This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort by
SED-MVS97.98 298.36 297.54 498.94 1699.29 298.81 496.64 397.14 395.16 497.96 299.61 296.92 1298.00 197.24 898.75 1799.25 3
DVP-MVS++98.07 198.46 197.62 199.08 399.29 298.84 396.63 497.89 195.35 397.83 499.48 396.98 997.99 297.14 1198.82 1199.60 1
CNVR-MVS97.30 1097.41 1197.18 899.02 1098.60 2198.15 1696.24 1396.12 1794.10 1195.54 2597.99 1296.99 797.97 397.17 998.57 2498.50 29
DVP-MVScopyleft97.93 398.23 397.58 399.05 699.31 198.64 696.62 597.56 295.08 596.61 1399.64 197.32 197.91 497.31 698.77 1599.26 2
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
SMA-MVScopyleft97.53 797.93 797.07 1099.21 199.02 898.08 1996.25 1196.36 1293.57 1596.56 1499.27 596.78 1697.91 497.43 398.51 2698.94 12
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
SteuartSystems-ACMMP97.10 1597.49 1096.65 1898.97 1398.95 998.43 995.96 1795.12 2891.46 2896.85 997.60 1896.37 2497.76 697.16 1098.68 1898.97 11
Skip Steuart: Steuart Systems R&D Blog.
DPE-MVScopyleft97.83 498.13 497.48 598.83 2299.19 498.99 196.70 196.05 1894.39 998.30 199.47 497.02 697.75 797.02 1498.98 399.10 9
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
APDe-MVS97.79 597.96 697.60 299.20 299.10 698.88 296.68 296.81 794.64 697.84 398.02 1197.24 397.74 897.02 1498.97 599.16 6
DeepPCF-MVS92.65 295.50 3396.96 1993.79 5196.44 5698.21 4293.51 9594.08 3696.94 489.29 4393.08 3196.77 2793.82 5497.68 997.40 495.59 17698.65 16
ACMMP_NAP96.93 1697.27 1596.53 2399.06 598.95 998.24 1396.06 1595.66 2190.96 3295.63 2497.71 1696.53 2097.66 1096.68 2098.30 5498.61 20
DeepC-MVS_fast93.32 196.48 2296.42 2796.56 2098.70 2598.31 3897.97 2295.76 2096.31 1492.01 2791.43 3995.42 3996.46 2297.65 1197.69 198.49 3198.12 47
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
TSAR-MVS + MP.97.31 997.64 996.92 1397.28 4598.56 2398.61 795.48 2896.72 894.03 1396.73 1298.29 997.15 497.61 1296.42 2698.96 699.13 7
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
CS-MVS94.53 4494.73 4294.31 4296.30 5998.53 2694.98 6089.24 8193.37 4890.24 3988.96 5389.76 7096.09 2897.48 1396.42 2698.99 298.59 21
NCCC96.75 1996.67 2496.85 1699.03 998.44 3498.15 1696.28 1096.32 1392.39 2592.16 3497.55 2096.68 1997.32 1496.65 2298.55 2598.26 38
DELS-MVS93.71 5293.47 5294.00 4496.82 5298.39 3696.80 3891.07 5689.51 9889.94 4083.80 8389.29 7190.95 8797.32 1497.65 298.42 4098.32 36
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
HPM-MVS++copyleft97.22 1197.40 1297.01 1199.08 398.55 2498.19 1496.48 796.02 1993.28 2096.26 1798.71 896.76 1797.30 1696.25 3798.30 5498.68 15
MSP-MVS97.70 698.09 597.24 699.00 1199.17 598.76 596.41 996.91 593.88 1497.72 599.04 796.93 1197.29 1797.31 698.45 3799.23 4
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
DROMVSNet94.19 4895.05 3893.18 5893.56 10197.65 6195.34 5786.37 11592.05 5988.71 4989.91 4793.32 4796.14 2797.29 1796.42 2698.98 398.70 14
ETV-MVS93.80 5194.57 4492.91 6593.98 8797.50 6493.62 9288.70 8691.95 6087.57 5990.21 4690.79 6194.56 4297.20 1996.35 3199.02 197.98 51
TSAR-MVS + ACMM96.19 2397.39 1394.78 3797.70 3998.41 3597.72 2795.49 2796.47 1186.66 6796.35 1597.85 1393.99 5097.19 2096.37 3097.12 13099.13 7
IS_MVSNet91.87 7093.35 5490.14 10194.09 8497.73 5893.09 10288.12 9488.71 10579.98 11484.49 7890.63 6487.49 12797.07 2196.96 1698.07 7797.88 60
APD-MVScopyleft97.12 1397.05 1897.19 799.04 798.63 1998.45 896.54 694.81 3693.50 1696.10 1997.40 2296.81 1397.05 2296.82 1998.80 1298.56 22
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CS-MVS-test94.63 4395.28 3693.88 4996.56 5598.67 1393.41 9789.31 7994.27 4189.64 4190.84 4291.64 5695.58 3397.04 2396.17 3998.77 1598.32 36
CANet94.85 3894.92 3994.78 3797.25 4698.52 2897.20 3291.81 4893.25 4991.06 3186.29 6594.46 4392.99 6497.02 2496.68 2098.34 4898.20 41
MCST-MVS96.83 1897.06 1796.57 1998.88 2098.47 3298.02 2196.16 1495.58 2390.96 3295.78 2397.84 1496.46 2297.00 2596.17 3998.94 798.55 27
SD-MVS97.35 897.73 896.90 1497.35 4398.66 1497.85 2596.25 1196.86 694.54 896.75 1199.13 696.99 796.94 2696.58 2398.39 4499.20 5
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
MVS_030494.30 4794.68 4393.86 5096.33 5898.48 3097.41 3091.20 5392.75 5386.96 6486.03 6893.81 4692.64 6996.89 2796.54 2598.61 2298.24 39
DeepC-MVS92.10 395.22 3494.77 4195.75 3097.77 3798.54 2597.63 2895.96 1795.07 3188.85 4785.35 7391.85 5395.82 3096.88 2897.10 1298.44 3898.63 17
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SF-MVS97.20 1297.29 1497.10 998.95 1598.51 2997.51 2996.48 796.17 1694.64 697.32 697.57 1996.23 2696.78 2996.15 4198.79 1498.55 27
test111190.47 9389.10 10592.07 7594.92 7698.30 3994.17 7890.30 6389.56 9783.92 9373.25 15073.66 14690.26 9696.77 3096.14 4298.87 896.04 120
MP-MVScopyleft96.56 2196.72 2396.37 2498.93 1898.48 3098.04 2095.55 2394.32 4090.95 3495.88 2297.02 2596.29 2596.77 3096.01 4798.47 3298.56 22
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
test250690.93 8489.20 10392.95 6394.97 7498.30 3994.53 6590.25 6489.91 9088.39 5283.23 8764.17 19090.69 9096.75 3296.10 4498.87 895.97 122
ECVR-MVScopyleft90.77 8889.27 10192.52 6894.97 7498.30 3994.53 6590.25 6489.91 9085.80 7773.64 14374.31 14590.69 9096.75 3296.10 4498.87 895.91 125
X-MVS96.07 2696.33 2895.77 2998.94 1698.66 1497.94 2395.41 3095.12 2888.03 5393.00 3296.06 3195.85 2996.65 3496.35 3198.47 3298.48 30
HFP-MVS97.11 1497.19 1697.00 1298.97 1398.73 1298.37 1195.69 2196.60 993.28 2096.87 896.64 2897.27 296.64 3596.33 3598.44 3898.56 22
MVS_111021_HR94.84 3995.91 3093.60 5297.35 4398.46 3395.08 5991.19 5494.18 4285.97 7295.38 2692.56 5193.61 5796.61 3696.25 3798.40 4297.92 56
ACMMPR96.92 1796.96 1996.87 1598.99 1298.78 1198.38 1095.52 2496.57 1092.81 2496.06 2095.90 3597.07 596.60 3796.34 3498.46 3498.42 33
UA-Net90.81 8592.58 6288.74 11394.87 7897.44 6692.61 10788.22 9282.35 15878.93 11885.20 7595.61 3779.56 18396.52 3896.57 2498.23 6394.37 151
3Dnovator+90.56 595.06 3694.56 4595.65 3198.11 3198.15 4597.19 3391.59 5195.11 3093.23 2281.99 10094.71 4295.43 3696.48 3996.88 1898.35 4698.63 17
PGM-MVS96.16 2496.33 2895.95 2699.04 798.63 1998.32 1292.76 4293.42 4790.49 3796.30 1695.31 4096.71 1896.46 4096.02 4698.38 4598.19 42
PHI-MVS95.86 2896.93 2294.61 4097.60 4198.65 1896.49 4093.13 4094.07 4387.91 5797.12 797.17 2493.90 5396.46 4096.93 1798.64 2098.10 49
CP-MVS96.68 2096.59 2696.77 1798.85 2198.58 2298.18 1595.51 2695.34 2592.94 2395.21 2896.25 3096.79 1596.44 4295.77 4998.35 4698.56 22
PVSNet_BlendedMVS92.80 5792.44 6593.23 5596.02 6197.83 5493.74 8990.58 5991.86 6190.69 3585.87 7182.04 10790.01 9796.39 4395.26 5898.34 4897.81 61
PVSNet_Blended92.80 5792.44 6593.23 5596.02 6197.83 5493.74 8990.58 5991.86 6190.69 3585.87 7182.04 10790.01 9796.39 4395.26 5898.34 4897.81 61
Vis-MVSNet (Re-imp)90.54 9292.76 6087.94 12293.73 9896.94 8392.17 11687.91 9788.77 10476.12 12883.68 8490.80 6079.49 18496.34 4596.35 3198.21 6596.46 103
PVSNet_Blended_VisFu91.92 6992.39 6791.36 8895.45 7197.85 5392.25 11389.54 7688.53 10887.47 6079.82 11190.53 6585.47 14896.31 4695.16 6197.99 8598.56 22
train_agg96.15 2596.64 2595.58 3398.44 2798.03 4898.14 1895.40 3193.90 4587.72 5896.26 1798.10 1095.75 3196.25 4795.45 5598.01 8398.47 31
3Dnovator90.28 794.70 4294.34 4895.11 3598.06 3298.21 4296.89 3791.03 5794.72 3791.45 2982.87 9193.10 4994.61 4196.24 4897.08 1398.63 2198.16 43
gg-mvs-nofinetune81.83 18883.58 16179.80 19591.57 12896.54 9093.79 8768.80 21162.71 21543.01 22055.28 20685.06 8783.65 16296.13 4994.86 6597.98 8894.46 149
CDPH-MVS94.80 4195.50 3393.98 4698.34 2898.06 4797.41 3093.23 3992.81 5282.98 9792.51 3394.82 4193.53 5896.08 5096.30 3698.42 4097.94 54
EIA-MVS92.72 5992.96 5892.44 7093.86 9497.76 5693.13 10188.65 8889.78 9486.68 6686.69 6287.57 7293.74 5596.07 5195.32 5698.58 2397.53 70
TSAR-MVS + GP.95.86 2896.95 2194.60 4194.07 8598.11 4696.30 4391.76 4995.67 2091.07 3096.82 1097.69 1795.71 3295.96 5295.75 5098.68 1898.63 17
MVS_111021_LR94.84 3995.57 3294.00 4497.11 4897.72 6094.88 6391.16 5595.24 2788.74 4896.03 2191.52 5894.33 4795.96 5295.01 6297.79 9597.49 72
Vis-MVSNetpermissive89.36 10891.49 8086.88 13392.10 12297.60 6392.16 11785.89 11884.21 14475.20 13082.58 9587.13 7477.40 18895.90 5495.63 5198.51 2697.36 76
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
DPM-MVS95.07 3594.84 4095.34 3497.44 4297.49 6597.76 2695.52 2494.88 3488.92 4687.25 5896.44 2994.41 4395.78 5596.11 4397.99 8595.95 123
MVSTER91.73 7391.61 7891.86 7793.18 10594.56 11294.37 6987.90 9890.16 8588.69 5089.23 5081.28 11288.92 11695.75 5693.95 8098.12 7296.37 107
QAPM94.13 4994.33 4993.90 4797.82 3698.37 3796.47 4190.89 5892.73 5585.63 8085.35 7393.87 4494.17 4895.71 5795.90 4898.40 4298.42 33
MSLP-MVS++96.05 2795.63 3196.55 2198.33 2998.17 4496.94 3694.61 3494.70 3894.37 1089.20 5195.96 3496.81 1395.57 5897.33 598.24 6298.47 31
ACMMPcopyleft95.54 3195.49 3495.61 3298.27 3098.53 2697.16 3494.86 3294.88 3489.34 4295.36 2791.74 5495.50 3595.51 5994.16 7498.50 2998.22 40
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CANet_DTU90.74 9092.93 5988.19 11894.36 8096.61 8794.34 7184.66 13090.66 7168.75 16790.41 4586.89 7689.78 9995.46 6094.87 6497.25 12295.62 130
casdiffmvs_mvgpermissive91.94 6891.25 8392.75 6793.41 10397.19 7495.48 5589.77 7089.86 9286.41 6981.02 10782.23 10692.93 6595.44 6195.61 5298.51 2697.40 75
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
FA-MVS(training)90.79 8791.33 8190.17 9993.76 9797.22 7292.74 10677.79 18790.60 7588.03 5378.80 11587.41 7391.00 8695.40 6293.43 9397.70 10496.46 103
casdiffmvspermissive91.72 7491.16 8592.38 7293.16 10697.15 7593.95 8189.49 7791.58 6686.03 7180.75 10880.95 11393.16 6295.25 6395.22 6098.50 2997.23 81
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
EPNet93.92 5094.40 4693.36 5497.89 3496.55 8996.08 4692.14 4591.65 6489.16 4494.07 3090.17 6987.78 12395.24 6494.97 6397.09 13298.15 44
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
gm-plane-assit77.65 20078.50 19876.66 20087.96 16785.43 21064.70 21674.50 19564.15 21451.26 21561.32 19858.17 21184.11 16095.16 6593.83 8197.45 11791.41 176
baseline190.81 8590.29 9191.42 8493.67 9995.86 10493.94 8389.69 7489.29 10082.85 9882.91 9080.30 11689.60 10095.05 6694.79 6698.80 1293.82 159
OpenMVScopyleft88.18 1192.51 6191.61 7893.55 5397.74 3898.02 4995.66 5290.46 6189.14 10186.50 6875.80 13490.38 6892.69 6894.99 6795.30 5798.27 5897.63 65
MAR-MVS92.71 6092.63 6192.79 6697.70 3997.15 7593.75 8887.98 9690.71 7085.76 7886.28 6686.38 7894.35 4694.95 6895.49 5497.22 12397.44 73
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
CHOSEN 280x42090.77 8892.14 7089.17 10993.86 9492.81 16193.16 10080.22 17790.21 8284.67 9289.89 4891.38 5990.57 9494.94 6992.11 12392.52 19793.65 161
tfpn200view989.55 10587.86 12091.53 8293.90 9297.26 6994.31 7389.74 7185.87 12881.15 10576.46 12970.38 15791.76 7894.92 7093.51 8798.28 5796.61 98
thres600view789.28 11187.47 13091.39 8594.12 8397.25 7093.94 8389.74 7185.62 13380.63 11175.24 13869.33 16291.66 8094.92 7093.23 9898.27 5896.72 95
thres20089.49 10687.72 12291.55 8193.95 8997.25 7094.34 7189.74 7185.66 13181.18 10476.12 13370.19 16091.80 7694.92 7093.51 8798.27 5896.40 106
OMC-MVS94.49 4594.36 4794.64 3997.17 4797.73 5895.49 5492.25 4496.18 1590.34 3888.51 5492.88 5094.90 4094.92 7094.17 7397.69 10696.15 116
tttt051791.01 8391.71 7690.19 9892.98 10897.07 7991.96 12287.63 10790.61 7481.42 10286.76 6182.26 10589.23 10894.86 7493.03 10897.90 9097.36 76
EPP-MVSNet92.13 6593.06 5691.05 9093.66 10097.30 6892.18 11487.90 9890.24 8183.63 9486.14 6790.52 6790.76 8994.82 7594.38 7098.18 6897.98 51
thisisatest053091.04 8291.74 7590.21 9692.93 11297.00 8092.06 11987.63 10790.74 6981.51 10186.81 6082.48 10189.23 10894.81 7693.03 10897.90 9097.33 78
thres40089.40 10787.58 12791.53 8294.06 8697.21 7394.19 7789.83 6985.69 13081.08 10775.50 13669.76 16191.80 7694.79 7793.51 8798.20 6696.60 99
FC-MVSNet-train90.55 9190.19 9390.97 9193.78 9695.16 10892.11 11888.85 8387.64 11383.38 9684.36 8078.41 12789.53 10194.69 7893.15 10398.15 6997.92 56
UGNet91.52 7693.41 5389.32 10794.13 8297.15 7591.83 12389.01 8290.62 7385.86 7686.83 5991.73 5577.40 18894.68 7994.43 6997.71 10298.40 35
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
OPM-MVS91.08 8089.34 10093.11 6196.18 6096.13 10096.39 4292.39 4382.97 15581.74 10082.55 9780.20 11793.97 5294.62 8093.23 9898.00 8495.73 128
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
Effi-MVS+89.79 10289.83 9889.74 10392.98 10896.45 9493.48 9684.24 13587.62 11476.45 12681.76 10177.56 13593.48 5994.61 8193.59 8697.82 9497.22 83
CSCG95.68 3095.46 3595.93 2798.71 2499.07 797.13 3593.55 3795.48 2493.35 1990.61 4493.82 4595.16 3794.60 8295.57 5397.70 10499.08 10
CPTT-MVS95.54 3195.07 3796.10 2597.88 3597.98 5097.92 2494.86 3294.56 3992.16 2691.01 4095.71 3696.97 1094.56 8393.50 9096.81 15398.14 45
PLCcopyleft90.69 494.32 4692.99 5795.87 2897.91 3396.49 9195.95 5094.12 3594.94 3294.09 1285.90 6990.77 6295.58 3394.52 8493.32 9797.55 11395.00 144
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
AdaColmapbinary95.02 3793.71 5096.54 2298.51 2697.76 5696.69 3995.94 1993.72 4693.50 1689.01 5290.53 6596.49 2194.51 8593.76 8398.07 7796.69 96
TSAR-MVS + COLMAP92.39 6392.31 6892.47 6995.35 7396.46 9396.13 4592.04 4795.33 2680.11 11394.95 2977.35 13694.05 4994.49 8693.08 10497.15 12794.53 148
LS3D91.97 6790.98 8793.12 6097.03 5097.09 7895.33 5895.59 2292.47 5679.26 11781.60 10382.77 9994.39 4594.28 8794.23 7297.14 12994.45 150
LGP-MVS_train91.83 7192.04 7291.58 8095.46 6996.18 9995.97 4989.85 6890.45 7777.76 12091.92 3780.07 11892.34 7394.27 8893.47 9198.11 7497.90 59
FMVSNet289.61 10489.14 10490.16 10088.66 15893.65 13594.25 7485.44 12488.57 10784.96 9173.53 14583.82 9189.38 10494.23 8994.68 6898.31 5195.47 134
Fast-Effi-MVS+88.56 11587.99 11889.22 10891.56 12995.21 10792.29 11282.69 15386.82 11977.73 12176.24 13273.39 14793.36 6194.22 9093.64 8497.65 10996.43 105
DI_MVS_plusplus_trai91.05 8190.15 9492.11 7492.67 11896.61 8796.03 4788.44 9090.25 8085.92 7473.73 14284.89 8891.92 7594.17 9194.07 7897.68 10797.31 79
thres100view90089.36 10887.61 12591.39 8593.90 9296.86 8594.35 7089.66 7585.87 12881.15 10576.46 12970.38 15791.17 8394.09 9293.43 9398.13 7196.16 115
ACMM88.76 1091.70 7590.43 9093.19 5795.56 6695.14 10993.35 9991.48 5292.26 5887.12 6284.02 8179.34 12093.99 5094.07 9392.68 11297.62 11295.50 133
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MVS_Test91.81 7292.19 6991.37 8793.24 10496.95 8294.43 6786.25 11691.45 6783.45 9586.31 6485.15 8692.93 6593.99 9494.71 6797.92 8996.77 94
GBi-Net90.21 9690.11 9590.32 9488.66 15893.65 13594.25 7485.78 12090.03 8685.56 8277.38 12086.13 7989.38 10493.97 9594.16 7498.31 5195.47 134
test190.21 9690.11 9590.32 9488.66 15893.65 13594.25 7485.78 12090.03 8685.56 8277.38 12086.13 7989.38 10493.97 9594.16 7498.31 5195.47 134
FMVSNet187.33 12386.00 14288.89 11087.13 18492.83 16093.08 10384.46 13481.35 16382.20 9966.33 17877.96 13088.96 11393.97 9594.16 7497.54 11495.38 139
canonicalmvs93.08 5593.09 5593.07 6294.24 8197.86 5295.45 5687.86 10294.00 4487.47 6088.32 5582.37 10495.13 3893.96 9896.41 2998.27 5898.73 13
TAPA-MVS90.35 693.69 5393.52 5193.90 4796.89 5197.62 6296.15 4491.67 5094.94 3285.97 7287.72 5791.96 5294.40 4493.76 9993.06 10698.30 5495.58 132
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
CLD-MVS92.50 6291.96 7393.13 5993.93 9196.24 9795.69 5188.77 8592.92 5089.01 4588.19 5681.74 11093.13 6393.63 10093.08 10498.23 6397.91 58
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
CNLPA93.69 5392.50 6395.06 3697.11 4897.36 6793.88 8593.30 3895.64 2293.44 1880.32 10990.73 6394.99 3993.58 10193.33 9597.67 10896.57 101
GA-MVS85.08 14985.65 14784.42 16089.77 14794.25 12189.26 15684.62 13181.19 16462.25 19775.72 13568.44 16684.14 15993.57 10291.68 13596.49 15694.71 147
PatchMatch-RL90.30 9588.93 10791.89 7695.41 7295.68 10590.94 12688.67 8789.80 9386.95 6585.90 6972.51 14892.46 7093.56 10392.18 12196.93 14592.89 169
baseline288.97 11289.50 9988.36 11591.14 13495.30 10690.13 14085.17 12787.24 11580.80 10984.46 7978.44 12685.60 14593.54 10491.87 12997.31 12095.66 129
pm-mvs184.55 15583.46 16285.82 14188.16 16593.39 14189.05 16185.36 12674.03 20072.43 14365.08 18671.11 15482.30 17093.48 10591.70 13397.64 11095.43 137
HQP-MVS92.39 6392.49 6492.29 7395.65 6595.94 10395.64 5392.12 4692.46 5779.65 11591.97 3682.68 10092.92 6793.47 10692.77 11197.74 10098.12 47
CHOSEN 1792x268888.57 11487.82 12189.44 10695.46 6996.89 8493.74 8985.87 11989.63 9577.42 12361.38 19783.31 9488.80 11893.44 10793.16 10295.37 18196.95 90
diffmvspermissive91.37 7791.09 8691.70 7992.71 11796.47 9294.03 7988.78 8492.74 5485.43 8783.63 8580.37 11591.76 7893.39 10893.78 8297.50 11597.23 81
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CDS-MVSNet88.34 11688.71 10887.90 12390.70 14294.54 11392.38 10986.02 11780.37 16779.42 11679.30 11283.43 9382.04 17193.39 10894.01 7996.86 15195.93 124
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
GeoE89.29 11088.68 10989.99 10292.75 11696.03 10293.07 10483.79 14286.98 11881.34 10374.72 13978.92 12291.22 8293.31 11093.21 10097.78 9697.60 69
FMVSNet390.19 9890.06 9790.34 9388.69 15793.85 12794.58 6485.78 12090.03 8685.56 8277.38 12086.13 7989.22 11093.29 11194.36 7198.20 6695.40 138
ACMP89.13 992.03 6691.70 7792.41 7194.92 7696.44 9593.95 8189.96 6791.81 6385.48 8590.97 4179.12 12192.42 7193.28 11292.55 11597.76 9897.74 64
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
anonymousdsp84.51 15685.85 14682.95 18086.30 19593.51 13885.77 18980.38 17678.25 18163.42 19573.51 14672.20 15084.64 15493.21 11392.16 12297.19 12598.14 45
DCV-MVSNet91.24 7891.26 8291.22 8992.84 11393.44 13993.82 8686.75 11291.33 6885.61 8184.00 8285.46 8591.27 8192.91 11493.62 8597.02 13698.05 50
EPNet_dtu88.32 11790.61 8985.64 14596.79 5392.27 17392.03 12090.31 6289.05 10265.44 18889.43 4985.90 8374.22 19792.76 11592.09 12495.02 18692.76 170
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
tfpnnormal83.80 16881.26 19086.77 13589.60 14993.26 14789.72 15187.60 10972.78 20170.44 15560.53 20061.15 20285.55 14692.72 11691.44 13797.71 10296.92 91
Anonymous20240521188.00 11793.16 10696.38 9693.58 9389.34 7887.92 11265.04 18783.03 9692.07 7492.67 11793.33 9596.96 14097.63 65
GG-mvs-BLEND62.84 20990.21 9230.91 2170.57 22594.45 11686.99 1790.34 22388.71 1050.98 22581.55 10591.58 570.86 22292.66 11891.43 13895.73 17091.11 180
Effi-MVS+-dtu87.51 12288.13 11686.77 13591.10 13594.90 11190.91 12782.67 15483.47 15171.55 14681.11 10677.04 13789.41 10392.65 11991.68 13595.00 18796.09 118
MSDG90.42 9488.25 11492.94 6496.67 5494.41 11893.96 8092.91 4189.59 9686.26 7076.74 12780.92 11490.43 9592.60 12092.08 12597.44 11891.41 176
thisisatest051585.70 14087.00 13184.19 16388.16 16593.67 13484.20 19484.14 13883.39 15372.91 13976.79 12674.75 14478.82 18692.57 12191.26 14096.94 14296.56 102
FC-MVSNet-test86.15 13489.10 10582.71 18389.83 14693.18 14987.88 17284.69 12986.54 12362.18 19882.39 9883.31 9474.18 19892.52 12291.86 13097.50 11593.88 158
test-mter86.09 13788.38 11183.43 17387.89 16892.61 16586.89 18077.11 19084.30 14268.62 16982.57 9682.45 10284.34 15592.40 12390.11 16595.74 16994.21 154
PMMVS89.88 10091.19 8488.35 11689.73 14891.97 18190.62 12981.92 16490.57 7680.58 11292.16 3486.85 7791.17 8392.31 12491.35 13996.11 16493.11 168
test-LLR86.88 12688.28 11285.24 14991.22 13292.07 17787.41 17583.62 14484.58 13769.33 16383.00 8882.79 9784.24 15692.26 12589.81 17195.64 17493.44 162
TESTMET0.1,186.11 13688.28 11283.59 17087.80 16992.07 17787.41 17577.12 18984.58 13769.33 16383.00 8882.79 9784.24 15692.26 12589.81 17195.64 17493.44 162
Anonymous2023121189.82 10188.18 11591.74 7892.52 11996.09 10193.38 9889.30 8088.95 10385.90 7564.55 19184.39 8992.41 7292.24 12793.06 10696.93 14597.95 53
MS-PatchMatch87.63 12087.61 12587.65 12693.95 8994.09 12392.60 10881.52 16986.64 12176.41 12773.46 14785.94 8285.01 15292.23 12890.00 16896.43 16090.93 182
MIMVSNet82.97 17984.00 15981.77 19182.23 20692.25 17487.40 17772.73 20581.48 16269.55 16168.79 16772.42 14981.82 17492.23 12892.25 11996.89 14888.61 196
HyFIR lowres test87.87 11986.42 13689.57 10495.56 6696.99 8192.37 11084.15 13786.64 12177.17 12457.65 20383.97 9091.08 8592.09 13092.44 11697.09 13295.16 141
baseline91.19 7991.89 7490.38 9292.76 11495.04 11093.55 9484.54 13392.92 5085.71 7986.68 6386.96 7589.28 10792.00 13192.62 11496.46 15896.99 88
PCF-MVS90.19 892.98 5692.07 7194.04 4396.39 5797.87 5196.03 4795.47 2987.16 11685.09 9084.81 7793.21 4893.46 6091.98 13291.98 12897.78 9697.51 71
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
USDC86.73 12985.96 14387.63 12791.64 12693.97 12592.76 10584.58 13288.19 10970.67 15480.10 11067.86 16989.43 10291.81 13389.77 17396.69 15590.05 189
NR-MVSNet85.46 14584.54 15586.52 13888.33 16393.78 12990.45 13187.87 10084.40 13971.61 14570.59 15962.09 19782.79 16791.75 13491.75 13298.10 7597.44 73
Fast-Effi-MVS+-dtu86.25 13187.70 12384.56 15890.37 14593.70 13290.54 13078.14 18483.50 15065.37 18981.59 10475.83 14386.09 14491.70 13591.70 13396.88 14995.84 126
TransMVSNet (Re)82.67 18280.93 19384.69 15688.71 15691.50 18887.90 17187.15 11071.54 20668.24 17163.69 19364.67 18978.51 18791.65 13690.73 14997.64 11092.73 172
EG-PatchMatch MVS81.70 19081.31 18982.15 18888.75 15593.81 12887.14 17878.89 18271.57 20464.12 19461.20 19968.46 16576.73 19291.48 13790.77 14697.28 12191.90 173
CR-MVSNet85.48 14486.29 13784.53 15991.08 13792.10 17589.18 15773.30 20284.75 13571.08 15173.12 15277.91 13186.27 14091.48 13790.75 14796.27 16293.94 156
PatchT83.86 16685.51 14981.94 18988.41 16191.56 18778.79 20671.57 20684.08 14771.08 15170.62 15876.13 14286.27 14091.48 13790.75 14795.52 17993.94 156
ET-MVSNet_ETH3D89.93 9990.84 8888.87 11179.60 21096.19 9894.43 6786.56 11390.63 7280.75 11090.71 4377.78 13293.73 5691.36 14093.45 9298.15 6995.77 127
ACMH85.51 1387.31 12486.59 13488.14 11993.96 8894.51 11489.00 16287.99 9581.58 16170.15 15778.41 11871.78 15390.60 9391.30 14191.99 12797.17 12696.58 100
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
IterMVS-SCA-FT85.44 14686.71 13283.97 16790.59 14390.84 19489.73 15078.34 18384.07 14866.40 18377.27 12578.66 12483.06 16491.20 14290.10 16695.72 17194.78 145
FMVSNet584.47 15984.72 15484.18 16483.30 20588.43 20288.09 17079.42 18084.25 14374.14 13473.15 15178.74 12383.65 16291.19 14391.19 14196.46 15886.07 203
UniMVSNet (Re)86.22 13385.46 15087.11 13088.34 16294.42 11789.65 15287.10 11184.39 14174.61 13170.41 16268.10 16785.10 15191.17 14491.79 13197.84 9397.94 54
test0.0.03 185.58 14287.69 12483.11 17691.22 13292.54 16885.60 19183.62 14485.66 13167.84 17482.79 9379.70 11973.51 20191.15 14590.79 14496.88 14991.23 179
v7n82.25 18681.54 18683.07 17885.55 19992.58 16686.68 18381.10 17476.54 18965.97 18562.91 19460.56 20482.36 16991.07 14690.35 15696.77 15496.80 93
IterMVS85.25 14886.49 13583.80 16890.42 14490.77 19790.02 14278.04 18584.10 14666.27 18477.28 12478.41 12783.01 16590.88 14789.72 17595.04 18594.24 152
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v1084.18 16183.17 17185.37 14687.34 17892.68 16390.32 13381.33 17079.93 17469.23 16566.33 17865.74 18087.03 13190.84 14890.38 15596.97 13896.29 112
pmmvs583.37 17382.68 17484.18 16487.13 18493.18 14986.74 18182.08 16376.48 19067.28 17871.26 15662.70 19484.71 15390.77 14990.12 16497.15 12794.24 152
v114484.03 16582.88 17385.37 14687.17 18293.15 15290.18 13783.31 14978.83 17767.85 17365.99 18064.99 18586.79 13490.75 15090.33 15796.90 14796.15 116
v119283.56 17182.35 17684.98 15186.84 18992.84 15890.01 14382.70 15278.54 17866.48 18164.88 18862.91 19286.91 13390.72 15190.25 15996.94 14296.32 110
LTVRE_ROB81.71 1682.44 18581.84 18383.13 17589.01 15392.99 15488.90 16382.32 16066.26 21254.02 21274.68 14059.62 20988.87 11790.71 15292.02 12695.68 17396.62 97
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
IterMVS-LS88.60 11388.45 11088.78 11292.02 12392.44 17192.00 12183.57 14686.52 12478.90 11978.61 11781.34 11189.12 11190.68 15393.18 10197.10 13196.35 108
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
TAMVS84.94 15284.95 15184.93 15388.82 15493.18 14988.44 16881.28 17177.16 18673.76 13675.43 13776.57 14082.04 17190.59 15490.79 14495.22 18390.94 181
TinyColmap84.04 16482.01 18186.42 13990.87 13891.84 18288.89 16484.07 13982.11 16069.89 15971.08 15760.81 20389.04 11290.52 15589.19 17995.76 16888.50 197
pmmvs680.90 19178.77 19783.38 17485.84 19691.61 18686.01 18782.54 15664.17 21370.43 15654.14 21067.06 17380.73 18090.50 15689.17 18094.74 18894.75 146
v192192083.30 17482.09 18084.70 15586.59 19392.67 16489.82 14982.23 16178.32 17965.76 18664.64 19062.35 19586.78 13590.34 15790.02 16797.02 13696.31 111
UniMVSNet_NR-MVSNet86.80 12785.86 14587.89 12488.17 16494.07 12490.15 13888.51 8984.20 14573.45 13772.38 15470.30 15988.95 11490.25 15892.21 12098.12 7297.62 67
DU-MVS86.12 13584.81 15387.66 12587.77 17193.78 12990.15 13887.87 10084.40 13973.45 13770.59 15964.82 18788.95 11490.14 15992.33 11797.76 9897.62 67
Baseline_NR-MVSNet85.28 14783.42 16587.46 12987.77 17190.80 19689.90 14887.69 10483.93 14974.16 13364.72 18966.43 17787.48 12890.14 15990.83 14397.73 10197.11 86
v124082.88 18081.66 18484.29 16186.46 19492.52 17089.06 16081.82 16677.16 18665.09 19064.17 19261.50 20086.36 13790.12 16190.13 16196.95 14196.04 120
testgi81.94 18784.09 15879.43 19689.53 15190.83 19582.49 19881.75 16780.59 16559.46 20482.82 9265.75 17967.97 20390.10 16289.52 17695.39 18089.03 192
RPMNet84.82 15385.90 14483.56 17191.10 13592.10 17588.73 16671.11 20784.75 13568.79 16673.56 14477.62 13485.33 14990.08 16389.43 17796.32 16193.77 160
COLMAP_ROBcopyleft84.39 1587.61 12186.03 14089.46 10595.54 6894.48 11591.77 12490.14 6687.16 11675.50 12973.41 14876.86 13987.33 12990.05 16489.76 17496.48 15790.46 185
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
ACMH+85.75 1287.19 12586.02 14188.56 11493.42 10294.41 11889.91 14687.66 10683.45 15272.25 14476.42 13171.99 15290.78 8889.86 16590.94 14297.32 11995.11 143
CVMVSNet83.83 16785.53 14881.85 19089.60 14990.92 19287.81 17383.21 15080.11 17060.16 20276.47 12878.57 12576.79 19089.76 16690.13 16193.51 18992.75 171
TranMVSNet+NR-MVSNet85.57 14384.41 15686.92 13287.67 17493.34 14290.31 13488.43 9183.07 15470.11 15869.99 16565.28 18286.96 13289.73 16792.27 11898.06 7997.17 85
v14419283.48 17282.23 17784.94 15286.65 19092.84 15889.63 15382.48 15777.87 18267.36 17765.33 18563.50 19186.51 13689.72 16889.99 16997.03 13596.35 108
TDRefinement84.97 15183.39 16686.81 13492.97 11094.12 12292.18 11487.77 10382.78 15671.31 14968.43 16868.07 16881.10 17989.70 16989.03 18195.55 17891.62 174
IB-MVS85.10 1487.98 11887.97 11987.99 12194.55 7996.86 8584.52 19288.21 9386.48 12688.54 5174.41 14177.74 13374.10 19989.65 17092.85 11098.06 7997.80 63
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
V4284.48 15883.36 16885.79 14387.14 18393.28 14590.03 14183.98 14080.30 16871.20 15066.90 17567.17 17185.55 14689.35 17190.27 15896.82 15296.27 113
WR-MVS_H82.86 18182.66 17583.10 17787.44 17793.33 14385.71 19083.20 15177.36 18568.20 17266.37 17765.23 18376.05 19489.35 17190.13 16197.99 8596.89 92
pmmvs486.00 13884.28 15788.00 12087.80 16992.01 18089.94 14584.91 12886.79 12080.98 10873.41 14866.34 17888.12 12189.31 17388.90 18296.24 16393.20 167
v884.45 16083.30 16985.80 14287.53 17692.95 15590.31 13482.46 15880.46 16671.43 14766.99 17367.16 17286.14 14289.26 17490.22 16096.94 14296.06 119
CP-MVSNet83.11 17882.15 17884.23 16287.20 18192.70 16286.42 18483.53 14777.83 18367.67 17566.89 17660.53 20582.47 16889.23 17590.65 15198.08 7697.20 84
v2v48284.51 15683.05 17286.20 14087.25 18093.28 14590.22 13685.40 12579.94 17369.78 16067.74 17065.15 18487.57 12589.12 17690.55 15396.97 13895.60 131
PS-CasMVS82.53 18381.54 18683.68 16987.08 18692.54 16886.20 18683.46 14876.46 19165.73 18765.71 18359.41 21081.61 17689.06 17790.55 15398.03 8197.07 87
WR-MVS83.14 17683.38 16782.87 18187.55 17593.29 14486.36 18584.21 13680.05 17166.41 18266.91 17466.92 17475.66 19588.96 17890.56 15297.05 13496.96 89
Anonymous2023120678.09 19978.11 20078.07 19985.19 20189.17 20080.99 20181.24 17375.46 19758.25 20654.78 20959.90 20866.73 20688.94 17988.26 18396.01 16590.25 187
UniMVSNet_ETH3D84.57 15481.40 18888.28 11789.34 15294.38 12090.33 13286.50 11474.74 19977.52 12259.90 20162.04 19888.78 11988.82 18092.65 11397.22 12397.24 80
test20.0376.41 20278.49 19973.98 20385.64 19887.50 20575.89 20880.71 17570.84 20751.07 21668.06 16961.40 20154.99 21288.28 18187.20 18695.58 17786.15 202
SixPastTwentyTwo83.12 17783.44 16482.74 18287.71 17393.11 15382.30 19982.33 15979.24 17564.33 19278.77 11662.75 19384.11 16088.11 18287.89 18495.70 17294.21 154
v14883.61 17082.10 17985.37 14687.34 17892.94 15687.48 17485.72 12378.92 17673.87 13565.71 18364.69 18881.78 17587.82 18389.35 17896.01 16595.26 140
PEN-MVS82.49 18481.58 18583.56 17186.93 18792.05 17986.71 18283.84 14176.94 18864.68 19167.24 17160.11 20681.17 17887.78 18490.70 15098.02 8296.21 114
pmmvs-eth3d79.78 19677.58 20182.34 18781.57 20887.46 20682.92 19681.28 17175.33 19871.34 14861.88 19552.41 21481.59 17787.56 18586.90 18795.36 18291.48 175
PM-MVS80.29 19379.30 19681.45 19281.91 20788.23 20382.61 19779.01 18179.99 17267.15 17969.07 16651.39 21582.92 16687.55 18685.59 19195.08 18493.28 165
RPSCF89.68 10389.24 10290.20 9792.97 11092.93 15792.30 11187.69 10490.44 7885.12 8991.68 3885.84 8490.69 9087.34 18786.07 18992.46 19890.37 186
DTE-MVSNet81.76 18981.04 19182.60 18586.63 19191.48 19085.97 18883.70 14376.45 19262.44 19667.16 17259.98 20778.98 18587.15 18889.93 17097.88 9295.12 142
MIMVSNet173.19 20473.70 20572.60 20665.42 21886.69 20975.56 20979.65 17867.87 21155.30 20845.24 21456.41 21263.79 20886.98 18987.66 18595.85 16785.04 205
ambc67.96 21073.69 21379.79 21473.82 21171.61 20359.80 20346.00 21320.79 22366.15 20786.92 19080.11 20989.13 21290.50 184
MDTV_nov1_ep1386.64 13087.50 12985.65 14490.73 14093.69 13389.96 14478.03 18689.48 9976.85 12584.92 7682.42 10386.14 14286.85 19186.15 18892.17 19988.97 194
MVS-HIRNet78.16 19877.57 20278.83 19785.83 19787.76 20476.67 20770.22 20975.82 19667.39 17655.61 20570.52 15681.96 17386.67 19285.06 19690.93 20681.58 209
EU-MVSNet78.43 19780.25 19476.30 20183.81 20487.27 20880.99 20179.52 17976.01 19354.12 21170.44 16164.87 18667.40 20586.23 19385.54 19391.95 20291.41 176
SCA86.25 13187.52 12884.77 15491.59 12793.90 12689.11 15973.25 20490.38 7972.84 14083.26 8683.79 9288.49 12086.07 19485.56 19293.33 19089.67 191
tpm83.16 17583.64 16082.60 18590.75 13991.05 19188.49 16773.99 19782.36 15767.08 18078.10 11968.79 16384.17 15885.95 19585.96 19091.09 20493.23 166
EPMVS85.77 13986.24 13885.23 15092.76 11493.78 12989.91 14673.60 20090.19 8374.22 13282.18 9978.06 12987.55 12685.61 19685.38 19493.32 19188.48 198
PatchmatchNetpermissive85.70 14086.65 13384.60 15791.79 12493.40 14089.27 15573.62 19990.19 8372.63 14282.74 9481.93 10987.64 12484.99 19784.29 19992.64 19689.00 193
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
MDTV_nov1_ep13_2view80.43 19280.94 19279.84 19484.82 20290.87 19384.23 19373.80 19880.28 16964.33 19270.05 16468.77 16479.67 18184.83 19883.50 20192.17 19988.25 200
CostFormer86.78 12886.05 13987.62 12892.15 12193.20 14891.55 12575.83 19288.11 11185.29 8881.76 10176.22 14187.80 12284.45 19985.21 19593.12 19293.42 164
dps85.00 15083.21 17087.08 13190.73 14092.55 16789.34 15475.29 19484.94 13487.01 6379.27 11367.69 17087.27 13084.22 20083.56 20092.83 19590.25 187
ADS-MVSNet84.08 16384.95 15183.05 17991.53 13191.75 18488.16 16970.70 20889.96 8969.51 16278.83 11476.97 13886.29 13984.08 20184.60 19792.13 20188.48 198
CMPMVSbinary61.19 1779.86 19577.46 20382.66 18491.54 13091.82 18383.25 19581.57 16870.51 20868.64 16859.89 20266.77 17579.63 18284.00 20284.30 19891.34 20384.89 206
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
pmmvs371.13 20771.06 20971.21 20773.54 21480.19 21371.69 21464.86 21362.04 21652.10 21354.92 20848.00 21975.03 19683.75 20383.24 20290.04 21085.27 204
tpmrst83.72 16983.45 16384.03 16692.21 12091.66 18588.74 16573.58 20188.14 11072.67 14177.37 12372.11 15186.34 13882.94 20482.05 20390.63 20789.86 190
pmnet_mix0280.14 19480.21 19580.06 19386.61 19289.66 19980.40 20382.20 16282.29 15961.35 19971.52 15566.67 17676.75 19182.55 20580.18 20893.05 19388.62 195
N_pmnet77.55 20176.68 20478.56 19885.43 20087.30 20778.84 20581.88 16578.30 18060.61 20061.46 19662.15 19674.03 20082.04 20680.69 20790.59 20884.81 207
new_pmnet72.29 20673.25 20671.16 20875.35 21281.38 21273.72 21269.27 21075.97 19449.84 21756.27 20456.12 21369.08 20281.73 20780.86 20689.72 21180.44 211
tpm cat184.13 16281.99 18286.63 13791.74 12591.50 18890.68 12875.69 19386.12 12785.44 8672.39 15370.72 15585.16 15080.89 20881.56 20491.07 20590.71 183
test_method58.10 21264.61 21250.51 21228.26 22341.71 22261.28 21732.07 21975.92 19552.04 21447.94 21261.83 19951.80 21379.83 20963.95 21777.60 21781.05 210
new-patchmatchnet72.32 20571.09 20873.74 20481.17 20984.86 21172.21 21377.48 18868.32 21054.89 21055.10 20749.31 21863.68 20979.30 21076.46 21193.03 19484.32 208
Gipumacopyleft58.52 21156.17 21461.27 21067.14 21758.06 21852.16 22068.40 21269.00 20945.02 21922.79 21720.57 22455.11 21176.27 21179.33 21079.80 21667.16 216
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
tmp_tt50.24 21368.55 21646.86 22148.90 22118.28 22086.51 12568.32 17070.19 16365.33 18126.69 21974.37 21266.80 21470.72 219
FPMVS69.87 20867.10 21173.10 20584.09 20378.35 21579.40 20476.41 19171.92 20257.71 20754.06 21150.04 21656.72 21071.19 21368.70 21384.25 21375.43 213
MDA-MVSNet-bldmvs73.81 20372.56 20775.28 20272.52 21588.87 20174.95 21082.67 15471.57 20455.02 20965.96 18142.84 22176.11 19370.61 21481.47 20590.38 20986.59 201
PMVScopyleft56.77 1861.27 21058.64 21364.35 20975.66 21154.60 21953.62 21974.23 19653.69 21758.37 20544.27 21549.38 21744.16 21669.51 21565.35 21580.07 21573.66 214
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
PMMVS253.68 21355.72 21551.30 21158.84 21967.02 21754.23 21860.97 21647.50 21819.42 22234.81 21631.97 22230.88 21865.84 21669.99 21283.47 21472.92 215
DeepMVS_CXcopyleft71.82 21668.37 21548.05 21877.38 18446.88 21865.77 18247.03 22067.48 20464.27 21776.89 21876.72 212
MVEpermissive39.81 1939.52 21541.58 21637.11 21633.93 22249.06 22026.45 22454.22 21729.46 22124.15 22120.77 21910.60 22734.42 21751.12 21865.27 21649.49 22264.81 217
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN40.00 21435.74 21744.98 21457.69 22139.15 22428.05 22262.70 21435.52 22017.78 22320.90 21814.36 22644.47 21535.89 21947.86 21859.15 22056.47 218
EMVS39.04 21634.32 21844.54 21558.25 22039.35 22327.61 22362.55 21535.99 21916.40 22420.04 22014.77 22544.80 21433.12 22044.10 21957.61 22152.89 219
testmvs4.35 2176.54 2191.79 2180.60 2241.82 2253.06 2260.95 2217.22 2220.88 22612.38 2211.25 2283.87 2216.09 2215.58 2201.40 22311.42 221
test1233.48 2185.31 2201.34 2190.20 2261.52 2262.17 2270.58 2226.13 2230.31 2279.85 2220.31 2293.90 2202.65 2225.28 2210.87 22411.46 220
uanet_test0.00 2190.00 2210.00 2200.00 2270.00 2270.00 2280.00 2240.00 2240.00 2280.00 2230.00 2300.00 2230.00 2230.00 2220.00 2250.00 222
sosnet-low-res0.00 2190.00 2210.00 2200.00 2270.00 2270.00 2280.00 2240.00 2240.00 2280.00 2230.00 2300.00 2230.00 2230.00 2220.00 2250.00 222
sosnet0.00 2190.00 2210.00 2200.00 2270.00 2270.00 2280.00 2240.00 2240.00 2280.00 2230.00 2300.00 2230.00 2230.00 2220.00 2250.00 222
RE-MVS-def60.19 201
9.1497.28 23
SR-MVS98.93 1896.00 1697.75 15
our_test_386.93 18789.77 19881.61 200
MTAPA95.36 297.46 21
MTMP95.70 196.90 26
Patchmatch-RL test18.47 225
XVS95.68 6398.66 1494.96 6188.03 5396.06 3198.46 34
X-MVStestdata95.68 6398.66 1494.96 6188.03 5396.06 3198.46 34
mPP-MVS98.76 2395.49 38
NP-MVS91.63 65
Patchmtry92.39 17289.18 15773.30 20271.08 151