This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DVP-MVS++95.79 196.42 195.06 197.84 298.17 297.03 492.84 396.68 192.83 395.90 594.38 492.90 595.98 294.85 596.93 398.99 1
DPE-MVScopyleft95.53 496.13 494.82 296.81 2298.05 497.42 193.09 194.31 991.49 697.12 195.03 393.27 395.55 694.58 1296.86 698.25 4
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
SED-MVS95.61 296.36 294.73 396.84 1998.15 397.08 392.92 295.64 391.84 495.98 495.33 192.83 796.00 194.94 396.90 498.45 3
DVP-MVScopyleft95.56 396.26 394.73 396.93 1698.19 196.62 792.81 596.15 291.73 595.01 795.31 293.41 195.95 394.77 896.90 498.46 2
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
APDe-MVS95.23 595.69 694.70 597.12 1097.81 697.19 292.83 495.06 690.98 996.47 292.77 1093.38 295.34 994.21 1696.68 998.17 5
MSP-MVS95.12 695.83 594.30 696.82 2197.94 596.98 592.37 1195.40 490.59 1296.16 393.71 692.70 894.80 1794.77 896.37 1497.99 8
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
APD-MVScopyleft94.37 1294.47 1694.26 797.18 896.99 1696.53 892.68 692.45 2389.96 1694.53 1191.63 2092.89 694.58 2293.82 2396.31 1897.26 18
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
HPM-MVS++copyleft94.60 994.91 1194.24 897.86 196.53 3296.14 992.51 893.87 1490.76 1193.45 1893.84 592.62 995.11 1294.08 1995.58 5497.48 14
SF-MVS94.61 894.96 1094.20 996.75 2497.07 1295.82 1892.60 793.98 1291.09 895.89 692.54 1291.93 1594.40 2793.56 2997.04 297.27 17
CNVR-MVS94.37 1294.65 1294.04 1097.29 697.11 1196.00 1192.43 1093.45 1589.85 1890.92 2593.04 992.59 1095.77 594.82 696.11 2597.42 16
SMA-MVScopyleft94.70 795.35 793.93 1197.57 397.57 895.98 1291.91 1394.50 790.35 1393.46 1792.72 1191.89 1795.89 495.22 195.88 3198.10 6
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
TSAR-MVS + MP.94.48 1194.97 993.90 1295.53 3697.01 1596.69 690.71 2394.24 1090.92 1094.97 892.19 1593.03 494.83 1693.60 2796.51 1397.97 9
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
HFP-MVS94.02 1594.22 1893.78 1397.25 796.85 2095.81 1990.94 2294.12 1190.29 1594.09 1489.98 3092.52 1193.94 3393.49 3295.87 3397.10 23
SD-MVS94.53 1095.22 893.73 1495.69 3597.03 1495.77 2191.95 1294.41 891.35 794.97 893.34 891.80 1994.72 2093.99 2095.82 3898.07 7
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
NCCC93.69 1993.66 2393.72 1597.37 596.66 2995.93 1792.50 993.40 1888.35 2487.36 3492.33 1492.18 1394.89 1594.09 1896.00 2796.91 26
MCST-MVS93.81 1794.06 1993.53 1696.79 2396.85 2095.95 1491.69 1692.20 2587.17 3190.83 2793.41 791.96 1494.49 2593.50 3097.61 197.12 22
ACMMPR93.72 1893.94 2093.48 1797.07 1196.93 1795.78 2090.66 2593.88 1389.24 2093.53 1689.08 3792.24 1293.89 3593.50 3095.88 3196.73 30
SteuartSystems-ACMMP94.06 1494.65 1293.38 1896.97 1597.36 996.12 1091.78 1492.05 2787.34 2994.42 1290.87 2491.87 1895.47 894.59 1196.21 2397.77 11
Skip Steuart: Steuart Systems R&D Blog.
ACMMP_NAP93.94 1694.49 1593.30 1997.03 1397.31 1095.96 1391.30 1893.41 1788.55 2393.00 1990.33 2791.43 2595.53 794.41 1495.53 5797.47 15
CP-MVS93.25 2193.26 2693.24 2096.84 1996.51 3395.52 2390.61 2692.37 2488.88 2190.91 2689.52 3391.91 1693.64 4092.78 4595.69 4597.09 24
DeepC-MVS_fast88.76 193.10 2293.02 2993.19 2197.13 996.51 3395.35 2591.19 1993.14 2088.14 2585.26 3989.49 3491.45 2295.17 1095.07 295.85 3696.48 34
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MP-MVScopyleft93.35 2093.59 2493.08 2297.39 496.82 2295.38 2490.71 2390.82 3588.07 2692.83 2190.29 2891.32 2794.03 3093.19 3995.61 5297.16 20
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MSLP-MVS++92.02 3391.40 3692.75 2396.01 3195.88 4293.73 3989.00 3389.89 4290.31 1481.28 5788.85 3891.45 2292.88 5194.24 1596.00 2796.76 29
DeepC-MVS87.86 392.26 3091.86 3392.73 2496.18 2896.87 1995.19 2791.76 1592.17 2686.58 3481.79 5185.85 5090.88 3094.57 2394.61 1095.80 3997.18 19
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
AdaColmapbinary90.29 4388.38 5892.53 2596.10 3095.19 5492.98 4591.40 1789.08 4588.65 2278.35 7181.44 7091.30 2890.81 8890.21 8194.72 9493.59 88
3Dnovator+86.06 491.60 3590.86 4292.47 2696.00 3296.50 3594.70 3187.83 4290.49 3889.92 1774.68 9189.35 3590.66 3194.02 3194.14 1795.67 4796.85 27
PGM-MVS92.76 2593.03 2892.45 2797.03 1396.67 2895.73 2287.92 4190.15 4186.53 3592.97 2088.33 4391.69 2093.62 4193.03 4095.83 3796.41 37
CSCG92.76 2593.16 2792.29 2896.30 2797.74 794.67 3288.98 3592.46 2289.73 1986.67 3692.15 1788.69 4392.26 5992.92 4395.40 6297.89 10
train_agg92.87 2493.53 2592.09 2996.88 1895.38 4995.94 1590.59 2790.65 3783.65 5194.31 1391.87 1990.30 3293.38 4392.42 5095.17 7496.73 30
DPM-MVS91.72 3491.48 3492.00 3095.53 3695.75 4595.94 1591.07 2091.20 3385.58 3981.63 5590.74 2588.40 4693.40 4293.75 2595.45 6193.85 82
CPTT-MVS91.39 3690.95 4091.91 3195.06 3895.24 5395.02 2988.98 3591.02 3486.71 3384.89 4188.58 4291.60 2190.82 8789.67 9794.08 12196.45 35
X-MVS92.36 2992.75 3091.90 3296.89 1796.70 2595.25 2690.48 2891.50 3283.95 4888.20 3188.82 3989.11 3893.75 3893.43 3395.75 4396.83 28
ACMMPcopyleft92.03 3292.16 3191.87 3395.88 3396.55 3194.47 3489.49 3291.71 3085.26 4191.52 2484.48 5690.21 3492.82 5291.63 5795.92 3096.42 36
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
TSAR-MVS + GP.92.71 2793.91 2191.30 3491.96 7296.00 3993.43 4087.94 4092.53 2186.27 3893.57 1591.94 1891.44 2493.29 4492.89 4496.78 797.15 21
CANet91.33 3791.46 3591.18 3595.01 3996.71 2493.77 3787.39 4587.72 5087.26 3081.77 5289.73 3187.32 5994.43 2693.86 2296.31 1896.02 44
TSAR-MVS + ACMM92.97 2394.51 1491.16 3695.88 3396.59 3095.09 2890.45 2993.42 1683.01 5494.68 1090.74 2588.74 4294.75 1993.78 2493.82 13497.63 12
3Dnovator85.17 590.48 4189.90 4891.16 3694.88 4295.74 4693.82 3685.36 5589.28 4387.81 2774.34 9487.40 4788.56 4493.07 4793.74 2696.53 1295.71 48
PLCcopyleft83.76 988.61 5786.83 7590.70 3894.22 4792.63 9791.50 5887.19 4689.16 4486.87 3275.51 8680.87 7289.98 3690.01 9889.20 10894.41 11390.45 146
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
DeepPCF-MVS88.51 292.64 2894.42 1790.56 3994.84 4396.92 1891.31 6189.61 3195.16 584.55 4689.91 2991.45 2190.15 3595.12 1194.81 792.90 15397.58 13
MVS_030490.88 3991.35 3790.34 4093.91 5096.79 2394.49 3386.54 4886.57 5582.85 5581.68 5489.70 3287.57 5594.64 2193.93 2196.67 1196.15 42
CDPH-MVS91.14 3892.01 3290.11 4196.18 2896.18 3794.89 3088.80 3788.76 4677.88 8589.18 3087.71 4687.29 6093.13 4693.31 3795.62 5095.84 46
PHI-MVS92.05 3193.74 2290.08 4294.96 4097.06 1393.11 4487.71 4390.71 3680.78 6992.40 2291.03 2287.68 5394.32 2894.48 1396.21 2396.16 41
CS-MVS90.34 4290.58 4490.07 4393.11 5995.82 4490.57 6483.62 7687.07 5385.35 4082.98 4583.47 6091.37 2694.94 1393.37 3696.37 1496.41 37
CNLPA88.40 5887.00 7390.03 4493.73 5394.28 6989.56 7885.81 5291.87 2887.55 2869.53 12181.49 6989.23 3789.45 10788.59 11894.31 11793.82 83
OMC-MVS90.23 4590.40 4590.03 4493.45 5595.29 5091.89 5486.34 5093.25 1984.94 4481.72 5386.65 4988.90 3991.69 6790.27 8094.65 9893.95 80
DELS-MVS89.71 4889.68 5089.74 4693.75 5296.22 3693.76 3885.84 5182.53 7785.05 4378.96 6884.24 5784.25 7694.91 1494.91 495.78 4296.02 44
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PCF-MVS84.60 688.66 5587.75 6889.73 4793.06 6296.02 3893.22 4390.00 3082.44 8080.02 7477.96 7485.16 5487.36 5888.54 11688.54 11994.72 9495.61 52
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
MVS_111021_HR90.56 4091.29 3889.70 4894.71 4595.63 4791.81 5686.38 4987.53 5181.29 6487.96 3285.43 5287.69 5293.90 3492.93 4296.33 1695.69 49
OPM-MVS87.56 6985.80 8589.62 4993.90 5194.09 7394.12 3588.18 3875.40 13277.30 8876.41 8077.93 9488.79 4192.20 6190.82 6895.40 6293.72 86
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
ACMM83.27 1087.68 6886.09 8189.54 5093.26 5692.19 10391.43 5986.74 4786.02 5782.85 5575.63 8575.14 10488.41 4590.68 9289.99 8694.59 10192.97 96
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CS-MVS-test90.29 4390.96 3989.51 5193.18 5895.87 4389.18 8383.72 7588.32 4884.82 4584.89 4185.23 5390.25 3394.04 2992.66 4995.94 2995.69 49
QAPM89.49 5089.58 5189.38 5294.73 4495.94 4092.35 4885.00 5885.69 6080.03 7376.97 7887.81 4587.87 5092.18 6392.10 5396.33 1696.40 39
MVS_111021_LR90.14 4690.89 4189.26 5393.23 5794.05 7490.43 6684.65 6190.16 4084.52 4790.14 2883.80 5987.99 4992.50 5690.92 6694.74 9294.70 66
EPNet89.60 4989.91 4789.24 5496.45 2693.61 7992.95 4688.03 3985.74 5983.36 5287.29 3583.05 6380.98 9892.22 6091.85 5593.69 13995.58 53
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
DROMVSNet89.96 4790.77 4389.01 5590.54 9095.15 5591.34 6081.43 10685.27 6183.08 5382.83 4687.22 4890.97 2994.79 1893.38 3496.73 896.71 32
TAPA-MVS84.37 788.91 5488.93 5488.89 5693.00 6394.85 6292.00 5184.84 5991.68 3180.05 7279.77 6384.56 5588.17 4890.11 9789.00 11495.30 6892.57 111
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
CLD-MVS88.66 5588.52 5688.82 5791.37 7994.22 7092.82 4782.08 10188.27 4985.14 4281.86 5078.53 9085.93 6991.17 7590.61 7495.55 5595.00 58
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
OpenMVScopyleft82.53 1187.71 6786.84 7488.73 5894.42 4695.06 5891.02 6383.49 8282.50 7982.24 6067.62 13285.48 5185.56 7091.19 7491.30 6095.67 4794.75 64
canonicalmvs89.36 5189.92 4688.70 5991.38 7895.92 4191.81 5682.61 9890.37 3982.73 5782.09 4979.28 8588.30 4791.17 7593.59 2895.36 6497.04 25
ACMP83.90 888.32 6188.06 6188.62 6092.18 7093.98 7591.28 6285.24 5686.69 5481.23 6585.62 3875.13 10587.01 6389.83 10089.77 9494.79 8895.43 55
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ETV-MVS89.22 5289.76 4988.60 6191.60 7694.61 6689.48 8083.46 8585.20 6381.58 6282.75 4782.59 6588.80 4094.57 2393.28 3896.68 995.31 56
HQP-MVS89.13 5389.58 5188.60 6193.53 5493.67 7793.29 4287.58 4488.53 4775.50 9087.60 3380.32 7587.07 6190.66 9389.95 8994.62 10096.35 40
PVSNet_BlendedMVS88.19 6388.00 6388.42 6392.71 6894.82 6389.08 8883.81 7284.91 6686.38 3679.14 6578.11 9282.66 8493.05 4891.10 6195.86 3494.86 62
PVSNet_Blended88.19 6388.00 6388.42 6392.71 6894.82 6389.08 8883.81 7284.91 6686.38 3679.14 6578.11 9282.66 8493.05 4891.10 6195.86 3494.86 62
casdiffmvs_mvgpermissive87.97 6587.63 7088.37 6590.55 8994.42 6791.82 5584.69 6084.05 6982.08 6176.57 7979.00 8685.49 7192.35 5792.29 5295.55 5594.70 66
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MAR-MVS88.39 6088.44 5788.33 6694.90 4195.06 5890.51 6583.59 7985.27 6179.07 7777.13 7682.89 6487.70 5192.19 6292.32 5194.23 11894.20 78
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
LGP-MVS_train88.25 6288.55 5587.89 6792.84 6693.66 7893.35 4185.22 5785.77 5874.03 10086.60 3776.29 10186.62 6591.20 7390.58 7695.29 6995.75 47
EIA-MVS87.94 6688.05 6287.81 6891.46 7795.00 6088.67 9582.81 9082.53 7780.81 6880.04 6180.20 7687.48 5692.58 5591.61 5895.63 4994.36 72
LS3D85.96 7984.37 9687.81 6894.13 4893.27 8590.26 6989.00 3384.91 6672.84 10971.74 10772.47 12287.45 5789.53 10689.09 11093.20 14989.60 149
casdiffmvspermissive87.45 7087.15 7287.79 7090.15 10194.22 7089.96 7183.93 7185.08 6480.91 6675.81 8477.88 9586.08 6791.86 6690.86 6795.74 4494.37 71
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
TSAR-MVS + COLMAP88.40 5889.09 5387.60 7192.72 6793.92 7692.21 4985.57 5491.73 2973.72 10191.75 2373.22 12087.64 5491.49 6989.71 9693.73 13791.82 125
DI_MVS_plusplus_trai86.41 7585.54 8887.42 7289.24 10793.13 8692.16 5082.65 9682.30 8180.75 7068.30 12880.41 7485.01 7390.56 9490.07 8494.70 9694.01 79
MSDG83.87 10081.02 12287.19 7392.17 7189.80 13289.15 8685.72 5380.61 10079.24 7666.66 13568.75 13882.69 8387.95 12387.44 12894.19 11985.92 178
PVSNet_Blended_VisFu87.40 7187.80 6586.92 7492.86 6495.40 4888.56 10183.45 8679.55 10882.26 5874.49 9384.03 5879.24 12892.97 5091.53 5995.15 7696.65 33
MVS_Test86.93 7287.24 7186.56 7590.10 10293.47 8190.31 6780.12 12083.55 7178.12 8179.58 6479.80 8085.45 7290.17 9690.59 7595.29 6993.53 89
test250685.20 8684.11 9886.47 7691.84 7395.28 5189.18 8384.49 6382.59 7575.34 9474.66 9258.07 18681.68 9193.76 3692.71 4696.28 2191.71 127
diffmvspermissive86.52 7486.76 7786.23 7788.31 11692.63 9789.58 7781.61 10586.14 5680.26 7179.00 6777.27 9783.58 7788.94 11289.06 11194.05 12394.29 73
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
ECVR-MVScopyleft85.25 8584.47 9486.16 7891.84 7395.28 5189.18 8384.49 6382.59 7573.49 10366.12 13769.28 13581.68 9193.76 3692.71 4696.28 2191.58 134
Anonymous2023121184.42 9883.02 10486.05 7988.85 11292.70 9588.92 9483.40 8779.99 10378.31 8055.83 19078.92 8883.33 8089.06 11189.76 9593.50 14494.90 60
MVSTER86.03 7886.12 8085.93 8088.62 11389.93 12889.33 8279.91 12581.87 8681.35 6381.07 5874.91 10680.66 10392.13 6490.10 8395.68 4692.80 101
PatchMatch-RL83.34 10581.36 11785.65 8190.33 9889.52 14084.36 15181.82 10380.87 9979.29 7574.04 9562.85 16086.05 6888.40 11987.04 13592.04 16186.77 171
Effi-MVS+85.33 8485.08 9085.63 8289.69 10493.42 8389.90 7280.31 11879.32 10972.48 11173.52 10074.03 11186.55 6690.99 8389.98 8794.83 8794.27 77
test111184.86 9184.21 9785.61 8391.75 7595.14 5688.63 9884.57 6281.88 8571.21 11265.66 14368.51 13981.19 9593.74 3992.68 4896.31 1891.86 124
DCV-MVSNet85.88 8186.17 7985.54 8489.10 11089.85 13089.34 8180.70 11183.04 7378.08 8376.19 8279.00 8682.42 8789.67 10390.30 7993.63 14295.12 57
FA-MVS(training)85.65 8285.79 8685.48 8590.44 9593.47 8188.66 9773.11 17483.34 7282.26 5871.79 10678.39 9183.14 8191.00 8289.47 10295.28 7193.06 94
GeoE84.62 9383.98 10085.35 8689.34 10692.83 9388.34 10278.95 13579.29 11077.16 8968.10 12974.56 10783.40 7989.31 10989.23 10794.92 8394.57 70
EPP-MVSNet86.55 7387.76 6785.15 8790.52 9194.41 6887.24 11782.32 10081.79 8773.60 10278.57 7082.41 6682.07 8991.23 7190.39 7895.14 7795.48 54
FC-MVSNet-train85.18 8785.31 8985.03 8890.67 8691.62 10787.66 10983.61 7779.75 10674.37 9878.69 6971.21 12678.91 12991.23 7189.96 8894.96 8294.69 68
Fast-Effi-MVS+83.77 10282.98 10584.69 8987.98 11791.87 10588.10 10577.70 14978.10 11873.04 10769.13 12368.51 13986.66 6490.49 9589.85 9294.67 9792.88 98
baseline184.54 9484.43 9584.67 9090.62 8791.16 11088.63 9883.75 7479.78 10571.16 11375.14 8874.10 11077.84 13791.56 6890.67 7396.04 2688.58 155
thres20082.77 10981.25 11984.54 9190.38 9693.05 8889.13 8782.67 9474.40 13969.53 12265.69 14263.03 15880.63 10491.15 7789.42 10394.88 8592.04 121
tfpn200view982.86 10781.46 11584.48 9290.30 9993.09 8789.05 9082.71 9275.14 13369.56 12065.72 14063.13 15580.38 10991.15 7789.51 10094.91 8492.50 115
thres40082.68 11081.15 12084.47 9390.52 9192.89 9288.95 9382.71 9274.33 14069.22 12565.31 14562.61 16180.63 10490.96 8589.50 10194.79 8892.45 117
thres100view90082.55 11281.01 12484.34 9490.30 9992.27 10189.04 9182.77 9175.14 13369.56 12065.72 14063.13 15579.62 12389.97 9989.26 10694.73 9391.61 133
thisisatest053085.15 8885.86 8384.33 9589.19 10992.57 10087.22 11880.11 12182.15 8374.41 9778.15 7273.80 11479.90 11690.99 8389.58 9895.13 7893.75 85
tttt051785.11 8985.81 8484.30 9689.24 10792.68 9687.12 12280.11 12181.98 8474.31 9978.08 7373.57 11679.90 11691.01 8189.58 9895.11 8093.77 84
thres600view782.53 11381.02 12284.28 9790.61 8893.05 8888.57 10082.67 9474.12 14368.56 12865.09 14862.13 16680.40 10891.15 7789.02 11394.88 8592.59 109
FMVSNet384.44 9784.64 9384.21 9884.32 16190.13 12389.85 7380.37 11481.17 9175.50 9069.63 11779.69 8279.62 12389.72 10290.52 7795.59 5391.58 134
GBi-Net84.51 9584.80 9184.17 9984.20 16289.95 12589.70 7480.37 11481.17 9175.50 9069.63 11779.69 8279.75 12090.73 8990.72 6995.52 5891.71 127
test184.51 9584.80 9184.17 9984.20 16289.95 12589.70 7480.37 11481.17 9175.50 9069.63 11779.69 8279.75 12090.73 8990.72 6995.52 5891.71 127
HyFIR lowres test81.62 12479.45 14484.14 10191.00 8393.38 8488.27 10378.19 14376.28 12670.18 11848.78 20273.69 11583.52 7887.05 13187.83 12693.68 14089.15 152
UA-Net86.07 7787.78 6684.06 10292.85 6595.11 5787.73 10884.38 6573.22 15273.18 10579.99 6289.22 3671.47 17293.22 4593.03 4094.76 9190.69 141
FMVSNet283.87 10083.73 10284.05 10384.20 16289.95 12589.70 7480.21 11979.17 11274.89 9565.91 13877.49 9679.75 12090.87 8691.00 6595.52 5891.71 127
ACMH+79.08 1381.84 11980.06 13483.91 10489.92 10390.62 11486.21 13183.48 8473.88 14565.75 14066.38 13665.30 14984.63 7485.90 15187.25 13193.45 14591.13 139
IS_MVSNet86.18 7688.18 6083.85 10591.02 8294.72 6587.48 11182.46 9981.05 9570.28 11776.98 7782.20 6876.65 14493.97 3293.38 3495.18 7394.97 59
IterMVS-LS83.28 10682.95 10683.65 10688.39 11588.63 15586.80 12678.64 14076.56 12473.43 10472.52 10575.35 10380.81 10086.43 14688.51 12093.84 13392.66 106
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CHOSEN 1792x268882.16 11480.91 12583.61 10791.14 8092.01 10489.55 7979.15 13479.87 10470.29 11652.51 19872.56 12181.39 9388.87 11488.17 12290.15 18292.37 118
RPSCF83.46 10483.36 10383.59 10887.75 11987.35 16484.82 14879.46 13083.84 7078.12 8182.69 4879.87 7882.60 8682.47 18581.13 18888.78 18986.13 176
ET-MVSNet_ETH3D84.65 9285.58 8783.56 10974.99 21092.62 9990.29 6880.38 11382.16 8273.01 10883.41 4371.10 12787.05 6287.77 12490.17 8295.62 5091.82 125
baseline84.89 9086.06 8283.52 11087.25 12789.67 13787.76 10775.68 16584.92 6578.40 7980.10 6080.98 7180.20 11286.69 14087.05 13491.86 16492.99 95
ACMH78.52 1481.86 11880.45 12983.51 11190.51 9391.22 10985.62 13984.23 6770.29 16862.21 16369.04 12564.05 15384.48 7587.57 12688.45 12194.01 12592.54 113
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
UGNet85.90 8088.23 5983.18 11288.96 11194.10 7287.52 11083.60 7881.66 8877.90 8480.76 5983.19 6266.70 18991.13 8090.71 7294.39 11496.06 43
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
IB-MVS79.09 1282.60 11182.19 11083.07 11391.08 8193.55 8080.90 17881.35 10776.56 12480.87 6764.81 15169.97 13168.87 17985.64 15490.06 8595.36 6494.74 65
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
COLMAP_ROBcopyleft76.78 1580.50 13078.49 14982.85 11490.96 8489.65 13886.20 13283.40 8777.15 12266.54 13562.27 15965.62 14877.89 13685.23 16184.70 16892.11 16084.83 182
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
FMVSNet181.64 12280.61 12782.84 11582.36 18789.20 14688.67 9579.58 12870.79 16372.63 11058.95 18172.26 12379.34 12690.73 8990.72 6994.47 10991.62 132
CANet_DTU85.43 8387.72 6982.76 11690.95 8593.01 9089.99 7075.46 16682.67 7464.91 14783.14 4480.09 7780.68 10292.03 6591.03 6394.57 10392.08 119
baseline282.80 10882.86 10782.73 11787.68 12290.50 11684.92 14678.93 13678.07 11973.06 10675.08 8969.77 13277.31 14088.90 11386.94 13694.50 10690.74 140
UniMVSNet_NR-MVSNet81.87 11781.33 11882.50 11885.31 14891.30 10885.70 13684.25 6675.89 12864.21 14966.95 13464.65 15180.22 11087.07 13089.18 10995.27 7294.29 73
UniMVSNet_ETH3D79.24 14676.47 17282.48 11985.66 14390.97 11186.08 13381.63 10464.48 19268.94 12754.47 19257.65 18878.83 13085.20 16488.91 11593.72 13893.60 87
Effi-MVS+-dtu82.05 11581.76 11282.38 12087.72 12090.56 11586.90 12578.05 14573.85 14666.85 13471.29 10971.90 12482.00 9086.64 14185.48 16092.76 15592.58 110
DU-MVS81.20 12680.30 13082.25 12184.98 15590.94 11285.70 13683.58 8075.74 12964.21 14965.30 14659.60 17980.22 11086.89 13389.31 10494.77 9094.29 73
pmmvs479.99 13378.08 15582.22 12283.04 17787.16 16784.95 14478.80 13978.64 11574.53 9664.61 15259.41 18079.45 12584.13 17484.54 17192.53 15788.08 161
MS-PatchMatch81.79 12081.44 11682.19 12390.35 9789.29 14488.08 10675.36 16777.60 12069.00 12664.37 15478.87 8977.14 14388.03 12285.70 15893.19 15086.24 175
v2v48279.84 13678.07 15681.90 12483.75 16790.21 12287.17 11979.85 12670.65 16465.93 13961.93 16160.07 17380.82 9985.25 16086.71 13993.88 13191.70 131
CostFormer80.94 12780.21 13181.79 12587.69 12188.58 15687.47 11270.66 18380.02 10277.88 8573.03 10171.40 12578.24 13379.96 19479.63 19088.82 18888.84 153
Vis-MVSNetpermissive84.38 9986.68 7881.70 12687.65 12394.89 6188.14 10480.90 11074.48 13868.23 12977.53 7580.72 7369.98 17692.68 5391.90 5495.33 6794.58 69
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
v879.90 13578.39 15281.66 12783.97 16689.81 13187.16 12077.40 15171.49 15867.71 13061.24 16462.49 16279.83 11985.48 15886.17 15093.89 13092.02 123
USDC80.69 12879.89 13781.62 12886.48 13489.11 14986.53 12878.86 13781.15 9463.48 15572.98 10259.12 18481.16 9687.10 12985.01 16493.23 14884.77 183
Baseline_NR-MVSNet79.84 13678.37 15381.55 12984.98 15586.66 16985.06 14383.49 8275.57 13163.31 15658.22 18560.97 16978.00 13586.89 13387.13 13294.47 10993.15 92
UniMVSNet (Re)81.22 12581.08 12181.39 13085.35 14791.76 10684.93 14582.88 8976.13 12765.02 14664.94 14963.09 15775.17 15287.71 12589.04 11294.97 8194.88 61
TDRefinement79.05 14877.05 16781.39 13088.45 11489.00 15186.92 12382.65 9674.21 14264.41 14859.17 17859.16 18274.52 15885.23 16185.09 16391.37 17087.51 167
TranMVSNet+NR-MVSNet80.52 12979.84 13881.33 13284.92 15790.39 11785.53 14184.22 6874.27 14160.68 17864.93 15059.96 17477.48 13986.75 13889.28 10595.12 7993.29 90
v1079.62 13978.19 15481.28 13383.73 16889.69 13687.27 11676.86 15670.50 16665.46 14160.58 17160.47 17180.44 10786.91 13286.63 14293.93 12792.55 112
v114479.38 14577.83 15981.18 13483.62 16990.23 12087.15 12178.35 14269.13 17164.02 15260.20 17359.41 18080.14 11486.78 13686.57 14393.81 13592.53 114
CDS-MVSNet81.63 12382.09 11181.09 13587.21 12890.28 11987.46 11380.33 11769.06 17270.66 11471.30 10873.87 11267.99 18289.58 10489.87 9192.87 15490.69 141
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
V4279.59 14078.43 15180.94 13682.79 18389.71 13586.66 12776.73 15871.38 15967.42 13161.01 16662.30 16478.39 13285.56 15686.48 14493.65 14192.60 108
v119278.94 14977.33 16380.82 13783.25 17389.90 12986.91 12477.72 14868.63 17562.61 16159.17 17857.53 18980.62 10686.89 13386.47 14593.79 13692.75 104
tpm cat177.78 16175.28 18780.70 13887.14 12985.84 17585.81 13570.40 18477.44 12178.80 7863.72 15564.01 15476.55 14575.60 20675.21 20485.51 20585.12 180
v14419278.81 15077.22 16580.67 13982.95 17889.79 13386.40 12977.42 15068.26 17763.13 15759.50 17658.13 18580.08 11585.93 15086.08 15294.06 12292.83 100
v14878.59 15476.84 17080.62 14083.61 17089.16 14783.65 15779.24 13369.38 17069.34 12459.88 17560.41 17275.19 15183.81 17684.63 16992.70 15690.63 143
NR-MVSNet80.25 13279.98 13680.56 14185.20 15090.94 11285.65 13883.58 8075.74 12961.36 17365.30 14656.75 19372.38 16888.46 11888.80 11695.16 7593.87 81
tfpnnormal77.46 16474.86 18980.49 14286.34 13688.92 15284.33 15281.26 10861.39 20061.70 17051.99 19953.66 20574.84 15588.63 11587.38 13094.50 10692.08 119
dps78.02 15875.94 18080.44 14386.06 13786.62 17082.58 16269.98 18775.14 13377.76 8769.08 12459.93 17578.47 13179.47 19677.96 19787.78 19383.40 187
v192192078.57 15576.99 16880.41 14482.93 17989.63 13986.38 13077.14 15368.31 17661.80 16958.89 18256.79 19280.19 11386.50 14586.05 15494.02 12492.76 103
v124078.15 15776.53 17180.04 14582.85 18289.48 14285.61 14076.77 15767.05 17961.18 17658.37 18456.16 19679.89 11886.11 14986.08 15293.92 12892.47 116
Vis-MVSNet (Re-imp)83.65 10386.81 7679.96 14690.46 9492.71 9484.84 14782.00 10280.93 9762.44 16276.29 8182.32 6765.54 19292.29 5891.66 5694.49 10891.47 136
TinyColmap76.73 16873.95 19279.96 14685.16 15285.64 17882.34 16678.19 14370.63 16562.06 16560.69 17049.61 21080.81 10085.12 16583.69 17691.22 17482.27 191
EPNet_dtu81.98 11683.82 10179.83 14894.10 4985.97 17387.29 11584.08 7080.61 10059.96 18081.62 5677.19 9862.91 19687.21 12886.38 14790.66 17887.77 166
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
pm-mvs178.51 15677.75 16179.40 14984.83 15889.30 14383.55 15879.38 13162.64 19663.68 15458.73 18364.68 15070.78 17589.79 10187.84 12494.17 12091.28 138
GA-MVS79.52 14179.71 14179.30 15085.68 14290.36 11884.55 14978.44 14170.47 16757.87 18868.52 12761.38 16776.21 14689.40 10887.89 12393.04 15289.96 148
Fast-Effi-MVS+-dtu79.95 13480.69 12679.08 15186.36 13589.14 14885.85 13472.28 17772.85 15559.32 18370.43 11568.42 14177.57 13886.14 14886.44 14693.11 15191.39 137
test-LLR79.47 14379.84 13879.03 15287.47 12482.40 19881.24 17578.05 14573.72 14762.69 15973.76 9774.42 10873.49 16384.61 17082.99 18091.25 17287.01 169
PMMVS81.65 12184.05 9978.86 15378.56 20182.63 19583.10 15967.22 19781.39 8970.11 11984.91 4079.74 8182.12 8887.31 12785.70 15892.03 16286.67 174
thisisatest051579.76 13880.59 12878.80 15484.40 16088.91 15379.48 18476.94 15572.29 15667.33 13267.82 13165.99 14670.80 17488.50 11787.84 12493.86 13292.75 104
SCA79.51 14280.15 13378.75 15586.58 13387.70 16183.07 16068.53 19281.31 9066.40 13673.83 9675.38 10279.30 12780.49 19279.39 19388.63 19182.96 190
MDTV_nov1_ep1379.14 14779.49 14378.74 15685.40 14686.89 16884.32 15370.29 18578.85 11369.42 12375.37 8773.29 11975.64 14980.61 19179.48 19287.36 19581.91 192
CHOSEN 280x42080.28 13181.66 11378.67 15782.92 18079.24 20785.36 14266.79 19978.11 11770.32 11575.03 9079.87 7881.09 9789.07 11083.16 17885.54 20487.17 168
CR-MVSNet78.71 15278.86 14678.55 15885.85 14185.15 18282.30 16768.23 19374.71 13665.37 14364.39 15369.59 13477.18 14185.10 16684.87 16592.34 15988.21 159
IterMVS-SCA-FT79.41 14480.20 13278.49 15985.88 13886.26 17183.95 15471.94 17873.55 15061.94 16670.48 11470.50 12875.23 15085.81 15384.61 17091.99 16390.18 147
PatchmatchNetpermissive78.67 15378.85 14778.46 16086.85 13286.03 17283.77 15668.11 19580.88 9866.19 13772.90 10373.40 11878.06 13479.25 19877.71 19887.75 19481.75 193
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
v7n77.22 16576.23 17578.38 16181.89 19089.10 15082.24 16976.36 15965.96 18661.21 17556.56 18855.79 19775.07 15486.55 14286.68 14093.52 14392.95 97
TransMVSNet (Re)76.57 17175.16 18878.22 16285.60 14487.24 16582.46 16381.23 10959.80 20459.05 18657.07 18759.14 18366.60 19088.09 12186.82 13794.37 11587.95 164
IterMVS78.79 15179.71 14177.71 16385.26 14985.91 17484.54 15069.84 18973.38 15161.25 17470.53 11370.35 12974.43 15985.21 16383.80 17590.95 17688.77 154
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
pmmvs576.93 16776.33 17477.62 16481.97 18988.40 15881.32 17474.35 17065.42 19061.42 17263.07 15757.95 18773.23 16685.60 15585.35 16293.41 14688.55 156
EG-PatchMatch MVS76.40 17675.47 18577.48 16585.86 14090.22 12182.45 16473.96 17259.64 20559.60 18252.75 19762.20 16568.44 18188.23 12087.50 12794.55 10487.78 165
tpmrst76.55 17275.99 17977.20 16687.32 12683.05 19182.86 16165.62 20278.61 11667.22 13369.19 12265.71 14775.87 14876.75 20475.33 20384.31 20783.28 188
pmmvs674.83 18872.89 19577.09 16782.11 18887.50 16380.88 17976.97 15452.79 21261.91 16846.66 20460.49 17069.28 17886.74 13985.46 16191.39 16990.56 144
pmmvs-eth3d74.32 19171.96 19777.08 16877.33 20482.71 19478.41 19076.02 16366.65 18165.98 13854.23 19449.02 21273.14 16782.37 18682.69 18291.61 16786.05 177
LTVRE_ROB74.41 1675.78 18474.72 19077.02 16985.88 13889.22 14582.44 16577.17 15250.57 21445.45 20865.44 14452.29 20781.25 9485.50 15787.42 12989.94 18492.62 107
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
EPMVS77.53 16378.07 15676.90 17086.89 13184.91 18582.18 17066.64 20081.00 9664.11 15172.75 10469.68 13374.42 16079.36 19778.13 19687.14 19780.68 199
anonymousdsp77.94 15979.00 14576.71 17179.03 19987.83 16079.58 18372.87 17565.80 18758.86 18765.82 13962.48 16375.99 14786.77 13788.66 11793.92 12895.68 51
tpm76.30 17876.05 17876.59 17286.97 13083.01 19283.83 15567.06 19871.83 15763.87 15369.56 12062.88 15973.41 16579.79 19578.59 19484.41 20686.68 172
RPMNet77.07 16677.63 16276.42 17385.56 14585.15 18281.37 17265.27 20474.71 13660.29 17963.71 15666.59 14573.64 16282.71 18382.12 18592.38 15888.39 157
SixPastTwentyTwo76.02 18075.72 18276.36 17483.38 17187.54 16275.50 19876.22 16065.50 18957.05 18970.64 11153.97 20474.54 15780.96 19082.12 18591.44 16889.35 151
CP-MVSNet76.36 17776.41 17376.32 17582.73 18488.64 15479.39 18579.62 12767.21 17853.70 19360.72 16955.22 19967.91 18483.52 17886.34 14894.55 10493.19 91
CMPMVSbinary56.49 1773.84 19371.73 19976.31 17685.20 15085.67 17775.80 19773.23 17362.26 19765.40 14253.40 19659.70 17771.77 17180.25 19379.56 19186.45 20181.28 195
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
PS-CasMVS75.90 18275.86 18175.96 17782.59 18588.46 15779.23 18879.56 12966.00 18552.77 19559.48 17754.35 20367.14 18783.37 17986.23 14994.47 10993.10 93
PEN-MVS76.02 18076.07 17675.95 17883.17 17587.97 15979.65 18280.07 12466.57 18251.45 19960.94 16755.47 19866.81 18882.72 18286.80 13894.59 10192.03 122
TAMVS76.42 17477.16 16675.56 17983.05 17685.55 17980.58 18071.43 18065.40 19161.04 17767.27 13369.22 13767.99 18284.88 16884.78 16789.28 18783.01 189
PM-MVS74.17 19273.10 19375.41 18076.07 20782.53 19677.56 19471.69 17971.04 16061.92 16761.23 16547.30 21374.82 15681.78 18879.80 18990.42 17988.05 162
TESTMET0.1,177.78 16179.84 13875.38 18180.86 19682.40 19881.24 17562.72 21073.72 14762.69 15973.76 9774.42 10873.49 16384.61 17082.99 18091.25 17287.01 169
test-mter77.79 16080.02 13575.18 18281.18 19582.85 19380.52 18162.03 21173.62 14962.16 16473.55 9973.83 11373.81 16184.67 16983.34 17791.37 17088.31 158
WR-MVS76.63 17078.02 15875.02 18384.14 16589.76 13478.34 19180.64 11269.56 16952.32 19761.26 16361.24 16860.66 19784.45 17287.07 13393.99 12692.77 102
FMVSNet575.50 18676.07 17674.83 18476.16 20681.19 20181.34 17370.21 18673.20 15361.59 17158.97 18068.33 14268.50 18085.87 15285.85 15691.18 17579.11 202
DTE-MVSNet75.14 18775.44 18674.80 18583.18 17487.19 16678.25 19380.11 12166.05 18448.31 20460.88 16854.67 20064.54 19382.57 18486.17 15094.43 11290.53 145
PatchT76.42 17477.81 16074.80 18578.46 20284.30 18771.82 20565.03 20673.89 14465.37 14361.58 16266.70 14477.18 14185.10 16684.87 16590.94 17788.21 159
CVMVSNet76.70 16978.46 15074.64 18783.34 17284.48 18681.83 17174.58 16868.88 17351.23 20169.77 11670.05 13067.49 18584.27 17383.81 17489.38 18687.96 163
WR-MVS_H75.84 18376.93 16974.57 18882.86 18189.50 14178.34 19179.36 13266.90 18052.51 19660.20 17359.71 17659.73 19883.61 17785.77 15794.65 9892.84 99
gg-mvs-nofinetune75.64 18577.26 16473.76 18987.92 11892.20 10287.32 11464.67 20751.92 21335.35 21746.44 20577.05 9971.97 16992.64 5491.02 6495.34 6689.53 150
MIMVSNet74.69 18975.60 18473.62 19076.02 20885.31 18181.21 17767.43 19671.02 16159.07 18554.48 19164.07 15266.14 19186.52 14486.64 14191.83 16581.17 196
MDTV_nov1_ep13_2view73.21 19472.91 19473.56 19180.01 19784.28 18878.62 18966.43 20168.64 17459.12 18460.39 17259.69 17869.81 17778.82 20077.43 19987.36 19581.11 197
ADS-MVSNet74.53 19075.69 18373.17 19281.57 19380.71 20379.27 18763.03 20979.27 11159.94 18167.86 13068.32 14371.08 17377.33 20276.83 20084.12 20979.53 200
test0.0.03 176.03 17978.51 14873.12 19387.47 12485.13 18476.32 19678.05 14573.19 15450.98 20270.64 11169.28 13555.53 20085.33 15984.38 17290.39 18081.63 194
pmnet_mix0271.95 19571.83 19872.10 19481.40 19480.63 20473.78 20172.85 17670.90 16254.89 19162.17 16057.42 19062.92 19576.80 20373.98 20786.74 20080.87 198
MVS-HIRNet68.83 20066.39 20471.68 19577.58 20375.52 21066.45 21065.05 20562.16 19862.84 15844.76 20956.60 19571.96 17078.04 20175.06 20586.18 20372.56 209
Anonymous2023120670.80 19770.59 20171.04 19681.60 19282.49 19774.64 20075.87 16464.17 19349.27 20344.85 20853.59 20654.68 20383.07 18082.34 18490.17 18183.65 186
FC-MVSNet-test76.53 17381.62 11470.58 19784.99 15485.73 17674.81 19978.85 13877.00 12339.13 21575.90 8373.50 11754.08 20486.54 14385.99 15591.65 16686.68 172
gm-plane-assit70.29 19870.65 20069.88 19885.03 15378.50 20858.41 21565.47 20350.39 21540.88 21349.60 20150.11 20975.14 15391.43 7089.78 9394.32 11684.73 184
testgi71.92 19674.20 19169.27 19984.58 15983.06 19073.40 20274.39 16964.04 19446.17 20768.90 12657.15 19148.89 20884.07 17583.08 17988.18 19279.09 203
MDA-MVSNet-bldmvs66.22 20364.49 20668.24 20061.67 21482.11 20070.07 20776.16 16159.14 20647.94 20554.35 19335.82 22067.33 18664.94 21375.68 20286.30 20279.36 201
FPMVS63.63 20660.08 21167.78 20180.01 19771.50 21372.88 20469.41 19161.82 19953.11 19445.12 20742.11 21750.86 20666.69 21163.84 21280.41 21169.46 211
EU-MVSNet69.98 19972.30 19667.28 20275.67 20979.39 20673.12 20369.94 18863.59 19542.80 21162.93 15856.71 19455.07 20279.13 19978.55 19587.06 19885.82 179
N_pmnet66.85 20266.63 20367.11 20378.73 20074.66 21170.53 20671.07 18166.46 18346.54 20651.68 20051.91 20855.48 20174.68 20772.38 20880.29 21274.65 208
test20.0368.31 20170.05 20266.28 20482.41 18680.84 20267.35 20976.11 16258.44 20740.80 21453.77 19554.54 20142.28 21183.07 18081.96 18788.73 19077.76 205
new-patchmatchnet63.80 20563.31 20764.37 20576.49 20575.99 20963.73 21270.99 18257.27 20843.08 21045.86 20643.80 21445.13 21073.20 20870.68 21186.80 19976.34 207
MIMVSNet165.00 20466.24 20563.55 20658.41 21780.01 20569.00 20874.03 17155.81 21041.88 21236.81 21349.48 21147.89 20981.32 18982.40 18390.08 18377.88 204
pmmvs361.89 20761.74 20962.06 20764.30 21370.83 21464.22 21152.14 21548.78 21644.47 20941.67 21141.70 21863.03 19476.06 20576.02 20184.18 20877.14 206
PMVScopyleft50.48 1855.81 21051.93 21260.33 20872.90 21149.34 21748.78 21669.51 19043.49 21754.25 19236.26 21441.04 21939.71 21365.07 21260.70 21376.85 21467.58 212
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
new_pmnet59.28 20861.47 21056.73 20961.66 21568.29 21559.57 21454.91 21260.83 20134.38 21844.66 21043.65 21549.90 20771.66 20971.56 21079.94 21369.67 210
Gipumacopyleft49.17 21147.05 21451.65 21059.67 21648.39 21841.98 21963.47 20855.64 21133.33 21914.90 21713.78 22441.34 21269.31 21072.30 20970.11 21555.00 216
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMMVS241.68 21344.74 21538.10 21146.97 22052.32 21640.63 22048.08 21635.51 2187.36 22426.86 21624.64 22216.72 21855.24 21659.03 21468.85 21659.59 215
E-PMN31.40 21426.80 21736.78 21251.39 21929.96 22120.20 22254.17 21325.93 22012.75 22214.73 2188.58 22634.10 21627.36 21937.83 21848.07 22043.18 218
EMVS30.49 21625.44 21836.39 21351.47 21829.89 22220.17 22354.00 21426.49 21912.02 22313.94 2208.84 22534.37 21525.04 22034.37 21946.29 22139.53 219
test_method41.78 21248.10 21334.42 21410.74 22319.78 22444.64 21817.73 21959.83 20338.67 21635.82 21554.41 20234.94 21462.87 21443.13 21759.81 21760.82 214
tmp_tt32.73 21543.96 22121.15 22326.71 2218.99 22065.67 18851.39 20056.01 18942.64 21611.76 21956.60 21550.81 21653.55 219
GG-mvs-BLEND57.56 20982.61 10928.34 2160.22 22490.10 12479.37 1860.14 22279.56 1070.40 22571.25 11083.40 610.30 22286.27 14783.87 17389.59 18583.83 185
MVEpermissive30.17 1930.88 21533.52 21627.80 21723.78 22239.16 22018.69 22446.90 21721.88 22115.39 22114.37 2197.31 22724.41 21741.63 21856.22 21537.64 22254.07 217
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
testmvs1.03 2171.63 2190.34 2180.09 2250.35 2250.61 2260.16 2211.49 2220.10 2263.15 2210.15 2280.86 2211.32 2211.18 2200.20 2233.76 221
test1230.87 2181.40 2200.25 2190.03 2260.25 2260.35 2270.08 2231.21 2230.05 2272.84 2220.03 2290.89 2200.43 2221.16 2210.13 2243.87 220
uanet_test0.00 2190.00 2210.00 2200.00 2270.00 2270.00 2280.00 2240.00 2240.00 2280.00 2230.00 2300.00 2230.00 2230.00 2220.00 2250.00 222
sosnet-low-res0.00 2190.00 2210.00 2200.00 2270.00 2270.00 2280.00 2240.00 2240.00 2280.00 2230.00 2300.00 2230.00 2230.00 2220.00 2250.00 222
sosnet0.00 2190.00 2210.00 2200.00 2270.00 2270.00 2280.00 2240.00 2240.00 2280.00 2230.00 2300.00 2230.00 2230.00 2220.00 2250.00 222
RE-MVS-def56.08 190
9.1492.16 16
SR-MVS96.58 2590.99 2192.40 13
Anonymous20240521182.75 10889.58 10592.97 9189.04 9184.13 6978.72 11457.18 18676.64 10083.13 8289.55 10589.92 9093.38 14794.28 76
our_test_381.81 19183.96 18976.61 195
ambc61.92 20870.98 21273.54 21263.64 21360.06 20252.23 19838.44 21219.17 22357.12 19982.33 18775.03 20683.21 21084.89 181
MTAPA92.97 291.03 22
MTMP93.14 190.21 29
Patchmatch-RL test8.55 225
XVS93.11 5996.70 2591.91 5283.95 4888.82 3995.79 40
X-MVStestdata93.11 5996.70 2591.91 5283.95 4888.82 3995.79 40
mPP-MVS97.06 1288.08 44
NP-MVS87.47 52
Patchmtry85.54 18082.30 16768.23 19365.37 143
DeepMVS_CXcopyleft48.31 21948.03 21726.08 21856.42 20925.77 22047.51 20331.31 22151.30 20548.49 21753.61 21861.52 213