This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort by
DPE-MVScopyleft97.83 498.13 497.48 598.83 2299.19 498.99 196.70 196.05 1894.39 998.30 199.47 497.02 697.75 797.02 1498.98 399.10 9
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
SED-MVS97.98 298.36 297.54 498.94 1699.29 298.81 496.64 397.14 395.16 497.96 299.61 296.92 1298.00 197.24 898.75 1799.25 3
APDe-MVS97.79 597.96 697.60 299.20 299.10 698.88 296.68 296.81 794.64 697.84 398.02 1197.24 397.74 897.02 1498.97 599.16 6
DVP-MVS++98.07 198.46 197.62 199.08 399.29 298.84 396.63 497.89 195.35 397.83 499.48 396.98 997.99 297.14 1198.82 1199.60 1
MSP-MVS97.70 698.09 597.24 699.00 1199.17 598.76 596.41 996.91 593.88 1497.72 599.04 796.93 1197.29 1797.31 698.45 3799.23 4
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
SF-MVS97.20 1297.29 1497.10 998.95 1598.51 2997.51 2996.48 796.17 1694.64 697.32 697.57 1996.23 2696.78 2996.15 4198.79 1498.55 27
PHI-MVS95.86 2896.93 2294.61 4097.60 4198.65 1896.49 4093.13 4094.07 4387.91 5797.12 797.17 2493.90 5396.46 4096.93 1798.64 2098.10 49
HFP-MVS97.11 1497.19 1697.00 1298.97 1398.73 1298.37 1195.69 2196.60 993.28 2096.87 896.64 2897.27 296.64 3596.33 3598.44 3898.56 22
SteuartSystems-ACMMP97.10 1597.49 1096.65 1898.97 1398.95 998.43 995.96 1795.12 2891.46 2896.85 997.60 1896.37 2497.76 697.16 1098.68 1898.97 11
Skip Steuart: Steuart Systems R&D Blog.
TSAR-MVS + GP.95.86 2896.95 2194.60 4194.07 8598.11 4696.30 4391.76 4995.67 2091.07 3096.82 1097.69 1795.71 3295.96 5295.75 5098.68 1898.63 17
SD-MVS97.35 897.73 896.90 1497.35 4398.66 1497.85 2596.25 1196.86 694.54 896.75 1199.13 696.99 796.94 2696.58 2398.39 4499.20 5
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
TSAR-MVS + MP.97.31 997.64 996.92 1397.28 4598.56 2398.61 795.48 2896.72 894.03 1396.73 1298.29 997.15 497.61 1296.42 2698.96 699.13 7
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
DVP-MVScopyleft97.93 398.23 397.58 399.05 699.31 198.64 696.62 597.56 295.08 596.61 1399.64 197.32 197.91 497.31 698.77 1599.26 2
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
SMA-MVScopyleft97.53 797.93 797.07 1099.21 199.02 898.08 1996.25 1196.36 1293.57 1596.56 1499.27 596.78 1697.91 497.43 398.51 2698.94 12
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
TSAR-MVS + ACMM96.19 2397.39 1394.78 3797.70 3998.41 3597.72 2795.49 2796.47 1186.66 6796.35 1597.85 1393.99 5097.19 2096.37 3097.12 13099.13 7
PGM-MVS96.16 2496.33 2895.95 2699.04 798.63 1998.32 1292.76 4293.42 4790.49 3796.30 1695.31 4096.71 1896.46 4096.02 4698.38 4598.19 42
train_agg96.15 2596.64 2595.58 3398.44 2798.03 4898.14 1895.40 3193.90 4587.72 5896.26 1798.10 1095.75 3196.25 4795.45 5598.01 8398.47 31
HPM-MVS++copyleft97.22 1197.40 1297.01 1199.08 398.55 2498.19 1496.48 796.02 1993.28 2096.26 1798.71 896.76 1797.30 1696.25 3798.30 5498.68 15
APD-MVScopyleft97.12 1397.05 1897.19 799.04 798.63 1998.45 896.54 694.81 3693.50 1696.10 1997.40 2296.81 1397.05 2296.82 1998.80 1298.56 22
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
ACMMPR96.92 1796.96 1996.87 1598.99 1298.78 1198.38 1095.52 2496.57 1092.81 2496.06 2095.90 3597.07 596.60 3796.34 3498.46 3498.42 33
MVS_111021_LR94.84 3995.57 3294.00 4497.11 4897.72 6094.88 6391.16 5595.24 2788.74 4896.03 2191.52 5894.33 4795.96 5295.01 6297.79 9597.49 72
MP-MVScopyleft96.56 2196.72 2396.37 2498.93 1898.48 3098.04 2095.55 2394.32 4090.95 3495.88 2297.02 2596.29 2596.77 3096.01 4798.47 3298.56 22
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MCST-MVS96.83 1897.06 1796.57 1998.88 2098.47 3298.02 2196.16 1495.58 2390.96 3295.78 2397.84 1496.46 2297.00 2596.17 3998.94 798.55 27
ACMMP_NAP96.93 1697.27 1596.53 2399.06 598.95 998.24 1396.06 1595.66 2190.96 3295.63 2497.71 1696.53 2097.66 1096.68 2098.30 5498.61 20
CNVR-MVS97.30 1097.41 1197.18 899.02 1098.60 2198.15 1696.24 1396.12 1794.10 1195.54 2597.99 1296.99 797.97 397.17 998.57 2498.50 29
MVS_111021_HR94.84 3995.91 3093.60 5297.35 4398.46 3395.08 5991.19 5494.18 4285.97 7295.38 2692.56 5193.61 5796.61 3696.25 3798.40 4297.92 56
ACMMPcopyleft95.54 3195.49 3495.61 3298.27 3098.53 2697.16 3494.86 3294.88 3489.34 4295.36 2791.74 5495.50 3595.51 5994.16 7498.50 2998.22 40
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CP-MVS96.68 2096.59 2696.77 1798.85 2198.58 2298.18 1595.51 2695.34 2592.94 2395.21 2896.25 3096.79 1596.44 4295.77 4998.35 4698.56 22
TSAR-MVS + COLMAP92.39 6392.31 6892.47 6995.35 7396.46 9396.13 4592.04 4795.33 2680.11 11394.95 2977.35 13694.05 4994.49 8693.08 10497.15 12794.53 148
EPNet93.92 5094.40 4693.36 5497.89 3496.55 8996.08 4692.14 4591.65 6489.16 4494.07 3090.17 6987.78 12395.24 6494.97 6397.09 13298.15 44
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
DeepPCF-MVS92.65 295.50 3396.96 1993.79 5196.44 5698.21 4293.51 9594.08 3696.94 489.29 4393.08 3196.77 2793.82 5497.68 997.40 495.59 17698.65 16
X-MVS96.07 2696.33 2895.77 2998.94 1698.66 1497.94 2395.41 3095.12 2888.03 5393.00 3296.06 3195.85 2996.65 3496.35 3198.47 3298.48 30
CDPH-MVS94.80 4195.50 3393.98 4698.34 2898.06 4797.41 3093.23 3992.81 5282.98 9792.51 3394.82 4193.53 5896.08 5096.30 3698.42 4097.94 54
NCCC96.75 1996.67 2496.85 1699.03 998.44 3498.15 1696.28 1096.32 1392.39 2592.16 3497.55 2096.68 1997.32 1496.65 2298.55 2598.26 38
PMMVS89.88 10091.19 8488.35 11689.73 14891.97 18190.62 12981.92 16490.57 7680.58 11292.16 3486.85 7791.17 8392.31 12491.35 13996.11 16493.11 168
HQP-MVS92.39 6392.49 6492.29 7395.65 6595.94 10395.64 5392.12 4692.46 5779.65 11591.97 3682.68 10092.92 6793.47 10692.77 11197.74 10098.12 47
LGP-MVS_train91.83 7192.04 7291.58 8095.46 6996.18 9995.97 4989.85 6890.45 7777.76 12091.92 3780.07 11892.34 7394.27 8893.47 9198.11 7497.90 59
RPSCF89.68 10389.24 10290.20 9792.97 11092.93 15792.30 11187.69 10490.44 7885.12 8991.68 3885.84 8490.69 9087.34 18786.07 18992.46 19890.37 186
DeepC-MVS_fast93.32 196.48 2296.42 2796.56 2098.70 2598.31 3897.97 2295.76 2096.31 1492.01 2791.43 3995.42 3996.46 2297.65 1197.69 198.49 3198.12 47
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CPTT-MVS95.54 3195.07 3796.10 2597.88 3597.98 5097.92 2494.86 3294.56 3992.16 2691.01 4095.71 3696.97 1094.56 8393.50 9096.81 15398.14 45
ACMP89.13 992.03 6691.70 7792.41 7194.92 7696.44 9593.95 8189.96 6791.81 6385.48 8590.97 4179.12 12192.42 7193.28 11292.55 11597.76 9897.74 64
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
CS-MVS-test94.63 4395.28 3693.88 4996.56 5598.67 1393.41 9789.31 7994.27 4189.64 4190.84 4291.64 5695.58 3397.04 2396.17 3998.77 1598.32 36
ET-MVSNet_ETH3D89.93 9990.84 8888.87 11179.60 21096.19 9894.43 6786.56 11390.63 7280.75 11090.71 4377.78 13293.73 5691.36 14093.45 9298.15 6995.77 127
CSCG95.68 3095.46 3595.93 2798.71 2499.07 797.13 3593.55 3795.48 2493.35 1990.61 4493.82 4595.16 3794.60 8295.57 5397.70 10499.08 10
CANet_DTU90.74 9092.93 5988.19 11894.36 8096.61 8794.34 7184.66 13090.66 7168.75 16790.41 4586.89 7689.78 9995.46 6094.87 6497.25 12295.62 130
ETV-MVS93.80 5194.57 4492.91 6593.98 8797.50 6493.62 9288.70 8691.95 6087.57 5990.21 4690.79 6194.56 4297.20 1996.35 3199.02 197.98 51
DROMVSNet94.19 4895.05 3893.18 5893.56 10197.65 6195.34 5786.37 11592.05 5988.71 4989.91 4793.32 4796.14 2797.29 1796.42 2698.98 398.70 14
CHOSEN 280x42090.77 8892.14 7089.17 10993.86 9492.81 16193.16 10080.22 17790.21 8284.67 9289.89 4891.38 5990.57 9494.94 6992.11 12392.52 19793.65 161
EPNet_dtu88.32 11790.61 8985.64 14596.79 5392.27 17392.03 12090.31 6289.05 10265.44 18889.43 4985.90 8374.22 19792.76 11592.09 12495.02 18692.76 170
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MVSTER91.73 7391.61 7891.86 7793.18 10594.56 11294.37 6987.90 9890.16 8588.69 5089.23 5081.28 11288.92 11695.75 5693.95 8098.12 7296.37 107
MSLP-MVS++96.05 2795.63 3196.55 2198.33 2998.17 4496.94 3694.61 3494.70 3894.37 1089.20 5195.96 3496.81 1395.57 5897.33 598.24 6298.47 31
AdaColmapbinary95.02 3793.71 5096.54 2298.51 2697.76 5696.69 3995.94 1993.72 4693.50 1689.01 5290.53 6596.49 2194.51 8593.76 8398.07 7796.69 96
CS-MVS94.53 4494.73 4294.31 4296.30 5998.53 2694.98 6089.24 8193.37 4890.24 3988.96 5389.76 7096.09 2897.48 1396.42 2698.99 298.59 21
OMC-MVS94.49 4594.36 4794.64 3997.17 4797.73 5895.49 5492.25 4496.18 1590.34 3888.51 5492.88 5094.90 4094.92 7094.17 7397.69 10696.15 116
canonicalmvs93.08 5593.09 5593.07 6294.24 8197.86 5295.45 5687.86 10294.00 4487.47 6088.32 5582.37 10495.13 3893.96 9896.41 2998.27 5898.73 13
CLD-MVS92.50 6291.96 7393.13 5993.93 9196.24 9795.69 5188.77 8592.92 5089.01 4588.19 5681.74 11093.13 6393.63 10093.08 10498.23 6397.91 58
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
TAPA-MVS90.35 693.69 5393.52 5193.90 4796.89 5197.62 6296.15 4491.67 5094.94 3285.97 7287.72 5791.96 5294.40 4493.76 9993.06 10698.30 5495.58 132
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
DPM-MVS95.07 3594.84 4095.34 3497.44 4297.49 6597.76 2695.52 2494.88 3488.92 4687.25 5896.44 2994.41 4395.78 5596.11 4397.99 8595.95 123
UGNet91.52 7693.41 5389.32 10794.13 8297.15 7591.83 12389.01 8290.62 7385.86 7686.83 5991.73 5577.40 18894.68 7994.43 6997.71 10298.40 35
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
thisisatest053091.04 8291.74 7590.21 9692.93 11297.00 8092.06 11987.63 10790.74 6981.51 10186.81 6082.48 10189.23 10894.81 7693.03 10897.90 9097.33 78
tttt051791.01 8391.71 7690.19 9892.98 10897.07 7991.96 12287.63 10790.61 7481.42 10286.76 6182.26 10589.23 10894.86 7493.03 10897.90 9097.36 76
EIA-MVS92.72 5992.96 5892.44 7093.86 9497.76 5693.13 10188.65 8889.78 9486.68 6686.69 6287.57 7293.74 5596.07 5195.32 5698.58 2397.53 70
baseline91.19 7991.89 7490.38 9292.76 11495.04 11093.55 9484.54 13392.92 5085.71 7986.68 6386.96 7589.28 10792.00 13192.62 11496.46 15896.99 88
MVS_Test91.81 7292.19 6991.37 8793.24 10496.95 8294.43 6786.25 11691.45 6783.45 9586.31 6485.15 8692.93 6593.99 9494.71 6797.92 8996.77 94
CANet94.85 3894.92 3994.78 3797.25 4698.52 2897.20 3291.81 4893.25 4991.06 3186.29 6594.46 4392.99 6497.02 2496.68 2098.34 4898.20 41
MAR-MVS92.71 6092.63 6192.79 6697.70 3997.15 7593.75 8887.98 9690.71 7085.76 7886.28 6686.38 7894.35 4694.95 6895.49 5497.22 12397.44 73
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
EPP-MVSNet92.13 6593.06 5691.05 9093.66 10097.30 6892.18 11487.90 9890.24 8183.63 9486.14 6790.52 6790.76 8994.82 7594.38 7098.18 6897.98 51
MVS_030494.30 4794.68 4393.86 5096.33 5898.48 3097.41 3091.20 5392.75 5386.96 6486.03 6893.81 4692.64 6996.89 2796.54 2598.61 2298.24 39
PatchMatch-RL90.30 9588.93 10791.89 7695.41 7295.68 10590.94 12688.67 8789.80 9386.95 6585.90 6972.51 14892.46 7093.56 10392.18 12196.93 14592.89 169
PLCcopyleft90.69 494.32 4692.99 5795.87 2897.91 3396.49 9195.95 5094.12 3594.94 3294.09 1285.90 6990.77 6295.58 3394.52 8493.32 9797.55 11395.00 144
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
PVSNet_BlendedMVS92.80 5792.44 6593.23 5596.02 6197.83 5493.74 8990.58 5991.86 6190.69 3585.87 7182.04 10790.01 9796.39 4395.26 5898.34 4897.81 61
PVSNet_Blended92.80 5792.44 6593.23 5596.02 6197.83 5493.74 8990.58 5991.86 6190.69 3585.87 7182.04 10790.01 9796.39 4395.26 5898.34 4897.81 61
QAPM94.13 4994.33 4993.90 4797.82 3698.37 3796.47 4190.89 5892.73 5585.63 8085.35 7393.87 4494.17 4895.71 5795.90 4898.40 4298.42 33
DeepC-MVS92.10 395.22 3494.77 4195.75 3097.77 3798.54 2597.63 2895.96 1795.07 3188.85 4785.35 7391.85 5395.82 3096.88 2897.10 1298.44 3898.63 17
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
UA-Net90.81 8592.58 6288.74 11394.87 7897.44 6692.61 10788.22 9282.35 15878.93 11885.20 7595.61 3779.56 18396.52 3896.57 2498.23 6394.37 151
MDTV_nov1_ep1386.64 13087.50 12985.65 14490.73 14093.69 13389.96 14478.03 18689.48 9976.85 12584.92 7682.42 10386.14 14286.85 19186.15 18892.17 19988.97 194
PCF-MVS90.19 892.98 5692.07 7194.04 4396.39 5797.87 5196.03 4795.47 2987.16 11685.09 9084.81 7793.21 4893.46 6091.98 13291.98 12897.78 9697.51 71
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
IS_MVSNet91.87 7093.35 5490.14 10194.09 8497.73 5893.09 10288.12 9488.71 10579.98 11484.49 7890.63 6487.49 12797.07 2196.96 1698.07 7797.88 60
baseline288.97 11289.50 9988.36 11591.14 13495.30 10690.13 14085.17 12787.24 11580.80 10984.46 7978.44 12685.60 14593.54 10491.87 12997.31 12095.66 129
FC-MVSNet-train90.55 9190.19 9390.97 9193.78 9695.16 10892.11 11888.85 8387.64 11383.38 9684.36 8078.41 12789.53 10194.69 7893.15 10398.15 6997.92 56
ACMM88.76 1091.70 7590.43 9093.19 5795.56 6695.14 10993.35 9991.48 5292.26 5887.12 6284.02 8179.34 12093.99 5094.07 9392.68 11297.62 11295.50 133
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
DCV-MVSNet91.24 7891.26 8291.22 8992.84 11393.44 13993.82 8686.75 11291.33 6885.61 8184.00 8285.46 8591.27 8192.91 11493.62 8597.02 13698.05 50
DELS-MVS93.71 5293.47 5294.00 4496.82 5298.39 3696.80 3891.07 5689.51 9889.94 4083.80 8389.29 7190.95 8797.32 1497.65 298.42 4098.32 36
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
Vis-MVSNet (Re-imp)90.54 9292.76 6087.94 12293.73 9896.94 8392.17 11687.91 9788.77 10476.12 12883.68 8490.80 6079.49 18496.34 4596.35 3198.21 6596.46 103
diffmvspermissive91.37 7791.09 8691.70 7992.71 11796.47 9294.03 7988.78 8492.74 5485.43 8783.63 8580.37 11591.76 7893.39 10893.78 8297.50 11597.23 81
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
SCA86.25 13187.52 12884.77 15491.59 12793.90 12689.11 15973.25 20490.38 7972.84 14083.26 8683.79 9288.49 12086.07 19485.56 19293.33 19089.67 191
test250690.93 8489.20 10392.95 6394.97 7498.30 3994.53 6590.25 6489.91 9088.39 5283.23 8764.17 19090.69 9096.75 3296.10 4498.87 895.97 122
test-LLR86.88 12688.28 11285.24 14991.22 13292.07 17787.41 17583.62 14484.58 13769.33 16383.00 8882.79 9784.24 15692.26 12589.81 17195.64 17493.44 162
TESTMET0.1,186.11 13688.28 11283.59 17087.80 16992.07 17787.41 17577.12 18984.58 13769.33 16383.00 8882.79 9784.24 15692.26 12589.81 17195.64 17493.44 162
baseline190.81 8590.29 9191.42 8493.67 9995.86 10493.94 8389.69 7489.29 10082.85 9882.91 9080.30 11689.60 10095.05 6694.79 6698.80 1293.82 159
3Dnovator90.28 794.70 4294.34 4895.11 3598.06 3298.21 4296.89 3791.03 5794.72 3791.45 2982.87 9193.10 4994.61 4196.24 4897.08 1398.63 2198.16 43
testgi81.94 18784.09 15879.43 19689.53 15190.83 19582.49 19881.75 16780.59 16559.46 20482.82 9265.75 17967.97 20390.10 16289.52 17695.39 18089.03 192
test0.0.03 185.58 14287.69 12483.11 17691.22 13292.54 16885.60 19183.62 14485.66 13167.84 17482.79 9379.70 11973.51 20191.15 14590.79 14496.88 14991.23 179
PatchmatchNetpermissive85.70 14086.65 13384.60 15791.79 12493.40 14089.27 15573.62 19990.19 8372.63 14282.74 9481.93 10987.64 12484.99 19784.29 19992.64 19689.00 193
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
Vis-MVSNetpermissive89.36 10891.49 8086.88 13392.10 12297.60 6392.16 11785.89 11884.21 14475.20 13082.58 9587.13 7477.40 18895.90 5495.63 5198.51 2697.36 76
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
test-mter86.09 13788.38 11183.43 17387.89 16892.61 16586.89 18077.11 19084.30 14268.62 16982.57 9682.45 10284.34 15592.40 12390.11 16595.74 16994.21 154
OPM-MVS91.08 8089.34 10093.11 6196.18 6096.13 10096.39 4292.39 4382.97 15581.74 10082.55 9780.20 11793.97 5294.62 8093.23 9898.00 8495.73 128
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
FC-MVSNet-test86.15 13489.10 10582.71 18389.83 14693.18 14987.88 17284.69 12986.54 12362.18 19882.39 9883.31 9474.18 19892.52 12291.86 13097.50 11593.88 158
EPMVS85.77 13986.24 13885.23 15092.76 11493.78 12989.91 14673.60 20090.19 8374.22 13282.18 9978.06 12987.55 12685.61 19685.38 19493.32 19188.48 198
3Dnovator+90.56 595.06 3694.56 4595.65 3198.11 3198.15 4597.19 3391.59 5195.11 3093.23 2281.99 10094.71 4295.43 3696.48 3996.88 1898.35 4698.63 17
Effi-MVS+89.79 10289.83 9889.74 10392.98 10896.45 9493.48 9684.24 13587.62 11476.45 12681.76 10177.56 13593.48 5994.61 8193.59 8697.82 9497.22 83
CostFormer86.78 12886.05 13987.62 12892.15 12193.20 14891.55 12575.83 19288.11 11185.29 8881.76 10176.22 14187.80 12284.45 19985.21 19593.12 19293.42 164
LS3D91.97 6790.98 8793.12 6097.03 5097.09 7895.33 5895.59 2292.47 5679.26 11781.60 10382.77 9994.39 4594.28 8794.23 7297.14 12994.45 150
Fast-Effi-MVS+-dtu86.25 13187.70 12384.56 15890.37 14593.70 13290.54 13078.14 18483.50 15065.37 18981.59 10475.83 14386.09 14491.70 13591.70 13396.88 14995.84 126
GG-mvs-BLEND62.84 20990.21 9230.91 2170.57 22594.45 11686.99 1790.34 22388.71 1050.98 22581.55 10591.58 570.86 22292.66 11891.43 13895.73 17091.11 180
Effi-MVS+-dtu87.51 12288.13 11686.77 13591.10 13594.90 11190.91 12782.67 15483.47 15171.55 14681.11 10677.04 13789.41 10392.65 11991.68 13595.00 18796.09 118
casdiffmvs_mvgpermissive91.94 6891.25 8392.75 6793.41 10397.19 7495.48 5589.77 7089.86 9286.41 6981.02 10782.23 10692.93 6595.44 6195.61 5298.51 2697.40 75
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
casdiffmvspermissive91.72 7491.16 8592.38 7293.16 10697.15 7593.95 8189.49 7791.58 6686.03 7180.75 10880.95 11393.16 6295.25 6395.22 6098.50 2997.23 81
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CNLPA93.69 5392.50 6395.06 3697.11 4897.36 6793.88 8593.30 3895.64 2293.44 1880.32 10990.73 6394.99 3993.58 10193.33 9597.67 10896.57 101
USDC86.73 12985.96 14387.63 12791.64 12693.97 12592.76 10584.58 13288.19 10970.67 15480.10 11067.86 16989.43 10291.81 13389.77 17396.69 15590.05 189
PVSNet_Blended_VisFu91.92 6992.39 6791.36 8895.45 7197.85 5392.25 11389.54 7688.53 10887.47 6079.82 11190.53 6585.47 14896.31 4695.16 6197.99 8598.56 22
CDS-MVSNet88.34 11688.71 10887.90 12390.70 14294.54 11392.38 10986.02 11780.37 16779.42 11679.30 11283.43 9382.04 17193.39 10894.01 7996.86 15195.93 124
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
dps85.00 15083.21 17087.08 13190.73 14092.55 16789.34 15475.29 19484.94 13487.01 6379.27 11367.69 17087.27 13084.22 20083.56 20092.83 19590.25 187
ADS-MVSNet84.08 16384.95 15183.05 17991.53 13191.75 18488.16 16970.70 20889.96 8969.51 16278.83 11476.97 13886.29 13984.08 20184.60 19792.13 20188.48 198
FA-MVS(training)90.79 8791.33 8190.17 9993.76 9797.22 7292.74 10677.79 18790.60 7588.03 5378.80 11587.41 7391.00 8695.40 6293.43 9397.70 10496.46 103
SixPastTwentyTwo83.12 17783.44 16482.74 18287.71 17393.11 15382.30 19982.33 15979.24 17564.33 19278.77 11662.75 19384.11 16088.11 18287.89 18495.70 17294.21 154
IterMVS-LS88.60 11388.45 11088.78 11292.02 12392.44 17192.00 12183.57 14686.52 12478.90 11978.61 11781.34 11189.12 11190.68 15393.18 10197.10 13196.35 108
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
ACMH85.51 1387.31 12486.59 13488.14 11993.96 8894.51 11489.00 16287.99 9581.58 16170.15 15778.41 11871.78 15390.60 9391.30 14191.99 12797.17 12696.58 100
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
tpm83.16 17583.64 16082.60 18590.75 13991.05 19188.49 16773.99 19782.36 15767.08 18078.10 11968.79 16384.17 15885.95 19585.96 19091.09 20493.23 166
GBi-Net90.21 9690.11 9590.32 9488.66 15893.65 13594.25 7485.78 12090.03 8685.56 8277.38 12086.13 7989.38 10493.97 9594.16 7498.31 5195.47 134
test190.21 9690.11 9590.32 9488.66 15893.65 13594.25 7485.78 12090.03 8685.56 8277.38 12086.13 7989.38 10493.97 9594.16 7498.31 5195.47 134
FMVSNet390.19 9890.06 9790.34 9388.69 15793.85 12794.58 6485.78 12090.03 8685.56 8277.38 12086.13 7989.22 11093.29 11194.36 7198.20 6695.40 138
tpmrst83.72 16983.45 16384.03 16692.21 12091.66 18588.74 16573.58 20188.14 11072.67 14177.37 12372.11 15186.34 13882.94 20482.05 20390.63 20789.86 190
IterMVS85.25 14886.49 13583.80 16890.42 14490.77 19790.02 14278.04 18584.10 14666.27 18477.28 12478.41 12783.01 16590.88 14789.72 17595.04 18594.24 152
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-SCA-FT85.44 14686.71 13283.97 16790.59 14390.84 19489.73 15078.34 18384.07 14866.40 18377.27 12578.66 12483.06 16491.20 14290.10 16695.72 17194.78 145
thisisatest051585.70 14087.00 13184.19 16388.16 16593.67 13484.20 19484.14 13883.39 15372.91 13976.79 12674.75 14478.82 18692.57 12191.26 14096.94 14296.56 102
MSDG90.42 9488.25 11492.94 6496.67 5494.41 11893.96 8092.91 4189.59 9686.26 7076.74 12780.92 11490.43 9592.60 12092.08 12597.44 11891.41 176
CVMVSNet83.83 16785.53 14881.85 19089.60 14990.92 19287.81 17383.21 15080.11 17060.16 20276.47 12878.57 12576.79 19089.76 16690.13 16193.51 18992.75 171
thres100view90089.36 10887.61 12591.39 8593.90 9296.86 8594.35 7089.66 7585.87 12881.15 10576.46 12970.38 15791.17 8394.09 9293.43 9398.13 7196.16 115
tfpn200view989.55 10587.86 12091.53 8293.90 9297.26 6994.31 7389.74 7185.87 12881.15 10576.46 12970.38 15791.76 7894.92 7093.51 8798.28 5796.61 98
ACMH+85.75 1287.19 12586.02 14188.56 11493.42 10294.41 11889.91 14687.66 10683.45 15272.25 14476.42 13171.99 15290.78 8889.86 16590.94 14297.32 11995.11 143
Fast-Effi-MVS+88.56 11587.99 11889.22 10891.56 12995.21 10792.29 11282.69 15386.82 11977.73 12176.24 13273.39 14793.36 6194.22 9093.64 8497.65 10996.43 105
thres20089.49 10687.72 12291.55 8193.95 8997.25 7094.34 7189.74 7185.66 13181.18 10476.12 13370.19 16091.80 7694.92 7093.51 8798.27 5896.40 106
OpenMVScopyleft88.18 1192.51 6191.61 7893.55 5397.74 3898.02 4995.66 5290.46 6189.14 10186.50 6875.80 13490.38 6892.69 6894.99 6795.30 5798.27 5897.63 65
GA-MVS85.08 14985.65 14784.42 16089.77 14794.25 12189.26 15684.62 13181.19 16462.25 19775.72 13568.44 16684.14 15993.57 10291.68 13596.49 15694.71 147
thres40089.40 10787.58 12791.53 8294.06 8697.21 7394.19 7789.83 6985.69 13081.08 10775.50 13669.76 16191.80 7694.79 7793.51 8798.20 6696.60 99
TAMVS84.94 15284.95 15184.93 15388.82 15493.18 14988.44 16881.28 17177.16 18673.76 13675.43 13776.57 14082.04 17190.59 15490.79 14495.22 18390.94 181
thres600view789.28 11187.47 13091.39 8594.12 8397.25 7093.94 8389.74 7185.62 13380.63 11175.24 13869.33 16291.66 8094.92 7093.23 9898.27 5896.72 95
GeoE89.29 11088.68 10989.99 10292.75 11696.03 10293.07 10483.79 14286.98 11881.34 10374.72 13978.92 12291.22 8293.31 11093.21 10097.78 9697.60 69
LTVRE_ROB81.71 1682.44 18581.84 18383.13 17589.01 15392.99 15488.90 16382.32 16066.26 21254.02 21274.68 14059.62 20988.87 11790.71 15292.02 12695.68 17396.62 97
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
IB-MVS85.10 1487.98 11887.97 11987.99 12194.55 7996.86 8584.52 19288.21 9386.48 12688.54 5174.41 14177.74 13374.10 19989.65 17092.85 11098.06 7997.80 63
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
DI_MVS_plusplus_trai91.05 8190.15 9492.11 7492.67 11896.61 8796.03 4788.44 9090.25 8085.92 7473.73 14284.89 8891.92 7594.17 9194.07 7897.68 10797.31 79
ECVR-MVScopyleft90.77 8889.27 10192.52 6894.97 7498.30 3994.53 6590.25 6489.91 9085.80 7773.64 14374.31 14590.69 9096.75 3296.10 4498.87 895.91 125
RPMNet84.82 15385.90 14483.56 17191.10 13592.10 17588.73 16671.11 20784.75 13568.79 16673.56 14477.62 13485.33 14990.08 16389.43 17796.32 16193.77 160
FMVSNet289.61 10489.14 10490.16 10088.66 15893.65 13594.25 7485.44 12488.57 10784.96 9173.53 14583.82 9189.38 10494.23 8994.68 6898.31 5195.47 134
anonymousdsp84.51 15685.85 14682.95 18086.30 19593.51 13885.77 18980.38 17678.25 18163.42 19573.51 14672.20 15084.64 15493.21 11392.16 12297.19 12598.14 45
MS-PatchMatch87.63 12087.61 12587.65 12693.95 8994.09 12392.60 10881.52 16986.64 12176.41 12773.46 14785.94 8285.01 15292.23 12890.00 16896.43 16090.93 182
pmmvs486.00 13884.28 15788.00 12087.80 16992.01 18089.94 14584.91 12886.79 12080.98 10873.41 14866.34 17888.12 12189.31 17388.90 18296.24 16393.20 167
COLMAP_ROBcopyleft84.39 1587.61 12186.03 14089.46 10595.54 6894.48 11591.77 12490.14 6687.16 11675.50 12973.41 14876.86 13987.33 12990.05 16489.76 17496.48 15790.46 185
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
test111190.47 9389.10 10592.07 7594.92 7698.30 3994.17 7890.30 6389.56 9783.92 9373.25 15073.66 14690.26 9696.77 3096.14 4298.87 896.04 120
FMVSNet584.47 15984.72 15484.18 16483.30 20588.43 20288.09 17079.42 18084.25 14374.14 13473.15 15178.74 12383.65 16291.19 14391.19 14196.46 15886.07 203
CR-MVSNet85.48 14486.29 13784.53 15991.08 13792.10 17589.18 15773.30 20284.75 13571.08 15173.12 15277.91 13186.27 14091.48 13790.75 14796.27 16293.94 156
tpm cat184.13 16281.99 18286.63 13791.74 12591.50 18890.68 12875.69 19386.12 12785.44 8672.39 15370.72 15585.16 15080.89 20881.56 20491.07 20590.71 183
UniMVSNet_NR-MVSNet86.80 12785.86 14587.89 12488.17 16494.07 12490.15 13888.51 8984.20 14573.45 13772.38 15470.30 15988.95 11490.25 15892.21 12098.12 7297.62 67
pmnet_mix0280.14 19480.21 19580.06 19386.61 19289.66 19980.40 20382.20 16282.29 15961.35 19971.52 15566.67 17676.75 19182.55 20580.18 20893.05 19388.62 195
pmmvs583.37 17382.68 17484.18 16487.13 18493.18 14986.74 18182.08 16376.48 19067.28 17871.26 15662.70 19484.71 15390.77 14990.12 16497.15 12794.24 152
TinyColmap84.04 16482.01 18186.42 13990.87 13891.84 18288.89 16484.07 13982.11 16069.89 15971.08 15760.81 20389.04 11290.52 15589.19 17995.76 16888.50 197
PatchT83.86 16685.51 14981.94 18988.41 16191.56 18778.79 20671.57 20684.08 14771.08 15170.62 15876.13 14286.27 14091.48 13790.75 14795.52 17993.94 156
DU-MVS86.12 13584.81 15387.66 12587.77 17193.78 12990.15 13887.87 10084.40 13973.45 13770.59 15964.82 18788.95 11490.14 15992.33 11797.76 9897.62 67
NR-MVSNet85.46 14584.54 15586.52 13888.33 16393.78 12990.45 13187.87 10084.40 13971.61 14570.59 15962.09 19782.79 16791.75 13491.75 13298.10 7597.44 73
EU-MVSNet78.43 19780.25 19476.30 20183.81 20487.27 20880.99 20179.52 17976.01 19354.12 21170.44 16164.87 18667.40 20586.23 19385.54 19391.95 20291.41 176
UniMVSNet (Re)86.22 13385.46 15087.11 13088.34 16294.42 11789.65 15287.10 11184.39 14174.61 13170.41 16268.10 16785.10 15191.17 14491.79 13197.84 9397.94 54
tmp_tt50.24 21368.55 21646.86 22148.90 22118.28 22086.51 12568.32 17070.19 16365.33 18126.69 21974.37 21266.80 21470.72 219
MDTV_nov1_ep13_2view80.43 19280.94 19279.84 19484.82 20290.87 19384.23 19373.80 19880.28 16964.33 19270.05 16468.77 16479.67 18184.83 19883.50 20192.17 19988.25 200
TranMVSNet+NR-MVSNet85.57 14384.41 15686.92 13287.67 17493.34 14290.31 13488.43 9183.07 15470.11 15869.99 16565.28 18286.96 13289.73 16792.27 11898.06 7997.17 85
PM-MVS80.29 19379.30 19681.45 19281.91 20788.23 20382.61 19779.01 18179.99 17267.15 17969.07 16651.39 21582.92 16687.55 18685.59 19195.08 18493.28 165
MIMVSNet82.97 17984.00 15981.77 19182.23 20692.25 17487.40 17772.73 20581.48 16269.55 16168.79 16772.42 14981.82 17492.23 12892.25 11996.89 14888.61 196
TDRefinement84.97 15183.39 16686.81 13492.97 11094.12 12292.18 11487.77 10382.78 15671.31 14968.43 16868.07 16881.10 17989.70 16989.03 18195.55 17891.62 174
test20.0376.41 20278.49 19973.98 20385.64 19887.50 20575.89 20880.71 17570.84 20751.07 21668.06 16961.40 20154.99 21288.28 18187.20 18695.58 17786.15 202
v2v48284.51 15683.05 17286.20 14087.25 18093.28 14590.22 13685.40 12579.94 17369.78 16067.74 17065.15 18487.57 12589.12 17690.55 15396.97 13895.60 131
PEN-MVS82.49 18481.58 18583.56 17186.93 18792.05 17986.71 18283.84 14176.94 18864.68 19167.24 17160.11 20681.17 17887.78 18490.70 15098.02 8296.21 114
DTE-MVSNet81.76 18981.04 19182.60 18586.63 19191.48 19085.97 18883.70 14376.45 19262.44 19667.16 17259.98 20778.98 18587.15 18889.93 17097.88 9295.12 142
v884.45 16083.30 16985.80 14287.53 17692.95 15590.31 13482.46 15880.46 16671.43 14766.99 17367.16 17286.14 14289.26 17490.22 16096.94 14296.06 119
WR-MVS83.14 17683.38 16782.87 18187.55 17593.29 14486.36 18584.21 13680.05 17166.41 18266.91 17466.92 17475.66 19588.96 17890.56 15297.05 13496.96 89
V4284.48 15883.36 16885.79 14387.14 18393.28 14590.03 14183.98 14080.30 16871.20 15066.90 17567.17 17185.55 14689.35 17190.27 15896.82 15296.27 113
CP-MVSNet83.11 17882.15 17884.23 16287.20 18192.70 16286.42 18483.53 14777.83 18367.67 17566.89 17660.53 20582.47 16889.23 17590.65 15198.08 7697.20 84
WR-MVS_H82.86 18182.66 17583.10 17787.44 17793.33 14385.71 19083.20 15177.36 18568.20 17266.37 17765.23 18376.05 19489.35 17190.13 16197.99 8596.89 92
v1084.18 16183.17 17185.37 14687.34 17892.68 16390.32 13381.33 17079.93 17469.23 16566.33 17865.74 18087.03 13190.84 14890.38 15596.97 13896.29 112
FMVSNet187.33 12386.00 14288.89 11087.13 18492.83 16093.08 10384.46 13481.35 16382.20 9966.33 17877.96 13088.96 11393.97 9594.16 7497.54 11495.38 139
v114484.03 16582.88 17385.37 14687.17 18293.15 15290.18 13783.31 14978.83 17767.85 17365.99 18064.99 18586.79 13490.75 15090.33 15796.90 14796.15 116
MDA-MVSNet-bldmvs73.81 20372.56 20775.28 20272.52 21588.87 20174.95 21082.67 15471.57 20455.02 20965.96 18142.84 22176.11 19370.61 21481.47 20590.38 20986.59 201
DeepMVS_CXcopyleft71.82 21668.37 21548.05 21877.38 18446.88 21865.77 18247.03 22067.48 20464.27 21776.89 21876.72 212
v14883.61 17082.10 17985.37 14687.34 17892.94 15687.48 17485.72 12378.92 17673.87 13565.71 18364.69 18881.78 17587.82 18389.35 17896.01 16595.26 140
PS-CasMVS82.53 18381.54 18683.68 16987.08 18692.54 16886.20 18683.46 14876.46 19165.73 18765.71 18359.41 21081.61 17689.06 17790.55 15398.03 8197.07 87
v14419283.48 17282.23 17784.94 15286.65 19092.84 15889.63 15382.48 15777.87 18267.36 17765.33 18563.50 19186.51 13689.72 16889.99 16997.03 13596.35 108
pm-mvs184.55 15583.46 16285.82 14188.16 16593.39 14189.05 16185.36 12674.03 20072.43 14365.08 18671.11 15482.30 17093.48 10591.70 13397.64 11095.43 137
Anonymous20240521188.00 11793.16 10696.38 9693.58 9389.34 7887.92 11265.04 18783.03 9692.07 7492.67 11793.33 9596.96 14097.63 65
v119283.56 17182.35 17684.98 15186.84 18992.84 15890.01 14382.70 15278.54 17866.48 18164.88 18862.91 19286.91 13390.72 15190.25 15996.94 14296.32 110
Baseline_NR-MVSNet85.28 14783.42 16587.46 12987.77 17190.80 19689.90 14887.69 10483.93 14974.16 13364.72 18966.43 17787.48 12890.14 15990.83 14397.73 10197.11 86
v192192083.30 17482.09 18084.70 15586.59 19392.67 16489.82 14982.23 16178.32 17965.76 18664.64 19062.35 19586.78 13590.34 15790.02 16797.02 13696.31 111
Anonymous2023121189.82 10188.18 11591.74 7892.52 11996.09 10193.38 9889.30 8088.95 10385.90 7564.55 19184.39 8992.41 7292.24 12793.06 10696.93 14597.95 53
v124082.88 18081.66 18484.29 16186.46 19492.52 17089.06 16081.82 16677.16 18665.09 19064.17 19261.50 20086.36 13790.12 16190.13 16196.95 14196.04 120
TransMVSNet (Re)82.67 18280.93 19384.69 15688.71 15691.50 18887.90 17187.15 11071.54 20668.24 17163.69 19364.67 18978.51 18791.65 13690.73 14997.64 11092.73 172
v7n82.25 18681.54 18683.07 17885.55 19992.58 16686.68 18381.10 17476.54 18965.97 18562.91 19460.56 20482.36 16991.07 14690.35 15696.77 15496.80 93
pmmvs-eth3d79.78 19677.58 20182.34 18781.57 20887.46 20682.92 19681.28 17175.33 19871.34 14861.88 19552.41 21481.59 17787.56 18586.90 18795.36 18291.48 175
N_pmnet77.55 20176.68 20478.56 19885.43 20087.30 20778.84 20581.88 16578.30 18060.61 20061.46 19662.15 19674.03 20082.04 20680.69 20790.59 20884.81 207
CHOSEN 1792x268888.57 11487.82 12189.44 10695.46 6996.89 8493.74 8985.87 11989.63 9577.42 12361.38 19783.31 9488.80 11893.44 10793.16 10295.37 18196.95 90
gm-plane-assit77.65 20078.50 19876.66 20087.96 16785.43 21064.70 21674.50 19564.15 21451.26 21561.32 19858.17 21184.11 16095.16 6593.83 8197.45 11791.41 176
EG-PatchMatch MVS81.70 19081.31 18982.15 18888.75 15593.81 12887.14 17878.89 18271.57 20464.12 19461.20 19968.46 16576.73 19291.48 13790.77 14697.28 12191.90 173
tfpnnormal83.80 16881.26 19086.77 13589.60 14993.26 14789.72 15187.60 10972.78 20170.44 15560.53 20061.15 20285.55 14692.72 11691.44 13797.71 10296.92 91
UniMVSNet_ETH3D84.57 15481.40 18888.28 11789.34 15294.38 12090.33 13286.50 11474.74 19977.52 12259.90 20162.04 19888.78 11988.82 18092.65 11397.22 12397.24 80
CMPMVSbinary61.19 1779.86 19577.46 20382.66 18491.54 13091.82 18383.25 19581.57 16870.51 20868.64 16859.89 20266.77 17579.63 18284.00 20284.30 19891.34 20384.89 206
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
HyFIR lowres test87.87 11986.42 13689.57 10495.56 6696.99 8192.37 11084.15 13786.64 12177.17 12457.65 20383.97 9091.08 8592.09 13092.44 11697.09 13295.16 141
new_pmnet72.29 20673.25 20671.16 20875.35 21281.38 21273.72 21269.27 21075.97 19449.84 21756.27 20456.12 21369.08 20281.73 20780.86 20689.72 21180.44 211
MVS-HIRNet78.16 19877.57 20278.83 19785.83 19787.76 20476.67 20770.22 20975.82 19667.39 17655.61 20570.52 15681.96 17386.67 19285.06 19690.93 20681.58 209
gg-mvs-nofinetune81.83 18883.58 16179.80 19591.57 12896.54 9093.79 8768.80 21162.71 21543.01 22055.28 20685.06 8783.65 16296.13 4994.86 6597.98 8894.46 149
new-patchmatchnet72.32 20571.09 20873.74 20481.17 20984.86 21172.21 21377.48 18868.32 21054.89 21055.10 20749.31 21863.68 20979.30 21076.46 21193.03 19484.32 208
pmmvs371.13 20771.06 20971.21 20773.54 21480.19 21371.69 21464.86 21362.04 21652.10 21354.92 20848.00 21975.03 19683.75 20383.24 20290.04 21085.27 204
Anonymous2023120678.09 19978.11 20078.07 19985.19 20189.17 20080.99 20181.24 17375.46 19758.25 20654.78 20959.90 20866.73 20688.94 17988.26 18396.01 16590.25 187
pmmvs680.90 19178.77 19783.38 17485.84 19691.61 18686.01 18782.54 15664.17 21370.43 15654.14 21067.06 17380.73 18090.50 15689.17 18094.74 18894.75 146
FPMVS69.87 20867.10 21173.10 20584.09 20378.35 21579.40 20476.41 19171.92 20257.71 20754.06 21150.04 21656.72 21071.19 21368.70 21384.25 21375.43 213
test_method58.10 21264.61 21250.51 21228.26 22341.71 22261.28 21732.07 21975.92 19552.04 21447.94 21261.83 19951.80 21379.83 20963.95 21777.60 21781.05 210
ambc67.96 21073.69 21379.79 21473.82 21171.61 20359.80 20346.00 21320.79 22366.15 20786.92 19080.11 20989.13 21290.50 184
MIMVSNet173.19 20473.70 20572.60 20665.42 21886.69 20975.56 20979.65 17867.87 21155.30 20845.24 21456.41 21263.79 20886.98 18987.66 18595.85 16785.04 205
PMVScopyleft56.77 1861.27 21058.64 21364.35 20975.66 21154.60 21953.62 21974.23 19653.69 21758.37 20544.27 21549.38 21744.16 21669.51 21565.35 21580.07 21573.66 214
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
PMMVS253.68 21355.72 21551.30 21158.84 21967.02 21754.23 21860.97 21647.50 21819.42 22234.81 21631.97 22230.88 21865.84 21669.99 21283.47 21472.92 215
Gipumacopyleft58.52 21156.17 21461.27 21067.14 21758.06 21852.16 22068.40 21269.00 20945.02 21922.79 21720.57 22455.11 21176.27 21179.33 21079.80 21667.16 216
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
E-PMN40.00 21435.74 21744.98 21457.69 22139.15 22428.05 22262.70 21435.52 22017.78 22320.90 21814.36 22644.47 21535.89 21947.86 21859.15 22056.47 218
MVEpermissive39.81 1939.52 21541.58 21637.11 21633.93 22249.06 22026.45 22454.22 21729.46 22124.15 22120.77 21910.60 22734.42 21751.12 21865.27 21649.49 22264.81 217
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
EMVS39.04 21634.32 21844.54 21558.25 22039.35 22327.61 22362.55 21535.99 21916.40 22420.04 22014.77 22544.80 21433.12 22044.10 21957.61 22152.89 219
testmvs4.35 2176.54 2191.79 2180.60 2241.82 2253.06 2260.95 2217.22 2220.88 22612.38 2211.25 2283.87 2216.09 2215.58 2201.40 22311.42 221
test1233.48 2185.31 2201.34 2190.20 2261.52 2262.17 2270.58 2226.13 2230.31 2279.85 2220.31 2293.90 2202.65 2225.28 2210.87 22411.46 220
uanet_test0.00 2190.00 2210.00 2200.00 2270.00 2270.00 2280.00 2240.00 2240.00 2280.00 2230.00 2300.00 2230.00 2230.00 2220.00 2250.00 222
sosnet-low-res0.00 2190.00 2210.00 2200.00 2270.00 2270.00 2280.00 2240.00 2240.00 2280.00 2230.00 2300.00 2230.00 2230.00 2220.00 2250.00 222
sosnet0.00 2190.00 2210.00 2200.00 2270.00 2270.00 2280.00 2240.00 2240.00 2280.00 2230.00 2300.00 2230.00 2230.00 2220.00 2250.00 222
RE-MVS-def60.19 201
9.1497.28 23
SR-MVS98.93 1896.00 1697.75 15
our_test_386.93 18789.77 19881.61 200
MTAPA95.36 297.46 21
MTMP95.70 196.90 26
Patchmatch-RL test18.47 225
XVS95.68 6398.66 1494.96 6188.03 5396.06 3198.46 34
X-MVStestdata95.68 6398.66 1494.96 6188.03 5396.06 3198.46 34
mPP-MVS98.76 2395.49 38
NP-MVS91.63 65
Patchmtry92.39 17289.18 15773.30 20271.08 151