This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort by
TSAR-MVS + MP.98.49 998.78 898.15 1998.14 5099.17 3399.34 697.18 2998.44 595.72 1997.84 1699.28 1298.87 799.05 198.05 2699.66 299.60 7
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
DVP-MVS++98.92 199.18 198.61 499.47 599.61 299.39 397.82 198.80 196.86 898.90 299.92 198.67 1799.02 298.20 1999.43 4799.82 1
SED-MVS98.90 299.07 298.69 399.38 1899.61 299.33 897.80 498.25 897.60 298.87 499.89 398.67 1799.02 298.26 1799.36 6199.61 6
DVP-MVScopyleft98.86 498.97 398.75 299.43 1299.63 199.25 1297.81 298.62 297.69 197.59 2099.90 298.93 598.99 498.42 1199.37 5999.62 4
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
SteuartSystems-ACMMP98.38 1498.71 1097.99 2399.34 2099.46 1099.34 697.33 2497.31 3594.25 2998.06 1399.17 1998.13 3198.98 598.46 999.55 1899.54 11
Skip Steuart: Steuart Systems R&D Blog.
APDe-MVScopyleft98.87 398.96 498.77 199.58 299.53 799.44 197.81 298.22 1097.33 498.70 599.33 1098.86 898.96 698.40 1399.63 599.57 9
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
DeepPCF-MVS95.28 297.00 3998.35 2195.42 6097.30 6398.94 5194.82 12196.03 3898.24 992.11 5195.80 4198.64 3395.51 8898.95 798.66 596.78 19399.20 44
SMA-MVScopyleft98.66 798.89 798.39 999.60 199.41 1299.00 2097.63 1297.78 1895.83 1898.33 1199.83 498.85 998.93 898.56 699.41 5099.40 20
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
CNVR-MVS98.47 1198.46 1698.48 799.40 1499.05 3799.02 1997.54 1697.73 1996.65 1197.20 2999.13 2098.85 998.91 998.10 2399.41 5099.08 57
DPE-MVScopyleft98.75 598.91 698.57 599.21 2399.54 699.42 297.78 697.49 3196.84 998.94 199.82 598.59 2198.90 1098.22 1899.56 1799.48 16
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
DeepC-MVS_fast96.13 198.13 2098.27 2597.97 2499.16 2699.03 4399.05 1897.24 2698.22 1094.17 3195.82 4098.07 3998.69 1698.83 1198.80 299.52 2299.10 54
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ACMMP_NAP98.20 1898.49 1397.85 2599.50 499.40 1399.26 1197.64 1197.47 3392.62 4697.59 2099.09 2298.71 1598.82 1297.86 4099.40 5399.19 45
CS-MVS96.87 4397.41 3996.24 4597.42 6099.48 997.30 5691.83 8197.17 3993.02 4094.80 5294.45 6798.16 3098.61 1397.85 4199.69 199.50 12
MSP-MVS98.73 698.93 598.50 699.44 1199.57 499.36 497.65 998.14 1296.51 1498.49 799.65 898.67 1798.60 1498.42 1199.40 5399.63 2
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
TSAR-MVS + ACMM97.71 2898.60 1296.66 3998.64 4199.05 3798.85 2597.23 2798.45 489.40 9097.51 2499.27 1496.88 6198.53 1597.81 4398.96 12399.59 8
DELS-MVS96.06 5496.04 6196.07 4997.77 5599.25 2898.10 4193.26 5494.42 10992.79 4388.52 11193.48 7395.06 9698.51 1698.83 199.45 3899.28 30
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
NCCC98.10 2198.05 3098.17 1899.38 1899.05 3799.00 2097.53 1798.04 1495.12 2494.80 5299.18 1898.58 2298.49 1797.78 4499.39 5598.98 74
APD-MVScopyleft98.36 1598.32 2398.41 899.47 599.26 2699.12 1597.77 796.73 5096.12 1697.27 2898.88 2498.46 2598.47 1898.39 1499.52 2299.22 41
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CS-MVS-test97.00 3997.85 3396.00 5097.77 5599.56 596.35 8891.95 7697.54 2992.20 4996.14 3696.00 6198.19 2898.46 1997.78 4499.57 1499.45 18
HPM-MVS++copyleft98.34 1698.47 1598.18 1699.46 899.15 3499.10 1697.69 897.67 2494.93 2697.62 1999.70 798.60 2098.45 2097.46 5399.31 6899.26 35
IS_MVSNet95.28 6396.43 5693.94 9195.30 9399.01 4795.90 10091.12 9294.13 11587.50 10791.23 8594.45 6794.17 11198.45 2098.50 799.65 399.23 39
MP-MVScopyleft98.09 2298.30 2497.84 2699.34 2099.19 3299.23 1397.40 1997.09 4393.03 3997.58 2298.85 2598.57 2398.44 2297.69 4699.48 3099.23 39
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
ETV-MVS96.31 5197.47 3894.96 7194.79 11098.78 6496.08 9491.41 8996.16 6490.50 7095.76 4296.20 5797.39 4698.42 2397.82 4299.57 1499.18 48
X-MVS97.84 2498.19 2797.42 3099.40 1499.35 1799.06 1797.25 2597.38 3490.85 6296.06 3798.72 3098.53 2498.41 2498.15 2299.46 3499.28 30
EC-MVSNet96.49 4997.63 3495.16 6494.75 11398.69 7197.39 5588.97 12196.34 5992.02 5296.04 3896.46 5198.21 2698.41 2497.96 3299.61 699.55 10
MCST-MVS98.20 1898.36 1998.01 2299.40 1499.05 3799.00 2097.62 1397.59 2893.70 3397.42 2799.30 1198.77 1398.39 2697.48 5299.59 799.31 29
DeepC-MVS94.87 496.76 4896.50 5497.05 3598.21 4899.28 2498.67 2797.38 2097.31 3590.36 7589.19 10493.58 7298.19 2898.31 2798.50 799.51 2799.36 23
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test250694.32 8893.00 11795.87 5196.16 7799.39 1596.96 6292.80 6495.22 9594.47 2791.55 8370.45 19795.25 9398.29 2897.98 2999.59 798.10 129
ECVR-MVScopyleft94.14 9092.96 11895.52 5896.16 7799.39 1596.96 6292.80 6495.22 9592.38 4881.48 15680.31 15295.25 9398.29 2897.98 2999.59 798.05 130
CP-MVS98.32 1798.34 2298.29 1299.34 2099.30 2299.15 1497.35 2197.49 3195.58 2197.72 1898.62 3498.82 1198.29 2897.67 4799.51 2799.28 30
test111193.94 9592.78 11995.29 6396.14 7999.42 1196.79 7392.85 6395.08 9991.39 5780.69 16179.86 15595.00 9798.28 3198.00 2899.58 1198.11 128
SD-MVS98.52 898.77 998.23 1598.15 4999.26 2698.79 2697.59 1598.52 396.25 1597.99 1599.75 699.01 398.27 3297.97 3199.59 799.63 2
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
HFP-MVS98.48 1098.62 1198.32 1199.39 1799.33 2199.27 1097.42 1898.27 795.25 2398.34 1098.83 2699.08 198.26 3398.08 2599.48 3099.26 35
ACMMPR98.40 1298.49 1398.28 1399.41 1399.40 1399.36 497.35 2198.30 695.02 2597.79 1798.39 3799.04 298.26 3398.10 2399.50 2999.22 41
CANet96.84 4597.20 4196.42 4097.92 5399.24 3098.60 2993.51 5197.11 4293.07 3691.16 8697.24 4596.21 7498.24 3598.05 2699.22 8499.35 24
PGM-MVS97.81 2598.11 2897.46 2999.55 399.34 2099.32 994.51 4596.21 6393.07 3698.05 1497.95 4298.82 1198.22 3697.89 3999.48 3099.09 56
Vis-MVSNet (Re-imp)94.46 8396.24 5892.40 11095.23 9898.64 7795.56 10890.99 9394.42 10985.02 11790.88 9294.65 6688.01 18098.17 3798.37 1699.57 1498.53 105
SF-MVS98.39 1398.45 1798.33 1099.45 999.05 3798.27 3797.65 997.73 1997.02 798.18 1299.25 1598.11 3298.15 3897.62 4899.45 3899.19 45
MVS_030496.31 5196.91 4995.62 5597.21 6599.20 3198.55 3193.10 5997.04 4589.73 8490.30 9696.35 5395.71 8198.14 3997.93 3799.38 5699.40 20
UA-Net93.96 9495.95 6291.64 11996.06 8098.59 8195.29 11190.00 10391.06 15982.87 12590.64 9398.06 4086.06 19198.14 3998.20 1999.58 1196.96 165
PVSNet_Blended_VisFu94.77 7595.54 6793.87 9396.48 7298.97 4994.33 13091.84 7994.93 10190.37 7485.04 13794.99 6490.87 15898.12 4197.30 6099.30 7099.45 18
MVS_111021_HR97.04 3898.20 2695.69 5498.44 4599.29 2396.59 8093.20 5797.70 2289.94 8298.46 896.89 4796.71 6598.11 4297.95 3399.27 7499.01 70
PVSNet_BlendedMVS95.41 6195.28 7395.57 5697.42 6099.02 4595.89 10293.10 5996.16 6493.12 3491.99 7485.27 12694.66 10298.09 4397.34 5899.24 7899.08 57
PVSNet_Blended95.41 6195.28 7395.57 5697.42 6099.02 4595.89 10293.10 5996.16 6493.12 3491.99 7485.27 12694.66 10298.09 4397.34 5899.24 7899.08 57
MVS_111021_LR97.16 3698.01 3196.16 4698.47 4398.98 4896.94 6493.89 4897.64 2691.44 5598.89 396.41 5297.20 5198.02 4597.29 6299.04 11798.85 89
train_agg97.65 2998.06 2997.18 3398.94 3298.91 5698.98 2497.07 3196.71 5190.66 6897.43 2699.08 2398.20 2797.96 4697.14 6499.22 8499.19 45
3Dnovator+93.91 797.23 3597.22 4097.24 3298.89 3698.85 6198.26 3893.25 5697.99 1595.56 2290.01 10098.03 4198.05 3497.91 4798.43 1099.44 4499.35 24
3Dnovator93.79 897.08 3797.20 4196.95 3799.09 2899.03 4398.20 3993.33 5297.99 1593.82 3290.61 9496.80 4997.82 3797.90 4898.78 399.47 3399.26 35
PHI-MVS97.78 2698.44 1897.02 3698.73 3899.25 2898.11 4095.54 3996.66 5392.79 4398.52 699.38 997.50 4597.84 4998.39 1499.45 3899.03 67
gg-mvs-nofinetune86.17 19488.57 16883.36 20193.44 13798.15 9696.58 8172.05 21674.12 22049.23 22464.81 21590.85 8689.90 17397.83 5096.84 7298.97 12197.41 152
CDPH-MVS96.84 4597.49 3696.09 4798.92 3498.85 6198.61 2895.09 4196.00 7187.29 10895.45 4697.42 4397.16 5297.83 5097.94 3499.44 4498.92 80
EIA-MVS95.50 5696.19 5994.69 8194.83 10998.88 6095.93 9991.50 8894.47 10889.43 8893.14 6392.72 7797.05 5797.82 5297.13 6599.43 4799.15 51
FA-MVS(training)93.94 9595.16 7692.53 10994.87 10898.57 8295.42 11079.49 19595.37 8790.98 6086.54 12494.26 6995.44 9097.80 5395.19 11898.97 12198.38 116
QAPM96.78 4797.14 4496.36 4299.05 2999.14 3598.02 4393.26 5497.27 3790.84 6591.16 8697.31 4497.64 4397.70 5498.20 1999.33 6399.18 48
CHOSEN 280x42095.46 5997.01 4593.66 9797.28 6497.98 10096.40 8685.39 16196.10 6891.07 5996.53 3296.34 5595.61 8597.65 5596.95 6996.21 19497.49 149
TSAR-MVS + GP.97.45 3198.36 1996.39 4195.56 8798.93 5397.74 4993.31 5397.61 2794.24 3098.44 999.19 1798.03 3597.60 5697.41 5599.44 4499.33 26
MVSTER94.89 6995.07 8094.68 8294.71 11596.68 13197.00 6090.57 9895.18 9793.05 3895.21 4786.41 11693.72 12197.59 5795.88 9899.00 11898.50 107
Vis-MVSNetpermissive92.77 11495.00 8290.16 13894.10 12798.79 6394.76 12388.26 12892.37 14479.95 14088.19 11391.58 8184.38 20197.59 5797.58 5099.52 2298.91 83
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
LS3D95.46 5995.14 7795.84 5297.91 5498.90 5898.58 3097.79 597.07 4483.65 12388.71 10788.64 10497.82 3797.49 5997.42 5499.26 7797.72 143
casdiffmvs_mvgpermissive94.55 8094.26 9294.88 7394.96 10598.51 8397.11 5891.82 8294.28 11289.20 9486.60 12286.85 11296.56 6997.47 6097.25 6399.64 498.83 91
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MSLP-MVS++98.04 2397.93 3298.18 1699.10 2799.09 3698.34 3696.99 3297.54 2996.60 1294.82 5198.45 3598.89 697.46 6198.77 499.17 9499.37 22
casdiffmvspermissive94.38 8794.15 9894.64 8394.70 11798.51 8396.03 9791.66 8495.70 8089.36 9186.48 12685.03 13196.60 6897.40 6297.30 6099.52 2298.67 97
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CANet_DTU93.92 9796.57 5390.83 12995.63 8598.39 8796.99 6187.38 13796.26 6171.97 18396.31 3493.02 7494.53 10597.38 6396.83 7398.49 16497.79 136
EPP-MVSNet95.27 6496.18 6094.20 8994.88 10798.64 7794.97 11790.70 9695.34 8889.67 8691.66 8193.84 7095.42 9197.32 6497.00 6799.58 1199.47 17
ACMMPcopyleft97.37 3397.48 3797.25 3198.88 3799.28 2498.47 3496.86 3497.04 4592.15 5097.57 2396.05 6097.67 4097.27 6595.99 9499.46 3499.14 53
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
OpenMVScopyleft92.33 1195.50 5695.22 7595.82 5398.98 3098.97 4997.67 5093.04 6294.64 10589.18 9584.44 14294.79 6596.79 6297.23 6697.61 4999.24 7898.88 85
gm-plane-assit83.26 20485.29 20180.89 20489.52 18289.89 21570.26 22178.24 19777.11 21858.01 22174.16 18866.90 21190.63 16497.20 6796.05 9198.66 15495.68 181
CPTT-MVS97.78 2697.54 3598.05 2198.91 3599.05 3799.00 2096.96 3397.14 4195.92 1795.50 4498.78 2898.99 497.20 6796.07 8998.54 16199.04 66
AdaColmapbinary97.53 3096.93 4798.24 1499.21 2398.77 6598.47 3497.34 2396.68 5296.52 1395.11 4996.12 5898.72 1497.19 6996.24 8599.17 9498.39 115
OMC-MVS97.00 3996.92 4897.09 3498.69 3998.66 7497.85 4795.02 4298.09 1394.47 2793.15 6296.90 4697.38 4797.16 7096.82 7499.13 10197.65 144
PLCcopyleft94.95 397.37 3396.77 5198.07 2098.97 3198.21 9297.94 4696.85 3597.66 2597.58 393.33 6196.84 4898.01 3697.13 7196.20 8799.09 10698.01 131
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
DPM-MVS96.86 4496.82 5096.91 3898.08 5198.20 9398.52 3397.20 2897.24 3891.42 5691.84 7898.45 3597.25 5097.07 7297.40 5698.95 12497.55 147
baseline194.59 7994.47 8794.72 8095.16 10097.97 10196.07 9591.94 7794.86 10289.98 8091.60 8285.87 12295.64 8397.07 7296.90 7099.52 2297.06 164
EPNet96.27 5396.97 4695.46 5998.47 4398.28 8997.41 5393.67 4995.86 7692.86 4297.51 2493.79 7191.76 14397.03 7497.03 6698.61 15799.28 30
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
tttt051794.52 8295.44 7193.44 10194.51 12098.68 7294.61 12690.72 9495.61 8486.84 11293.78 5789.26 9894.74 9997.02 7594.86 12799.20 9198.87 87
thisisatest053094.54 8195.47 6893.46 10094.51 12098.65 7694.66 12490.72 9495.69 8286.90 11193.80 5689.44 9594.74 9996.98 7694.86 12799.19 9298.85 89
tfpn200view993.64 10292.57 12294.89 7295.33 9198.94 5196.82 6992.31 6892.63 13588.29 9987.21 11578.01 16397.12 5596.82 7795.85 9999.45 3898.56 102
thres600view793.49 10792.37 13394.79 7895.42 8898.93 5396.58 8192.31 6893.04 12987.88 10486.62 12176.94 17097.09 5696.82 7795.63 10499.45 3898.63 99
thres20093.62 10392.54 12394.88 7395.36 9098.93 5396.75 7592.31 6892.84 13288.28 10186.99 11777.81 16697.13 5396.82 7795.92 9599.45 3898.49 108
MAR-MVS95.50 5695.60 6595.39 6198.67 4098.18 9595.89 10289.81 10994.55 10791.97 5392.99 6490.21 9197.30 4996.79 8097.49 5198.72 14798.99 72
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
FMVSNet293.30 11093.36 11393.22 10591.34 15995.86 15596.22 8988.24 12995.15 9889.92 8381.64 15489.36 9694.40 10896.77 8196.98 6899.21 8897.79 136
thres40093.56 10592.43 13094.87 7595.40 8998.91 5696.70 7792.38 6792.93 13188.19 10386.69 12077.35 16797.13 5396.75 8295.85 9999.42 4998.56 102
CNLPA96.90 4296.28 5797.64 2898.56 4298.63 7996.85 6896.60 3697.73 1997.08 689.78 10296.28 5697.80 3996.73 8396.63 7698.94 12598.14 127
CHOSEN 1792x268892.66 11692.49 12692.85 10797.13 6698.89 5995.90 10088.50 12795.32 8983.31 12471.99 20088.96 10294.10 11396.69 8496.49 7898.15 17499.10 54
UGNet94.92 6896.63 5292.93 10696.03 8198.63 7994.53 12791.52 8796.23 6290.03 7992.87 6796.10 5986.28 19096.68 8596.60 7799.16 9799.32 28
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
Effi-MVS+92.93 11393.86 10291.86 11594.07 12898.09 9895.59 10785.98 15394.27 11379.54 14491.12 8981.81 14896.71 6596.67 8696.06 9099.27 7498.98 74
Effi-MVS+-dtu91.78 12593.59 10989.68 14692.44 15097.11 11894.40 12984.94 16992.43 14075.48 16591.09 9083.75 13993.55 12496.61 8795.47 10997.24 18998.67 97
TAPA-MVS94.18 596.38 5096.49 5596.25 4398.26 4798.66 7498.00 4494.96 4397.17 3989.48 8792.91 6696.35 5397.53 4496.59 8895.90 9799.28 7297.82 135
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
PatchMatch-RL94.69 7794.41 8895.02 6797.63 5998.15 9694.50 12891.99 7495.32 8991.31 5895.47 4583.44 14196.02 7796.56 8995.23 11698.69 15096.67 172
Fast-Effi-MVS+91.87 12292.08 13791.62 12192.91 14497.21 11794.93 11884.60 17393.61 12381.49 13483.50 14778.95 15896.62 6796.55 9096.22 8699.16 9798.51 106
FC-MVSNet-train93.85 9893.91 10093.78 9594.94 10696.79 12894.29 13191.13 9193.84 12088.26 10290.40 9585.23 12894.65 10496.54 9195.31 11399.38 5699.28 30
GBi-Net93.81 9994.18 9493.38 10291.34 15995.86 15596.22 8988.68 12395.23 9290.40 7186.39 12791.16 8294.40 10896.52 9296.30 8199.21 8897.79 136
test193.81 9994.18 9493.38 10291.34 15995.86 15596.22 8988.68 12395.23 9290.40 7186.39 12791.16 8294.40 10896.52 9296.30 8199.21 8897.79 136
FMVSNet191.54 13090.93 15192.26 11290.35 16995.27 17795.22 11387.16 14091.37 15687.62 10675.45 17783.84 13894.43 10696.52 9296.30 8198.82 13697.74 142
MVS_Test94.82 7195.66 6493.84 9494.79 11098.35 8896.49 8489.10 12096.12 6787.09 11092.58 6990.61 8896.48 7096.51 9596.89 7199.11 10498.54 104
GG-mvs-BLEND66.17 21694.91 8332.63 2211.32 23096.64 13291.40 1780.85 22794.39 1112.20 23190.15 9995.70 622.27 22796.39 9695.44 11097.78 18295.68 181
thres100view90093.55 10692.47 12994.81 7795.33 9198.74 6696.78 7492.30 7192.63 13588.29 9987.21 11578.01 16396.78 6396.38 9795.92 9599.38 5698.40 114
baseline293.01 11294.17 9691.64 11992.83 14697.49 10893.40 14287.53 13593.67 12286.07 11391.83 7986.58 11391.36 14796.38 9795.06 12198.67 15198.20 125
test-mter90.95 13593.54 11287.93 17190.28 17096.80 12591.44 17782.68 18592.15 14974.37 17689.57 10388.23 10990.88 15796.37 9994.31 14597.93 18197.37 153
LGP-MVS_train94.12 9194.62 8493.53 9896.44 7397.54 10697.40 5491.84 7994.66 10481.09 13695.70 4383.36 14295.10 9596.36 10095.71 10399.32 6599.03 67
DI_MVS_plusplus_trai94.01 9393.63 10794.44 8594.54 11998.26 9197.51 5290.63 9795.88 7589.34 9280.54 16389.36 9695.48 8996.33 10196.27 8499.17 9498.78 95
TSAR-MVS + COLMAP94.79 7394.51 8695.11 6596.50 7197.54 10697.99 4594.54 4497.81 1785.88 11496.73 3181.28 15196.99 5896.29 10295.21 11798.76 14696.73 171
OPM-MVS93.61 10492.43 13095.00 6896.94 6897.34 11297.78 4894.23 4689.64 17285.53 11588.70 10882.81 14496.28 7396.28 10395.00 12599.24 7897.22 157
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
anonymousdsp88.90 16591.00 15086.44 19088.74 20195.97 15090.40 19082.86 18388.77 17967.33 20381.18 15881.44 15090.22 16996.23 10494.27 14699.12 10399.16 50
GeoE92.52 11892.64 12192.39 11193.96 12997.76 10396.01 9885.60 15893.23 12783.94 12081.56 15584.80 13295.63 8496.22 10595.83 10199.19 9299.07 61
ACMM92.75 1094.41 8693.84 10395.09 6696.41 7496.80 12594.88 12093.54 5096.41 5890.16 7692.31 7283.11 14396.32 7296.22 10594.65 13299.22 8497.35 154
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CSCG97.44 3297.18 4397.75 2799.47 599.52 898.55 3195.41 4097.69 2395.72 1994.29 5595.53 6398.10 3396.20 10797.38 5799.24 7899.62 4
test-LLR91.62 12893.56 11089.35 15093.31 14096.57 13492.02 17187.06 14192.34 14575.05 17290.20 9788.64 10490.93 15496.19 10894.07 14997.75 18496.90 168
TESTMET0.1,191.07 13493.56 11088.17 16190.43 16696.57 13492.02 17182.83 18492.34 14575.05 17290.20 9788.64 10490.93 15496.19 10894.07 14997.75 18496.90 168
MSDG94.82 7193.73 10596.09 4798.34 4697.43 11197.06 5996.05 3795.84 7790.56 6986.30 13189.10 10195.55 8796.13 11095.61 10599.00 11895.73 180
diffmvspermissive94.31 8994.21 9394.42 8694.64 11898.28 8996.36 8791.56 8596.77 4988.89 9888.97 10584.23 13596.01 7896.05 11196.41 8099.05 11698.79 94
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
FMVSNet393.79 10194.17 9693.35 10491.21 16295.99 14896.62 7888.68 12395.23 9290.40 7186.39 12791.16 8294.11 11295.96 11296.67 7599.07 10997.79 136
EPNet_dtu92.45 11995.02 8189.46 14798.02 5295.47 17094.79 12292.62 6694.97 10070.11 19494.76 5492.61 7884.07 20495.94 11395.56 10697.15 19095.82 179
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CDS-MVSNet92.77 11493.60 10891.80 11792.63 14896.80 12595.24 11289.14 11990.30 16984.58 11886.76 11890.65 8790.42 16695.89 11496.49 7898.79 14398.32 121
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
HyFIR lowres test92.03 12091.55 14592.58 10897.13 6698.72 6894.65 12586.54 14693.58 12482.56 12767.75 21190.47 8995.67 8295.87 11595.54 10798.91 12998.93 79
GA-MVS89.28 15890.75 15487.57 17891.77 15496.48 13692.29 16387.58 13490.61 16665.77 20584.48 14176.84 17189.46 17495.84 11693.68 15998.52 16297.34 155
MIMVSNet88.99 16491.07 14986.57 18986.78 21095.62 16391.20 18375.40 21090.65 16576.57 15784.05 14482.44 14791.01 15395.84 11695.38 11198.48 16593.50 202
pm-mvs189.19 16189.02 16489.38 14990.40 16795.74 16292.05 16988.10 13186.13 19877.70 14973.72 19179.44 15788.97 17795.81 11894.51 14199.08 10797.78 141
sasdasda95.25 6595.45 6995.00 6895.27 9598.72 6896.89 6589.82 10796.51 5490.84 6593.72 5886.01 11997.66 4195.78 11997.94 3499.54 1999.50 12
canonicalmvs95.25 6595.45 6995.00 6895.27 9598.72 6896.89 6589.82 10796.51 5490.84 6593.72 5886.01 11997.66 4195.78 11997.94 3499.54 1999.50 12
baseline94.83 7095.82 6393.68 9694.75 11397.80 10296.51 8388.53 12697.02 4789.34 9292.93 6592.18 7994.69 10195.78 11996.08 8898.27 17298.97 78
Fast-Effi-MVS+-dtu91.19 13393.64 10688.33 15992.19 15296.46 13793.99 13481.52 19092.59 13771.82 18492.17 7385.54 12491.68 14495.73 12294.64 13398.80 14198.34 118
ACMP92.88 994.43 8494.38 8994.50 8496.01 8297.69 10495.85 10592.09 7395.74 7989.12 9695.14 4882.62 14694.77 9895.73 12294.67 13199.14 10099.06 62
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
FC-MVSNet-test91.63 12793.82 10489.08 15192.02 15396.40 14093.26 14587.26 13893.72 12177.26 15288.61 11089.86 9385.50 19495.72 12495.02 12399.16 9797.44 151
MGCFI-Net95.12 6795.39 7294.79 7895.24 9798.68 7296.80 7289.72 11196.48 5690.11 7893.64 6085.86 12397.36 4895.69 12597.92 3899.53 2199.49 15
tfpnnormal88.50 16887.01 19090.23 13691.36 15895.78 16192.74 15290.09 10283.65 20776.33 16071.46 20369.58 20391.84 14195.54 12694.02 15199.06 11299.03 67
DCV-MVSNet94.76 7695.12 7994.35 8795.10 10395.81 15996.46 8589.49 11596.33 6090.16 7692.55 7090.26 9095.83 8095.52 12796.03 9299.06 11299.33 26
CLD-MVS94.79 7394.36 9095.30 6295.21 9997.46 10997.23 5792.24 7296.43 5791.77 5492.69 6884.31 13496.06 7595.52 12795.03 12299.31 6899.06 62
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
HQP-MVS94.43 8494.57 8594.27 8896.41 7497.23 11696.89 6593.98 4795.94 7383.68 12295.01 5084.46 13395.58 8695.47 12994.85 13099.07 10999.00 71
PMMVS94.61 7895.56 6693.50 9994.30 12496.74 12994.91 11989.56 11495.58 8587.72 10596.15 3592.86 7596.06 7595.47 12995.02 12398.43 16997.09 160
thisisatest051590.12 14992.06 13887.85 17290.03 17396.17 14587.83 19987.45 13691.71 15377.15 15385.40 13584.01 13785.74 19395.41 13193.30 16698.88 13198.43 110
IterMVS-SCA-FT90.24 14592.48 12887.63 17692.85 14594.30 20093.79 13681.47 19192.66 13469.95 19584.66 14088.38 10789.99 17195.39 13294.34 14497.74 18697.63 145
IterMVS-LS92.56 11793.18 11491.84 11693.90 13094.97 18494.99 11686.20 15094.18 11482.68 12685.81 13387.36 11194.43 10695.31 13396.02 9398.87 13298.60 101
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS90.20 14692.43 13087.61 17792.82 14794.31 19994.11 13281.54 18992.97 13069.90 19684.71 13988.16 11089.96 17295.25 13494.17 14797.31 18897.46 150
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CR-MVSNet90.16 14891.96 14088.06 16593.32 13995.95 15293.36 14375.99 20892.40 14275.19 16983.18 14885.37 12592.05 13895.21 13594.56 13798.47 16697.08 162
PatchT89.13 16291.71 14186.11 19392.92 14395.59 16683.64 21075.09 21191.87 15175.19 16982.63 15185.06 13092.05 13895.21 13594.56 13797.76 18397.08 162
Anonymous20240521192.18 13595.04 10498.20 9396.14 9291.79 8393.93 11674.60 18388.38 10796.48 7095.17 13795.82 10299.00 11899.15 51
test0.0.03 191.97 12193.91 10089.72 14393.31 14096.40 14091.34 18087.06 14193.86 11881.67 13291.15 8889.16 10086.02 19295.08 13895.09 11998.91 12996.64 174
MS-PatchMatch91.82 12492.51 12491.02 12595.83 8496.88 12195.05 11584.55 17593.85 11982.01 12982.51 15291.71 8090.52 16595.07 13993.03 17098.13 17594.52 188
USDC90.69 13890.52 15590.88 12894.17 12696.43 13895.82 10686.76 14393.92 11776.27 16186.49 12574.30 18093.67 12395.04 14093.36 16398.61 15794.13 193
PCF-MVS93.95 695.65 5595.14 7796.25 4397.73 5898.73 6797.59 5197.13 3092.50 13989.09 9789.85 10196.65 5096.90 6094.97 14194.89 12699.08 10798.38 116
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
Anonymous2023121193.49 10792.33 13494.84 7694.78 11298.00 9996.11 9391.85 7894.86 10290.91 6174.69 18289.18 9996.73 6494.82 14295.51 10898.67 15199.24 38
dmvs_re91.84 12391.60 14492.12 11491.60 15597.26 11495.14 11491.96 7591.02 16080.98 13786.56 12377.96 16593.84 11894.71 14395.08 12099.22 8498.62 100
FMVSNet590.36 14390.93 15189.70 14487.99 20492.25 20992.03 17083.51 17992.20 14884.13 11985.59 13486.48 11492.43 13594.61 14494.52 14098.13 17590.85 210
ACMH90.77 1391.51 13191.63 14391.38 12295.62 8696.87 12391.76 17589.66 11291.58 15478.67 14686.73 11978.12 16193.77 12094.59 14594.54 13998.78 14498.98 74
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
TAMVS90.54 14290.87 15390.16 13891.48 15796.61 13393.26 14586.08 15187.71 18881.66 13383.11 15084.04 13690.42 16694.54 14694.60 13498.04 17995.48 184
TransMVSNet (Re)87.73 18186.79 19288.83 15390.76 16394.40 19791.33 18189.62 11384.73 20475.41 16772.73 19671.41 19386.80 18694.53 14793.93 15399.06 11295.83 178
pmmvs587.83 18088.09 17387.51 18189.59 18195.48 16989.75 19484.73 17186.07 20071.44 18680.57 16270.09 20190.74 16194.47 14892.87 17498.82 13697.10 159
TinyColmap89.42 15588.58 16790.40 13593.80 13495.45 17193.96 13586.54 14692.24 14776.49 15880.83 15970.44 19893.37 12694.45 14993.30 16698.26 17393.37 204
RPMNet90.19 14792.03 13988.05 16693.46 13695.95 15293.41 14174.59 21392.40 14275.91 16384.22 14386.41 11692.49 13494.42 15093.85 15698.44 16796.96 165
testgi89.42 15591.50 14687.00 18692.40 15195.59 16689.15 19685.27 16592.78 13372.42 18191.75 8076.00 17384.09 20394.38 15193.82 15898.65 15596.15 175
LTVRE_ROB87.32 1687.55 18288.25 17186.73 18790.66 16495.80 16093.05 14884.77 17083.35 20860.32 21783.12 14967.39 21093.32 12794.36 15294.86 12798.28 17198.87 87
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
CVMVSNet89.77 15391.66 14287.56 17993.21 14295.45 17191.94 17489.22 11889.62 17369.34 20083.99 14585.90 12184.81 19994.30 15395.28 11496.85 19297.09 160
COLMAP_ROBcopyleft90.49 1493.27 11192.71 12093.93 9297.75 5797.44 11096.07 9593.17 5895.40 8683.86 12183.76 14688.72 10393.87 11694.25 15494.11 14898.87 13295.28 186
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
NR-MVSNet89.34 15788.66 16690.13 14190.40 16795.61 16493.04 14989.91 10491.22 15778.96 14577.72 17168.90 20689.16 17694.24 15593.95 15299.32 6598.99 72
EG-PatchMatch MVS86.68 19087.24 18686.02 19490.58 16596.26 14391.08 18481.59 18884.96 20369.80 19871.35 20475.08 17784.23 20294.24 15593.35 16498.82 13695.46 185
v7n86.43 19286.52 19686.33 19187.91 20594.93 18690.15 19283.05 18186.57 19570.21 19371.48 20266.78 21387.72 18194.19 15792.96 17198.92 12798.76 96
ET-MVSNet_ETH3D93.34 10994.33 9192.18 11383.26 21797.66 10596.72 7689.89 10695.62 8387.17 10996.00 3983.69 14096.99 5893.78 15895.34 11299.06 11298.18 126
UniMVSNet (Re)90.03 15189.61 16090.51 13489.97 17596.12 14692.32 16189.26 11790.99 16180.95 13878.25 17075.08 17791.14 15093.78 15893.87 15599.41 5099.21 43
v119287.51 18387.31 18487.74 17489.04 19594.87 18992.07 16885.03 16688.49 18270.32 19172.65 19770.35 19991.21 14993.59 16092.80 17598.78 14498.42 112
v1088.00 17487.96 17688.05 16689.44 18394.68 19192.36 16083.35 18089.37 17472.96 18073.98 18972.79 18791.35 14893.59 16092.88 17398.81 13998.42 112
pmmvs685.98 19684.89 20487.25 18388.83 19994.35 19889.36 19585.30 16478.51 21775.44 16662.71 21775.41 17487.65 18293.58 16292.40 18396.89 19197.29 156
pmmvs490.55 14189.91 15891.30 12490.26 17194.95 18592.73 15387.94 13293.44 12685.35 11682.28 15376.09 17293.02 13293.56 16392.26 18698.51 16396.77 170
v114487.92 17887.79 18088.07 16389.27 18795.15 18092.17 16685.62 15788.52 18171.52 18573.80 19072.40 18991.06 15293.54 16492.80 17598.81 13998.33 119
ACMH+90.88 1291.41 13291.13 14891.74 11895.11 10296.95 12093.13 14789.48 11692.42 14179.93 14185.13 13678.02 16293.82 11993.49 16593.88 15498.94 12597.99 132
Anonymous2023120683.84 20385.19 20282.26 20387.38 20892.87 20685.49 20683.65 17886.07 20063.44 21268.42 20869.01 20575.45 21293.34 16692.44 18298.12 17794.20 192
v192192087.31 18787.13 18887.52 18088.87 19894.72 19091.96 17384.59 17488.28 18369.86 19772.50 19870.03 20291.10 15193.33 16792.61 18098.71 14898.44 109
v124086.89 18986.75 19487.06 18588.75 20094.65 19391.30 18284.05 17687.49 19168.94 20171.96 20168.86 20790.65 16393.33 16792.72 17998.67 15198.24 123
WR-MVS_H87.93 17687.85 17988.03 16889.62 17995.58 16890.47 18985.55 15987.20 19376.83 15674.42 18672.67 18886.37 18993.22 16993.04 16999.33 6398.83 91
TDRefinement89.07 16388.15 17290.14 14095.16 10096.88 12195.55 10990.20 10189.68 17176.42 15976.67 17474.30 18084.85 19893.11 17091.91 18898.64 15694.47 189
MVS-HIRNet85.36 19886.89 19183.57 20090.13 17294.51 19583.57 21172.61 21588.27 18471.22 18868.97 20781.81 14888.91 17893.08 17191.94 18794.97 21089.64 213
CP-MVSNet87.89 17987.27 18588.62 15589.30 18695.06 18190.60 18885.78 15587.43 19275.98 16274.60 18368.14 20990.76 15993.07 17293.60 16099.30 7098.98 74
PS-CasMVS87.33 18686.68 19588.10 16289.22 19394.93 18690.35 19185.70 15686.44 19774.01 17773.43 19366.59 21590.04 17092.92 17393.52 16199.28 7298.91 83
UniMVSNet_NR-MVSNet90.35 14489.96 15790.80 13089.66 17895.83 15892.48 15790.53 9990.96 16279.57 14279.33 16777.14 16893.21 13092.91 17494.50 14299.37 5999.05 64
SixPastTwentyTwo88.37 17089.47 16187.08 18490.01 17495.93 15487.41 20085.32 16290.26 17070.26 19286.34 13071.95 19090.93 15492.89 17591.72 18998.55 16097.22 157
v14419287.40 18587.20 18787.64 17588.89 19694.88 18891.65 17684.70 17287.80 18771.17 18973.20 19570.91 19590.75 16092.69 17692.49 18198.71 14898.43 110
PM-MVS84.72 20184.47 20585.03 19684.67 21391.57 21186.27 20482.31 18787.65 18970.62 19076.54 17656.41 22488.75 17992.59 17789.85 19897.54 18796.66 173
DU-MVS89.67 15488.84 16590.63 13389.26 18895.61 16492.48 15789.91 10491.22 15779.57 14277.72 17171.18 19493.21 13092.53 17894.57 13699.35 6299.05 64
Baseline_NR-MVSNet89.27 15988.01 17590.73 13289.26 18893.71 20492.71 15489.78 11090.73 16381.28 13573.53 19272.85 18692.30 13792.53 17893.84 15799.07 10998.88 85
IB-MVS89.56 1591.71 12692.50 12590.79 13195.94 8398.44 8687.05 20291.38 9093.15 12892.98 4184.78 13885.14 12978.27 20992.47 18094.44 14399.10 10599.08 57
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
WR-MVS87.93 17688.09 17387.75 17389.26 18895.28 17590.81 18686.69 14488.90 17675.29 16874.31 18773.72 18385.19 19792.26 18193.32 16599.27 7498.81 93
EU-MVSNet85.62 19787.65 18383.24 20288.54 20292.77 20887.12 20185.32 16286.71 19464.54 20878.52 16975.11 17678.35 20892.25 18292.28 18595.58 20295.93 177
pmmvs-eth3d84.33 20282.94 20785.96 19584.16 21490.94 21286.55 20383.79 17784.25 20575.85 16470.64 20556.43 22387.44 18592.20 18390.41 19597.97 18095.68 181
TranMVSNet+NR-MVSNet89.23 16088.48 16990.11 14289.07 19495.25 17892.91 15090.43 10090.31 16877.10 15476.62 17571.57 19291.83 14292.12 18494.59 13599.32 6598.92 80
v888.21 17387.94 17888.51 15689.62 17995.01 18392.31 16284.99 16788.94 17574.70 17475.03 17973.51 18490.67 16292.11 18592.74 17898.80 14198.24 123
v2v48288.25 17287.71 18288.88 15289.23 19295.28 17592.10 16787.89 13388.69 18073.31 17975.32 17871.64 19191.89 14092.10 18692.92 17298.86 13497.99 132
V4288.31 17187.95 17788.73 15489.44 18395.34 17492.23 16587.21 13988.83 17774.49 17574.89 18173.43 18590.41 16892.08 18792.77 17798.60 15998.33 119
test20.0382.92 20585.52 20079.90 20787.75 20691.84 21082.80 21282.99 18282.65 21260.32 21778.90 16870.50 19667.10 21692.05 18890.89 19198.44 16791.80 208
MDTV_nov1_ep1391.57 12993.18 11489.70 14493.39 13896.97 11993.53 13980.91 19295.70 8081.86 13092.40 7189.93 9293.25 12991.97 18990.80 19295.25 20794.46 190
test_method72.96 21278.68 21266.28 21550.17 22764.90 22575.45 22050.90 22387.89 18562.54 21362.98 21668.34 20870.45 21491.90 19082.41 21488.19 22092.35 205
MIMVSNet180.03 20880.93 20978.97 20872.46 22390.73 21380.81 21582.44 18680.39 21463.64 21057.57 21864.93 21776.37 21091.66 19191.55 19098.07 17889.70 212
RPSCF94.05 9294.00 9994.12 9096.20 7696.41 13996.61 7991.54 8695.83 7889.73 8496.94 3092.80 7695.35 9291.63 19290.44 19495.27 20693.94 197
UniMVSNet_ETH3D88.47 16986.00 19991.35 12391.55 15696.29 14292.53 15688.81 12285.58 20282.33 12867.63 21266.87 21294.04 11491.49 19395.24 11598.84 13598.92 80
ambc73.83 21676.23 22185.13 21982.27 21384.16 20665.58 20752.82 22023.31 23173.55 21391.41 19485.26 21292.97 21694.70 187
PEN-MVS87.22 18886.50 19788.07 16388.88 19794.44 19690.99 18586.21 14886.53 19673.66 17874.97 18066.56 21689.42 17591.20 19593.48 16299.24 7898.31 122
SCA90.92 13693.04 11688.45 15793.72 13597.33 11392.77 15176.08 20796.02 7078.26 14891.96 7690.86 8593.99 11590.98 19690.04 19795.88 19894.06 196
v14887.51 18386.79 19288.36 15889.39 18595.21 17989.84 19388.20 13087.61 19077.56 15073.38 19470.32 20086.80 18690.70 19792.31 18498.37 17097.98 134
DTE-MVSNet86.67 19186.09 19887.35 18288.45 20394.08 20290.65 18786.05 15286.13 19872.19 18274.58 18566.77 21487.61 18390.31 19893.12 16899.13 10197.62 146
EPMVS90.88 13792.12 13689.44 14894.71 11597.24 11593.55 13876.81 20295.89 7481.77 13191.49 8486.47 11593.87 11690.21 19990.07 19695.92 19793.49 203
pmmvs379.16 20980.12 21178.05 21079.36 21886.59 21878.13 21873.87 21476.42 21957.51 22270.59 20657.02 22284.66 20090.10 20088.32 20294.75 21291.77 209
PatchmatchNetpermissive90.56 14092.49 12688.31 16093.83 13396.86 12492.42 15976.50 20495.96 7278.31 14791.96 7689.66 9493.48 12590.04 20189.20 20095.32 20493.73 201
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
MDTV_nov1_ep13_2view86.30 19388.27 17084.01 19987.71 20794.67 19288.08 19876.78 20390.59 16768.66 20280.46 16480.12 15487.58 18489.95 20288.20 20395.25 20793.90 199
tpm87.95 17589.44 16286.21 19292.53 14994.62 19491.40 17876.36 20591.46 15569.80 19887.43 11475.14 17591.55 14589.85 20390.60 19395.61 20196.96 165
new_pmnet81.53 20682.68 20880.20 20583.47 21689.47 21682.21 21478.36 19687.86 18660.14 21967.90 21069.43 20482.03 20689.22 20487.47 20694.99 20987.39 215
ADS-MVSNet89.80 15291.33 14788.00 16994.43 12296.71 13092.29 16374.95 21296.07 6977.39 15188.67 10986.09 11893.26 12888.44 20589.57 19995.68 20093.81 200
N_pmnet84.80 19985.10 20384.45 19889.25 19192.86 20784.04 20986.21 14888.78 17866.73 20472.41 19974.87 17985.21 19688.32 20686.45 20895.30 20592.04 207
CMPMVSbinary65.18 1784.76 20083.10 20686.69 18895.29 9495.05 18288.37 19785.51 16080.27 21571.31 18768.37 20973.85 18285.25 19587.72 20787.75 20494.38 21488.70 214
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
dps90.11 15089.37 16390.98 12693.89 13196.21 14493.49 14077.61 20091.95 15092.74 4588.85 10678.77 16092.37 13687.71 20887.71 20595.80 19994.38 191
CostFormer90.69 13890.48 15690.93 12794.18 12596.08 14794.03 13378.20 19893.47 12589.96 8190.97 9180.30 15393.72 12187.66 20988.75 20195.51 20396.12 176
pmnet_mix0286.12 19587.12 18984.96 19789.82 17694.12 20184.88 20886.63 14591.78 15265.60 20680.76 16076.98 16986.61 18887.29 21084.80 21396.21 19494.09 194
tpmrst88.86 16789.62 15987.97 17094.33 12395.98 14992.62 15576.36 20594.62 10676.94 15585.98 13282.80 14592.80 13386.90 21187.15 20794.77 21193.93 198
tpm cat188.90 16587.78 18190.22 13793.88 13295.39 17393.79 13678.11 19992.55 13889.43 8881.31 15779.84 15691.40 14684.95 21286.34 21094.68 21394.09 194
new-patchmatchnet78.49 21078.19 21378.84 20984.13 21590.06 21477.11 21980.39 19379.57 21659.64 22066.01 21355.65 22575.62 21184.55 21380.70 21696.14 19690.77 211
Gipumacopyleft68.35 21466.71 21770.27 21274.16 22268.78 22463.93 22471.77 21783.34 20954.57 22334.37 22231.88 22868.69 21583.30 21485.53 21188.48 21979.78 219
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
tmp_tt66.88 21486.07 21173.86 22368.22 22233.38 22496.88 4880.67 13988.23 11278.82 15949.78 22182.68 21577.47 21883.19 223
WB-MVS69.22 21376.91 21460.24 21785.80 21279.37 22156.86 22684.96 16881.50 21318.16 22976.85 17361.07 21834.23 22482.46 21681.81 21581.43 22475.31 222
DeepMVS_CXcopyleft86.86 21779.50 21670.43 21890.73 16363.66 20980.36 16560.83 21979.68 20776.23 21789.46 21886.53 216
MDA-MVSNet-bldmvs80.11 20780.24 21079.94 20677.01 22093.21 20578.86 21785.94 15482.71 21160.86 21479.71 16651.77 22683.71 20575.60 21886.37 20993.28 21592.35 205
FPMVS75.84 21174.59 21577.29 21186.92 20983.89 22085.01 20780.05 19482.91 21060.61 21665.25 21460.41 22063.86 21775.60 21873.60 22087.29 22180.47 218
PMMVS264.36 21765.94 21962.52 21667.37 22477.44 22264.39 22369.32 22161.47 22234.59 22546.09 22141.03 22748.02 22374.56 22078.23 21791.43 21782.76 217
PMVScopyleft63.12 1867.27 21566.39 21868.30 21377.98 21960.24 22659.53 22576.82 20166.65 22160.74 21554.39 21959.82 22151.24 22073.92 22170.52 22183.48 22279.17 220
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive50.86 1949.54 22051.43 22047.33 22044.14 22859.20 22736.45 22960.59 22241.47 22531.14 22629.58 22317.06 23248.52 22262.22 22274.63 21963.12 22775.87 221
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN50.67 21847.85 22153.96 21864.13 22650.98 22938.06 22769.51 21951.40 22424.60 22729.46 22524.39 23056.07 21948.17 22359.70 22271.40 22570.84 223
EMVS49.98 21946.76 22253.74 21964.96 22551.29 22837.81 22869.35 22051.83 22322.69 22829.57 22425.06 22957.28 21844.81 22456.11 22370.32 22668.64 224
testmvs12.09 22116.94 2236.42 2223.15 2296.08 2309.51 2313.84 22521.46 2265.31 23027.49 2266.76 23310.89 22517.06 22515.01 2245.84 22824.75 225
test1239.58 22213.53 2244.97 2231.31 2315.47 2318.32 2322.95 22618.14 2272.03 23220.82 2272.34 23410.60 22610.00 22614.16 2254.60 22923.77 226
uanet_test0.00 2230.00 2250.00 2240.00 2320.00 2320.00 2330.00 2280.00 2280.00 2330.00 2280.00 2350.00 2280.00 2270.00 2260.00 2300.00 227
sosnet-low-res0.00 2230.00 2250.00 2240.00 2320.00 2320.00 2330.00 2280.00 2280.00 2330.00 2280.00 2350.00 2280.00 2270.00 2260.00 2300.00 227
sosnet0.00 2230.00 2250.00 2240.00 2320.00 2320.00 2330.00 2280.00 2280.00 2330.00 2280.00 2350.00 2280.00 2270.00 2260.00 2300.00 227
TPM-MVS98.94 3298.47 8598.04 4292.62 4696.51 3398.76 2995.94 7998.92 12797.55 147
Ray Leroy Khuboni and Hongjun Xu: Textureless Resilient Propagation Matching in Multiple View Stereosis (TPM-MVS). SATNAC 2025
RE-MVS-def63.50 211
9.1499.28 12
SR-MVS99.45 997.61 1499.20 16
our_test_389.78 17793.84 20385.59 205
MTAPA96.83 1099.12 21
MTMP97.18 598.83 26
Patchmatch-RL test34.61 230
XVS96.60 6999.35 1796.82 6990.85 6298.72 3099.46 34
X-MVStestdata96.60 6999.35 1796.82 6990.85 6298.72 3099.46 34
mPP-MVS99.21 2398.29 38
NP-MVS95.32 89
Patchmtry95.96 15193.36 14375.99 20875.19 169