This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DPE-MVScopyleft95.53 396.13 394.82 196.81 2298.05 397.42 193.09 194.31 891.49 697.12 195.03 393.27 395.55 594.58 1196.86 698.25 3
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
SED-MVS95.61 196.36 194.73 296.84 1998.15 297.08 392.92 295.64 291.84 495.98 495.33 192.83 696.00 194.94 396.90 498.45 2
DVP-MVS95.56 296.26 294.73 296.93 1698.19 196.62 692.81 496.15 191.73 595.01 795.31 293.41 195.95 294.77 796.90 498.46 1
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
APDe-MVS95.23 495.69 594.70 497.12 1097.81 597.19 292.83 395.06 590.98 1096.47 292.77 1093.38 295.34 894.21 1596.68 898.17 4
MSP-MVS95.12 595.83 494.30 596.82 2197.94 496.98 492.37 1195.40 390.59 1396.16 393.71 592.70 794.80 1594.77 796.37 1497.99 7
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
APD-MVScopyleft94.37 1194.47 1594.26 697.18 896.99 1696.53 792.68 592.45 2489.96 1794.53 1191.63 2092.89 594.58 2093.82 2296.31 1797.26 18
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
HPM-MVS++copyleft94.60 894.91 1094.24 797.86 196.53 3296.14 892.51 893.87 1590.76 1293.45 1893.84 492.62 895.11 1194.08 1895.58 5097.48 13
xxxxxxxxxxxxxcwj92.95 2491.88 3394.20 896.75 2497.07 1195.82 1892.60 693.98 1291.09 895.89 571.01 12691.93 1594.40 2593.56 2897.04 297.27 16
SF-MVS94.61 794.96 994.20 896.75 2497.07 1195.82 1892.60 693.98 1291.09 895.89 592.54 1291.93 1594.40 2593.56 2897.04 297.27 16
zzz-MVS93.80 1793.45 2594.20 897.53 396.43 3695.88 1791.12 2094.09 1192.74 387.68 3390.77 2592.04 1394.74 1793.56 2895.91 2696.85 27
CNVR-MVS94.37 1194.65 1194.04 1197.29 697.11 1096.00 1092.43 1093.45 1689.85 1990.92 2593.04 892.59 995.77 494.82 596.11 2197.42 15
SMA-MVScopyleft94.70 695.35 693.93 1297.57 297.57 795.98 1191.91 1394.50 690.35 1493.46 1792.72 1191.89 1895.89 395.22 195.88 2798.10 5
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
TSAR-MVS + MP.94.48 1094.97 893.90 1395.53 3797.01 1596.69 590.71 2494.24 990.92 1194.97 892.19 1593.03 494.83 1493.60 2696.51 1397.97 8
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
HFP-MVS94.02 1494.22 1793.78 1497.25 796.85 2095.81 2090.94 2394.12 1090.29 1694.09 1489.98 3192.52 1093.94 3293.49 3395.87 2997.10 23
SD-MVS94.53 995.22 793.73 1595.69 3697.03 1495.77 2291.95 1294.41 791.35 794.97 893.34 791.80 2094.72 1893.99 1995.82 3498.07 6
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
NCCC93.69 1993.66 2293.72 1697.37 596.66 2995.93 1692.50 993.40 1988.35 2587.36 3592.33 1492.18 1294.89 1394.09 1796.00 2396.91 26
MCST-MVS93.81 1694.06 1893.53 1796.79 2396.85 2095.95 1391.69 1692.20 2687.17 3290.83 2793.41 691.96 1494.49 2393.50 3197.61 197.12 22
ACMMPR93.72 1893.94 1993.48 1897.07 1196.93 1795.78 2190.66 2693.88 1489.24 2193.53 1689.08 3892.24 1193.89 3493.50 3195.88 2796.73 31
SteuartSystems-ACMMP94.06 1394.65 1193.38 1996.97 1597.36 896.12 991.78 1492.05 2887.34 3094.42 1290.87 2491.87 1995.47 794.59 1096.21 1997.77 10
Skip Steuart: Steuart Systems R&D Blog.
ACMMP_NAP93.94 1594.49 1493.30 2097.03 1397.31 995.96 1291.30 1893.41 1888.55 2493.00 1990.33 2891.43 2695.53 694.41 1395.53 5297.47 14
CP-MVS93.25 2193.26 2693.24 2196.84 1996.51 3395.52 2490.61 2792.37 2588.88 2290.91 2689.52 3491.91 1793.64 3692.78 4495.69 4197.09 24
DeepC-MVS_fast88.76 193.10 2293.02 2993.19 2297.13 996.51 3395.35 2691.19 1993.14 2188.14 2685.26 4189.49 3591.45 2395.17 995.07 295.85 3296.48 34
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MP-MVScopyleft93.35 2093.59 2393.08 2397.39 496.82 2295.38 2590.71 2490.82 3688.07 2792.83 2190.29 2991.32 2794.03 2993.19 3895.61 4897.16 20
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MSLP-MVS++92.02 3491.40 3792.75 2496.01 3295.88 4493.73 4089.00 3489.89 4490.31 1581.28 5688.85 3991.45 2392.88 4794.24 1496.00 2396.76 30
DeepC-MVS87.86 392.26 3191.86 3492.73 2596.18 2996.87 1995.19 2891.76 1592.17 2786.58 3581.79 5085.85 5090.88 2994.57 2194.61 995.80 3597.18 19
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
AdaColmapbinary90.29 4388.38 5792.53 2696.10 3195.19 5392.98 4691.40 1789.08 4788.65 2378.35 7181.44 6991.30 2890.81 8290.21 7694.72 8993.59 88
3Dnovator+86.06 491.60 3690.86 4292.47 2796.00 3396.50 3594.70 3287.83 4390.49 3989.92 1874.68 9089.35 3690.66 3094.02 3094.14 1695.67 4396.85 27
PGM-MVS92.76 2693.03 2892.45 2897.03 1396.67 2895.73 2387.92 4290.15 4386.53 3692.97 2088.33 4491.69 2193.62 3793.03 3995.83 3396.41 37
CSCG92.76 2693.16 2792.29 2996.30 2897.74 694.67 3388.98 3692.46 2389.73 2086.67 3792.15 1788.69 4292.26 5492.92 4295.40 5797.89 9
train_agg92.87 2593.53 2492.09 3096.88 1895.38 4995.94 1490.59 2890.65 3883.65 5194.31 1391.87 1990.30 3193.38 3992.42 4695.17 6996.73 31
DPM-MVS91.72 3591.48 3592.00 3195.53 3795.75 4595.94 1491.07 2191.20 3485.58 4181.63 5490.74 2688.40 4593.40 3893.75 2495.45 5693.85 82
CPTT-MVS91.39 3790.95 4091.91 3295.06 3995.24 5195.02 3088.98 3691.02 3586.71 3484.89 4388.58 4391.60 2290.82 8189.67 9294.08 11696.45 35
X-MVS92.36 3092.75 3091.90 3396.89 1796.70 2595.25 2790.48 2991.50 3383.95 4888.20 3188.82 4089.11 3693.75 3593.43 3495.75 3996.83 29
ACMMPcopyleft92.03 3392.16 3191.87 3495.88 3496.55 3194.47 3589.49 3391.71 3185.26 4291.52 2484.48 5590.21 3292.82 4891.63 5295.92 2596.42 36
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
TSAR-MVS + GP.92.71 2893.91 2091.30 3591.96 7296.00 4193.43 4187.94 4192.53 2286.27 4093.57 1591.94 1891.44 2593.29 4092.89 4396.78 797.15 21
CANet91.33 3891.46 3691.18 3695.01 4096.71 2493.77 3887.39 4687.72 5187.26 3181.77 5189.73 3287.32 5994.43 2493.86 2196.31 1796.02 43
TSAR-MVS + ACMM92.97 2394.51 1391.16 3795.88 3496.59 3095.09 2990.45 3093.42 1783.01 5394.68 1090.74 2688.74 4094.75 1693.78 2393.82 12997.63 11
3Dnovator85.17 590.48 4289.90 4691.16 3794.88 4395.74 4693.82 3785.36 5789.28 4587.81 2874.34 9287.40 4888.56 4393.07 4393.74 2596.53 1295.71 47
PLCcopyleft83.76 988.61 5686.83 7390.70 3994.22 4992.63 9291.50 5987.19 4789.16 4686.87 3375.51 8580.87 7189.98 3490.01 9289.20 10394.41 10890.45 142
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
abl_690.66 4094.65 4796.27 3792.21 5086.94 4890.23 4186.38 3785.50 4092.96 988.37 4695.40 5795.46 53
DeepPCF-MVS88.51 292.64 2994.42 1690.56 4194.84 4496.92 1891.31 6189.61 3295.16 484.55 4689.91 2991.45 2190.15 3395.12 1094.81 692.90 14897.58 12
MVS_030490.88 4091.35 3890.34 4293.91 5296.79 2394.49 3486.54 5086.57 5582.85 5581.68 5389.70 3387.57 5594.64 1993.93 2096.67 1096.15 41
CDPH-MVS91.14 3992.01 3290.11 4396.18 2996.18 3994.89 3188.80 3888.76 4877.88 8489.18 3087.71 4787.29 6093.13 4293.31 3695.62 4695.84 45
PHI-MVS92.05 3293.74 2190.08 4494.96 4197.06 1393.11 4587.71 4490.71 3780.78 6892.40 2291.03 2287.68 5394.32 2794.48 1296.21 1996.16 40
CNLPA88.40 5787.00 7190.03 4593.73 5594.28 6589.56 7985.81 5491.87 2987.55 2969.53 11881.49 6889.23 3589.45 10188.59 11394.31 11293.82 83
OMC-MVS90.23 4490.40 4390.03 4593.45 5795.29 5091.89 5686.34 5293.25 2084.94 4581.72 5286.65 4988.90 3791.69 6290.27 7594.65 9393.95 80
DELS-MVS89.71 4689.68 4889.74 4793.75 5496.22 3893.76 3985.84 5382.53 7385.05 4478.96 6884.24 5684.25 7594.91 1294.91 495.78 3896.02 43
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PCF-MVS84.60 688.66 5487.75 6789.73 4893.06 6296.02 4093.22 4490.00 3182.44 7680.02 7377.96 7485.16 5387.36 5888.54 11088.54 11494.72 8995.61 50
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
MVS_111021_HR90.56 4191.29 3989.70 4994.71 4695.63 4791.81 5786.38 5187.53 5281.29 6287.96 3285.43 5287.69 5293.90 3392.93 4196.33 1595.69 48
OPM-MVS87.56 6785.80 8389.62 5093.90 5394.09 6994.12 3688.18 3975.40 12777.30 8776.41 7977.93 9188.79 3992.20 5690.82 6395.40 5793.72 86
ACMM83.27 1087.68 6686.09 7989.54 5193.26 5892.19 9891.43 6086.74 4986.02 5782.85 5575.63 8475.14 10188.41 4490.68 8689.99 8194.59 9692.97 95
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
QAPM89.49 4889.58 4989.38 5294.73 4595.94 4292.35 4985.00 6085.69 6080.03 7276.97 7887.81 4687.87 5092.18 5892.10 4896.33 1596.40 38
MVS_111021_LR90.14 4590.89 4189.26 5393.23 5994.05 7090.43 6684.65 6290.16 4284.52 4790.14 2883.80 5987.99 4992.50 5290.92 6194.74 8794.70 67
EPNet89.60 4789.91 4589.24 5496.45 2793.61 7592.95 4788.03 4085.74 5983.36 5287.29 3683.05 6280.98 9492.22 5591.85 5093.69 13495.58 51
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
TAPA-MVS84.37 788.91 5388.93 5388.89 5593.00 6394.85 5992.00 5384.84 6191.68 3280.05 7179.77 6384.56 5488.17 4890.11 9189.00 10995.30 6492.57 110
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
CLD-MVS88.66 5488.52 5588.82 5691.37 7794.22 6692.82 4882.08 9888.27 5085.14 4381.86 4978.53 8885.93 6991.17 7090.61 6995.55 5195.00 58
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
OpenMVScopyleft82.53 1187.71 6586.84 7288.73 5794.42 4895.06 5591.02 6383.49 7882.50 7582.24 5967.62 12985.48 5185.56 7091.19 6991.30 5595.67 4394.75 65
canonicalmvs89.36 4989.92 4488.70 5891.38 7695.92 4391.81 5782.61 9490.37 4082.73 5782.09 4879.28 8488.30 4791.17 7093.59 2795.36 6097.04 25
ACMP83.90 888.32 6088.06 6088.62 5992.18 7093.98 7191.28 6285.24 5886.69 5481.23 6385.62 3975.13 10287.01 6389.83 9489.77 8994.79 8395.43 54
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ETV-MVS89.22 5089.76 4788.60 6091.60 7394.61 6389.48 8183.46 8185.20 6281.58 6082.75 4682.59 6488.80 3894.57 2193.28 3796.68 895.31 55
HQP-MVS89.13 5189.58 4988.60 6093.53 5693.67 7393.29 4387.58 4588.53 4975.50 8987.60 3480.32 7487.07 6190.66 8789.95 8494.62 9596.35 39
PVSNet_BlendedMVS88.19 6288.00 6288.42 6292.71 6894.82 6089.08 8683.81 7084.91 6586.38 3779.14 6578.11 8982.66 8293.05 4491.10 5695.86 3094.86 63
PVSNet_Blended88.19 6288.00 6288.42 6292.71 6894.82 6089.08 8683.81 7084.91 6586.38 3779.14 6578.11 8982.66 8293.05 4491.10 5695.86 3094.86 63
CS-MVS88.97 5289.44 5188.41 6491.45 7595.24 5190.03 7082.43 9684.08 6881.16 6481.02 5883.83 5888.74 4094.25 2892.73 4596.67 1094.95 60
MAR-MVS88.39 5988.44 5688.33 6594.90 4295.06 5590.51 6583.59 7585.27 6179.07 7677.13 7682.89 6387.70 5192.19 5792.32 4794.23 11394.20 78
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
LGP-MVS_train88.25 6188.55 5487.89 6692.84 6693.66 7493.35 4285.22 5985.77 5874.03 9886.60 3876.29 9886.62 6591.20 6890.58 7195.29 6595.75 46
EIA-MVS87.94 6488.05 6187.81 6791.46 7495.00 5788.67 9382.81 8682.53 7380.81 6780.04 6180.20 7587.48 5692.58 5191.61 5395.63 4594.36 72
LS3D85.96 7784.37 9287.81 6794.13 5093.27 8090.26 6989.00 3484.91 6572.84 10671.74 10472.47 12087.45 5789.53 10089.09 10593.20 14489.60 145
casdiffmvs87.45 6887.15 7087.79 6990.15 9694.22 6689.96 7283.93 6985.08 6380.91 6575.81 8377.88 9286.08 6791.86 6190.86 6295.74 4094.37 71
TSAR-MVS + COLMAP88.40 5789.09 5287.60 7092.72 6793.92 7292.21 5085.57 5691.73 3073.72 9991.75 2373.22 11887.64 5491.49 6489.71 9193.73 13291.82 123
DI_MVS_plusplus_trai86.41 7385.54 8587.42 7189.24 10293.13 8192.16 5282.65 9282.30 7780.75 6968.30 12580.41 7385.01 7290.56 8890.07 7994.70 9194.01 79
MSDG83.87 9481.02 11687.19 7292.17 7189.80 12889.15 8485.72 5580.61 9579.24 7566.66 13268.75 13682.69 8187.95 11787.44 12394.19 11485.92 174
PVSNet_Blended_VisFu87.40 6987.80 6486.92 7392.86 6495.40 4888.56 9783.45 8279.55 10382.26 5874.49 9184.03 5779.24 12492.97 4691.53 5495.15 7196.65 33
MVS_Test86.93 7087.24 6986.56 7490.10 9793.47 7790.31 6780.12 11783.55 7078.12 8079.58 6479.80 7985.45 7190.17 9090.59 7095.29 6593.53 89
test_part183.23 10180.55 12386.35 7588.60 10990.61 11090.78 6481.13 10670.89 15883.01 5355.72 18674.60 10482.19 8687.79 11889.26 10092.39 15395.01 57
diffmvs86.52 7286.76 7586.23 7688.31 11292.63 9289.58 7881.61 10286.14 5680.26 7079.00 6777.27 9483.58 7688.94 10689.06 10694.05 11894.29 73
Anonymous2023121184.42 9283.02 9886.05 7788.85 10792.70 9088.92 9283.40 8379.99 9878.31 7955.83 18578.92 8683.33 7989.06 10589.76 9093.50 13994.90 61
MVSTER86.03 7686.12 7885.93 7888.62 10889.93 12489.33 8379.91 12281.87 8181.35 6181.07 5774.91 10380.66 9992.13 5990.10 7895.68 4292.80 100
PatchMatch-RL83.34 9981.36 11185.65 7990.33 9389.52 13684.36 14781.82 10080.87 9479.29 7474.04 9362.85 15786.05 6888.40 11387.04 13092.04 15786.77 167
Effi-MVS+85.33 8185.08 8785.63 8089.69 9993.42 7889.90 7380.31 11579.32 10472.48 10873.52 9874.03 10986.55 6690.99 7789.98 8294.83 8294.27 77
DCV-MVSNet85.88 7986.17 7785.54 8189.10 10589.85 12689.34 8280.70 10883.04 7178.08 8276.19 8179.00 8582.42 8589.67 9790.30 7493.63 13795.12 56
GeoE84.62 8783.98 9485.35 8289.34 10192.83 8888.34 9878.95 13279.29 10577.16 8868.10 12674.56 10583.40 7889.31 10389.23 10294.92 7894.57 70
EPP-MVSNet86.55 7187.76 6685.15 8390.52 8794.41 6487.24 11382.32 9781.79 8273.60 10078.57 7082.41 6582.07 8891.23 6690.39 7395.14 7295.48 52
FC-MVSNet-train85.18 8285.31 8685.03 8490.67 8491.62 10287.66 10583.61 7379.75 10174.37 9678.69 6971.21 12478.91 12591.23 6689.96 8394.96 7794.69 68
Fast-Effi-MVS+83.77 9682.98 9984.69 8587.98 11391.87 10088.10 10177.70 14678.10 11373.04 10469.13 12068.51 13786.66 6490.49 8989.85 8794.67 9292.88 97
baseline184.54 8884.43 9184.67 8690.62 8591.16 10588.63 9583.75 7279.78 10071.16 10975.14 8774.10 10877.84 13391.56 6390.67 6896.04 2288.58 151
thres20082.77 10481.25 11384.54 8790.38 9193.05 8389.13 8582.67 9074.40 13469.53 11865.69 13863.03 15580.63 10091.15 7289.42 9794.88 8092.04 120
tfpn200view982.86 10281.46 10984.48 8890.30 9493.09 8289.05 8882.71 8875.14 12869.56 11665.72 13663.13 15280.38 10591.15 7289.51 9594.91 7992.50 114
thres40082.68 10581.15 11484.47 8990.52 8792.89 8788.95 9182.71 8874.33 13569.22 12165.31 14062.61 15880.63 10090.96 7989.50 9694.79 8392.45 116
thres100view90082.55 10781.01 11884.34 9090.30 9492.27 9689.04 8982.77 8775.14 12869.56 11665.72 13663.13 15279.62 11989.97 9389.26 10094.73 8891.61 130
thisisatest053085.15 8385.86 8184.33 9189.19 10492.57 9587.22 11480.11 11882.15 7974.41 9578.15 7273.80 11279.90 11290.99 7789.58 9395.13 7393.75 85
tttt051785.11 8485.81 8284.30 9289.24 10292.68 9187.12 11880.11 11881.98 8074.31 9778.08 7373.57 11479.90 11291.01 7689.58 9395.11 7593.77 84
thres600view782.53 10881.02 11684.28 9390.61 8693.05 8388.57 9682.67 9074.12 13868.56 12465.09 14362.13 16380.40 10491.15 7289.02 10894.88 8092.59 108
FMVSNet384.44 9184.64 9084.21 9484.32 15790.13 11989.85 7480.37 11181.17 8675.50 8969.63 11479.69 8179.62 11989.72 9690.52 7295.59 4991.58 131
GBi-Net84.51 8984.80 8884.17 9584.20 15889.95 12189.70 7580.37 11181.17 8675.50 8969.63 11479.69 8179.75 11690.73 8390.72 6495.52 5391.71 125
test184.51 8984.80 8884.17 9584.20 15889.95 12189.70 7580.37 11181.17 8675.50 8969.63 11479.69 8179.75 11690.73 8390.72 6495.52 5391.71 125
HyFIR lowres test81.62 11979.45 13984.14 9791.00 8193.38 7988.27 9978.19 14076.28 12170.18 11448.78 19873.69 11383.52 7787.05 12687.83 12193.68 13589.15 148
UA-Net86.07 7587.78 6584.06 9892.85 6595.11 5487.73 10484.38 6373.22 14773.18 10279.99 6289.22 3771.47 16893.22 4193.03 3994.76 8690.69 137
FMVSNet283.87 9483.73 9684.05 9984.20 15889.95 12189.70 7580.21 11679.17 10774.89 9365.91 13477.49 9379.75 11690.87 8091.00 6095.52 5391.71 125
ACMH+79.08 1381.84 11480.06 12983.91 10089.92 9890.62 10986.21 12783.48 8073.88 14065.75 13666.38 13365.30 14684.63 7385.90 14687.25 12693.45 14091.13 135
IS_MVSNet86.18 7488.18 5983.85 10191.02 8094.72 6287.48 10782.46 9581.05 9070.28 11376.98 7782.20 6776.65 14093.97 3193.38 3595.18 6894.97 59
IterMVS-LS83.28 10082.95 10083.65 10288.39 11188.63 15186.80 12278.64 13776.56 11973.43 10172.52 10375.35 10080.81 9686.43 14188.51 11593.84 12892.66 105
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CHOSEN 1792x268882.16 10980.91 11983.61 10391.14 7892.01 9989.55 8079.15 13179.87 9970.29 11252.51 19472.56 11981.39 9088.87 10888.17 11790.15 17892.37 117
RPSCF83.46 9883.36 9783.59 10487.75 11587.35 16084.82 14479.46 12783.84 6978.12 8082.69 4779.87 7782.60 8482.47 18081.13 18388.78 18586.13 172
ET-MVSNet_ETH3D84.65 8685.58 8483.56 10574.99 20692.62 9490.29 6880.38 11082.16 7873.01 10583.41 4471.10 12587.05 6287.77 11990.17 7795.62 4691.82 123
baseline84.89 8586.06 8083.52 10687.25 12389.67 13387.76 10375.68 16284.92 6478.40 7880.10 6080.98 7080.20 10886.69 13587.05 12991.86 16092.99 94
ACMH78.52 1481.86 11380.45 12483.51 10790.51 8991.22 10485.62 13584.23 6570.29 16462.21 15969.04 12264.05 15084.48 7487.57 12188.45 11694.01 12092.54 112
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
UGNet85.90 7888.23 5883.18 10888.96 10694.10 6887.52 10683.60 7481.66 8377.90 8380.76 5983.19 6166.70 18591.13 7590.71 6794.39 10996.06 42
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
IB-MVS79.09 1282.60 10682.19 10483.07 10991.08 7993.55 7680.90 17481.35 10376.56 11980.87 6664.81 14669.97 13068.87 17585.64 14990.06 8095.36 6094.74 66
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
COLMAP_ROBcopyleft76.78 1580.50 12578.49 14482.85 11090.96 8289.65 13486.20 12883.40 8377.15 11766.54 13162.27 15465.62 14577.89 13285.23 15684.70 16392.11 15684.83 178
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
FMVSNet181.64 11780.61 12182.84 11182.36 18389.20 14288.67 9379.58 12570.79 15972.63 10758.95 17672.26 12179.34 12290.73 8390.72 6494.47 10491.62 129
CANet_DTU85.43 8087.72 6882.76 11290.95 8393.01 8589.99 7175.46 16382.67 7264.91 14383.14 4580.09 7680.68 9892.03 6091.03 5894.57 9892.08 118
baseline282.80 10382.86 10182.73 11387.68 11890.50 11284.92 14278.93 13378.07 11473.06 10375.08 8869.77 13177.31 13688.90 10786.94 13194.50 10190.74 136
UniMVSNet_NR-MVSNet81.87 11281.33 11282.50 11485.31 14491.30 10385.70 13284.25 6475.89 12364.21 14566.95 13164.65 14880.22 10687.07 12589.18 10495.27 6794.29 73
UniMVSNet_ETH3D79.24 14176.47 16782.48 11585.66 13990.97 10686.08 12981.63 10164.48 18868.94 12354.47 18857.65 18478.83 12685.20 15988.91 11093.72 13393.60 87
Effi-MVS+-dtu82.05 11081.76 10682.38 11687.72 11690.56 11186.90 12178.05 14273.85 14166.85 13071.29 10671.90 12282.00 8986.64 13685.48 15592.76 15092.58 109
DU-MVS81.20 12180.30 12582.25 11784.98 15190.94 10785.70 13283.58 7675.74 12464.21 14565.30 14159.60 17680.22 10686.89 12889.31 9894.77 8594.29 73
pmmvs479.99 12878.08 15082.22 11883.04 17387.16 16384.95 14078.80 13678.64 11074.53 9464.61 14759.41 17779.45 12184.13 16984.54 16692.53 15288.08 157
MS-PatchMatch81.79 11581.44 11082.19 11990.35 9289.29 14088.08 10275.36 16477.60 11569.00 12264.37 14978.87 8777.14 13988.03 11685.70 15393.19 14586.24 171
v2v48279.84 13178.07 15181.90 12083.75 16390.21 11887.17 11579.85 12370.65 16065.93 13561.93 15660.07 17080.82 9585.25 15586.71 13493.88 12691.70 128
CostFormer80.94 12280.21 12681.79 12187.69 11788.58 15287.47 10870.66 17980.02 9777.88 8473.03 9971.40 12378.24 12979.96 18979.63 18588.82 18488.84 149
Vis-MVSNetpermissive84.38 9386.68 7681.70 12287.65 11994.89 5888.14 10080.90 10774.48 13368.23 12577.53 7580.72 7269.98 17292.68 4991.90 4995.33 6394.58 69
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
v879.90 13078.39 14781.66 12383.97 16289.81 12787.16 11677.40 14871.49 15367.71 12661.24 15962.49 15979.83 11585.48 15386.17 14593.89 12592.02 122
USDC80.69 12379.89 13281.62 12486.48 13089.11 14586.53 12478.86 13481.15 8963.48 15172.98 10059.12 18181.16 9287.10 12485.01 15993.23 14384.77 179
Baseline_NR-MVSNet79.84 13178.37 14881.55 12584.98 15186.66 16585.06 13983.49 7875.57 12663.31 15258.22 18060.97 16678.00 13186.89 12887.13 12794.47 10493.15 92
UniMVSNet (Re)81.22 12081.08 11581.39 12685.35 14391.76 10184.93 14182.88 8576.13 12265.02 14264.94 14463.09 15475.17 14887.71 12089.04 10794.97 7694.88 62
TDRefinement79.05 14377.05 16281.39 12688.45 11089.00 14786.92 11982.65 9274.21 13764.41 14459.17 17359.16 17974.52 15485.23 15685.09 15891.37 16687.51 163
TranMVSNet+NR-MVSNet80.52 12479.84 13381.33 12884.92 15390.39 11385.53 13784.22 6674.27 13660.68 17464.93 14559.96 17177.48 13586.75 13389.28 9995.12 7493.29 90
v1079.62 13478.19 14981.28 12983.73 16489.69 13287.27 11276.86 15370.50 16265.46 13760.58 16660.47 16880.44 10386.91 12786.63 13793.93 12292.55 111
v114479.38 14077.83 15481.18 13083.62 16590.23 11687.15 11778.35 13969.13 16764.02 14860.20 16859.41 17780.14 11086.78 13186.57 13893.81 13092.53 113
CDS-MVSNet81.63 11882.09 10581.09 13187.21 12490.28 11587.46 10980.33 11469.06 16870.66 11071.30 10573.87 11067.99 17889.58 9889.87 8692.87 14990.69 137
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
V4279.59 13578.43 14680.94 13282.79 17989.71 13186.66 12376.73 15571.38 15467.42 12761.01 16162.30 16178.39 12885.56 15186.48 13993.65 13692.60 107
v119278.94 14477.33 15880.82 13383.25 16989.90 12586.91 12077.72 14568.63 17162.61 15759.17 17357.53 18580.62 10286.89 12886.47 14093.79 13192.75 103
tpm cat177.78 15675.28 18280.70 13487.14 12585.84 17185.81 13170.40 18077.44 11678.80 7763.72 15064.01 15176.55 14175.60 20175.21 19985.51 20185.12 176
v14419278.81 14577.22 16080.67 13582.95 17489.79 12986.40 12577.42 14768.26 17363.13 15359.50 17158.13 18280.08 11185.93 14586.08 14794.06 11792.83 99
v14878.59 14976.84 16580.62 13683.61 16689.16 14383.65 15379.24 13069.38 16669.34 12059.88 17060.41 16975.19 14783.81 17184.63 16492.70 15190.63 139
NR-MVSNet80.25 12779.98 13180.56 13785.20 14690.94 10785.65 13483.58 7675.74 12461.36 16965.30 14156.75 18972.38 16488.46 11288.80 11195.16 7093.87 81
tfpnnormal77.46 15974.86 18480.49 13886.34 13288.92 14884.33 14881.26 10461.39 19661.70 16651.99 19553.66 20174.84 15188.63 10987.38 12594.50 10192.08 118
dps78.02 15375.94 17580.44 13986.06 13386.62 16682.58 15869.98 18375.14 12877.76 8669.08 12159.93 17278.47 12779.47 19177.96 19287.78 18983.40 183
v192192078.57 15076.99 16380.41 14082.93 17589.63 13586.38 12677.14 15068.31 17261.80 16558.89 17756.79 18880.19 10986.50 14086.05 14994.02 11992.76 102
v124078.15 15276.53 16680.04 14182.85 17889.48 13885.61 13676.77 15467.05 17561.18 17258.37 17956.16 19279.89 11486.11 14486.08 14793.92 12392.47 115
Vis-MVSNet (Re-imp)83.65 9786.81 7479.96 14290.46 9092.71 8984.84 14382.00 9980.93 9262.44 15876.29 8082.32 6665.54 18892.29 5391.66 5194.49 10391.47 132
TinyColmap76.73 16373.95 18779.96 14285.16 14885.64 17482.34 16278.19 14070.63 16162.06 16160.69 16549.61 20680.81 9685.12 16083.69 17191.22 17082.27 187
EPNet_dtu81.98 11183.82 9579.83 14494.10 5185.97 16987.29 11184.08 6880.61 9559.96 17681.62 5577.19 9562.91 19287.21 12386.38 14290.66 17487.77 162
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
pm-mvs178.51 15177.75 15679.40 14584.83 15489.30 13983.55 15479.38 12862.64 19263.68 15058.73 17864.68 14770.78 17189.79 9587.84 11994.17 11591.28 134
GA-MVS79.52 13679.71 13679.30 14685.68 13890.36 11484.55 14578.44 13870.47 16357.87 18468.52 12461.38 16476.21 14289.40 10287.89 11893.04 14789.96 144
Fast-Effi-MVS+-dtu79.95 12980.69 12079.08 14786.36 13189.14 14485.85 13072.28 17372.85 15059.32 17970.43 11268.42 13877.57 13486.14 14386.44 14193.11 14691.39 133
test-LLR79.47 13879.84 13379.03 14887.47 12082.40 19481.24 17178.05 14273.72 14262.69 15573.76 9574.42 10673.49 15984.61 16582.99 17591.25 16887.01 165
PMMVS81.65 11684.05 9378.86 14978.56 19782.63 19183.10 15567.22 19381.39 8470.11 11584.91 4279.74 8082.12 8787.31 12285.70 15392.03 15886.67 170
thisisatest051579.76 13380.59 12278.80 15084.40 15688.91 14979.48 18076.94 15272.29 15167.33 12867.82 12865.99 14370.80 17088.50 11187.84 11993.86 12792.75 103
SCA79.51 13780.15 12878.75 15186.58 12987.70 15783.07 15668.53 18881.31 8566.40 13273.83 9475.38 9979.30 12380.49 18779.39 18888.63 18782.96 186
MDTV_nov1_ep1379.14 14279.49 13878.74 15285.40 14286.89 16484.32 14970.29 18178.85 10869.42 11975.37 8673.29 11775.64 14580.61 18679.48 18787.36 19181.91 188
CHOSEN 280x42080.28 12681.66 10778.67 15382.92 17679.24 20385.36 13866.79 19578.11 11270.32 11175.03 8979.87 7781.09 9389.07 10483.16 17385.54 20087.17 164
CR-MVSNet78.71 14778.86 14178.55 15485.85 13785.15 17882.30 16368.23 18974.71 13165.37 13964.39 14869.59 13377.18 13785.10 16184.87 16092.34 15588.21 155
IterMVS-SCA-FT79.41 13980.20 12778.49 15585.88 13486.26 16783.95 15071.94 17473.55 14561.94 16270.48 11170.50 12775.23 14685.81 14884.61 16591.99 15990.18 143
PatchmatchNetpermissive78.67 14878.85 14278.46 15686.85 12886.03 16883.77 15268.11 19180.88 9366.19 13372.90 10173.40 11678.06 13079.25 19377.71 19387.75 19081.75 189
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
v7n77.22 16076.23 17078.38 15781.89 18689.10 14682.24 16576.36 15665.96 18261.21 17156.56 18355.79 19375.07 15086.55 13786.68 13593.52 13892.95 96
TransMVSNet (Re)76.57 16675.16 18378.22 15885.60 14087.24 16182.46 15981.23 10559.80 20059.05 18257.07 18259.14 18066.60 18688.09 11586.82 13294.37 11087.95 160
IterMVS78.79 14679.71 13677.71 15985.26 14585.91 17084.54 14669.84 18573.38 14661.25 17070.53 11070.35 12874.43 15585.21 15883.80 17090.95 17288.77 150
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
pmmvs576.93 16276.33 16977.62 16081.97 18588.40 15481.32 17074.35 16765.42 18661.42 16863.07 15257.95 18373.23 16285.60 15085.35 15793.41 14188.55 152
EG-PatchMatch MVS76.40 17175.47 18077.48 16185.86 13690.22 11782.45 16073.96 16959.64 20159.60 17852.75 19362.20 16268.44 17788.23 11487.50 12294.55 9987.78 161
tpmrst76.55 16775.99 17477.20 16287.32 12283.05 18782.86 15765.62 19878.61 11167.22 12969.19 11965.71 14475.87 14476.75 19975.33 19884.31 20383.28 184
pmmvs674.83 18372.89 19077.09 16382.11 18487.50 15980.88 17576.97 15152.79 20861.91 16446.66 20060.49 16769.28 17486.74 13485.46 15691.39 16590.56 140
pmmvs-eth3d74.32 18671.96 19277.08 16477.33 20082.71 19078.41 18676.02 16066.65 17765.98 13454.23 19049.02 20873.14 16382.37 18182.69 17791.61 16386.05 173
LTVRE_ROB74.41 1675.78 17974.72 18577.02 16585.88 13489.22 14182.44 16177.17 14950.57 21045.45 20465.44 13952.29 20381.25 9185.50 15287.42 12489.94 18092.62 106
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
EPMVS77.53 15878.07 15176.90 16686.89 12784.91 18182.18 16666.64 19681.00 9164.11 14772.75 10269.68 13274.42 15679.36 19278.13 19187.14 19380.68 195
anonymousdsp77.94 15479.00 14076.71 16779.03 19587.83 15679.58 17972.87 17165.80 18358.86 18365.82 13562.48 16075.99 14386.77 13288.66 11293.92 12395.68 49
tpm76.30 17376.05 17376.59 16886.97 12683.01 18883.83 15167.06 19471.83 15263.87 14969.56 11762.88 15673.41 16179.79 19078.59 18984.41 20286.68 168
RPMNet77.07 16177.63 15776.42 16985.56 14185.15 17881.37 16865.27 20074.71 13160.29 17563.71 15166.59 14273.64 15882.71 17882.12 18092.38 15488.39 153
SixPastTwentyTwo76.02 17575.72 17776.36 17083.38 16787.54 15875.50 19476.22 15765.50 18557.05 18570.64 10853.97 20074.54 15380.96 18582.12 18091.44 16489.35 147
CP-MVSNet76.36 17276.41 16876.32 17182.73 18088.64 15079.39 18179.62 12467.21 17453.70 18960.72 16455.22 19567.91 18083.52 17386.34 14394.55 9993.19 91
CMPMVSbinary56.49 1773.84 18871.73 19476.31 17285.20 14685.67 17375.80 19373.23 17062.26 19365.40 13853.40 19259.70 17471.77 16780.25 18879.56 18686.45 19781.28 191
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
PS-CasMVS75.90 17775.86 17675.96 17382.59 18188.46 15379.23 18479.56 12666.00 18152.77 19159.48 17254.35 19967.14 18383.37 17486.23 14494.47 10493.10 93
PEN-MVS76.02 17576.07 17175.95 17483.17 17187.97 15579.65 17880.07 12166.57 17851.45 19560.94 16255.47 19466.81 18482.72 17786.80 13394.59 9692.03 121
TAMVS76.42 16977.16 16175.56 17583.05 17285.55 17580.58 17671.43 17665.40 18761.04 17367.27 13069.22 13567.99 17884.88 16384.78 16289.28 18383.01 185
PM-MVS74.17 18773.10 18875.41 17676.07 20382.53 19277.56 19071.69 17571.04 15561.92 16361.23 16047.30 20974.82 15281.78 18379.80 18490.42 17588.05 158
TESTMET0.1,177.78 15679.84 13375.38 17780.86 19282.40 19481.24 17162.72 20673.72 14262.69 15573.76 9574.42 10673.49 15984.61 16582.99 17591.25 16887.01 165
test-mter77.79 15580.02 13075.18 17881.18 19182.85 18980.52 17762.03 20773.62 14462.16 16073.55 9773.83 11173.81 15784.67 16483.34 17291.37 16688.31 154
WR-MVS76.63 16578.02 15375.02 17984.14 16189.76 13078.34 18780.64 10969.56 16552.32 19361.26 15861.24 16560.66 19384.45 16787.07 12893.99 12192.77 101
FMVSNet575.50 18176.07 17174.83 18076.16 20281.19 19781.34 16970.21 18273.20 14861.59 16758.97 17568.33 13968.50 17685.87 14785.85 15191.18 17179.11 198
DTE-MVSNet75.14 18275.44 18174.80 18183.18 17087.19 16278.25 18980.11 11866.05 18048.31 20060.88 16354.67 19664.54 18982.57 17986.17 14594.43 10790.53 141
PatchT76.42 16977.81 15574.80 18178.46 19884.30 18371.82 20165.03 20273.89 13965.37 13961.58 15766.70 14177.18 13785.10 16184.87 16090.94 17388.21 155
CVMVSNet76.70 16478.46 14574.64 18383.34 16884.48 18281.83 16774.58 16568.88 16951.23 19769.77 11370.05 12967.49 18184.27 16883.81 16989.38 18287.96 159
WR-MVS_H75.84 17876.93 16474.57 18482.86 17789.50 13778.34 18779.36 12966.90 17652.51 19260.20 16859.71 17359.73 19483.61 17285.77 15294.65 9392.84 98
gg-mvs-nofinetune75.64 18077.26 15973.76 18587.92 11492.20 9787.32 11064.67 20351.92 20935.35 21346.44 20177.05 9671.97 16592.64 5091.02 5995.34 6289.53 146
MIMVSNet74.69 18475.60 17973.62 18676.02 20485.31 17781.21 17367.43 19271.02 15659.07 18154.48 18764.07 14966.14 18786.52 13986.64 13691.83 16181.17 192
MDTV_nov1_ep13_2view73.21 18972.91 18973.56 18780.01 19384.28 18478.62 18566.43 19768.64 17059.12 18060.39 16759.69 17569.81 17378.82 19577.43 19487.36 19181.11 193
ADS-MVSNet74.53 18575.69 17873.17 18881.57 18980.71 19979.27 18363.03 20579.27 10659.94 17767.86 12768.32 14071.08 16977.33 19776.83 19584.12 20579.53 196
test0.0.03 176.03 17478.51 14373.12 18987.47 12085.13 18076.32 19278.05 14273.19 14950.98 19870.64 10869.28 13455.53 19685.33 15484.38 16790.39 17681.63 190
pmnet_mix0271.95 19071.83 19372.10 19081.40 19080.63 20073.78 19772.85 17270.90 15754.89 18762.17 15557.42 18662.92 19176.80 19873.98 20286.74 19680.87 194
MVS-HIRNet68.83 19566.39 19971.68 19177.58 19975.52 20666.45 20665.05 20162.16 19462.84 15444.76 20556.60 19171.96 16678.04 19675.06 20086.18 19972.56 205
Anonymous2023120670.80 19270.59 19671.04 19281.60 18882.49 19374.64 19675.87 16164.17 18949.27 19944.85 20453.59 20254.68 19983.07 17582.34 17990.17 17783.65 182
FC-MVSNet-test76.53 16881.62 10870.58 19384.99 15085.73 17274.81 19578.85 13577.00 11839.13 21175.90 8273.50 11554.08 20086.54 13885.99 15091.65 16286.68 168
gm-plane-assit70.29 19370.65 19569.88 19485.03 14978.50 20458.41 21165.47 19950.39 21140.88 20949.60 19750.11 20575.14 14991.43 6589.78 8894.32 11184.73 180
testgi71.92 19174.20 18669.27 19584.58 15583.06 18673.40 19874.39 16664.04 19046.17 20368.90 12357.15 18748.89 20484.07 17083.08 17488.18 18879.09 199
MDA-MVSNet-bldmvs66.22 19864.49 20168.24 19661.67 21082.11 19670.07 20376.16 15859.14 20247.94 20154.35 18935.82 21667.33 18264.94 20875.68 19786.30 19879.36 197
FPMVS63.63 20160.08 20667.78 19780.01 19371.50 20972.88 20069.41 18761.82 19553.11 19045.12 20342.11 21350.86 20266.69 20663.84 20780.41 20769.46 207
EU-MVSNet69.98 19472.30 19167.28 19875.67 20579.39 20273.12 19969.94 18463.59 19142.80 20762.93 15356.71 19055.07 19879.13 19478.55 19087.06 19485.82 175
N_pmnet66.85 19766.63 19867.11 19978.73 19674.66 20770.53 20271.07 17766.46 17946.54 20251.68 19651.91 20455.48 19774.68 20272.38 20380.29 20874.65 204
test20.0368.31 19670.05 19766.28 20082.41 18280.84 19867.35 20576.11 15958.44 20340.80 21053.77 19154.54 19742.28 20783.07 17581.96 18288.73 18677.76 201
new-patchmatchnet63.80 20063.31 20264.37 20176.49 20175.99 20563.73 20870.99 17857.27 20443.08 20645.86 20243.80 21045.13 20673.20 20370.68 20686.80 19576.34 203
MIMVSNet165.00 19966.24 20063.55 20258.41 21380.01 20169.00 20474.03 16855.81 20641.88 20836.81 20949.48 20747.89 20581.32 18482.40 17890.08 17977.88 200
pmmvs361.89 20261.74 20462.06 20364.30 20970.83 21064.22 20752.14 21148.78 21244.47 20541.67 20741.70 21463.03 19076.06 20076.02 19684.18 20477.14 202
PMVScopyleft50.48 1855.81 20551.93 20760.33 20472.90 20749.34 21348.78 21269.51 18643.49 21354.25 18836.26 21041.04 21539.71 20965.07 20760.70 20876.85 21067.58 208
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
new_pmnet59.28 20361.47 20556.73 20561.66 21168.29 21159.57 21054.91 20860.83 19734.38 21444.66 20643.65 21149.90 20371.66 20471.56 20579.94 20969.67 206
Gipumacopyleft49.17 20647.05 20951.65 20659.67 21248.39 21441.98 21563.47 20455.64 20733.33 21514.90 21313.78 22041.34 20869.31 20572.30 20470.11 21155.00 212
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMMVS241.68 20844.74 21038.10 20746.97 21652.32 21240.63 21648.08 21235.51 2147.36 22026.86 21224.64 21816.72 21455.24 21159.03 20968.85 21259.59 211
E-PMN31.40 20926.80 21236.78 20851.39 21529.96 21720.20 21854.17 20925.93 21612.75 21814.73 2148.58 22234.10 21227.36 21437.83 21348.07 21643.18 214
EMVS30.49 21125.44 21336.39 20951.47 21429.89 21820.17 21954.00 21026.49 21512.02 21913.94 2168.84 22134.37 21125.04 21534.37 21446.29 21739.53 215
test_method41.78 20748.10 20834.42 21010.74 21919.78 22044.64 21417.73 21559.83 19938.67 21235.82 21154.41 19834.94 21062.87 20943.13 21259.81 21360.82 210
tmp_tt32.73 21143.96 21721.15 21926.71 2178.99 21665.67 18451.39 19656.01 18442.64 21211.76 21556.60 21050.81 21153.55 215
GG-mvs-BLEND57.56 20482.61 10328.34 2120.22 22090.10 12079.37 1820.14 21879.56 1020.40 22171.25 10783.40 600.30 21886.27 14283.87 16889.59 18183.83 181
MVEpermissive30.17 1930.88 21033.52 21127.80 21323.78 21839.16 21618.69 22046.90 21321.88 21715.39 21714.37 2157.31 22324.41 21341.63 21356.22 21037.64 21854.07 213
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
testmvs1.03 2121.63 2140.34 2140.09 2210.35 2210.61 2220.16 2171.49 2180.10 2223.15 2170.15 2240.86 2171.32 2161.18 2150.20 2193.76 217
test1230.87 2131.40 2150.25 2150.03 2220.25 2220.35 2230.08 2191.21 2190.05 2232.84 2180.03 2250.89 2160.43 2171.16 2160.13 2203.87 216
uanet_test0.00 2140.00 2160.00 2160.00 2230.00 2230.00 2240.00 2200.00 2200.00 2240.00 2190.00 2260.00 2190.00 2180.00 2170.00 2210.00 218
sosnet-low-res0.00 2140.00 2160.00 2160.00 2230.00 2230.00 2240.00 2200.00 2200.00 2240.00 2190.00 2260.00 2190.00 2180.00 2170.00 2210.00 218
sosnet0.00 2140.00 2160.00 2160.00 2230.00 2230.00 2240.00 2200.00 2200.00 2240.00 2190.00 2260.00 2190.00 2180.00 2170.00 2210.00 218
RE-MVS-def56.08 186
9.1492.16 16
SR-MVS96.58 2690.99 2292.40 13
Anonymous20240521182.75 10289.58 10092.97 8689.04 8984.13 6778.72 10957.18 18176.64 9783.13 8089.55 9989.92 8593.38 14294.28 76
our_test_381.81 18783.96 18576.61 191
ambc61.92 20370.98 20873.54 20863.64 20960.06 19852.23 19438.44 20819.17 21957.12 19582.33 18275.03 20183.21 20684.89 177
MTAPA92.97 291.03 22
MTMP93.14 190.21 30
Patchmatch-RL test8.55 221
XVS93.11 6096.70 2591.91 5483.95 4888.82 4095.79 36
X-MVStestdata93.11 6096.70 2591.91 5483.95 4888.82 4095.79 36
mPP-MVS97.06 1288.08 45
NP-MVS87.47 53
Patchmtry85.54 17682.30 16368.23 18965.37 139
DeepMVS_CXcopyleft48.31 21548.03 21326.08 21456.42 20525.77 21647.51 19931.31 21751.30 20148.49 21253.61 21461.52 209