This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort by
MCST-MVS93.81 1794.06 1993.53 1696.79 2396.85 2095.95 1491.69 1692.20 2587.17 3190.83 2793.41 791.96 1494.49 2593.50 3197.61 197.12 22
SF-MVS94.61 894.96 1094.20 996.75 2497.07 1295.82 1892.60 793.98 1291.09 895.89 692.54 1291.93 1594.40 2793.56 3097.04 297.27 17
DVP-MVS++95.79 196.42 195.06 197.84 298.17 297.03 492.84 396.68 192.83 395.90 594.38 492.90 595.98 294.85 596.93 398.99 1
SED-MVS95.61 296.36 294.73 396.84 1998.15 397.08 392.92 295.64 391.84 495.98 495.33 192.83 796.00 194.94 396.90 498.45 3
DVP-MVScopyleft95.56 396.26 394.73 396.93 1698.19 196.62 792.81 596.15 291.73 595.01 795.31 293.41 195.95 394.77 896.90 498.46 2
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
DPE-MVScopyleft95.53 496.13 494.82 296.81 2298.05 497.42 193.09 194.31 991.49 697.12 195.03 393.27 395.55 694.58 1296.86 698.25 4
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
TSAR-MVS + GP.92.71 2793.91 2191.30 3491.96 7396.00 4093.43 4187.94 4092.53 2186.27 3993.57 1591.94 1991.44 2493.29 4492.89 4696.78 797.15 21
EC-MVSNet89.96 4790.77 4389.01 5590.54 9395.15 5891.34 6281.43 10985.27 6383.08 5482.83 4787.22 4990.97 2994.79 1893.38 3596.73 896.71 34
ETV-MVS89.22 5389.76 5088.60 6291.60 7794.61 6989.48 8383.46 8585.20 6581.58 6482.75 4882.59 6688.80 4094.57 2393.28 3996.68 995.31 58
APDe-MVScopyleft95.23 595.69 694.70 597.12 1097.81 697.19 292.83 495.06 690.98 996.47 292.77 1093.38 295.34 994.21 1696.68 998.17 5
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
MVS_030490.88 3991.35 3790.34 4093.91 5196.79 2394.49 3486.54 4886.57 5782.85 5681.68 5789.70 3387.57 5694.64 2193.93 2196.67 1196.15 44
3Dnovator85.17 590.48 4189.90 4991.16 3694.88 4395.74 4893.82 3785.36 5589.28 4587.81 2774.34 9787.40 4888.56 4493.07 4793.74 2696.53 1295.71 50
TSAR-MVS + MP.94.48 1194.97 993.90 1295.53 3797.01 1596.69 690.71 2394.24 1090.92 1094.97 892.19 1593.03 494.83 1693.60 2796.51 1397.97 9
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
CS-MVS90.34 4290.58 4490.07 4393.11 6095.82 4690.57 6783.62 7687.07 5585.35 4182.98 4683.47 6191.37 2694.94 1393.37 3796.37 1496.41 39
MSP-MVS95.12 695.83 594.30 696.82 2197.94 596.98 592.37 1195.40 490.59 1296.16 393.71 692.70 894.80 1794.77 896.37 1497.99 8
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
QAPM89.49 5089.58 5389.38 5294.73 4595.94 4192.35 4985.00 5885.69 6280.03 7576.97 8187.81 4687.87 5192.18 6392.10 5596.33 1696.40 41
MVS_111021_HR90.56 4091.29 3889.70 4894.71 4695.63 4991.81 5786.38 4987.53 5381.29 6687.96 3285.43 5387.69 5393.90 3492.93 4496.33 1695.69 51
test111184.86 9384.21 9985.61 8591.75 7695.14 5988.63 10184.57 6281.88 8771.21 11565.66 14768.51 14281.19 9893.74 3992.68 5096.31 1891.86 127
CANet91.33 3791.46 3591.18 3595.01 4096.71 2493.77 3887.39 4587.72 5287.26 3081.77 5589.73 3287.32 6094.43 2693.86 2296.31 1896.02 46
APD-MVScopyleft94.37 1294.47 1694.26 797.18 896.99 1696.53 892.68 692.45 2389.96 1694.53 1191.63 2192.89 694.58 2293.82 2396.31 1897.26 18
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
test250685.20 8884.11 10086.47 7891.84 7495.28 5489.18 8684.49 6382.59 7775.34 9674.66 9558.07 19081.68 9493.76 3692.71 4896.28 2191.71 130
ECVR-MVScopyleft85.25 8784.47 9686.16 8091.84 7495.28 5489.18 8684.49 6382.59 7773.49 10666.12 14069.28 13881.68 9493.76 3692.71 4896.28 2191.58 137
SteuartSystems-ACMMP94.06 1494.65 1293.38 1896.97 1597.36 996.12 1091.78 1492.05 2787.34 2994.42 1290.87 2591.87 1895.47 894.59 1196.21 2397.77 11
Skip Steuart: Steuart Systems R&D Blog.
PHI-MVS92.05 3193.74 2290.08 4294.96 4197.06 1393.11 4587.71 4390.71 3680.78 7192.40 2291.03 2387.68 5494.32 2894.48 1396.21 2396.16 43
CNVR-MVS94.37 1294.65 1294.04 1097.29 697.11 1196.00 1192.43 1093.45 1589.85 1890.92 2593.04 992.59 1095.77 594.82 696.11 2597.42 16
baseline184.54 9684.43 9784.67 9290.62 9091.16 11388.63 10183.75 7479.78 10771.16 11675.14 9174.10 11377.84 14091.56 6890.67 7596.04 2688.58 159
MSLP-MVS++92.02 3391.40 3692.75 2396.01 3295.88 4493.73 4089.00 3389.89 4490.31 1481.28 6088.85 3991.45 2292.88 5194.24 1596.00 2796.76 31
NCCC93.69 1993.66 2393.72 1597.37 596.66 2995.93 1792.50 993.40 1888.35 2487.36 3492.33 1492.18 1394.89 1594.09 1896.00 2796.91 28
CS-MVS-test90.29 4390.96 3989.51 5193.18 5995.87 4589.18 8683.72 7588.32 5084.82 4684.89 4285.23 5490.25 3394.04 2992.66 5195.94 2995.69 51
ACMMPcopyleft92.03 3292.16 3191.87 3395.88 3496.55 3194.47 3589.49 3291.71 3085.26 4291.52 2484.48 5790.21 3492.82 5291.63 5995.92 3096.42 38
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
SMA-MVScopyleft94.70 795.35 793.93 1197.57 397.57 895.98 1291.91 1394.50 790.35 1393.46 1792.72 1191.89 1795.89 495.22 195.88 3198.10 6
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
ACMMPR93.72 1893.94 2093.48 1797.07 1196.93 1795.78 2090.66 2593.88 1389.24 2093.53 1689.08 3892.24 1293.89 3593.50 3195.88 3196.73 32
HFP-MVS94.02 1594.22 1893.78 1397.25 796.85 2095.81 1990.94 2294.12 1190.29 1594.09 1489.98 3192.52 1193.94 3393.49 3395.87 3397.10 23
PVSNet_BlendedMVS88.19 6588.00 6588.42 6492.71 6994.82 6689.08 9183.81 7284.91 6886.38 3779.14 6878.11 9582.66 8793.05 4891.10 6395.86 3494.86 64
PVSNet_Blended88.19 6588.00 6588.42 6492.71 6994.82 6689.08 9183.81 7284.91 6886.38 3779.14 6878.11 9582.66 8793.05 4891.10 6395.86 3494.86 64
DeepC-MVS_fast88.76 193.10 2293.02 2993.19 2197.13 996.51 3395.35 2591.19 1993.14 2088.14 2585.26 4089.49 3591.45 2295.17 1095.07 295.85 3696.48 36
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PGM-MVS92.76 2593.03 2892.45 2797.03 1396.67 2895.73 2287.92 4190.15 4386.53 3592.97 2088.33 4491.69 2093.62 4193.03 4295.83 3796.41 39
SD-MVS94.53 1095.22 893.73 1495.69 3697.03 1495.77 2191.95 1294.41 891.35 794.97 893.34 891.80 1994.72 2093.99 2095.82 3898.07 7
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DeepC-MVS87.86 392.26 3091.86 3392.73 2496.18 2996.87 1995.19 2791.76 1592.17 2686.58 3481.79 5485.85 5190.88 3094.57 2394.61 1095.80 3997.18 19
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
XVS93.11 6096.70 2591.91 5383.95 4988.82 4095.79 40
X-MVStestdata93.11 6096.70 2591.91 5383.95 4988.82 4095.79 40
DELS-MVS89.71 4889.68 5289.74 4693.75 5396.22 3693.76 3985.84 5182.53 7985.05 4478.96 7184.24 5884.25 7994.91 1494.91 495.78 4296.02 46
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
X-MVS92.36 2992.75 3091.90 3296.89 1796.70 2595.25 2690.48 2891.50 3283.95 4988.20 3188.82 4089.11 3893.75 3893.43 3495.75 4396.83 30
casdiffmvspermissive87.45 7287.15 7487.79 7190.15 10494.22 7389.96 7483.93 7185.08 6680.91 6875.81 8777.88 9886.08 6991.86 6690.86 6995.74 4494.37 73
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CP-MVS93.25 2193.26 2693.24 2096.84 1996.51 3395.52 2390.61 2692.37 2488.88 2190.91 2689.52 3491.91 1693.64 4092.78 4795.69 4597.09 24
MVSTER86.03 8086.12 8285.93 8288.62 11689.93 13189.33 8579.91 12881.87 8881.35 6581.07 6174.91 10980.66 10692.13 6490.10 8595.68 4692.80 104
3Dnovator+86.06 491.60 3590.86 4292.47 2696.00 3396.50 3594.70 3287.83 4290.49 3889.92 1774.68 9489.35 3690.66 3194.02 3194.14 1795.67 4796.85 29
OpenMVScopyleft82.53 1187.71 6986.84 7688.73 5894.42 4795.06 6191.02 6683.49 8282.50 8182.24 6267.62 13585.48 5285.56 7391.19 7491.30 6295.67 4794.75 66
EIA-MVS87.94 6888.05 6487.81 6991.46 7895.00 6388.67 9882.81 9182.53 7980.81 7080.04 6480.20 7787.48 5792.58 5591.61 6095.63 4994.36 74
ET-MVSNet_ETH3D84.65 9485.58 8983.56 11174.99 21592.62 10290.29 7180.38 11682.16 8473.01 11183.41 4471.10 13087.05 6387.77 12790.17 8495.62 5091.82 128
CDPH-MVS91.14 3892.01 3290.11 4196.18 2996.18 3794.89 3088.80 3788.76 4877.88 8789.18 3087.71 4787.29 6193.13 4693.31 3895.62 5095.84 48
MP-MVScopyleft93.35 2093.59 2493.08 2297.39 496.82 2295.38 2490.71 2390.82 3588.07 2692.83 2190.29 2991.32 2794.03 3093.19 4195.61 5297.16 20
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
FMVSNet384.44 9984.64 9584.21 10084.32 16590.13 12689.85 7680.37 11781.17 9375.50 9269.63 12079.69 8379.62 12689.72 10490.52 7995.59 5391.58 137
HPM-MVS++copyleft94.60 994.91 1194.24 897.86 196.53 3296.14 992.51 893.87 1490.76 1193.45 1893.84 592.62 995.11 1294.08 1995.58 5497.48 14
TPM-MVS96.31 2796.02 3894.89 3086.52 3687.18 3692.17 1686.76 6595.56 5593.85 84
Ray Leroy Khuboni and Hongjun Xu: Textureless Resilient Propagation Matching in Multiple View Stereosis (TPM-MVS). SATNAC 2025
casdiffmvs_mvgpermissive87.97 6787.63 7288.37 6690.55 9294.42 7091.82 5684.69 6084.05 7182.08 6376.57 8279.00 8985.49 7492.35 5792.29 5495.55 5694.70 68
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CLD-MVS88.66 5688.52 5888.82 5791.37 8194.22 7392.82 4882.08 10488.27 5185.14 4381.86 5378.53 9385.93 7191.17 7590.61 7695.55 5695.00 60
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
ACMMP_NAP93.94 1694.49 1593.30 1997.03 1397.31 1095.96 1391.30 1893.41 1788.55 2393.00 1990.33 2891.43 2595.53 794.41 1495.53 5897.47 15
GBi-Net84.51 9784.80 9384.17 10184.20 16689.95 12889.70 7780.37 11781.17 9375.50 9269.63 12079.69 8379.75 12390.73 9190.72 7195.52 5991.71 130
test184.51 9784.80 9384.17 10184.20 16689.95 12889.70 7780.37 11781.17 9375.50 9269.63 12079.69 8379.75 12390.73 9190.72 7195.52 5991.71 130
FMVSNet283.87 10283.73 10484.05 10584.20 16689.95 12889.70 7780.21 12279.17 11474.89 9865.91 14177.49 9979.75 12390.87 8891.00 6795.52 5991.71 130
DPM-MVS91.72 3491.48 3492.00 3095.53 3795.75 4795.94 1591.07 2091.20 3385.58 4081.63 5890.74 2688.40 4693.40 4293.75 2595.45 6293.85 84
OPM-MVS87.56 7185.80 8789.62 4993.90 5294.09 7694.12 3688.18 3875.40 13477.30 9076.41 8377.93 9788.79 4192.20 6190.82 7095.40 6393.72 89
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
CSCG92.76 2593.16 2792.29 2896.30 2897.74 794.67 3388.98 3592.46 2289.73 1986.67 3792.15 1888.69 4392.26 5992.92 4595.40 6397.89 10
sasdasda89.36 5189.92 4688.70 5991.38 7995.92 4291.81 5782.61 9990.37 3982.73 5882.09 5079.28 8688.30 4791.17 7593.59 2895.36 6597.04 25
canonicalmvs89.36 5189.92 4688.70 5991.38 7995.92 4291.81 5782.61 9990.37 3982.73 5882.09 5079.28 8688.30 4791.17 7593.59 2895.36 6597.04 25
IB-MVS79.09 1282.60 11382.19 11283.07 11591.08 8493.55 8380.90 18281.35 11076.56 12680.87 6964.81 15569.97 13468.87 18385.64 15790.06 8795.36 6594.74 67
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
gg-mvs-nofinetune75.64 18877.26 16773.76 19287.92 12192.20 10587.32 11864.67 21151.92 21635.35 22146.44 21077.05 10271.97 17392.64 5491.02 6695.34 6889.53 154
Vis-MVSNetpermissive84.38 10186.68 8081.70 12987.65 12694.89 6488.14 10780.90 11374.48 14068.23 13277.53 7880.72 7469.98 18092.68 5391.90 5695.33 6994.58 71
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
TAPA-MVS84.37 788.91 5588.93 5688.89 5693.00 6494.85 6592.00 5284.84 5991.68 3180.05 7479.77 6684.56 5688.17 4990.11 9989.00 11795.30 7092.57 114
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
MVS_Test86.93 7487.24 7386.56 7790.10 10593.47 8490.31 7080.12 12383.55 7378.12 8379.58 6779.80 8185.45 7590.17 9890.59 7795.29 7193.53 92
LGP-MVS_train88.25 6488.55 5787.89 6892.84 6793.66 8193.35 4285.22 5785.77 6074.03 10386.60 3876.29 10486.62 6791.20 7390.58 7895.29 7195.75 49
FA-MVS(training)85.65 8485.79 8885.48 8790.44 9893.47 8488.66 10073.11 17883.34 7482.26 6071.79 10978.39 9483.14 8491.00 8389.47 10595.28 7393.06 97
UniMVSNet_NR-MVSNet81.87 11981.33 12082.50 12085.31 15291.30 11185.70 14084.25 6675.89 13064.21 15366.95 13764.65 15480.22 11387.07 13389.18 11295.27 7494.29 75
MGCFI-Net88.38 6289.72 5186.83 7691.21 8295.59 5091.14 6582.37 10290.25 4175.33 9781.89 5279.13 8885.69 7290.98 8693.23 4095.23 7596.94 27
IS_MVSNet86.18 7888.18 6283.85 10791.02 8594.72 6887.48 11582.46 10181.05 9770.28 12076.98 8082.20 6976.65 14893.97 3293.38 3595.18 7694.97 61
train_agg92.87 2493.53 2592.09 2996.88 1895.38 5295.94 1590.59 2790.65 3783.65 5294.31 1391.87 2090.30 3293.38 4392.42 5295.17 7796.73 32
NR-MVSNet80.25 13579.98 13880.56 14485.20 15490.94 11585.65 14283.58 8075.74 13161.36 17765.30 15056.75 19772.38 17288.46 12188.80 11995.16 7893.87 83
PVSNet_Blended_VisFu87.40 7387.80 6786.92 7592.86 6595.40 5188.56 10483.45 8679.55 11082.26 6074.49 9684.03 5979.24 13192.97 5091.53 6195.15 7996.65 35
EPP-MVSNet86.55 7587.76 6985.15 8990.52 9494.41 7187.24 12182.32 10381.79 8973.60 10578.57 7382.41 6782.07 9291.23 7190.39 8095.14 8095.48 56
thisisatest053085.15 9085.86 8584.33 9789.19 11292.57 10387.22 12280.11 12482.15 8574.41 10078.15 7573.80 11779.90 11990.99 8489.58 10095.13 8193.75 88
TranMVSNet+NR-MVSNet80.52 13279.84 14181.33 13584.92 16190.39 12085.53 14584.22 6874.27 14360.68 18264.93 15459.96 17877.48 14286.75 14189.28 10895.12 8293.29 93
tttt051785.11 9185.81 8684.30 9889.24 11092.68 9987.12 12680.11 12481.98 8674.31 10278.08 7673.57 11979.90 11991.01 8289.58 10095.11 8393.77 87
UniMVSNet (Re)81.22 12781.08 12381.39 13385.35 15191.76 10984.93 14982.88 9076.13 12965.02 15064.94 15363.09 16175.17 15687.71 12889.04 11594.97 8494.88 63
FC-MVSNet-train85.18 8985.31 9185.03 9090.67 8991.62 11087.66 11383.61 7779.75 10874.37 10178.69 7271.21 12978.91 13291.23 7189.96 9094.96 8594.69 70
GeoE84.62 9583.98 10285.35 8889.34 10992.83 9688.34 10578.95 13879.29 11277.16 9168.10 13274.56 11083.40 8289.31 11189.23 11094.92 8694.57 72
tfpn200view982.86 10981.46 11784.48 9490.30 10293.09 9089.05 9382.71 9375.14 13569.56 12365.72 14463.13 15980.38 11291.15 7889.51 10294.91 8792.50 118
thres600view782.53 11581.02 12484.28 9990.61 9193.05 9188.57 10382.67 9574.12 14568.56 13165.09 15262.13 17080.40 11191.15 7889.02 11694.88 8892.59 112
thres20082.77 11181.25 12184.54 9390.38 9993.05 9189.13 9082.67 9574.40 14169.53 12565.69 14663.03 16280.63 10791.15 7889.42 10694.88 8892.04 124
Effi-MVS+85.33 8685.08 9285.63 8489.69 10793.42 8689.90 7580.31 12179.32 11172.48 11473.52 10374.03 11486.55 6890.99 8489.98 8994.83 9094.27 79
dmvs_re81.08 12979.92 13982.44 12286.66 13687.70 16487.91 11083.30 8972.86 15765.29 14965.76 14363.43 15876.69 14788.93 11589.50 10394.80 9191.23 142
thres40082.68 11281.15 12284.47 9590.52 9492.89 9588.95 9682.71 9374.33 14269.22 12865.31 14962.61 16580.63 10790.96 8789.50 10394.79 9292.45 120
ACMP83.90 888.32 6388.06 6388.62 6192.18 7193.98 7891.28 6485.24 5686.69 5681.23 6785.62 3975.13 10887.01 6489.83 10289.77 9694.79 9295.43 57
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
DU-MVS81.20 12880.30 13282.25 12484.98 15990.94 11585.70 14083.58 8075.74 13164.21 15365.30 15059.60 18380.22 11386.89 13689.31 10794.77 9494.29 75
UA-Net86.07 7987.78 6884.06 10492.85 6695.11 6087.73 11284.38 6573.22 15473.18 10879.99 6589.22 3771.47 17693.22 4593.03 4294.76 9590.69 145
MVS_111021_LR90.14 4690.89 4189.26 5393.23 5894.05 7790.43 6984.65 6190.16 4284.52 4890.14 2883.80 6087.99 5092.50 5690.92 6894.74 9694.70 68
thres100view90082.55 11481.01 12684.34 9690.30 10292.27 10489.04 9482.77 9275.14 13569.56 12365.72 14463.13 15979.62 12689.97 10189.26 10994.73 9791.61 136
AdaColmapbinary90.29 4388.38 6092.53 2596.10 3195.19 5792.98 4691.40 1789.08 4788.65 2278.35 7481.44 7191.30 2890.81 9090.21 8394.72 9893.59 91
PCF-MVS84.60 688.66 5687.75 7089.73 4793.06 6396.02 3893.22 4490.00 3082.44 8280.02 7677.96 7785.16 5587.36 5988.54 11988.54 12294.72 9895.61 54
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
DI_MVS_plusplus_trai86.41 7785.54 9087.42 7389.24 11093.13 8992.16 5182.65 9782.30 8380.75 7268.30 13180.41 7585.01 7690.56 9690.07 8694.70 10094.01 81
Fast-Effi-MVS+83.77 10482.98 10784.69 9187.98 12091.87 10888.10 10877.70 15278.10 12073.04 11069.13 12668.51 14286.66 6690.49 9789.85 9494.67 10192.88 101
WR-MVS_H75.84 18676.93 17274.57 19182.86 18589.50 14478.34 19579.36 13566.90 18352.51 20060.20 17759.71 18059.73 20283.61 18085.77 16094.65 10292.84 102
OMC-MVS90.23 4590.40 4590.03 4493.45 5695.29 5391.89 5586.34 5093.25 1984.94 4581.72 5686.65 5088.90 3991.69 6790.27 8294.65 10293.95 82
HQP-MVS89.13 5489.58 5388.60 6293.53 5593.67 8093.29 4387.58 4488.53 4975.50 9287.60 3380.32 7687.07 6290.66 9589.95 9194.62 10496.35 42
PEN-MVS76.02 18376.07 17975.95 18183.17 17987.97 16279.65 18680.07 12766.57 18551.45 20360.94 17155.47 20266.81 19282.72 18586.80 14194.59 10592.03 125
ACMM83.27 1087.68 7086.09 8389.54 5093.26 5792.19 10691.43 6186.74 4786.02 5982.85 5675.63 8875.14 10788.41 4590.68 9489.99 8894.59 10592.97 99
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CANet_DTU85.43 8587.72 7182.76 11890.95 8893.01 9389.99 7375.46 17082.67 7664.91 15183.14 4580.09 7880.68 10592.03 6591.03 6594.57 10792.08 122
CP-MVSNet76.36 18076.41 17676.32 17882.73 18888.64 15779.39 18979.62 13067.21 18153.70 19760.72 17355.22 20367.91 18883.52 18186.34 15194.55 10893.19 94
EG-PatchMatch MVS76.40 17975.47 18877.48 16885.86 14490.22 12482.45 16873.96 17659.64 20859.60 18652.75 20262.20 16968.44 18588.23 12387.50 13094.55 10887.78 169
tfpnnormal77.46 16774.86 19280.49 14586.34 14088.92 15584.33 15681.26 11161.39 20361.70 17451.99 20453.66 20974.84 15988.63 11887.38 13394.50 11092.08 122
baseline282.80 11082.86 10982.73 11987.68 12590.50 11984.92 15078.93 13978.07 12173.06 10975.08 9269.77 13577.31 14388.90 11686.94 13994.50 11090.74 144
Vis-MVSNet (Re-imp)83.65 10586.81 7879.96 14990.46 9792.71 9784.84 15182.00 10580.93 9962.44 16676.29 8482.32 6865.54 19692.29 5891.66 5894.49 11291.47 139
PS-CasMVS75.90 18575.86 18475.96 18082.59 18988.46 16079.23 19279.56 13266.00 18852.77 19959.48 18154.35 20767.14 19183.37 18286.23 15294.47 11393.10 96
Baseline_NR-MVSNet79.84 13978.37 15681.55 13284.98 15986.66 17385.06 14783.49 8275.57 13363.31 16058.22 18960.97 17378.00 13886.89 13687.13 13594.47 11393.15 95
FMVSNet181.64 12480.61 12982.84 11782.36 19189.20 14988.67 9879.58 13170.79 16672.63 11358.95 18572.26 12679.34 12990.73 9190.72 7194.47 11391.62 135
DTE-MVSNet75.14 19075.44 18974.80 18883.18 17887.19 17078.25 19780.11 12466.05 18748.31 20860.88 17254.67 20464.54 19782.57 18786.17 15394.43 11690.53 149
PLCcopyleft83.76 988.61 5886.83 7790.70 3894.22 4892.63 10091.50 6087.19 4689.16 4686.87 3275.51 8980.87 7389.98 3690.01 10089.20 11194.41 11790.45 150
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
UGNet85.90 8288.23 6183.18 11488.96 11494.10 7587.52 11483.60 7881.66 9077.90 8680.76 6283.19 6366.70 19391.13 8190.71 7494.39 11896.06 45
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
TransMVSNet (Re)76.57 17475.16 19178.22 16585.60 14887.24 16982.46 16781.23 11259.80 20759.05 19057.07 19159.14 18766.60 19488.09 12486.82 14094.37 11987.95 168
gm-plane-assit70.29 20170.65 20369.88 20185.03 15778.50 21258.41 21965.47 20750.39 21840.88 21749.60 20650.11 21375.14 15791.43 7089.78 9594.32 12084.73 188
CNLPA88.40 5987.00 7590.03 4493.73 5494.28 7289.56 8185.81 5291.87 2887.55 2869.53 12481.49 7089.23 3789.45 10988.59 12194.31 12193.82 86
MAR-MVS88.39 6188.44 5988.33 6794.90 4295.06 6190.51 6883.59 7985.27 6379.07 7977.13 7982.89 6587.70 5292.19 6292.32 5394.23 12294.20 80
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
MSDG83.87 10281.02 12487.19 7492.17 7289.80 13589.15 8985.72 5380.61 10279.24 7866.66 13868.75 14182.69 8687.95 12687.44 13194.19 12385.92 182
pm-mvs178.51 15977.75 16479.40 15284.83 16289.30 14683.55 16279.38 13462.64 19963.68 15858.73 18764.68 15370.78 17989.79 10387.84 12794.17 12491.28 141
CPTT-MVS91.39 3690.95 4091.91 3195.06 3995.24 5695.02 2988.98 3591.02 3486.71 3384.89 4288.58 4391.60 2190.82 8989.67 9994.08 12596.45 37
v14419278.81 15377.22 16880.67 14282.95 18289.79 13686.40 13377.42 15368.26 18063.13 16159.50 18058.13 18980.08 11885.93 15386.08 15594.06 12692.83 103
diffmvspermissive86.52 7686.76 7986.23 7988.31 11992.63 10089.58 8081.61 10886.14 5880.26 7379.00 7077.27 10083.58 8088.94 11489.06 11494.05 12794.29 75
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
v192192078.57 15876.99 17180.41 14782.93 18389.63 14286.38 13477.14 15668.31 17961.80 17358.89 18656.79 19680.19 11686.50 14886.05 15794.02 12892.76 106
ACMH78.52 1481.86 12080.45 13183.51 11390.51 9691.22 11285.62 14384.23 6770.29 17162.21 16769.04 12864.05 15684.48 7887.57 12988.45 12494.01 12992.54 116
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
WR-MVS76.63 17378.02 16175.02 18684.14 16989.76 13778.34 19580.64 11569.56 17252.32 20161.26 16761.24 17260.66 20184.45 17587.07 13693.99 13092.77 105
v1079.62 14278.19 15781.28 13683.73 17289.69 13987.27 12076.86 15970.50 16965.46 14460.58 17560.47 17580.44 11086.91 13586.63 14593.93 13192.55 115
anonymousdsp77.94 16279.00 14876.71 17479.03 20387.83 16379.58 18772.87 17965.80 19058.86 19165.82 14262.48 16775.99 15186.77 14088.66 12093.92 13295.68 53
v124078.15 16076.53 17480.04 14882.85 18689.48 14585.61 14476.77 16067.05 18261.18 18058.37 18856.16 20079.89 12186.11 15286.08 15593.92 13292.47 119
v879.90 13878.39 15581.66 13083.97 17089.81 13487.16 12477.40 15471.49 16167.71 13361.24 16862.49 16679.83 12285.48 16186.17 15393.89 13492.02 126
v2v48279.84 13978.07 15981.90 12783.75 17190.21 12587.17 12379.85 12970.65 16765.93 14261.93 16560.07 17780.82 10285.25 16386.71 14293.88 13591.70 134
thisisatest051579.76 14180.59 13078.80 15784.40 16488.91 15679.48 18876.94 15872.29 15967.33 13567.82 13465.99 14970.80 17888.50 12087.84 12793.86 13692.75 107
IterMVS-LS83.28 10882.95 10883.65 10888.39 11888.63 15886.80 13078.64 14376.56 12673.43 10772.52 10875.35 10680.81 10386.43 14988.51 12393.84 13792.66 109
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
TSAR-MVS + ACMM92.97 2394.51 1491.16 3695.88 3496.59 3095.09 2890.45 2993.42 1683.01 5594.68 1090.74 2688.74 4294.75 1993.78 2493.82 13897.63 12
v114479.38 14877.83 16281.18 13783.62 17390.23 12387.15 12578.35 14569.13 17464.02 15660.20 17759.41 18480.14 11786.78 13986.57 14693.81 13992.53 117
v119278.94 15277.33 16680.82 14083.25 17789.90 13286.91 12877.72 15168.63 17862.61 16559.17 18257.53 19380.62 10986.89 13686.47 14893.79 14092.75 107
TSAR-MVS + COLMAP88.40 5989.09 5587.60 7292.72 6893.92 7992.21 5085.57 5491.73 2973.72 10491.75 2373.22 12387.64 5591.49 6989.71 9893.73 14191.82 128
UniMVSNet_ETH3D79.24 14976.47 17582.48 12185.66 14790.97 11486.08 13781.63 10764.48 19568.94 13054.47 19657.65 19278.83 13385.20 16788.91 11893.72 14293.60 90
EPNet89.60 4989.91 4889.24 5496.45 2693.61 8292.95 4788.03 3985.74 6183.36 5387.29 3583.05 6480.98 10192.22 6091.85 5793.69 14395.58 55
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
HyFIR lowres test81.62 12679.45 14784.14 10391.00 8693.38 8788.27 10678.19 14676.28 12870.18 12148.78 20773.69 11883.52 8187.05 13487.83 12993.68 14489.15 156
V4279.59 14378.43 15480.94 13982.79 18789.71 13886.66 13176.73 16171.38 16267.42 13461.01 17062.30 16878.39 13585.56 15986.48 14793.65 14592.60 111
DCV-MVSNet85.88 8386.17 8185.54 8689.10 11389.85 13389.34 8480.70 11483.04 7578.08 8576.19 8579.00 8982.42 9089.67 10590.30 8193.63 14695.12 59
v7n77.22 16876.23 17878.38 16481.89 19489.10 15382.24 17376.36 16265.96 18961.21 17956.56 19255.79 20175.07 15886.55 14586.68 14393.52 14792.95 100
Anonymous2023121184.42 10083.02 10686.05 8188.85 11592.70 9888.92 9783.40 8779.99 10578.31 8255.83 19478.92 9183.33 8389.06 11389.76 9793.50 14894.90 62
ACMH+79.08 1381.84 12180.06 13683.91 10689.92 10690.62 11786.21 13583.48 8473.88 14765.75 14366.38 13965.30 15284.63 7785.90 15487.25 13493.45 14991.13 143
pmmvs576.93 17076.33 17777.62 16781.97 19388.40 16181.32 17874.35 17465.42 19361.42 17663.07 16157.95 19173.23 17085.60 15885.35 16593.41 15088.55 160
Anonymous20240521182.75 11089.58 10892.97 9489.04 9484.13 6978.72 11657.18 19076.64 10383.13 8589.55 10789.92 9293.38 15194.28 78
USDC80.69 13179.89 14081.62 13186.48 13889.11 15286.53 13278.86 14081.15 9663.48 15972.98 10559.12 18881.16 9987.10 13285.01 16793.23 15284.77 187
LS3D85.96 8184.37 9887.81 6994.13 4993.27 8890.26 7289.00 3384.91 6872.84 11271.74 11072.47 12587.45 5889.53 10889.09 11393.20 15389.60 153
MS-PatchMatch81.79 12281.44 11882.19 12690.35 10089.29 14788.08 10975.36 17177.60 12269.00 12964.37 15878.87 9277.14 14688.03 12585.70 16193.19 15486.24 179
Fast-Effi-MVS+-dtu79.95 13780.69 12879.08 15486.36 13989.14 15185.85 13872.28 18172.85 15859.32 18770.43 11868.42 14477.57 14186.14 15186.44 14993.11 15591.39 140
GA-MVS79.52 14479.71 14479.30 15385.68 14690.36 12184.55 15378.44 14470.47 17057.87 19268.52 13061.38 17176.21 15089.40 11087.89 12693.04 15689.96 152
DeepPCF-MVS88.51 292.64 2894.42 1790.56 3994.84 4496.92 1891.31 6389.61 3195.16 584.55 4789.91 2991.45 2290.15 3595.12 1194.81 792.90 15797.58 13
CDS-MVSNet81.63 12582.09 11381.09 13887.21 13190.28 12287.46 11780.33 12069.06 17570.66 11771.30 11173.87 11567.99 18689.58 10689.87 9392.87 15890.69 145
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
Effi-MVS+-dtu82.05 11781.76 11482.38 12387.72 12390.56 11886.90 12978.05 14873.85 14866.85 13771.29 11271.90 12782.00 9386.64 14485.48 16392.76 15992.58 113
v14878.59 15776.84 17380.62 14383.61 17489.16 15083.65 16179.24 13669.38 17369.34 12759.88 17960.41 17675.19 15583.81 17984.63 17292.70 16090.63 147
pmmvs479.99 13678.08 15882.22 12583.04 18187.16 17184.95 14878.80 14278.64 11774.53 9964.61 15659.41 18479.45 12884.13 17784.54 17492.53 16188.08 165
RPMNet77.07 16977.63 16576.42 17685.56 14985.15 18681.37 17665.27 20874.71 13860.29 18363.71 16066.59 14873.64 16682.71 18682.12 18892.38 16288.39 161
CR-MVSNet78.71 15578.86 14978.55 16185.85 14585.15 18682.30 17168.23 19774.71 13865.37 14664.39 15769.59 13777.18 14485.10 16984.87 16892.34 16388.21 163
COLMAP_ROBcopyleft76.78 1580.50 13378.49 15282.85 11690.96 8789.65 14186.20 13683.40 8777.15 12466.54 13862.27 16365.62 15177.89 13985.23 16484.70 17192.11 16484.83 186
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
PatchMatch-RL83.34 10781.36 11985.65 8390.33 10189.52 14384.36 15581.82 10680.87 10179.29 7774.04 9862.85 16486.05 7088.40 12287.04 13892.04 16586.77 175
PMMVS81.65 12384.05 10178.86 15678.56 20582.63 19983.10 16367.22 20181.39 9170.11 12284.91 4179.74 8282.12 9187.31 13085.70 16192.03 16686.67 178
IterMVS-SCA-FT79.41 14780.20 13478.49 16285.88 14286.26 17583.95 15871.94 18273.55 15261.94 17070.48 11770.50 13175.23 15485.81 15684.61 17391.99 16790.18 151
baseline84.89 9286.06 8483.52 11287.25 13089.67 14087.76 11175.68 16984.92 6778.40 8180.10 6380.98 7280.20 11586.69 14387.05 13791.86 16892.99 98
MIMVSNet74.69 19275.60 18773.62 19376.02 21285.31 18581.21 18167.43 20071.02 16459.07 18954.48 19564.07 15566.14 19586.52 14786.64 14491.83 16981.17 200
FC-MVSNet-test76.53 17681.62 11670.58 20084.99 15885.73 18074.81 20378.85 14177.00 12539.13 21975.90 8673.50 12054.08 20886.54 14685.99 15891.65 17086.68 176
pmmvs-eth3d74.32 19471.96 20077.08 17177.33 20882.71 19878.41 19476.02 16666.65 18465.98 14154.23 19849.02 21673.14 17182.37 18982.69 18591.61 17186.05 181
SixPastTwentyTwo76.02 18375.72 18576.36 17783.38 17587.54 16675.50 20276.22 16365.50 19257.05 19370.64 11453.97 20874.54 16180.96 19382.12 18891.44 17289.35 155
pmmvs674.83 19172.89 19877.09 17082.11 19287.50 16780.88 18376.97 15752.79 21561.91 17246.66 20960.49 17469.28 18286.74 14285.46 16491.39 17390.56 148
test-mter77.79 16380.02 13775.18 18581.18 19982.85 19780.52 18562.03 21573.62 15162.16 16873.55 10273.83 11673.81 16584.67 17283.34 18091.37 17488.31 162
TDRefinement79.05 15177.05 17081.39 13388.45 11789.00 15486.92 12782.65 9774.21 14464.41 15259.17 18259.16 18674.52 16285.23 16485.09 16691.37 17487.51 171
test-LLR79.47 14679.84 14179.03 15587.47 12782.40 20281.24 17978.05 14873.72 14962.69 16373.76 10074.42 11173.49 16784.61 17382.99 18391.25 17687.01 173
TESTMET0.1,177.78 16479.84 14175.38 18480.86 20082.40 20281.24 17962.72 21473.72 14962.69 16373.76 10074.42 11173.49 16784.61 17382.99 18391.25 17687.01 173
TinyColmap76.73 17173.95 19579.96 14985.16 15685.64 18282.34 17078.19 14670.63 16862.06 16960.69 17449.61 21480.81 10385.12 16883.69 17991.22 17882.27 195
FMVSNet575.50 18976.07 17974.83 18776.16 21081.19 20581.34 17770.21 19073.20 15561.59 17558.97 18468.33 14568.50 18485.87 15585.85 15991.18 17979.11 206
IterMVS78.79 15479.71 14477.71 16685.26 15385.91 17884.54 15469.84 19373.38 15361.25 17870.53 11670.35 13274.43 16385.21 16683.80 17890.95 18088.77 158
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
PatchT76.42 17777.81 16374.80 18878.46 20684.30 19171.82 20965.03 21073.89 14665.37 14661.58 16666.70 14777.18 14485.10 16984.87 16890.94 18188.21 163
EPNet_dtu81.98 11883.82 10379.83 15194.10 5085.97 17787.29 11984.08 7080.61 10259.96 18481.62 5977.19 10162.91 20087.21 13186.38 15090.66 18287.77 170
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PM-MVS74.17 19573.10 19675.41 18376.07 21182.53 20077.56 19871.69 18371.04 16361.92 17161.23 16947.30 21774.82 16081.78 19179.80 19290.42 18388.05 166
test0.0.03 176.03 18278.51 15173.12 19687.47 12785.13 18876.32 20078.05 14873.19 15650.98 20670.64 11469.28 13855.53 20485.33 16284.38 17590.39 18481.63 198
Anonymous2023120670.80 20070.59 20471.04 19981.60 19682.49 20174.64 20475.87 16764.17 19649.27 20744.85 21353.59 21054.68 20783.07 18382.34 18790.17 18583.65 190
CHOSEN 1792x268882.16 11680.91 12783.61 10991.14 8392.01 10789.55 8279.15 13779.87 10670.29 11952.51 20372.56 12481.39 9688.87 11788.17 12590.15 18692.37 121
MIMVSNet165.00 20766.24 20863.55 20958.41 22280.01 20969.00 21274.03 17555.81 21341.88 21636.81 21849.48 21547.89 21381.32 19282.40 18690.08 18777.88 208
LTVRE_ROB74.41 1675.78 18774.72 19377.02 17285.88 14289.22 14882.44 16977.17 15550.57 21745.45 21265.44 14852.29 21181.25 9785.50 16087.42 13289.94 18892.62 110
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
GG-mvs-BLEND57.56 21282.61 11128.34 2200.22 22990.10 12779.37 1900.14 22679.56 1090.40 23071.25 11383.40 620.30 22786.27 15083.87 17689.59 18983.83 189
CVMVSNet76.70 17278.46 15374.64 19083.34 17684.48 19081.83 17574.58 17268.88 17651.23 20569.77 11970.05 13367.49 18984.27 17683.81 17789.38 19087.96 167
TAMVS76.42 17777.16 16975.56 18283.05 18085.55 18380.58 18471.43 18465.40 19461.04 18167.27 13669.22 14067.99 18684.88 17184.78 17089.28 19183.01 193
CostFormer80.94 13080.21 13381.79 12887.69 12488.58 15987.47 11670.66 18780.02 10477.88 8773.03 10471.40 12878.24 13679.96 19779.63 19388.82 19288.84 157
RPSCF83.46 10683.36 10583.59 11087.75 12287.35 16884.82 15279.46 13383.84 7278.12 8382.69 4979.87 7982.60 8982.47 18881.13 19188.78 19386.13 180
test20.0368.31 20470.05 20566.28 20782.41 19080.84 20667.35 21376.11 16558.44 21040.80 21853.77 20054.54 20542.28 21583.07 18381.96 19088.73 19477.76 209
SCA79.51 14580.15 13578.75 15886.58 13787.70 16483.07 16468.53 19681.31 9266.40 13973.83 9975.38 10579.30 13080.49 19579.39 19688.63 19582.96 194
testgi71.92 19974.20 19469.27 20284.58 16383.06 19473.40 20674.39 17364.04 19746.17 21168.90 12957.15 19548.89 21284.07 17883.08 18288.18 19679.09 207
dps78.02 16175.94 18380.44 14686.06 14186.62 17482.58 16669.98 19175.14 13577.76 8969.08 12759.93 17978.47 13479.47 19977.96 20087.78 19783.40 191
PatchmatchNetpermissive78.67 15678.85 15078.46 16386.85 13586.03 17683.77 16068.11 19980.88 10066.19 14072.90 10673.40 12178.06 13779.25 20177.71 20187.75 19881.75 197
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
MDTV_nov1_ep13_2view73.21 19772.91 19773.56 19480.01 20184.28 19278.62 19366.43 20568.64 17759.12 18860.39 17659.69 18269.81 18178.82 20377.43 20287.36 19981.11 201
MDTV_nov1_ep1379.14 15079.49 14678.74 15985.40 15086.89 17284.32 15770.29 18978.85 11569.42 12675.37 9073.29 12275.64 15380.61 19479.48 19587.36 19981.91 196
EPMVS77.53 16678.07 15976.90 17386.89 13484.91 18982.18 17466.64 20481.00 9864.11 15572.75 10769.68 13674.42 16479.36 20078.13 19987.14 20180.68 203
EU-MVSNet69.98 20272.30 19967.28 20575.67 21379.39 21073.12 20769.94 19263.59 19842.80 21562.93 16256.71 19855.07 20679.13 20278.55 19887.06 20285.82 183
new-patchmatchnet63.80 20863.31 21064.37 20876.49 20975.99 21363.73 21670.99 18657.27 21143.08 21445.86 21143.80 21845.13 21473.20 21170.68 21486.80 20376.34 211
pmnet_mix0271.95 19871.83 20172.10 19781.40 19880.63 20873.78 20572.85 18070.90 16554.89 19562.17 16457.42 19462.92 19976.80 20673.98 21086.74 20480.87 202
CMPMVSbinary56.49 1773.84 19671.73 20276.31 17985.20 15485.67 18175.80 20173.23 17762.26 20065.40 14553.40 20159.70 18171.77 17580.25 19679.56 19486.45 20581.28 199
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
MDA-MVSNet-bldmvs66.22 20664.49 20968.24 20361.67 21982.11 20470.07 21176.16 16459.14 20947.94 20954.35 19735.82 22567.33 19064.94 21775.68 20586.30 20679.36 205
MVS-HIRNet68.83 20366.39 20771.68 19877.58 20775.52 21466.45 21465.05 20962.16 20162.84 16244.76 21456.60 19971.96 17478.04 20475.06 20886.18 20772.56 213
CHOSEN 280x42080.28 13481.66 11578.67 16082.92 18479.24 21185.36 14666.79 20378.11 11970.32 11875.03 9379.87 7981.09 10089.07 11283.16 18185.54 20887.17 172
tpm cat177.78 16475.28 19080.70 14187.14 13285.84 17985.81 13970.40 18877.44 12378.80 8063.72 15964.01 15776.55 14975.60 20975.21 20785.51 20985.12 184
tpm76.30 18176.05 18176.59 17586.97 13383.01 19683.83 15967.06 20271.83 16063.87 15769.56 12362.88 16373.41 16979.79 19878.59 19784.41 21086.68 176
tpmrst76.55 17575.99 18277.20 16987.32 12983.05 19582.86 16565.62 20678.61 11867.22 13669.19 12565.71 15075.87 15276.75 20775.33 20684.31 21183.28 192
pmmvs361.89 21061.74 21262.06 21064.30 21870.83 21864.22 21552.14 21948.78 21944.47 21341.67 21641.70 22263.03 19876.06 20876.02 20484.18 21277.14 210
ADS-MVSNet74.53 19375.69 18673.17 19581.57 19780.71 20779.27 19163.03 21379.27 11359.94 18567.86 13368.32 14671.08 17777.33 20576.83 20384.12 21379.53 204
ambc61.92 21170.98 21773.54 21663.64 21760.06 20552.23 20238.44 21719.17 22857.12 20382.33 19075.03 20983.21 21484.89 185
FPMVS63.63 20960.08 21467.78 20480.01 20171.50 21772.88 20869.41 19561.82 20253.11 19845.12 21242.11 22150.86 21066.69 21563.84 21680.41 21569.46 215
N_pmnet66.85 20566.63 20667.11 20678.73 20474.66 21570.53 21071.07 18566.46 18646.54 21051.68 20551.91 21255.48 20574.68 21072.38 21180.29 21674.65 212
new_pmnet59.28 21161.47 21356.73 21261.66 22068.29 21959.57 21854.91 21660.83 20434.38 22244.66 21543.65 21949.90 21171.66 21271.56 21379.94 21769.67 214
PMVScopyleft50.48 1855.81 21351.93 21660.33 21172.90 21649.34 22248.78 22069.51 19443.49 22154.25 19636.26 21941.04 22339.71 21765.07 21660.70 21776.85 21867.58 216
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
Gipumacopyleft49.17 21547.05 21851.65 21359.67 22148.39 22341.98 22363.47 21255.64 21433.33 22314.90 22213.78 22941.34 21669.31 21472.30 21270.11 21955.00 221
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMMVS241.68 21744.74 21938.10 21546.97 22552.32 22140.63 22448.08 22035.51 2227.36 22926.86 22124.64 22716.72 22255.24 22059.03 21868.85 22059.59 219
WB-MVS52.27 21457.26 21546.45 21475.64 21465.62 22040.45 22575.80 16847.10 2209.11 22853.83 19938.98 22414.47 22369.44 21368.29 21563.24 22157.56 220
test_method41.78 21648.10 21734.42 21810.74 22819.78 22944.64 22217.73 22359.83 20638.67 22035.82 22054.41 20634.94 21862.87 21843.13 22159.81 22260.82 218
DeepMVS_CXcopyleft48.31 22448.03 22126.08 22256.42 21225.77 22447.51 20831.31 22651.30 20948.49 22153.61 22361.52 217
tmp_tt32.73 21943.96 22621.15 22826.71 2268.99 22465.67 19151.39 20456.01 19342.64 22011.76 22456.60 21950.81 22053.55 224
E-PMN31.40 21826.80 22136.78 21651.39 22429.96 22620.20 22754.17 21725.93 22412.75 22614.73 2238.58 23134.10 22027.36 22337.83 22248.07 22543.18 223
EMVS30.49 22025.44 22236.39 21751.47 22329.89 22720.17 22854.00 21826.49 22312.02 22713.94 2258.84 23034.37 21925.04 22434.37 22346.29 22639.53 224
MVEpermissive30.17 1930.88 21933.52 22027.80 22123.78 22739.16 22518.69 22946.90 22121.88 22515.39 22514.37 2247.31 23224.41 22141.63 22256.22 21937.64 22754.07 222
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
testmvs1.03 2211.63 2230.34 2220.09 2300.35 2300.61 2310.16 2251.49 2260.10 2313.15 2260.15 2330.86 2261.32 2251.18 2240.20 2283.76 226
test1230.87 2221.40 2240.25 2230.03 2310.25 2310.35 2320.08 2271.21 2270.05 2322.84 2270.03 2340.89 2250.43 2261.16 2250.13 2293.87 225
uanet_test0.00 2230.00 2250.00 2240.00 2320.00 2320.00 2330.00 2280.00 2280.00 2330.00 2280.00 2350.00 2280.00 2270.00 2260.00 2300.00 227
sosnet-low-res0.00 2230.00 2250.00 2240.00 2320.00 2320.00 2330.00 2280.00 2280.00 2330.00 2280.00 2350.00 2280.00 2270.00 2260.00 2300.00 227
sosnet0.00 2230.00 2250.00 2240.00 2320.00 2320.00 2330.00 2280.00 2280.00 2330.00 2280.00 2350.00 2280.00 2270.00 2260.00 2300.00 227
RE-MVS-def56.08 194
9.1492.16 17
SR-MVS96.58 2590.99 2192.40 13
our_test_381.81 19583.96 19376.61 199
MTAPA92.97 291.03 23
MTMP93.14 190.21 30
Patchmatch-RL test8.55 230
mPP-MVS97.06 1288.08 45
NP-MVS87.47 54
Patchmtry85.54 18482.30 17168.23 19765.37 146