This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DVP-MVScopyleft97.93 398.23 397.58 399.05 699.31 198.64 696.62 597.56 295.08 596.61 1399.64 197.32 197.91 497.31 698.77 1599.26 2
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
DVP-MVS++98.07 198.46 197.62 199.08 399.29 298.84 396.63 497.89 195.35 397.83 499.48 396.98 997.99 297.14 1198.82 1199.60 1
SED-MVS97.98 298.36 297.54 498.94 1699.29 298.81 496.64 397.14 395.16 497.96 299.61 296.92 1298.00 197.24 898.75 1799.25 3
DPE-MVScopyleft97.83 498.13 497.48 598.83 2299.19 498.99 196.70 196.05 1894.39 998.30 199.47 497.02 697.75 797.02 1498.98 399.10 9
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MSP-MVS97.70 698.09 597.24 699.00 1199.17 598.76 596.41 996.91 593.88 1497.72 599.04 796.93 1197.29 1797.31 698.45 3799.23 4
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
APDe-MVScopyleft97.79 597.96 697.60 299.20 299.10 698.88 296.68 296.81 794.64 697.84 398.02 1197.24 397.74 897.02 1498.97 599.16 6
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
CSCG95.68 3095.46 3595.93 2798.71 2499.07 797.13 3593.55 3795.48 2493.35 1990.61 4593.82 4695.16 3794.60 8295.57 5597.70 10899.08 10
SMA-MVScopyleft97.53 797.93 797.07 1099.21 199.02 898.08 1996.25 1196.36 1293.57 1596.56 1499.27 596.78 1697.91 497.43 398.51 2698.94 12
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
ACMMP_NAP96.93 1697.27 1596.53 2399.06 598.95 998.24 1396.06 1595.66 2190.96 3295.63 2497.71 1696.53 2097.66 1096.68 2098.30 5498.61 22
SteuartSystems-ACMMP97.10 1597.49 1096.65 1898.97 1398.95 998.43 995.96 1795.12 2891.46 2896.85 997.60 1896.37 2497.76 697.16 1098.68 1898.97 11
Skip Steuart: Steuart Systems R&D Blog.
ACMMPR96.92 1796.96 1996.87 1598.99 1298.78 1198.38 1095.52 2496.57 1092.81 2496.06 2095.90 3697.07 596.60 3796.34 3598.46 3498.42 35
HFP-MVS97.11 1497.19 1697.00 1298.97 1398.73 1298.37 1195.69 2196.60 993.28 2096.87 896.64 2997.27 296.64 3596.33 3698.44 3898.56 24
CS-MVS-test94.63 4395.28 3693.88 4996.56 5698.67 1393.41 10089.31 8094.27 4189.64 4290.84 4391.64 5795.58 3397.04 2396.17 4198.77 1598.32 38
XVS95.68 6498.66 1494.96 6488.03 5496.06 3298.46 34
X-MVStestdata95.68 6498.66 1494.96 6488.03 5496.06 3298.46 34
X-MVS96.07 2696.33 2895.77 2998.94 1698.66 1497.94 2395.41 3095.12 2888.03 5493.00 3396.06 3295.85 2996.65 3496.35 3298.47 3298.48 32
SD-MVS97.35 897.73 896.90 1497.35 4498.66 1497.85 2596.25 1196.86 694.54 896.75 1199.13 696.99 796.94 2696.58 2398.39 4499.20 5
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
PHI-MVS95.86 2896.93 2294.61 4097.60 4298.65 1896.49 4193.13 4094.07 4387.91 5897.12 797.17 2493.90 5596.46 4096.93 1798.64 2098.10 51
PGM-MVS96.16 2496.33 2895.95 2699.04 798.63 1998.32 1292.76 4293.42 4990.49 3796.30 1695.31 4196.71 1896.46 4096.02 4898.38 4598.19 44
APD-MVScopyleft97.12 1397.05 1897.19 799.04 798.63 1998.45 896.54 694.81 3693.50 1696.10 1997.40 2296.81 1397.05 2296.82 1998.80 1298.56 24
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CNVR-MVS97.30 1097.41 1197.18 899.02 1098.60 2198.15 1696.24 1396.12 1794.10 1195.54 2597.99 1296.99 797.97 397.17 998.57 2498.50 31
CP-MVS96.68 2096.59 2696.77 1798.85 2198.58 2298.18 1595.51 2695.34 2592.94 2395.21 2896.25 3196.79 1596.44 4295.77 5198.35 4698.56 24
TSAR-MVS + MP.97.31 997.64 996.92 1397.28 4698.56 2398.61 795.48 2896.72 894.03 1396.73 1298.29 997.15 497.61 1296.42 2698.96 699.13 7
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
HPM-MVS++copyleft97.22 1197.40 1297.01 1199.08 398.55 2498.19 1496.48 796.02 1993.28 2096.26 1798.71 896.76 1797.30 1696.25 3998.30 5498.68 17
DeepC-MVS92.10 395.22 3494.77 4195.75 3097.77 3898.54 2597.63 2895.96 1795.07 3188.85 4885.35 7691.85 5495.82 3096.88 2897.10 1298.44 3898.63 19
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CS-MVS94.53 4494.73 4294.31 4296.30 6098.53 2694.98 6389.24 8293.37 5090.24 3988.96 5489.76 7196.09 2897.48 1396.42 2698.99 298.59 23
ACMMPcopyleft95.54 3195.49 3495.61 3298.27 3198.53 2697.16 3494.86 3294.88 3489.34 4395.36 2791.74 5595.50 3595.51 5994.16 7698.50 2998.22 42
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CANet94.85 3894.92 3994.78 3797.25 4798.52 2897.20 3291.81 4893.25 5191.06 3186.29 6894.46 4492.99 6797.02 2496.68 2098.34 4898.20 43
SF-MVS97.20 1297.29 1497.10 998.95 1598.51 2997.51 2996.48 796.17 1694.64 697.32 697.57 1996.23 2696.78 2996.15 4398.79 1498.55 29
MVS_030494.30 4794.68 4393.86 5096.33 5998.48 3097.41 3091.20 5392.75 5586.96 6686.03 7193.81 4792.64 7296.89 2796.54 2598.61 2298.24 41
MP-MVScopyleft96.56 2196.72 2396.37 2498.93 1898.48 3098.04 2095.55 2394.32 4090.95 3495.88 2297.02 2696.29 2596.77 3096.01 4998.47 3298.56 24
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MCST-MVS96.83 1897.06 1796.57 1998.88 2098.47 3298.02 2196.16 1495.58 2390.96 3295.78 2397.84 1496.46 2297.00 2596.17 4198.94 798.55 29
MVS_111021_HR94.84 3995.91 3093.60 5297.35 4498.46 3395.08 6291.19 5494.18 4285.97 7495.38 2692.56 5293.61 5996.61 3696.25 3998.40 4297.92 58
NCCC96.75 1996.67 2496.85 1699.03 998.44 3498.15 1696.28 1096.32 1392.39 2592.16 3597.55 2096.68 1997.32 1496.65 2298.55 2598.26 40
TSAR-MVS + ACMM96.19 2397.39 1394.78 3797.70 4098.41 3597.72 2795.49 2796.47 1186.66 6996.35 1597.85 1393.99 5297.19 2096.37 3197.12 13499.13 7
DELS-MVS93.71 5293.47 5294.00 4496.82 5398.39 3696.80 3991.07 5689.51 10089.94 4183.80 8689.29 7290.95 9097.32 1497.65 298.42 4098.32 38
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
QAPM94.13 4994.33 4993.90 4797.82 3798.37 3796.47 4290.89 5892.73 5785.63 8285.35 7693.87 4594.17 4995.71 5795.90 5098.40 4298.42 35
DeepC-MVS_fast93.32 196.48 2296.42 2796.56 2098.70 2598.31 3897.97 2295.76 2096.31 1492.01 2791.43 4095.42 4096.46 2297.65 1197.69 198.49 3198.12 49
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test250690.93 8689.20 10592.95 6494.97 7598.30 3994.53 6890.25 6489.91 9288.39 5383.23 9064.17 19490.69 9396.75 3296.10 4698.87 895.97 125
test111190.47 9589.10 10792.07 7794.92 7798.30 3994.17 8190.30 6389.56 9983.92 9673.25 15473.66 14990.26 9996.77 3096.14 4498.87 896.04 122
ECVR-MVScopyleft90.77 9089.27 10392.52 6994.97 7598.30 3994.53 6890.25 6489.91 9285.80 7973.64 14774.31 14890.69 9396.75 3296.10 4698.87 895.91 129
DeepPCF-MVS92.65 295.50 3396.96 1993.79 5196.44 5798.21 4293.51 9894.08 3696.94 489.29 4493.08 3296.77 2893.82 5697.68 997.40 495.59 18098.65 18
3Dnovator90.28 794.70 4294.34 4895.11 3598.06 3398.21 4296.89 3891.03 5794.72 3791.45 2982.87 9493.10 5094.61 4296.24 4897.08 1398.63 2198.16 45
MSLP-MVS++96.05 2795.63 3196.55 2198.33 2998.17 4496.94 3794.61 3494.70 3894.37 1089.20 5295.96 3596.81 1395.57 5897.33 598.24 6398.47 33
3Dnovator+90.56 595.06 3694.56 4595.65 3198.11 3298.15 4597.19 3391.59 5195.11 3093.23 2281.99 10394.71 4395.43 3696.48 3996.88 1898.35 4698.63 19
TSAR-MVS + GP.95.86 2896.95 2194.60 4194.07 8898.11 4696.30 4491.76 4995.67 2091.07 3096.82 1097.69 1795.71 3295.96 5295.75 5298.68 1898.63 19
CDPH-MVS94.80 4195.50 3393.98 4698.34 2898.06 4797.41 3093.23 3992.81 5482.98 10092.51 3494.82 4293.53 6096.08 5096.30 3898.42 4097.94 56
train_agg96.15 2596.64 2595.58 3398.44 2798.03 4898.14 1895.40 3193.90 4687.72 5996.26 1798.10 1095.75 3196.25 4795.45 5798.01 8698.47 33
OpenMVScopyleft88.18 1192.51 6391.61 8093.55 5397.74 3998.02 4995.66 5390.46 6189.14 10386.50 7075.80 13790.38 6992.69 7194.99 6795.30 5998.27 5897.63 67
CPTT-MVS95.54 3195.07 3796.10 2597.88 3697.98 5097.92 2494.86 3294.56 3992.16 2691.01 4195.71 3796.97 1094.56 8393.50 9296.81 15798.14 47
PCF-MVS90.19 892.98 5792.07 7394.04 4396.39 5897.87 5196.03 4895.47 2987.16 11885.09 9384.81 8093.21 4993.46 6291.98 13591.98 13197.78 10097.51 73
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
sasdasda93.08 5593.09 5593.07 6294.24 8297.86 5295.45 5787.86 10394.00 4487.47 6188.32 5682.37 10595.13 3893.96 9896.41 2998.27 5898.73 13
canonicalmvs93.08 5593.09 5593.07 6294.24 8297.86 5295.45 5787.86 10394.00 4487.47 6188.32 5682.37 10595.13 3893.96 9896.41 2998.27 5898.73 13
TPM-MVS98.33 2997.85 5497.06 3689.97 4093.26 3197.16 2593.12 6697.79 9895.95 126
Ray Leroy Khuboni and Hongjun Xu: Textureless Resilient Propagation Matching in Multiple View Stereosis (TPM-MVS). SATNAC 2025
PVSNet_Blended_VisFu91.92 7192.39 6991.36 9095.45 7297.85 5492.25 11789.54 7688.53 11087.47 6179.82 11490.53 6685.47 15296.31 4695.16 6397.99 8898.56 24
PVSNet_BlendedMVS92.80 5892.44 6793.23 5596.02 6297.83 5693.74 9290.58 5991.86 6390.69 3585.87 7482.04 11090.01 10096.39 4395.26 6098.34 4897.81 63
PVSNet_Blended92.80 5892.44 6793.23 5596.02 6297.83 5693.74 9290.58 5991.86 6390.69 3585.87 7482.04 11090.01 10096.39 4395.26 6098.34 4897.81 63
MGCFI-Net92.75 6092.98 5992.48 7094.18 8497.77 5895.28 6187.77 10593.88 4785.28 9188.19 5882.17 10994.14 5093.86 10096.32 3798.20 6798.69 16
EIA-MVS92.72 6192.96 6092.44 7293.86 9797.76 5993.13 10488.65 8989.78 9686.68 6886.69 6587.57 7393.74 5796.07 5195.32 5898.58 2397.53 72
AdaColmapbinary95.02 3793.71 5096.54 2298.51 2697.76 5996.69 4095.94 1993.72 4893.50 1689.01 5390.53 6696.49 2194.51 8593.76 8598.07 7996.69 98
IS_MVSNet91.87 7293.35 5490.14 10394.09 8797.73 6193.09 10588.12 9588.71 10779.98 11784.49 8190.63 6587.49 13197.07 2196.96 1698.07 7997.88 62
OMC-MVS94.49 4594.36 4794.64 3997.17 4897.73 6195.49 5592.25 4496.18 1590.34 3888.51 5592.88 5194.90 4194.92 7094.17 7597.69 11096.15 118
MVS_111021_LR94.84 3995.57 3294.00 4497.11 4997.72 6394.88 6691.16 5595.24 2788.74 4996.03 2191.52 5994.33 4895.96 5295.01 6497.79 9897.49 74
EC-MVSNet94.19 4895.05 3893.18 5893.56 10497.65 6495.34 5986.37 11892.05 6188.71 5089.91 4893.32 4896.14 2797.29 1796.42 2698.98 398.70 15
TAPA-MVS90.35 693.69 5393.52 5193.90 4796.89 5297.62 6596.15 4591.67 5094.94 3285.97 7487.72 6091.96 5394.40 4593.76 10193.06 10998.30 5495.58 136
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
Vis-MVSNetpermissive89.36 11091.49 8286.88 13692.10 12597.60 6692.16 12185.89 12184.21 14675.20 13382.58 9887.13 7577.40 19295.90 5495.63 5398.51 2697.36 78
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
ETV-MVS93.80 5194.57 4492.91 6693.98 9097.50 6793.62 9588.70 8791.95 6287.57 6090.21 4790.79 6294.56 4397.20 1996.35 3299.02 197.98 53
DPM-MVS95.07 3594.84 4095.34 3497.44 4397.49 6897.76 2695.52 2494.88 3488.92 4787.25 6196.44 3094.41 4495.78 5596.11 4597.99 8895.95 126
UA-Net90.81 8792.58 6488.74 11594.87 7997.44 6992.61 11188.22 9382.35 16178.93 12185.20 7895.61 3879.56 18796.52 3896.57 2498.23 6494.37 155
CNLPA93.69 5392.50 6595.06 3697.11 4997.36 7093.88 8893.30 3895.64 2293.44 1880.32 11290.73 6494.99 4093.58 10393.33 9797.67 11296.57 103
EPP-MVSNet92.13 6793.06 5791.05 9293.66 10397.30 7192.18 11887.90 9990.24 8383.63 9786.14 7090.52 6890.76 9294.82 7594.38 7298.18 7097.98 53
tfpn200view989.55 10787.86 12291.53 8493.90 9597.26 7294.31 7689.74 7185.87 13081.15 10876.46 13270.38 16091.76 8194.92 7093.51 8998.28 5796.61 100
thres600view789.28 11387.47 13291.39 8794.12 8697.25 7393.94 8689.74 7185.62 13580.63 11475.24 14169.33 16691.66 8394.92 7093.23 10098.27 5896.72 97
thres20089.49 10887.72 12491.55 8393.95 9297.25 7394.34 7489.74 7185.66 13381.18 10776.12 13670.19 16391.80 7994.92 7093.51 8998.27 5896.40 108
FA-MVS(training)90.79 8991.33 8390.17 10193.76 10097.22 7592.74 10977.79 19190.60 7788.03 5478.80 11887.41 7491.00 8995.40 6293.43 9597.70 10896.46 105
thres40089.40 10987.58 12991.53 8494.06 8997.21 7694.19 8089.83 6985.69 13281.08 11075.50 13969.76 16491.80 7994.79 7793.51 8998.20 6796.60 101
casdiffmvs_mvgpermissive91.94 7091.25 8592.75 6893.41 10697.19 7795.48 5689.77 7089.86 9486.41 7181.02 11082.23 10892.93 6895.44 6195.61 5498.51 2697.40 77
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
casdiffmvspermissive91.72 7691.16 8792.38 7493.16 10997.15 7893.95 8489.49 7791.58 6886.03 7380.75 11180.95 11693.16 6495.25 6395.22 6298.50 2997.23 83
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
UGNet91.52 7893.41 5389.32 10994.13 8597.15 7891.83 12789.01 8390.62 7585.86 7886.83 6291.73 5677.40 19294.68 7994.43 7197.71 10698.40 37
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
MAR-MVS92.71 6292.63 6392.79 6797.70 4097.15 7893.75 9187.98 9790.71 7285.76 8086.28 6986.38 7994.35 4794.95 6895.49 5697.22 12797.44 75
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
LS3D91.97 6990.98 8993.12 6097.03 5197.09 8195.33 6095.59 2292.47 5879.26 12081.60 10682.77 10094.39 4694.28 8794.23 7497.14 13394.45 154
tttt051791.01 8591.71 7890.19 10092.98 11197.07 8291.96 12687.63 11090.61 7681.42 10586.76 6482.26 10789.23 11194.86 7493.03 11197.90 9397.36 78
thisisatest053091.04 8491.74 7790.21 9892.93 11597.00 8392.06 12387.63 11090.74 7181.51 10486.81 6382.48 10289.23 11194.81 7693.03 11197.90 9397.33 80
HyFIR lowres test87.87 12186.42 13889.57 10695.56 6796.99 8492.37 11484.15 14086.64 12377.17 12757.65 20883.97 9191.08 8892.09 13392.44 11997.09 13695.16 145
MVS_Test91.81 7492.19 7191.37 8993.24 10796.95 8594.43 7086.25 11991.45 6983.45 9886.31 6785.15 8792.93 6893.99 9494.71 6997.92 9296.77 96
Vis-MVSNet (Re-imp)90.54 9492.76 6287.94 12593.73 10196.94 8692.17 12087.91 9888.77 10676.12 13183.68 8790.80 6179.49 18896.34 4596.35 3298.21 6696.46 105
CHOSEN 1792x268888.57 11687.82 12389.44 10895.46 7096.89 8793.74 9285.87 12289.63 9777.42 12661.38 20283.31 9588.80 12193.44 10993.16 10595.37 18596.95 92
thres100view90089.36 11087.61 12791.39 8793.90 9596.86 8894.35 7389.66 7585.87 13081.15 10876.46 13270.38 16091.17 8694.09 9293.43 9598.13 7396.16 117
IB-MVS85.10 1487.98 12087.97 12187.99 12494.55 8096.86 8884.52 19688.21 9486.48 12888.54 5274.41 14577.74 13674.10 20389.65 17392.85 11398.06 8197.80 65
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
CANet_DTU90.74 9292.93 6188.19 12194.36 8196.61 9094.34 7484.66 13390.66 7368.75 17190.41 4686.89 7789.78 10295.46 6094.87 6697.25 12695.62 134
DI_MVS_plusplus_trai91.05 8390.15 9692.11 7692.67 12196.61 9096.03 4888.44 9190.25 8285.92 7673.73 14684.89 8991.92 7894.17 9194.07 8097.68 11197.31 81
EPNet93.92 5094.40 4693.36 5497.89 3596.55 9296.08 4792.14 4591.65 6689.16 4594.07 3090.17 7087.78 12695.24 6494.97 6597.09 13698.15 46
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
gg-mvs-nofinetune81.83 19183.58 16479.80 19891.57 13196.54 9393.79 9068.80 21562.71 21943.01 22455.28 21185.06 8883.65 16696.13 4994.86 6797.98 9194.46 153
PLCcopyleft90.69 494.32 4692.99 5895.87 2897.91 3496.49 9495.95 5194.12 3594.94 3294.09 1285.90 7290.77 6395.58 3394.52 8493.32 9997.55 11795.00 148
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
diffmvspermissive91.37 7991.09 8891.70 8192.71 12096.47 9594.03 8288.78 8592.74 5685.43 8983.63 8880.37 11891.76 8193.39 11093.78 8497.50 11997.23 83
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
TSAR-MVS + COLMAP92.39 6592.31 7092.47 7195.35 7496.46 9696.13 4692.04 4795.33 2680.11 11694.95 2977.35 13994.05 5194.49 8693.08 10797.15 13194.53 152
Effi-MVS+89.79 10489.83 10089.74 10592.98 11196.45 9793.48 9984.24 13887.62 11676.45 12981.76 10477.56 13893.48 6194.61 8193.59 8897.82 9797.22 85
ACMP89.13 992.03 6891.70 7992.41 7394.92 7796.44 9893.95 8489.96 6791.81 6585.48 8790.97 4279.12 12492.42 7493.28 11492.55 11897.76 10297.74 66
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
Anonymous20240521188.00 11993.16 10996.38 9993.58 9689.34 7987.92 11465.04 19183.03 9792.07 7792.67 11993.33 9796.96 14497.63 67
CLD-MVS92.50 6491.96 7593.13 5993.93 9496.24 10095.69 5288.77 8692.92 5289.01 4688.19 5881.74 11393.13 6593.63 10293.08 10798.23 6497.91 60
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
ET-MVSNet_ETH3D89.93 10190.84 9088.87 11379.60 21596.19 10194.43 7086.56 11690.63 7480.75 11390.71 4477.78 13593.73 5891.36 14393.45 9498.15 7195.77 131
LGP-MVS_train91.83 7392.04 7491.58 8295.46 7096.18 10295.97 5089.85 6890.45 7977.76 12391.92 3880.07 12192.34 7694.27 8893.47 9398.11 7697.90 61
OPM-MVS91.08 8289.34 10293.11 6196.18 6196.13 10396.39 4392.39 4382.97 15781.74 10382.55 10080.20 12093.97 5494.62 8093.23 10098.00 8795.73 132
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
Anonymous2023121189.82 10388.18 11791.74 8092.52 12296.09 10493.38 10189.30 8188.95 10585.90 7764.55 19684.39 9092.41 7592.24 13093.06 10996.93 14997.95 55
GeoE89.29 11288.68 11189.99 10492.75 11996.03 10593.07 10783.79 14586.98 12081.34 10674.72 14278.92 12591.22 8593.31 11293.21 10397.78 10097.60 71
HQP-MVS92.39 6592.49 6692.29 7595.65 6695.94 10695.64 5492.12 4692.46 5979.65 11891.97 3782.68 10192.92 7093.47 10892.77 11497.74 10498.12 49
baseline190.81 8790.29 9391.42 8693.67 10295.86 10793.94 8689.69 7489.29 10282.85 10182.91 9380.30 11989.60 10395.05 6694.79 6898.80 1293.82 163
PatchMatch-RL90.30 9788.93 10991.89 7895.41 7395.68 10890.94 13088.67 8889.80 9586.95 6785.90 7272.51 15192.46 7393.56 10592.18 12496.93 14992.89 173
baseline288.97 11489.50 10188.36 11891.14 13795.30 10990.13 14485.17 13087.24 11780.80 11284.46 8278.44 12985.60 14993.54 10691.87 13297.31 12495.66 133
Fast-Effi-MVS+88.56 11787.99 12089.22 11091.56 13295.21 11092.29 11682.69 15686.82 12177.73 12476.24 13573.39 15093.36 6394.22 9093.64 8697.65 11396.43 107
FC-MVSNet-train90.55 9390.19 9590.97 9393.78 9995.16 11192.11 12288.85 8487.64 11583.38 9984.36 8378.41 13089.53 10494.69 7893.15 10698.15 7197.92 58
ACMM88.76 1091.70 7790.43 9293.19 5795.56 6795.14 11293.35 10291.48 5292.26 6087.12 6484.02 8479.34 12393.99 5294.07 9392.68 11597.62 11695.50 137
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
baseline91.19 8191.89 7690.38 9492.76 11795.04 11393.55 9784.54 13692.92 5285.71 8186.68 6686.96 7689.28 11092.00 13492.62 11796.46 16296.99 90
Effi-MVS+-dtu87.51 12488.13 11886.77 13891.10 13894.90 11490.91 13182.67 15783.47 15371.55 15081.11 10977.04 14089.41 10692.65 12191.68 13895.00 19196.09 120
MVSTER91.73 7591.61 8091.86 7993.18 10894.56 11594.37 7287.90 9990.16 8788.69 5189.23 5181.28 11588.92 11995.75 5693.95 8298.12 7496.37 109
CDS-MVSNet88.34 11888.71 11087.90 12690.70 14594.54 11692.38 11386.02 12080.37 17079.42 11979.30 11583.43 9482.04 17593.39 11094.01 8196.86 15595.93 128
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
ACMH85.51 1387.31 12686.59 13688.14 12293.96 9194.51 11789.00 16687.99 9681.58 16470.15 16178.41 12171.78 15690.60 9691.30 14491.99 13097.17 13096.58 102
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
COLMAP_ROBcopyleft84.39 1587.61 12386.03 14389.46 10795.54 6994.48 11891.77 12890.14 6687.16 11875.50 13273.41 15276.86 14287.33 13390.05 16789.76 17796.48 16190.46 189
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
GG-mvs-BLEND62.84 21290.21 9430.91 2210.57 23094.45 11986.99 1830.34 22788.71 1070.98 23081.55 10891.58 580.86 22792.66 12091.43 14195.73 17491.11 184
UniMVSNet (Re)86.22 13685.46 15387.11 13388.34 16694.42 12089.65 15687.10 11484.39 14374.61 13570.41 16668.10 17185.10 15591.17 14791.79 13497.84 9697.94 56
ACMH+85.75 1287.19 12886.02 14488.56 11793.42 10594.41 12189.91 15087.66 10983.45 15472.25 14876.42 13471.99 15590.78 9189.86 16890.94 14597.32 12395.11 147
MSDG90.42 9688.25 11692.94 6596.67 5594.41 12193.96 8392.91 4189.59 9886.26 7276.74 13080.92 11790.43 9892.60 12292.08 12897.44 12291.41 180
UniMVSNet_ETH3D84.57 15781.40 19188.28 12089.34 15694.38 12390.33 13686.50 11774.74 20277.52 12559.90 20662.04 20288.78 12288.82 18392.65 11697.22 12797.24 82
dmvs_re87.31 12686.10 14188.74 11589.84 14994.28 12492.66 11089.41 7882.61 15974.69 13474.69 14369.47 16587.78 12692.38 12693.23 10098.03 8396.02 124
GA-MVS85.08 15285.65 15084.42 16389.77 15194.25 12589.26 16084.62 13481.19 16762.25 20175.72 13868.44 17084.14 16393.57 10491.68 13896.49 16094.71 151
TDRefinement84.97 15483.39 16986.81 13792.97 11394.12 12692.18 11887.77 10582.78 15871.31 15368.43 17268.07 17281.10 18389.70 17289.03 18495.55 18291.62 178
MS-PatchMatch87.63 12287.61 12787.65 12993.95 9294.09 12792.60 11281.52 17386.64 12376.41 13073.46 15185.94 8385.01 15692.23 13190.00 17196.43 16490.93 186
UniMVSNet_NR-MVSNet86.80 13085.86 14887.89 12788.17 16894.07 12890.15 14288.51 9084.20 14773.45 14172.38 15870.30 16288.95 11790.25 16192.21 12398.12 7497.62 69
USDC86.73 13285.96 14687.63 13091.64 12993.97 12992.76 10884.58 13588.19 11170.67 15880.10 11367.86 17389.43 10591.81 13689.77 17696.69 15990.05 193
SCA86.25 13487.52 13084.77 15791.59 13093.90 13089.11 16373.25 20890.38 8172.84 14483.26 8983.79 9388.49 12386.07 19785.56 19593.33 19489.67 195
FMVSNet390.19 10090.06 9990.34 9588.69 16193.85 13194.58 6785.78 12390.03 8885.56 8477.38 12386.13 8089.22 11393.29 11394.36 7398.20 6795.40 142
EG-PatchMatch MVS81.70 19381.31 19282.15 19188.75 15993.81 13287.14 18278.89 18671.57 20764.12 19861.20 20468.46 16976.73 19691.48 14090.77 14997.28 12591.90 177
DU-MVS86.12 13884.81 15687.66 12887.77 17593.78 13390.15 14287.87 10184.40 14173.45 14170.59 16364.82 19188.95 11790.14 16292.33 12097.76 10297.62 69
NR-MVSNet85.46 14884.54 15886.52 14188.33 16793.78 13390.45 13587.87 10184.40 14171.61 14970.59 16362.09 20182.79 17191.75 13791.75 13598.10 7797.44 75
EPMVS85.77 14286.24 14085.23 15392.76 11793.78 13389.91 15073.60 20490.19 8574.22 13682.18 10278.06 13287.55 13085.61 19985.38 19793.32 19588.48 202
Fast-Effi-MVS+-dtu86.25 13487.70 12584.56 16190.37 14893.70 13690.54 13478.14 18883.50 15265.37 19381.59 10775.83 14686.09 14891.70 13891.70 13696.88 15395.84 130
MDTV_nov1_ep1386.64 13387.50 13185.65 14790.73 14393.69 13789.96 14878.03 19089.48 10176.85 12884.92 7982.42 10486.14 14686.85 19486.15 19192.17 20388.97 198
thisisatest051585.70 14387.00 13384.19 16688.16 16993.67 13884.20 19884.14 14183.39 15572.91 14376.79 12974.75 14778.82 19092.57 12391.26 14396.94 14696.56 104
GBi-Net90.21 9890.11 9790.32 9688.66 16293.65 13994.25 7785.78 12390.03 8885.56 8477.38 12386.13 8089.38 10793.97 9594.16 7698.31 5195.47 138
test190.21 9890.11 9790.32 9688.66 16293.65 13994.25 7785.78 12390.03 8885.56 8477.38 12386.13 8089.38 10793.97 9594.16 7698.31 5195.47 138
FMVSNet289.61 10689.14 10690.16 10288.66 16293.65 13994.25 7785.44 12788.57 10984.96 9473.53 14983.82 9289.38 10794.23 8994.68 7098.31 5195.47 138
anonymousdsp84.51 15985.85 14982.95 18386.30 19993.51 14285.77 19380.38 18078.25 18463.42 19973.51 15072.20 15384.64 15893.21 11592.16 12597.19 12998.14 47
DCV-MVSNet91.24 8091.26 8491.22 9192.84 11693.44 14393.82 8986.75 11591.33 7085.61 8384.00 8585.46 8691.27 8492.91 11693.62 8797.02 14098.05 52
PatchmatchNetpermissive85.70 14386.65 13584.60 16091.79 12793.40 14489.27 15973.62 20390.19 8572.63 14682.74 9781.93 11287.64 12884.99 20084.29 20292.64 20089.00 197
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
pm-mvs184.55 15883.46 16585.82 14488.16 16993.39 14589.05 16585.36 12974.03 20372.43 14765.08 19071.11 15782.30 17493.48 10791.70 13697.64 11495.43 141
TranMVSNet+NR-MVSNet85.57 14684.41 15986.92 13587.67 17893.34 14690.31 13888.43 9283.07 15670.11 16269.99 16965.28 18686.96 13689.73 17092.27 12198.06 8197.17 87
WR-MVS_H82.86 18482.66 17883.10 18087.44 18193.33 14785.71 19483.20 15477.36 18868.20 17666.37 18165.23 18776.05 19889.35 17490.13 16497.99 8896.89 94
WR-MVS83.14 17983.38 17082.87 18487.55 17993.29 14886.36 18984.21 13980.05 17466.41 18666.91 17866.92 17875.66 19988.96 18190.56 15597.05 13896.96 91
v2v48284.51 15983.05 17586.20 14387.25 18493.28 14990.22 14085.40 12879.94 17669.78 16467.74 17465.15 18887.57 12989.12 17990.55 15696.97 14295.60 135
V4284.48 16183.36 17185.79 14687.14 18793.28 14990.03 14583.98 14380.30 17171.20 15466.90 17967.17 17585.55 15089.35 17490.27 16196.82 15696.27 115
tfpnnormal83.80 17181.26 19386.77 13889.60 15393.26 15189.72 15587.60 11272.78 20470.44 15960.53 20561.15 20685.55 15092.72 11891.44 14097.71 10696.92 93
CostFormer86.78 13186.05 14287.62 13192.15 12493.20 15291.55 12975.83 19688.11 11385.29 9081.76 10476.22 14487.80 12584.45 20285.21 19893.12 19693.42 168
pmmvs583.37 17682.68 17784.18 16787.13 18893.18 15386.74 18582.08 16676.48 19367.28 18271.26 16062.70 19884.71 15790.77 15290.12 16797.15 13194.24 156
FC-MVSNet-test86.15 13789.10 10782.71 18689.83 15093.18 15387.88 17684.69 13286.54 12562.18 20282.39 10183.31 9574.18 20292.52 12491.86 13397.50 11993.88 162
TAMVS84.94 15584.95 15484.93 15688.82 15893.18 15388.44 17281.28 17577.16 18973.76 14075.43 14076.57 14382.04 17590.59 15790.79 14795.22 18790.94 185
v114484.03 16882.88 17685.37 14987.17 18693.15 15690.18 14183.31 15278.83 18067.85 17765.99 18464.99 18986.79 13890.75 15390.33 16096.90 15196.15 118
SixPastTwentyTwo83.12 18083.44 16782.74 18587.71 17793.11 15782.30 20382.33 16279.24 17864.33 19678.77 11962.75 19784.11 16488.11 18587.89 18795.70 17694.21 158
LTVRE_ROB81.71 1682.44 18881.84 18683.13 17889.01 15792.99 15888.90 16782.32 16366.26 21554.02 21674.68 14459.62 21388.87 12090.71 15592.02 12995.68 17796.62 99
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
v884.45 16383.30 17285.80 14587.53 18092.95 15990.31 13882.46 16180.46 16971.43 15166.99 17767.16 17686.14 14689.26 17790.22 16396.94 14696.06 121
v14883.61 17382.10 18285.37 14987.34 18292.94 16087.48 17885.72 12678.92 17973.87 13965.71 18764.69 19281.78 17987.82 18689.35 18196.01 16995.26 144
RPSCF89.68 10589.24 10490.20 9992.97 11392.93 16192.30 11587.69 10790.44 8085.12 9291.68 3985.84 8590.69 9387.34 19086.07 19292.46 20290.37 190
v14419283.48 17582.23 18084.94 15586.65 19492.84 16289.63 15782.48 16077.87 18567.36 18165.33 18963.50 19586.51 14089.72 17189.99 17297.03 13996.35 110
v119283.56 17482.35 17984.98 15486.84 19392.84 16290.01 14782.70 15578.54 18166.48 18564.88 19262.91 19686.91 13790.72 15490.25 16296.94 14696.32 112
FMVSNet187.33 12586.00 14588.89 11287.13 18892.83 16493.08 10684.46 13781.35 16682.20 10266.33 18277.96 13388.96 11693.97 9594.16 7697.54 11895.38 143
CHOSEN 280x42090.77 9092.14 7289.17 11193.86 9792.81 16593.16 10380.22 18190.21 8484.67 9589.89 4991.38 6090.57 9794.94 6992.11 12692.52 20193.65 165
CP-MVSNet83.11 18182.15 18184.23 16587.20 18592.70 16686.42 18883.53 15077.83 18667.67 17966.89 18060.53 20982.47 17289.23 17890.65 15498.08 7897.20 86
v1084.18 16483.17 17485.37 14987.34 18292.68 16790.32 13781.33 17479.93 17769.23 16966.33 18265.74 18487.03 13590.84 15190.38 15896.97 14296.29 114
v192192083.30 17782.09 18384.70 15886.59 19792.67 16889.82 15382.23 16478.32 18265.76 19064.64 19562.35 19986.78 13990.34 16090.02 17097.02 14096.31 113
test-mter86.09 14088.38 11383.43 17687.89 17292.61 16986.89 18477.11 19484.30 14468.62 17382.57 9982.45 10384.34 15992.40 12590.11 16895.74 17394.21 158
v7n82.25 18981.54 18983.07 18185.55 20392.58 17086.68 18781.10 17876.54 19265.97 18962.91 19960.56 20882.36 17391.07 14990.35 15996.77 15896.80 95
dps85.00 15383.21 17387.08 13490.73 14392.55 17189.34 15875.29 19884.94 13687.01 6579.27 11667.69 17487.27 13484.22 20383.56 20392.83 19990.25 191
test0.0.03 185.58 14587.69 12683.11 17991.22 13592.54 17285.60 19583.62 14785.66 13367.84 17882.79 9679.70 12273.51 20591.15 14890.79 14796.88 15391.23 183
PS-CasMVS82.53 18681.54 18983.68 17287.08 19092.54 17286.20 19083.46 15176.46 19465.73 19165.71 18759.41 21481.61 18089.06 18090.55 15698.03 8397.07 89
v124082.88 18381.66 18784.29 16486.46 19892.52 17489.06 16481.82 17077.16 18965.09 19464.17 19761.50 20486.36 14190.12 16490.13 16496.95 14596.04 122
IterMVS-LS88.60 11588.45 11288.78 11492.02 12692.44 17592.00 12583.57 14986.52 12678.90 12278.61 12081.34 11489.12 11490.68 15693.18 10497.10 13596.35 110
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Patchmtry92.39 17689.18 16173.30 20671.08 155
EPNet_dtu88.32 11990.61 9185.64 14896.79 5492.27 17792.03 12490.31 6289.05 10465.44 19289.43 5085.90 8474.22 20192.76 11792.09 12795.02 19092.76 174
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MIMVSNet82.97 18284.00 16281.77 19482.23 21192.25 17887.40 18172.73 20981.48 16569.55 16568.79 17172.42 15281.82 17892.23 13192.25 12296.89 15288.61 200
CR-MVSNet85.48 14786.29 13984.53 16291.08 14092.10 17989.18 16173.30 20684.75 13771.08 15573.12 15677.91 13486.27 14491.48 14090.75 15096.27 16693.94 160
RPMNet84.82 15685.90 14783.56 17491.10 13892.10 17988.73 17071.11 21184.75 13768.79 17073.56 14877.62 13785.33 15390.08 16689.43 18096.32 16593.77 164
test-LLR86.88 12988.28 11485.24 15291.22 13592.07 18187.41 17983.62 14784.58 13969.33 16783.00 9182.79 9884.24 16092.26 12889.81 17495.64 17893.44 166
TESTMET0.1,186.11 13988.28 11483.59 17387.80 17392.07 18187.41 17977.12 19384.58 13969.33 16783.00 9182.79 9884.24 16092.26 12889.81 17495.64 17893.44 166
PEN-MVS82.49 18781.58 18883.56 17486.93 19192.05 18386.71 18683.84 14476.94 19164.68 19567.24 17560.11 21081.17 18287.78 18790.70 15398.02 8596.21 116
pmmvs486.00 14184.28 16088.00 12387.80 17392.01 18489.94 14984.91 13186.79 12280.98 11173.41 15266.34 18288.12 12489.31 17688.90 18596.24 16793.20 171
PMMVS89.88 10291.19 8688.35 11989.73 15291.97 18590.62 13381.92 16890.57 7880.58 11592.16 3586.85 7891.17 8692.31 12791.35 14296.11 16893.11 172
TinyColmap84.04 16782.01 18486.42 14290.87 14191.84 18688.89 16884.07 14282.11 16369.89 16371.08 16160.81 20789.04 11590.52 15889.19 18295.76 17288.50 201
CMPMVSbinary61.19 1779.86 19877.46 20682.66 18791.54 13391.82 18783.25 19981.57 17270.51 21168.64 17259.89 20766.77 17979.63 18684.00 20584.30 20191.34 20784.89 210
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
ADS-MVSNet84.08 16684.95 15483.05 18291.53 13491.75 18888.16 17370.70 21289.96 9169.51 16678.83 11776.97 14186.29 14384.08 20484.60 20092.13 20588.48 202
tpmrst83.72 17283.45 16684.03 16992.21 12391.66 18988.74 16973.58 20588.14 11272.67 14577.37 12672.11 15486.34 14282.94 20782.05 20690.63 21189.86 194
pmmvs680.90 19478.77 20083.38 17785.84 20091.61 19086.01 19182.54 15964.17 21670.43 16054.14 21567.06 17780.73 18490.50 15989.17 18394.74 19294.75 150
PatchT83.86 16985.51 15281.94 19288.41 16591.56 19178.79 21071.57 21084.08 14971.08 15570.62 16276.13 14586.27 14491.48 14090.75 15095.52 18393.94 160
TransMVSNet (Re)82.67 18580.93 19684.69 15988.71 16091.50 19287.90 17587.15 11371.54 20968.24 17563.69 19864.67 19378.51 19191.65 13990.73 15297.64 11492.73 176
tpm cat184.13 16581.99 18586.63 14091.74 12891.50 19290.68 13275.69 19786.12 12985.44 8872.39 15770.72 15885.16 15480.89 21181.56 20791.07 20990.71 187
DTE-MVSNet81.76 19281.04 19482.60 18886.63 19591.48 19485.97 19283.70 14676.45 19562.44 20067.16 17659.98 21178.98 18987.15 19189.93 17397.88 9595.12 146
tpm83.16 17883.64 16382.60 18890.75 14291.05 19588.49 17173.99 20182.36 16067.08 18478.10 12268.79 16784.17 16285.95 19885.96 19391.09 20893.23 170
CVMVSNet83.83 17085.53 15181.85 19389.60 15390.92 19687.81 17783.21 15380.11 17360.16 20676.47 13178.57 12876.79 19489.76 16990.13 16493.51 19392.75 175
MDTV_nov1_ep13_2view80.43 19580.94 19579.84 19784.82 20690.87 19784.23 19773.80 20280.28 17264.33 19670.05 16868.77 16879.67 18584.83 20183.50 20492.17 20388.25 204
IterMVS-SCA-FT85.44 14986.71 13483.97 17090.59 14690.84 19889.73 15478.34 18784.07 15066.40 18777.27 12878.66 12783.06 16891.20 14590.10 16995.72 17594.78 149
testgi81.94 19084.09 16179.43 19989.53 15590.83 19982.49 20281.75 17180.59 16859.46 20882.82 9565.75 18367.97 20790.10 16589.52 17995.39 18489.03 196
Baseline_NR-MVSNet85.28 15083.42 16887.46 13287.77 17590.80 20089.90 15287.69 10783.93 15174.16 13764.72 19466.43 18187.48 13290.14 16290.83 14697.73 10597.11 88
IterMVS85.25 15186.49 13783.80 17190.42 14790.77 20190.02 14678.04 18984.10 14866.27 18877.28 12778.41 13083.01 16990.88 15089.72 17895.04 18994.24 156
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
our_test_386.93 19189.77 20281.61 204
pmnet_mix0280.14 19780.21 19880.06 19686.61 19689.66 20380.40 20782.20 16582.29 16261.35 20371.52 15966.67 18076.75 19582.55 20880.18 21193.05 19788.62 199
Anonymous2023120678.09 20278.11 20378.07 20285.19 20589.17 20480.99 20581.24 17775.46 20058.25 21054.78 21459.90 21266.73 21088.94 18288.26 18696.01 16990.25 191
MDA-MVSNet-bldmvs73.81 20672.56 21075.28 20572.52 22088.87 20574.95 21482.67 15771.57 20755.02 21365.96 18542.84 22676.11 19770.61 21881.47 20890.38 21386.59 205
FMVSNet584.47 16284.72 15784.18 16783.30 20988.43 20688.09 17479.42 18484.25 14574.14 13873.15 15578.74 12683.65 16691.19 14691.19 14496.46 16286.07 207
PM-MVS80.29 19679.30 19981.45 19581.91 21288.23 20782.61 20179.01 18579.99 17567.15 18369.07 17051.39 21982.92 17087.55 18985.59 19495.08 18893.28 169
MVS-HIRNet78.16 20177.57 20578.83 20085.83 20187.76 20876.67 21170.22 21375.82 19967.39 18055.61 21070.52 15981.96 17786.67 19585.06 19990.93 21081.58 213
test20.0376.41 20578.49 20273.98 20685.64 20287.50 20975.89 21280.71 17970.84 21051.07 22068.06 17361.40 20554.99 21688.28 18487.20 18995.58 18186.15 206
pmmvs-eth3d79.78 19977.58 20482.34 19081.57 21387.46 21082.92 20081.28 17575.33 20171.34 15261.88 20052.41 21881.59 18187.56 18886.90 19095.36 18691.48 179
N_pmnet77.55 20476.68 20778.56 20185.43 20487.30 21178.84 20981.88 16978.30 18360.61 20461.46 20162.15 20074.03 20482.04 20980.69 21090.59 21284.81 211
EU-MVSNet78.43 20080.25 19776.30 20483.81 20887.27 21280.99 20579.52 18376.01 19654.12 21570.44 16564.87 19067.40 20986.23 19685.54 19691.95 20691.41 180
MIMVSNet173.19 20773.70 20872.60 20965.42 22386.69 21375.56 21379.65 18267.87 21455.30 21245.24 21956.41 21663.79 21286.98 19287.66 18895.85 17185.04 209
gm-plane-assit77.65 20378.50 20176.66 20387.96 17185.43 21464.70 22074.50 19964.15 21751.26 21961.32 20358.17 21584.11 16495.16 6593.83 8397.45 12191.41 180
new-patchmatchnet72.32 20871.09 21173.74 20781.17 21484.86 21572.21 21777.48 19268.32 21354.89 21455.10 21249.31 22263.68 21379.30 21376.46 21493.03 19884.32 212
new_pmnet72.29 20973.25 20971.16 21175.35 21781.38 21673.72 21669.27 21475.97 19749.84 22156.27 20956.12 21769.08 20681.73 21080.86 20989.72 21580.44 215
pmmvs371.13 21071.06 21271.21 21073.54 21980.19 21771.69 21864.86 21762.04 22052.10 21754.92 21348.00 22475.03 20083.75 20683.24 20590.04 21485.27 208
ambc67.96 21373.69 21879.79 21873.82 21571.61 20659.80 20746.00 21820.79 22866.15 21186.92 19380.11 21289.13 21690.50 188
FPMVS69.87 21167.10 21473.10 20884.09 20778.35 21979.40 20876.41 19571.92 20557.71 21154.06 21650.04 22056.72 21471.19 21768.70 21784.25 21775.43 217
WB-MVS60.76 21466.86 21553.64 21482.24 21072.70 22048.70 22682.04 16763.91 21812.91 22964.77 19349.00 22322.74 22475.95 21575.36 21573.22 22366.33 221
DeepMVS_CXcopyleft71.82 22168.37 21948.05 22277.38 18746.88 22265.77 18647.03 22567.48 20864.27 22176.89 22276.72 216
PMMVS253.68 21755.72 21951.30 21558.84 22467.02 22254.23 22260.97 22047.50 22219.42 22634.81 22131.97 22730.88 22265.84 22069.99 21683.47 21872.92 219
Gipumacopyleft58.52 21556.17 21861.27 21367.14 22258.06 22352.16 22468.40 21669.00 21245.02 22322.79 22220.57 22955.11 21576.27 21479.33 21379.80 22067.16 220
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMVScopyleft56.77 1861.27 21358.64 21764.35 21275.66 21654.60 22453.62 22374.23 20053.69 22158.37 20944.27 22049.38 22144.16 22069.51 21965.35 21980.07 21973.66 218
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive39.81 1939.52 21941.58 22037.11 22033.93 22749.06 22526.45 22954.22 22129.46 22524.15 22520.77 22410.60 23234.42 22151.12 22265.27 22049.49 22764.81 222
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
tmp_tt50.24 21768.55 22146.86 22648.90 22518.28 22486.51 12768.32 17470.19 16765.33 18526.69 22374.37 21666.80 21870.72 224
test_method58.10 21664.61 21650.51 21628.26 22841.71 22761.28 22132.07 22375.92 19852.04 21847.94 21761.83 20351.80 21779.83 21263.95 22177.60 22181.05 214
EMVS39.04 22034.32 22244.54 21958.25 22539.35 22827.61 22862.55 21935.99 22316.40 22820.04 22514.77 23044.80 21833.12 22444.10 22357.61 22652.89 224
E-PMN40.00 21835.74 22144.98 21857.69 22639.15 22928.05 22762.70 21835.52 22417.78 22720.90 22314.36 23144.47 21935.89 22347.86 22259.15 22556.47 223
testmvs4.35 2216.54 2231.79 2220.60 2291.82 2303.06 2310.95 2257.22 2260.88 23112.38 2261.25 2333.87 2266.09 2255.58 2241.40 22811.42 226
test1233.48 2225.31 2241.34 2230.20 2311.52 2312.17 2320.58 2266.13 2270.31 2329.85 2270.31 2343.90 2252.65 2265.28 2250.87 22911.46 225
uanet_test0.00 2230.00 2250.00 2240.00 2320.00 2320.00 2330.00 2280.00 2280.00 2330.00 2280.00 2350.00 2280.00 2270.00 2260.00 2300.00 227
sosnet-low-res0.00 2230.00 2250.00 2240.00 2320.00 2320.00 2330.00 2280.00 2280.00 2330.00 2280.00 2350.00 2280.00 2270.00 2260.00 2300.00 227
sosnet0.00 2230.00 2250.00 2240.00 2320.00 2320.00 2330.00 2280.00 2280.00 2330.00 2280.00 2350.00 2280.00 2270.00 2260.00 2300.00 227
RE-MVS-def60.19 205
9.1497.28 23
SR-MVS98.93 1896.00 1697.75 15
MTAPA95.36 297.46 21
MTMP95.70 196.90 27
Patchmatch-RL test18.47 230
mPP-MVS98.76 2395.49 39
NP-MVS91.63 67