92 20870.98 21273.54 21263.64 21360.06 20252.23 19838.44 21219.17 22357.12 19982.33 18775.03 20683.21 21084.89 181
PM-MVS74.17 19273.10 19375.41 18076.07 20782.53 19677.56 19471.69 17971.04 16061.92 16761.23 16547.30 21374.82 15681.78 18879.80 18990.42 17988.05 162
MIMVSNet165.00 20466.24 20563.55 20658.41 21780.01 20569.00 20874.03 17155.81 21041.88 21236.81 21349.48 21147.89 20981.32 18982.40 18390.08 18377.88 204
SixPastTwentyTwo76.02 18075.72 18276.36 17483.38 17187.54 16275.50 19876.22 16065.50 18957.05 18970.64 11153.97 20474.54 15780.96 19082.12 18591.44 16889.35 151
MDTV_nov1_ep1379.14 14779.49 14378.74 15685.40 14686.89 16884.32 15370.29 18578.85 11369.42 12375.37 8773.29 11975.64 14980.61 19179.48 19287.36 19581.91 192
SCA79.51 14280.15 13378.75 15586.58 13387.70 16183.07 16068.53 19281.31 9066.40 13673.83 9675.38 10279.30 12780.49 19279.39 19388.63 19182.96 190
CMPMVSbinary56.49 1773.84 19371.73 19976.31 17685.20 15085.67 17775.80 19773.23 17362.26 19765.40 14253.40 19659.70 17771.77 17180.25 19379.56 19186.45 20181.28 195
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
CostFormer80.94 12780.21 13181.79 12587.69 12188.58 15687.47 11270.66 18380.02 10277.88 8573.03 10171.40 12578.24 13379.96 19479.63 19088.82 18888.84 153
tpm76.30 17876.05 17876.59 17286.97 13083.01 19283.83 15567.06 19871.83 15763.87 15369.56 12062.88 15973.41 16579.79 19578.59 19484.41 20686.68 172
dps78.02 15875.94 18080.44 14386.06 13786.62 17082.58 16269.98 18775.14 13377.76 8769.08 12459.93 17578.47 13179.47 19677.96 19787.78 19383.40 187
EPMVS77.53 16378.07 15676.90 17086.89 13184.91 18582.18 17066.64 20081.00 9664.11 15172.75 10469.68 13374.42 16079.36 19778.13 19687.14 19780.68 199
PatchmatchNetpermissive78.67 15378.85 14778.46 16086.85 13286.03 17283.77 15668.11 19580.88 9866.19 13772.90 10373.40 11878.06 13479.25 19877.71 19887.75 19481.75 193
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
EU-MVSNet69.98 19972.30 19667.28 20275.67 20979.39 20673.12 20369.94 18863.59 19542.80 21162.93 15856.71 19455.07 20279.13 19978.55 19587.06 19885.82 179
MDTV_nov1_ep13_2view73.21 19472.91 19473.56 19180.01 19784.28 18878.62 18966.43 20168.64 17459.12 18460.39 17259.69 17869.81 17778.82 20077.43 19987.36 19581.11 197
MVS-HIRNet68.83 20066.39 20471.68 19577.58 20375.52 21066.45 21065.05 20562.16 19862.84 15844.76 20956.60 19571.96 17078.04 20175.06 20586.18 20372.56 209
ADS-MVSNet74.53 19075.69 18373.17 19281.57 19380.71 20379.27 18763.03 20979.27 11159.94 18167.86 13068.32 14371.08 17377.33 20276.83 20084.12 20979.53 200
pmnet_mix0271.95 19571.83 19872.10 19481.40 19480.63 20473.78 20172.85 17670.90 16254.89 19162.17 16057.42 19062.92 19576.80 20373.98 20786.74 20080.87 198
tpmrst76.55 17275.99 17977.20 16687.32 12683.05 19182.86 16165.62 20278.61 11667.22 13369.19 12265.71 14775.87 14876.75 20475.33 20384.31 20783.28 188
pmmvs361.89 20761.74 20962.06 20764.30 21370.83 21464.22 21152.14 21548.78 21644.47 20941.67 21141.70 21863.03 19476.06 20576.02 20184.18 20877.14 206
tpm cat177.78 16175.28 18780.70 13887.14 12985.84 17585.81 13570.40 18477.44 12178.80 7863.72 15564.01 15476.55 14575.60 20675.21 20485.51 20585.12 180
N_pmnet66.85 20266.63 20367.11 20378.73 20074.66 21170.53 20671.07 18166.46 18346.54 20651.68 20051.91 20855.48 20174.68 20772.38 20880.29 21274.65 208
new-patchmatchnet63.80 20563.31 20764.37 20576.49 20575.99 20963.73 21270.99 18257.27 20843.08 21045.86 20643.80 21445.13 21073.20 20870.68 21186.80 19976.34 207
new_pmnet59.28 20861.47 21056.73 20961.66 21568.29 21559.57 21454.91 21260.83 20134.38 21844.66 21043.65 21549.90 20771.66 20971.56 21079.94 21369.67 210
Gipumacopyleft49.17 21147.05 21451.65 21059.67 21648.39 21841.98 21963.47 20855.64 21133.33 21914.90 21713.78 22441.34 21269.31 21072.30 20970.11 21555.00 216
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
FPMVS63.63 20660.08 21167.78 20180.01 19771.50 21372.88 20469.41 19161.82 19953.11 19445.12 20742.11 21750.86 20666.69 21163.84 21280.41 21169.46 211
PMVScopyleft50.48 1855.81 21051.93 21260.33 20872.90 21149.34 21748.78 21669.51 19043.49 21754.25 19236.26 21441.04 21939.71 21365.07 21260.70 21376.85 21467.58 212
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MDA-MVSNet-bldmvs66.22 20364.49 20668.24 20061.67 21482.11 20070.07 20776.16 16159.14 20647.94 20554.35 19335.82 22067.33 18664.94 21375.68 20286.30 20279.36 201
test_method41.78 21248.10 21334.42 21410.74 22319.78 22444.64 21817.73 21959.83 20338.67 21635.82 21554.41 20234.94 21462.87 21443.13 21759.81 21760.82 214
tmp_tt32.73 21543.96 22121.15 22326.71 2218.99 22065.67 18851.39 20056.01 18942.64 21611.76 21956.60 21550.81 21653.55 219
PMMVS241.68 21344.74 21538.10 21146.97 22052.32 21640.63 22048.08 21635.51 2187.36 22426.86 21624.64 22216.72 21855.24 21659.03 21468.85 21659.59 215
DeepMVS_CXcopyleft48.31 21948.03 21726.08 21856.42 20925.77 22047.51 20331.31 22151.30 20548.49 21753.61 21861.52 213
MVEpermissive30.17 1930.88 21533.52 21627.80 21723.78 22239.16 22018.69 22446.90 21721.88 22115.39 22114.37 2197.31 22724.41 21741.63 21856.22 21537.64 22254.07 217
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN31.40 21426.80 21736.78 21251.39 21929.96 22120.20 22254.17 21325.93 22012.75 22214.73 2188.58 22634.10 21627.36 21937.83 21848.07 22043.18 218
EMVS30.49 21625.44 21836.39 21351.47 21829.89 22220.17 22354.00 21426.49 21912.02 22313.94 2208.84 22534.37 21525.04 22034.37 21946.29 22139.53 219
testmvs1.03 2171.63 2190.34 2180.09 2250.35 2250.61 2260.16 2211.49 2220.10 2263.15 2210.15 2280.86 2211.32 2211.18 2200.20 2233.76 221
test1230.87 2181.40 2200.25 2190.03 2260.25 2260.35 2270.08 2231.21 2230.05 2272.84 2220.03 2290.89 2200.43 2221.16 2210.13 2243.87 220
uanet_test0.00 2190.00 2210.00 2200.00 2270.00 2270.00 2280.00 2240.00 2240.00 2280.00 2230.00 2300.00 2230.00 2230.00 2220.00 2250.00 222
sosnet-low-res0.00 2190.00 2210.00 2200.00 2270.00 2270.00 2280.00 2240.00 2240.00 2280.00 2230.00 2300.00 2230.00 2230.00 2220.00 2250.00 222
sosnet0.00 2190.00 2210.00 2200.00 2270.00 2270.00 2280.00 2240.00 2240.00 2280.00 2230.00 2300.00 2230.00 2230.00 2220.00 2250.00 222
RE-MVS-def56.08 190
9.1492.16 16
SR-MVS96.58 2590.99 2192.40 13
our_test_381.81 19183.96 18976.61 195
MTAPA92.97 291.03 22
MTMP93.14 190.21 29
Patchmatch-RL test8.55 225
XVS93.11 5996.70 2591.91 5283.95 4888.82 3995.79 40
X-MVStestdata93.11 5996.70 2591.91 5283.95 4888.82 3995.79 40
mPP-MVS97.06 1288.08 44
NP-MVS87.47 52
Patchmtry85.54 18082.30 16768.23 19365.37 143