This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort by
DVP-MVS++98.07 198.46 197.62 199.08 399.29 298.84 396.63 497.89 195.35 397.83 499.48 396.98 997.99 297.14 1198.82 1199.60 1
DVP-MVScopyleft97.93 398.23 397.58 399.05 699.31 198.64 696.62 597.56 295.08 596.61 1399.64 197.32 197.91 497.31 698.77 1599.26 2
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
SED-MVS97.98 298.36 297.54 498.94 1699.29 298.81 496.64 397.14 395.16 497.96 299.61 296.92 1298.00 197.24 898.75 1799.25 3
DeepPCF-MVS92.65 295.50 3396.96 1993.79 5196.44 5698.21 4293.51 9594.08 3696.94 489.29 4393.08 3196.77 2793.82 5497.68 997.40 495.59 17698.65 16
MSP-MVS97.70 698.09 597.24 699.00 1199.17 598.76 596.41 996.91 593.88 1497.72 599.04 796.93 1197.29 1797.31 698.45 3799.23 4
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
SD-MVS97.35 897.73 896.90 1497.35 4398.66 1497.85 2596.25 1196.86 694.54 896.75 1199.13 696.99 796.94 2696.58 2398.39 4499.20 5
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
APDe-MVS97.79 597.96 697.60 299.20 299.10 698.88 296.68 296.81 794.64 697.84 398.02 1197.24 397.74 897.02 1498.97 599.16 6
TSAR-MVS + MP.97.31 997.64 996.92 1397.28 4598.56 2398.61 795.48 2896.72 894.03 1396.73 1298.29 997.15 497.61 1296.42 2698.96 699.13 7
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
HFP-MVS97.11 1497.19 1697.00 1298.97 1398.73 1298.37 1195.69 2196.60 993.28 2096.87 896.64 2897.27 296.64 3596.33 3598.44 3898.56 22
ACMMPR96.92 1796.96 1996.87 1598.99 1298.78 1198.38 1095.52 2496.57 1092.81 2496.06 2095.90 3597.07 596.60 3796.34 3498.46 3498.42 33
TSAR-MVS + ACMM96.19 2397.39 1394.78 3797.70 3998.41 3597.72 2795.49 2796.47 1186.66 6796.35 1597.85 1393.99 5097.19 2096.37 3097.12 13099.13 7
SMA-MVScopyleft97.53 797.93 797.07 1099.21 199.02 898.08 1996.25 1196.36 1293.57 1596.56 1499.27 596.78 1697.91 497.43 398.51 2698.94 12
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
NCCC96.75 1996.67 2496.85 1699.03 998.44 3498.15 1696.28 1096.32 1392.39 2592.16 3497.55 2096.68 1997.32 1496.65 2298.55 2598.26 38
DeepC-MVS_fast93.32 196.48 2296.42 2796.56 2098.70 2598.31 3897.97 2295.76 2096.31 1492.01 2791.43 3995.42 3996.46 2297.65 1197.69 198.49 3198.12 47
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
OMC-MVS94.49 4594.36 4794.64 3997.17 4797.73 5895.49 5492.25 4496.18 1590.34 3888.51 5492.88 5094.90 4094.92 7094.17 7397.69 10696.15 116
SF-MVS97.20 1297.29 1497.10 998.95 1598.51 2997.51 2996.48 796.17 1694.64 697.32 697.57 1996.23 2696.78 2996.15 4198.79 1498.55 27
CNVR-MVS97.30 1097.41 1197.18 899.02 1098.60 2198.15 1696.24 1396.12 1794.10 1195.54 2597.99 1296.99 797.97 397.17 998.57 2498.50 29
DPE-MVScopyleft97.83 498.13 497.48 598.83 2299.19 498.99 196.70 196.05 1894.39 998.30 199.47 497.02 697.75 797.02 1498.98 399.10 9
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
HPM-MVS++copyleft97.22 1197.40 1297.01 1199.08 398.55 2498.19 1496.48 796.02 1993.28 2096.26 1798.71 896.76 1797.30 1696.25 3798.30 5498.68 15
TSAR-MVS + GP.95.86 2896.95 2194.60 4194.07 8598.11 4696.30 4391.76 4995.67 2091.07 3096.82 1097.69 1795.71 3295.96 5295.75 5098.68 1898.63 17
ACMMP_NAP96.93 1697.27 1596.53 2399.06 598.95 998.24 1396.06 1595.66 2190.96 3295.63 2497.71 1696.53 2097.66 1096.68 2098.30 5498.61 20
CNLPA93.69 5392.50 6395.06 3697.11 4897.36 6793.88 8593.30 3895.64 2293.44 1880.32 10990.73 6394.99 3993.58 10193.33 9597.67 10896.57 101
MCST-MVS96.83 1897.06 1796.57 1998.88 2098.47 3298.02 2196.16 1495.58 2390.96 3295.78 2397.84 1496.46 2297.00 2596.17 3998.94 798.55 27
CSCG95.68 3095.46 3595.93 2798.71 2499.07 797.13 3593.55 3795.48 2493.35 1990.61 4493.82 4595.16 3794.60 8295.57 5397.70 10499.08 10
CP-MVS96.68 2096.59 2696.77 1798.85 2198.58 2298.18 1595.51 2695.34 2592.94 2395.21 2896.25 3096.79 1596.44 4295.77 4998.35 4698.56 22
TSAR-MVS + COLMAP92.39 6392.31 6892.47 6995.35 7396.46 9396.13 4592.04 4795.33 2680.11 11394.95 2977.35 13694.05 4994.49 8693.08 10497.15 12794.53 148
MVS_111021_LR94.84 3995.57 3294.00 4497.11 4897.72 6094.88 6391.16 5595.24 2788.74 4896.03 2191.52 5894.33 4795.96 5295.01 6297.79 9597.49 72
X-MVS96.07 2696.33 2895.77 2998.94 1698.66 1497.94 2395.41 3095.12 2888.03 5393.00 3296.06 3195.85 2996.65 3496.35 3198.47 3298.48 30
SteuartSystems-ACMMP97.10 1597.49 1096.65 1898.97 1398.95 998.43 995.96 1795.12 2891.46 2896.85 997.60 1896.37 2497.76 697.16 1098.68 1898.97 11
Skip Steuart: Steuart Systems R&D Blog.
3Dnovator+90.56 595.06 3694.56 4595.65 3198.11 3198.15 4597.19 3391.59 5195.11 3093.23 2281.99 10094.71 4295.43 3696.48 3996.88 1898.35 4698.63 17
DeepC-MVS92.10 395.22 3494.77 4195.75 3097.77 3798.54 2597.63 2895.96 1795.07 3188.85 4785.35 7391.85 5395.82 3096.88 2897.10 1298.44 3898.63 17
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PLCcopyleft90.69 494.32 4692.99 5795.87 2897.91 3396.49 9195.95 5094.12 3594.94 3294.09 1285.90 6990.77 6295.58 3394.52 8493.32 9797.55 11395.00 144
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
TAPA-MVS90.35 693.69 5393.52 5193.90 4796.89 5197.62 6296.15 4491.67 5094.94 3285.97 7287.72 5791.96 5294.40 4493.76 9993.06 10698.30 5495.58 132
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
DPM-MVS95.07 3594.84 4095.34 3497.44 4297.49 6597.76 2695.52 2494.88 3488.92 4687.25 5896.44 2994.41 4395.78 5596.11 4397.99 8595.95 123
ACMMPcopyleft95.54 3195.49 3495.61 3298.27 3098.53 2697.16 3494.86 3294.88 3489.34 4295.36 2791.74 5495.50 3595.51 5994.16 7498.50 2998.22 40
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
APD-MVScopyleft97.12 1397.05 1897.19 799.04 798.63 1998.45 896.54 694.81 3693.50 1696.10 1997.40 2296.81 1397.05 2296.82 1998.80 1298.56 22
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
3Dnovator90.28 794.70 4294.34 4895.11 3598.06 3298.21 4296.89 3791.03 5794.72 3791.45 2982.87 9193.10 4994.61 4196.24 4897.08 1398.63 2198.16 43
MSLP-MVS++96.05 2795.63 3196.55 2198.33 2998.17 4496.94 3694.61 3494.70 3894.37 1089.20 5195.96 3496.81 1395.57 5897.33 598.24 6298.47 31
CPTT-MVS95.54 3195.07 3796.10 2597.88 3597.98 5097.92 2494.86 3294.56 3992.16 2691.01 4095.71 3696.97 1094.56 8393.50 9096.81 15398.14 45
MP-MVScopyleft96.56 2196.72 2396.37 2498.93 1898.48 3098.04 2095.55 2394.32 4090.95 3495.88 2297.02 2596.29 2596.77 3096.01 4798.47 3298.56 22
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
CS-MVS-test94.63 4395.28 3693.88 4996.56 5598.67 1393.41 9789.31 7994.27 4189.64 4190.84 4291.64 5695.58 3397.04 2396.17 3998.77 1598.32 36
MVS_111021_HR94.84 3995.91 3093.60 5297.35 4398.46 3395.08 5991.19 5494.18 4285.97 7295.38 2692.56 5193.61 5796.61 3696.25 3798.40 4297.92 56
PHI-MVS95.86 2896.93 2294.61 4097.60 4198.65 1896.49 4093.13 4094.07 4387.91 5797.12 797.17 2493.90 5396.46 4096.93 1798.64 2098.10 49
canonicalmvs93.08 5593.09 5593.07 6294.24 8197.86 5295.45 5687.86 10294.00 4487.47 6088.32 5582.37 10495.13 3893.96 9896.41 2998.27 5898.73 13
train_agg96.15 2596.64 2595.58 3398.44 2798.03 4898.14 1895.40 3193.90 4587.72 5896.26 1798.10 1095.75 3196.25 4795.45 5598.01 8398.47 31
AdaColmapbinary95.02 3793.71 5096.54 2298.51 2697.76 5696.69 3995.94 1993.72 4693.50 1689.01 5290.53 6596.49 2194.51 8593.76 8398.07 7796.69 96
PGM-MVS96.16 2496.33 2895.95 2699.04 798.63 1998.32 1292.76 4293.42 4790.49 3796.30 1695.31 4096.71 1896.46 4096.02 4698.38 4598.19 42
CS-MVS94.53 4494.73 4294.31 4296.30 5998.53 2694.98 6089.24 8193.37 4890.24 3988.96 5389.76 7096.09 2897.48 1396.42 2698.99 298.59 21
CANet94.85 3894.92 3994.78 3797.25 4698.52 2897.20 3291.81 4893.25 4991.06 3186.29 6594.46 4392.99 6497.02 2496.68 2098.34 4898.20 41
baseline91.19 7991.89 7490.38 9292.76 11495.04 11093.55 9484.54 13392.92 5085.71 7986.68 6386.96 7589.28 10792.00 13192.62 11496.46 15896.99 88
CLD-MVS92.50 6291.96 7393.13 5993.93 9196.24 9795.69 5188.77 8592.92 5089.01 4588.19 5681.74 11093.13 6393.63 10093.08 10498.23 6397.91 58
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
CDPH-MVS94.80 4195.50 3393.98 4698.34 2898.06 4797.41 3093.23 3992.81 5282.98 9792.51 3394.82 4193.53 5896.08 5096.30 3698.42 4097.94 54
MVS_030494.30 4794.68 4393.86 5096.33 5898.48 3097.41 3091.20 5392.75 5386.96 6486.03 6893.81 4692.64 6996.89 2796.54 2598.61 2298.24 39
diffmvspermissive91.37 7791.09 8691.70 7992.71 11796.47 9294.03 7988.78 8492.74 5485.43 8783.63 8580.37 11591.76 7893.39 10893.78 8297.50 11597.23 81
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
QAPM94.13 4994.33 4993.90 4797.82 3698.37 3796.47 4190.89 5892.73 5585.63 8085.35 7393.87 4494.17 4895.71 5795.90 4898.40 4298.42 33
LS3D91.97 6790.98 8793.12 6097.03 5097.09 7895.33 5895.59 2292.47 5679.26 11781.60 10382.77 9994.39 4594.28 8794.23 7297.14 12994.45 150
HQP-MVS92.39 6392.49 6492.29 7395.65 6595.94 10395.64 5392.12 4692.46 5779.65 11591.97 3682.68 10092.92 6793.47 10692.77 11197.74 10098.12 47
ACMM88.76 1091.70 7590.43 9093.19 5795.56 6695.14 10993.35 9991.48 5292.26 5887.12 6284.02 8179.34 12093.99 5094.07 9392.68 11297.62 11295.50 133
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
DROMVSNet94.19 4895.05 3893.18 5893.56 10197.65 6195.34 5786.37 11592.05 5988.71 4989.91 4793.32 4796.14 2797.29 1796.42 2698.98 398.70 14
ETV-MVS93.80 5194.57 4492.91 6593.98 8797.50 6493.62 9288.70 8691.95 6087.57 5990.21 4690.79 6194.56 4297.20 1996.35 3199.02 197.98 51
PVSNet_BlendedMVS92.80 5792.44 6593.23 5596.02 6197.83 5493.74 8990.58 5991.86 6190.69 3585.87 7182.04 10790.01 9796.39 4395.26 5898.34 4897.81 61
PVSNet_Blended92.80 5792.44 6593.23 5596.02 6197.83 5493.74 8990.58 5991.86 6190.69 3585.87 7182.04 10790.01 9796.39 4395.26 5898.34 4897.81 61
ACMP89.13 992.03 6691.70 7792.41 7194.92 7696.44 9593.95 8189.96 6791.81 6385.48 8590.97 4179.12 12192.42 7193.28 11292.55 11597.76 9897.74 64
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
EPNet93.92 5094.40 4693.36 5497.89 3496.55 8996.08 4692.14 4591.65 6489.16 4494.07 3090.17 6987.78 12395.24 6494.97 6397.09 13298.15 44
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
NP-MVS91.63 65
casdiffmvspermissive91.72 7491.16 8592.38 7293.16 10697.15 7593.95 8189.49 7791.58 6686.03 7180.75 10880.95 11393.16 6295.25 6395.22 6098.50 2997.23 81
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MVS_Test91.81 7292.19 6991.37 8793.24 10496.95 8294.43 6786.25 11691.45 6783.45 9586.31 6485.15 8692.93 6593.99 9494.71 6797.92 8996.77 94
DCV-MVSNet91.24 7891.26 8291.22 8992.84 11393.44 13993.82 8686.75 11291.33 6885.61 8184.00 8285.46 8591.27 8192.91 11493.62 8597.02 13698.05 50
thisisatest053091.04 8291.74 7590.21 9692.93 11297.00 8092.06 11987.63 10790.74 6981.51 10186.81 6082.48 10189.23 10894.81 7693.03 10897.90 9097.33 78
MAR-MVS92.71 6092.63 6192.79 6697.70 3997.15 7593.75 8887.98 9690.71 7085.76 7886.28 6686.38 7894.35 4694.95 6895.49 5497.22 12397.44 73
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
CANet_DTU90.74 9092.93 5988.19 11894.36 8096.61 8794.34 7184.66 13090.66 7168.75 16790.41 4586.89 7689.78 9995.46 6094.87 6497.25 12295.62 130
ET-MVSNet_ETH3D89.93 9990.84 8888.87 11179.60 21096.19 9894.43 6786.56 11390.63 7280.75 11090.71 4377.78 13293.73 5691.36 14093.45 9298.15 6995.77 127
UGNet91.52 7693.41 5389.32 10794.13 8297.15 7591.83 12389.01 8290.62 7385.86 7686.83 5991.73 5577.40 18894.68 7994.43 6997.71 10298.40 35
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
tttt051791.01 8391.71 7690.19 9892.98 10897.07 7991.96 12287.63 10790.61 7481.42 10286.76 6182.26 10589.23 10894.86 7493.03 10897.90 9097.36 76
FA-MVS(training)90.79 8791.33 8190.17 9993.76 9797.22 7292.74 10677.79 18790.60 7588.03 5378.80 11587.41 7391.00 8695.40 6293.43 9397.70 10496.46 103
PMMVS89.88 10091.19 8488.35 11689.73 14891.97 18190.62 12981.92 16490.57 7680.58 11292.16 3486.85 7791.17 8392.31 12491.35 13996.11 16493.11 168
LGP-MVS_train91.83 7192.04 7291.58 8095.46 6996.18 9995.97 4989.85 6890.45 7777.76 12091.92 3780.07 11892.34 7394.27 8893.47 9198.11 7497.90 59
RPSCF89.68 10389.24 10290.20 9792.97 11092.93 15792.30 11187.69 10490.44 7885.12 8991.68 3885.84 8490.69 9087.34 18786.07 18992.46 19890.37 186
SCA86.25 13187.52 12884.77 15491.59 12793.90 12689.11 15973.25 20490.38 7972.84 14083.26 8683.79 9288.49 12086.07 19485.56 19293.33 19089.67 191
DI_MVS_plusplus_trai91.05 8190.15 9492.11 7492.67 11896.61 8796.03 4788.44 9090.25 8085.92 7473.73 14284.89 8891.92 7594.17 9194.07 7897.68 10797.31 79
EPP-MVSNet92.13 6593.06 5691.05 9093.66 10097.30 6892.18 11487.90 9890.24 8183.63 9486.14 6790.52 6790.76 8994.82 7594.38 7098.18 6897.98 51
CHOSEN 280x42090.77 8892.14 7089.17 10993.86 9492.81 16193.16 10080.22 17790.21 8284.67 9289.89 4891.38 5990.57 9494.94 6992.11 12392.52 19793.65 161
EPMVS85.77 13986.24 13885.23 15092.76 11493.78 12989.91 14673.60 20090.19 8374.22 13282.18 9978.06 12987.55 12685.61 19685.38 19493.32 19188.48 198
PatchmatchNetpermissive85.70 14086.65 13384.60 15791.79 12493.40 14089.27 15573.62 19990.19 8372.63 14282.74 9481.93 10987.64 12484.99 19784.29 19992.64 19689.00 193
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
MVSTER91.73 7391.61 7891.86 7793.18 10594.56 11294.37 6987.90 9890.16 8588.69 5089.23 5081.28 11288.92 11695.75 5693.95 8098.12 7296.37 107
GBi-Net90.21 9690.11 9590.32 9488.66 15893.65 13594.25 7485.78 12090.03 8685.56 8277.38 12086.13 7989.38 10493.97 9594.16 7498.31 5195.47 134
test190.21 9690.11 9590.32 9488.66 15893.65 13594.25 7485.78 12090.03 8685.56 8277.38 12086.13 7989.38 10493.97 9594.16 7498.31 5195.47 134
FMVSNet390.19 9890.06 9790.34 9388.69 15793.85 12794.58 6485.78 12090.03 8685.56 8277.38 12086.13 7989.22 11093.29 11194.36 7198.20 6695.40 138
ADS-MVSNet84.08 16384.95 15183.05 17991.53 13191.75 18488.16 16970.70 20889.96 8969.51 16278.83 11476.97 13886.29 13984.08 20184.60 19792.13 20188.48 198
test250690.93 8489.20 10392.95 6394.97 7498.30 3994.53 6590.25 6489.91 9088.39 5283.23 8764.17 19090.69 9096.75 3296.10 4498.87 895.97 122
ECVR-MVScopyleft90.77 8889.27 10192.52 6894.97 7498.30 3994.53 6590.25 6489.91 9085.80 7773.64 14374.31 14590.69 9096.75 3296.10 4498.87 895.91 125
casdiffmvs_mvgpermissive91.94 6891.25 8392.75 6793.41 10397.19 7495.48 5589.77 7089.86 9286.41 6981.02 10782.23 10692.93 6595.44 6195.61 5298.51 2697.40 75
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PatchMatch-RL90.30 9588.93 10791.89 7695.41 7295.68 10590.94 12688.67 8789.80 9386.95 6585.90 6972.51 14892.46 7093.56 10392.18 12196.93 14592.89 169
EIA-MVS92.72 5992.96 5892.44 7093.86 9497.76 5693.13 10188.65 8889.78 9486.68 6686.69 6287.57 7293.74 5596.07 5195.32 5698.58 2397.53 70
CHOSEN 1792x268888.57 11487.82 12189.44 10695.46 6996.89 8493.74 8985.87 11989.63 9577.42 12361.38 19783.31 9488.80 11893.44 10793.16 10295.37 18196.95 90
MSDG90.42 9488.25 11492.94 6496.67 5494.41 11893.96 8092.91 4189.59 9686.26 7076.74 12780.92 11490.43 9592.60 12092.08 12597.44 11891.41 176
test111190.47 9389.10 10592.07 7594.92 7698.30 3994.17 7890.30 6389.56 9783.92 9373.25 15073.66 14690.26 9696.77 3096.14 4298.87 896.04 120
DELS-MVS93.71 5293.47 5294.00 4496.82 5298.39 3696.80 3891.07 5689.51 9889.94 4083.80 8389.29 7190.95 8797.32 1497.65 298.42 4098.32 36
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MDTV_nov1_ep1386.64 13087.50 12985.65 14490.73 14093.69 13389.96 14478.03 18689.48 9976.85 12584.92 7682.42 10386.14 14286.85 19186.15 18892.17 19988.97 194
baseline190.81 8590.29 9191.42 8493.67 9995.86 10493.94 8389.69 7489.29 10082.85 9882.91 9080.30 11689.60 10095.05 6694.79 6698.80 1293.82 159
OpenMVScopyleft88.18 1192.51 6191.61 7893.55 5397.74 3898.02 4995.66 5290.46 6189.14 10186.50 6875.80 13490.38 6892.69 6894.99 6795.30 5798.27 5897.63 65
EPNet_dtu88.32 11790.61 8985.64 14596.79 5392.27 17392.03 12090.31 6289.05 10265.44 18889.43 4985.90 8374.22 19792.76 11592.09 12495.02 18692.76 170
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Anonymous2023121189.82 10188.18 11591.74 7892.52 11996.09 10193.38 9889.30 8088.95 10385.90 7564.55 19184.39 8992.41 7292.24 12793.06 10696.93 14597.95 53
Vis-MVSNet (Re-imp)90.54 9292.76 6087.94 12293.73 9896.94 8392.17 11687.91 9788.77 10476.12 12883.68 8490.80 6079.49 18496.34 4596.35 3198.21 6596.46 103
GG-mvs-BLEND62.84 20990.21 9230.91 2170.57 22594.45 11686.99 1790.34 22388.71 1050.98 22581.55 10591.58 570.86 22292.66 11891.43 13895.73 17091.11 180
IS_MVSNet91.87 7093.35 5490.14 10194.09 8497.73 5893.09 10288.12 9488.71 10579.98 11484.49 7890.63 6487.49 12797.07 2196.96 1698.07 7797.88 60
FMVSNet289.61 10489.14 10490.16 10088.66 15893.65 13594.25 7485.44 12488.57 10784.96 9173.53 14583.82 9189.38 10494.23 8994.68 6898.31 5195.47 134
PVSNet_Blended_VisFu91.92 6992.39 6791.36 8895.45 7197.85 5392.25 11389.54 7688.53 10887.47 6079.82 11190.53 6585.47 14896.31 4695.16 6197.99 8598.56 22
USDC86.73 12985.96 14387.63 12791.64 12693.97 12592.76 10584.58 13288.19 10970.67 15480.10 11067.86 16989.43 10291.81 13389.77 17396.69 15590.05 189
tpmrst83.72 16983.45 16384.03 16692.21 12091.66 18588.74 16573.58 20188.14 11072.67 14177.37 12372.11 15186.34 13882.94 20482.05 20390.63 20789.86 190
CostFormer86.78 12886.05 13987.62 12892.15 12193.20 14891.55 12575.83 19288.11 11185.29 8881.76 10176.22 14187.80 12284.45 19985.21 19593.12 19293.42 164
Anonymous20240521188.00 11793.16 10696.38 9693.58 9389.34 7887.92 11265.04 18783.03 9692.07 7492.67 11793.33 9596.96 14097.63 65
FC-MVSNet-train90.55 9190.19 9390.97 9193.78 9695.16 10892.11 11888.85 8387.64 11383.38 9684.36 8078.41 12789.53 10194.69 7893.15 10398.15 6997.92 56
Effi-MVS+89.79 10289.83 9889.74 10392.98 10896.45 9493.48 9684.24 13587.62 11476.45 12681.76 10177.56 13593.48 5994.61 8193.59 8697.82 9497.22 83
baseline288.97 11289.50 9988.36 11591.14 13495.30 10690.13 14085.17 12787.24 11580.80 10984.46 7978.44 12685.60 14593.54 10491.87 12997.31 12095.66 129
PCF-MVS90.19 892.98 5692.07 7194.04 4396.39 5797.87 5196.03 4795.47 2987.16 11685.09 9084.81 7793.21 4893.46 6091.98 13291.98 12897.78 9697.51 71
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
COLMAP_ROBcopyleft84.39 1587.61 12186.03 14089.46 10595.54 6894.48 11591.77 12490.14 6687.16 11675.50 12973.41 14876.86 13987.33 12990.05 16489.76 17496.48 15790.46 185
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
GeoE89.29 11088.68 10989.99 10292.75 11696.03 10293.07 10483.79 14286.98 11881.34 10374.72 13978.92 12291.22 8293.31 11093.21 10097.78 9697.60 69
Fast-Effi-MVS+88.56 11587.99 11889.22 10891.56 12995.21 10792.29 11282.69 15386.82 11977.73 12176.24 13273.39 14793.36 6194.22 9093.64 8497.65 10996.43 105
pmmvs486.00 13884.28 15788.00 12087.80 16992.01 18089.94 14584.91 12886.79 12080.98 10873.41 14866.34 17888.12 12189.31 17388.90 18296.24 16393.20 167
MS-PatchMatch87.63 12087.61 12587.65 12693.95 8994.09 12392.60 10881.52 16986.64 12176.41 12773.46 14785.94 8285.01 15292.23 12890.00 16896.43 16090.93 182
HyFIR lowres test87.87 11986.42 13689.57 10495.56 6696.99 8192.37 11084.15 13786.64 12177.17 12457.65 20383.97 9091.08 8592.09 13092.44 11697.09 13295.16 141
FC-MVSNet-test86.15 13489.10 10582.71 18389.83 14693.18 14987.88 17284.69 12986.54 12362.18 19882.39 9883.31 9474.18 19892.52 12291.86 13097.50 11593.88 158
IterMVS-LS88.60 11388.45 11088.78 11292.02 12392.44 17192.00 12183.57 14686.52 12478.90 11978.61 11781.34 11189.12 11190.68 15393.18 10197.10 13196.35 108
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
tmp_tt50.24 21368.55 21646.86 22148.90 22118.28 22086.51 12568.32 17070.19 16365.33 18126.69 21974.37 21266.80 21470.72 219
IB-MVS85.10 1487.98 11887.97 11987.99 12194.55 7996.86 8584.52 19288.21 9386.48 12688.54 5174.41 14177.74 13374.10 19989.65 17092.85 11098.06 7997.80 63
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
tpm cat184.13 16281.99 18286.63 13791.74 12591.50 18890.68 12875.69 19386.12 12785.44 8672.39 15370.72 15585.16 15080.89 20881.56 20491.07 20590.71 183
thres100view90089.36 10887.61 12591.39 8593.90 9296.86 8594.35 7089.66 7585.87 12881.15 10576.46 12970.38 15791.17 8394.09 9293.43 9398.13 7196.16 115
tfpn200view989.55 10587.86 12091.53 8293.90 9297.26 6994.31 7389.74 7185.87 12881.15 10576.46 12970.38 15791.76 7894.92 7093.51 8798.28 5796.61 98
thres40089.40 10787.58 12791.53 8294.06 8697.21 7394.19 7789.83 6985.69 13081.08 10775.50 13669.76 16191.80 7694.79 7793.51 8798.20 6696.60 99
thres20089.49 10687.72 12291.55 8193.95 8997.25 7094.34 7189.74 7185.66 13181.18 10476.12 13370.19 16091.80 7694.92 7093.51 8798.27 5896.40 106
test0.0.03 185.58 14287.69 12483.11 17691.22 13292.54 16885.60 19183.62 14485.66 13167.84 17482.79 9379.70 11973.51 20191.15 14590.79 14496.88 14991.23 179
thres600view789.28 11187.47 13091.39 8594.12 8397.25 7093.94 8389.74 7185.62 13380.63 11175.24 13869.33 16291.66 8094.92 7093.23 9898.27 5896.72 95
dps85.00 15083.21 17087.08 13190.73 14092.55 16789.34 15475.29 19484.94 13487.01 6379.27 11367.69 17087.27 13084.22 20083.56 20092.83 19590.25 187
CR-MVSNet85.48 14486.29 13784.53 15991.08 13792.10 17589.18 15773.30 20284.75 13571.08 15173.12 15277.91 13186.27 14091.48 13790.75 14796.27 16293.94 156
RPMNet84.82 15385.90 14483.56 17191.10 13592.10 17588.73 16671.11 20784.75 13568.79 16673.56 14477.62 13485.33 14990.08 16389.43 17796.32 16193.77 160
test-LLR86.88 12688.28 11285.24 14991.22 13292.07 17787.41 17583.62 14484.58 13769.33 16383.00 8882.79 9784.24 15692.26 12589.81 17195.64 17493.44 162
TESTMET0.1,186.11 13688.28 11283.59 17087.80 16992.07 17787.41 17577.12 18984.58 13769.33 16383.00 8882.79 9784.24 15692.26 12589.81 17195.64 17493.44 162
DU-MVS86.12 13584.81 15387.66 12587.77 17193.78 12990.15 13887.87 10084.40 13973.45 13770.59 15964.82 18788.95 11490.14 15992.33 11797.76 9897.62 67
NR-MVSNet85.46 14584.54 15586.52 13888.33 16393.78 12990.45 13187.87 10084.40 13971.61 14570.59 15962.09 19782.79 16791.75 13491.75 13298.10 7597.44 73
UniMVSNet (Re)86.22 13385.46 15087.11 13088.34 16294.42 11789.65 15287.10 11184.39 14174.61 13170.41 16268.10 16785.10 15191.17 14491.79 13197.84 9397.94 54
test-mter86.09 13788.38 11183.43 17387.89 16892.61 16586.89 18077.11 19084.30 14268.62 16982.57 9682.45 10284.34 15592.40 12390.11 16595.74 16994.21 154
FMVSNet584.47 15984.72 15484.18 16483.30 20588.43 20288.09 17079.42 18084.25 14374.14 13473.15 15178.74 12383.65 16291.19 14391.19 14196.46 15886.07 203
Vis-MVSNetpermissive89.36 10891.49 8086.88 13392.10 12297.60 6392.16 11785.89 11884.21 14475.20 13082.58 9587.13 7477.40 18895.90 5495.63 5198.51 2697.36 76
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
UniMVSNet_NR-MVSNet86.80 12785.86 14587.89 12488.17 16494.07 12490.15 13888.51 8984.20 14573.45 13772.38 15470.30 15988.95 11490.25 15892.21 12098.12 7297.62 67
IterMVS85.25 14886.49 13583.80 16890.42 14490.77 19790.02 14278.04 18584.10 14666.27 18477.28 12478.41 12783.01 16590.88 14789.72 17595.04 18594.24 152
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
PatchT83.86 16685.51 14981.94 18988.41 16191.56 18778.79 20671.57 20684.08 14771.08 15170.62 15876.13 14286.27 14091.48 13790.75 14795.52 17993.94 156
IterMVS-SCA-FT85.44 14686.71 13283.97 16790.59 14390.84 19489.73 15078.34 18384.07 14866.40 18377.27 12578.66 12483.06 16491.20 14290.10 16695.72 17194.78 145
Baseline_NR-MVSNet85.28 14783.42 16587.46 12987.77 17190.80 19689.90 14887.69 10483.93 14974.16 13364.72 18966.43 17787.48 12890.14 15990.83 14397.73 10197.11 86
Fast-Effi-MVS+-dtu86.25 13187.70 12384.56 15890.37 14593.70 13290.54 13078.14 18483.50 15065.37 18981.59 10475.83 14386.09 14491.70 13591.70 13396.88 14995.84 126
Effi-MVS+-dtu87.51 12288.13 11686.77 13591.10 13594.90 11190.91 12782.67 15483.47 15171.55 14681.11 10677.04 13789.41 10392.65 11991.68 13595.00 18796.09 118
ACMH+85.75 1287.19 12586.02 14188.56 11493.42 10294.41 11889.91 14687.66 10683.45 15272.25 14476.42 13171.99 15290.78 8889.86 16590.94 14297.32 11995.11 143
thisisatest051585.70 14087.00 13184.19 16388.16 16593.67 13484.20 19484.14 13883.39 15372.91 13976.79 12674.75 14478.82 18692.57 12191.26 14096.94 14296.56 102
TranMVSNet+NR-MVSNet85.57 14384.41 15686.92 13287.67 17493.34 14290.31 13488.43 9183.07 15470.11 15869.99 16565.28 18286.96 13289.73 16792.27 11898.06 7997.17 85
OPM-MVS91.08 8089.34 10093.11 6196.18 6096.13 10096.39 4292.39 4382.97 15581.74 10082.55 9780.20 11793.97 5294.62 8093.23 9898.00 8495.73 128
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
TDRefinement84.97 15183.39 16686.81 13492.97 11094.12 12292.18 11487.77 10382.78 15671.31 14968.43 16868.07 16881.10 17989.70 16989.03 18195.55 17891.62 174
tpm83.16 17583.64 16082.60 18590.75 13991.05 19188.49 16773.99 19782.36 15767.08 18078.10 11968.79 16384.17 15885.95 19585.96 19091.09 20493.23 166
UA-Net90.81 8592.58 6288.74 11394.87 7897.44 6692.61 10788.22 9282.35 15878.93 11885.20 7595.61 3779.56 18396.52 3896.57 2498.23 6394.37 151
pmnet_mix0280.14 19480.21 19580.06 19386.61 19289.66 19980.40 20382.20 16282.29 15961.35 19971.52 15566.67 17676.75 19182.55 20580.18 20893.05 19388.62 195
TinyColmap84.04 16482.01 18186.42 13990.87 13891.84 18288.89 16484.07 13982.11 16069.89 15971.08 15760.81 20389.04 11290.52 15589.19 17995.76 16888.50 197
ACMH85.51 1387.31 12486.59 13488.14 11993.96 8894.51 11489.00 16287.99 9581.58 16170.15 15778.41 11871.78 15390.60 9391.30 14191.99 12797.17 12696.58 100
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MIMVSNet82.97 17984.00 15981.77 19182.23 20692.25 17487.40 17772.73 20581.48 16269.55 16168.79 16772.42 14981.82 17492.23 12892.25 11996.89 14888.61 196
FMVSNet187.33 12386.00 14288.89 11087.13 18492.83 16093.08 10384.46 13481.35 16382.20 9966.33 17877.96 13088.96 11393.97 9594.16 7497.54 11495.38 139
GA-MVS85.08 14985.65 14784.42 16089.77 14794.25 12189.26 15684.62 13181.19 16462.25 19775.72 13568.44 16684.14 15993.57 10291.68 13596.49 15694.71 147
testgi81.94 18784.09 15879.43 19689.53 15190.83 19582.49 19881.75 16780.59 16559.46 20482.82 9265.75 17967.97 20390.10 16289.52 17695.39 18089.03 192
v884.45 16083.30 16985.80 14287.53 17692.95 15590.31 13482.46 15880.46 16671.43 14766.99 17367.16 17286.14 14289.26 17490.22 16096.94 14296.06 119
CDS-MVSNet88.34 11688.71 10887.90 12390.70 14294.54 11392.38 10986.02 11780.37 16779.42 11679.30 11283.43 9382.04 17193.39 10894.01 7996.86 15195.93 124
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
V4284.48 15883.36 16885.79 14387.14 18393.28 14590.03 14183.98 14080.30 16871.20 15066.90 17567.17 17185.55 14689.35 17190.27 15896.82 15296.27 113
MDTV_nov1_ep13_2view80.43 19280.94 19279.84 19484.82 20290.87 19384.23 19373.80 19880.28 16964.33 19270.05 16468.77 16479.67 18184.83 19883.50 20192.17 19988.25 200
CVMVSNet83.83 16785.53 14881.85 19089.60 14990.92 19287.81 17383.21 15080.11 17060.16 20276.47 12878.57 12576.79 19089.76 16690.13 16193.51 18992.75 171
WR-MVS83.14 17683.38 16782.87 18187.55 17593.29 14486.36 18584.21 13680.05 17166.41 18266.91 17466.92 17475.66 19588.96 17890.56 15297.05 13496.96 89
PM-MVS80.29 19379.30 19681.45 19281.91 20788.23 20382.61 19779.01 18179.99 17267.15 17969.07 16651.39 21582.92 16687.55 18685.59 19195.08 18493.28 165
v2v48284.51 15683.05 17286.20 14087.25 18093.28 14590.22 13685.40 12579.94 17369.78 16067.74 17065.15 18487.57 12589.12 17690.55 15396.97 13895.60 131
v1084.18 16183.17 17185.37 14687.34 17892.68 16390.32 13381.33 17079.93 17469.23 16566.33 17865.74 18087.03 13190.84 14890.38 15596.97 13896.29 112
SixPastTwentyTwo83.12 17783.44 16482.74 18287.71 17393.11 15382.30 19982.33 15979.24 17564.33 19278.77 11662.75 19384.11 16088.11 18287.89 18495.70 17294.21 154
v14883.61 17082.10 17985.37 14687.34 17892.94 15687.48 17485.72 12378.92 17673.87 13565.71 18364.69 18881.78 17587.82 18389.35 17896.01 16595.26 140
v114484.03 16582.88 17385.37 14687.17 18293.15 15290.18 13783.31 14978.83 17767.85 17365.99 18064.99 18586.79 13490.75 15090.33 15796.90 14796.15 116
v119283.56 17182.35 17684.98 15186.84 18992.84 15890.01 14382.70 15278.54 17866.48 18164.88 18862.91 19286.91 13390.72 15190.25 15996.94 14296.32 110
v192192083.30 17482.09 18084.70 15586.59 19392.67 16489.82 14982.23 16178.32 17965.76 18664.64 19062.35 19586.78 13590.34 15790.02 16797.02 13696.31 111
N_pmnet77.55 20176.68 20478.56 19885.43 20087.30 20778.84 20581.88 16578.30 18060.61 20061.46 19662.15 19674.03 20082.04 20680.69 20790.59 20884.81 207
anonymousdsp84.51 15685.85 14682.95 18086.30 19593.51 13885.77 18980.38 17678.25 18163.42 19573.51 14672.20 15084.64 15493.21 11392.16 12297.19 12598.14 45
v14419283.48 17282.23 17784.94 15286.65 19092.84 15889.63 15382.48 15777.87 18267.36 17765.33 18563.50 19186.51 13689.72 16889.99 16997.03 13596.35 108
CP-MVSNet83.11 17882.15 17884.23 16287.20 18192.70 16286.42 18483.53 14777.83 18367.67 17566.89 17660.53 20582.47 16889.23 17590.65 15198.08 7697.20 84
DeepMVS_CXcopyleft71.82 21668.37 21548.05 21877.38 18446.88 21865.77 18247.03 22067.48 20464.27 21776.89 21876.72 212
WR-MVS_H82.86 18182.66 17583.10 17787.44 17793.33 14385.71 19083.20 15177.36 18568.20 17266.37 17765.23 18376.05 19489.35 17190.13 16197.99 8596.89 92
v124082.88 18081.66 18484.29 16186.46 19492.52 17089.06 16081.82 16677.16 18665.09 19064.17 19261.50 20086.36 13790.12 16190.13 16196.95 14196.04 120
TAMVS84.94 15284.95 15184.93 15388.82 15493.18 14988.44 16881.28 17177.16 18673.76 13675.43 13776.57 14082.04 17190.59 15490.79 14495.22 18390.94 181
PEN-MVS82.49 18481.58 18583.56 17186.93 18792.05 17986.71 18283.84 14176.94 18864.68 19167.24 17160.11 20681.17 17887.78 18490.70 15098.02 8296.21 114
v7n82.25 18681.54 18683.07 17885.55 19992.58 16686.68 18381.10 17476.54 18965.97 18562.91 19460.56 20482.36 16991.07 14690.35 15696.77 15496.80 93
pmmvs583.37 17382.68 17484.18 16487.13 18493.18 14986.74 18182.08 16376.48 19067.28 17871.26 15662.70 19484.71 15390.77 14990.12 16497.15 12794.24 152
PS-CasMVS82.53 18381.54 18683.68 16987.08 18692.54 16886.20 18683.46 14876.46 19165.73 18765.71 18359.41 21081.61 17689.06 17790.55 15398.03 8197.07 87
DTE-MVSNet81.76 18981.04 19182.60 18586.63 19191.48 19085.97 18883.70 14376.45 19262.44 19667.16 17259.98 20778.98 18587.15 18889.93 17097.88 9295.12 142
EU-MVSNet78.43 19780.25 19476.30 20183.81 20487.27 20880.99 20179.52 17976.01 19354.12 21170.44 16164.87 18667.40 20586.23 19385.54 19391.95 20291.41 176
new_pmnet72.29 20673.25 20671.16 20875.35 21281.38 21273.72 21269.27 21075.97 19449.84 21756.27 20456.12 21369.08 20281.73 20780.86 20689.72 21180.44 211
test_method58.10 21264.61 21250.51 21228.26 22341.71 22261.28 21732.07 21975.92 19552.04 21447.94 21261.83 19951.80 21379.83 20963.95 21777.60 21781.05 210
MVS-HIRNet78.16 19877.57 20278.83 19785.83 19787.76 20476.67 20770.22 20975.82 19667.39 17655.61 20570.52 15681.96 17386.67 19285.06 19690.93 20681.58 209
Anonymous2023120678.09 19978.11 20078.07 19985.19 20189.17 20080.99 20181.24 17375.46 19758.25 20654.78 20959.90 20866.73 20688.94 17988.26 18396.01 16590.25 187
pmmvs-eth3d79.78 19677.58 20182.34 18781.57 20887.46 20682.92 19681.28 17175.33 19871.34 14861.88 19552.41 21481.59 17787.56 18586.90 18795.36 18291.48 175
UniMVSNet_ETH3D84.57 15481.40 18888.28 11789.34 15294.38 12090.33 13286.50 11474.74 19977.52 12259.90 20162.04 19888.78 11988.82 18092.65 11397.22 12397.24 80
pm-mvs184.55 15583.46 16285.82 14188.16 16593.39 14189.05 16185.36 12674.03 20072.43 14365.08 18671.11 15482.30 17093.48 10591.70 13397.64 11095.43 137
tfpnnormal83.80 16881.26 19086.77 13589.60 14993.26 14789.72 15187.60 10972.78 20170.44 15560.53 20061.15 20285.55 14692.72 11691.44 13797.71 10296.92 91
FPMVS69.87 20867.10 21173.10 20584.09 20378.35 21579.40 20476.41 19171.92 20257.71 20754.06 21150.04 21656.72 21071.19 21368.70 21384.25 21375.43 213
ambc67.96 21073.69 21379.79 21473.82 21171.61 20359.80 20346.00 21320.79 22366.15 20786.92 19080.11 20989.13 21290.50 184
MDA-MVSNet-bldmvs73.81 20372.56 20775.28 20272.52 21588.87 20174.95 21082.67 15471.57 20455.02 20965.96 18142.84 22176.11 19370.61 21481.47 20590.38 20986.59 201
EG-PatchMatch MVS81.70 19081.31 18982.15 18888.75 15593.81 12887.14 17878.89 18271.57 20464.12 19461.20 19968.46 16576.73 19291.48 13790.77 14697.28 12191.90 173
TransMVSNet (Re)82.67 18280.93 19384.69 15688.71 15691.50 18887.90 17187.15 11071.54 20668.24 17163.69 19364.67 18978.51 18791.65 13690.73 14997.64 11092.73 172
test20.0376.41 20278.49 19973.98 20385.64 19887.50 20575.89 20880.71 17570.84 20751.07 21668.06 16961.40 20154.99 21288.28 18187.20 18695.58 17786.15 202
CMPMVSbinary61.19 1779.86 19577.46 20382.66 18491.54 13091.82 18383.25 19581.57 16870.51 20868.64 16859.89 20266.77 17579.63 18284.00 20284.30 19891.34 20384.89 206
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
Gipumacopyleft58.52 21156.17 21461.27 21067.14 21758.06 21852.16 22068.40 21269.00 20945.02 21922.79 21720.57 22455.11 21176.27 21179.33 21079.80 21667.16 216
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
new-patchmatchnet72.32 20571.09 20873.74 20481.17 20984.86 21172.21 21377.48 18868.32 21054.89 21055.10 20749.31 21863.68 20979.30 21076.46 21193.03 19484.32 208
MIMVSNet173.19 20473.70 20572.60 20665.42 21886.69 20975.56 20979.65 17867.87 21155.30 20845.24 21456.41 21263.79 20886.98 18987.66 18595.85 16785.04 205
LTVRE_ROB81.71 1682.44 18581.84 18383.13 17589.01 15392.99 15488.90 16382.32 16066.26 21254.02 21274.68 14059.62 20988.87 11790.71 15292.02 12695.68 17396.62 97
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
pmmvs680.90 19178.77 19783.38 17485.84 19691.61 18686.01 18782.54 15664.17 21370.43 15654.14 21067.06 17380.73 18090.50 15689.17 18094.74 18894.75 146
gm-plane-assit77.65 20078.50 19876.66 20087.96 16785.43 21064.70 21674.50 19564.15 21451.26 21561.32 19858.17 21184.11 16095.16 6593.83 8197.45 11791.41 176
gg-mvs-nofinetune81.83 18883.58 16179.80 19591.57 12896.54 9093.79 8768.80 21162.71 21543.01 22055.28 20685.06 8783.65 16296.13 4994.86 6597.98 8894.46 149
pmmvs371.13 20771.06 20971.21 20773.54 21480.19 21371.69 21464.86 21362.04 21652.10 21354.92 20848.00 21975.03 19683.75 20383.24 20290.04 21085.27 204
PMVScopyleft56.77 1861.27 21058.64 21364.35 20975.66 21154.60 21953.62 21974.23 19653.69 21758.37 20544.27 21549.38 21744.16 21669.51 21565.35 21580.07 21573.66 214
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
PMMVS253.68 21355.72 21551.30 21158.84 21967.02 21754.23 21860.97 21647.50 21819.42 22234.81 21631.97 22230.88 21865.84 21669.99 21283.47 21472.92 215
EMVS39.04 21634.32 21844.54 21558.25 22039.35 22327.61 22362.55 21535.99 21916.40 22420.04 22014.77 22544.80 21433.12 22044.10 21957.61 22152.89 219
E-PMN40.00 21435.74 21744.98 21457.69 22139.15 22428.05 22262.70 21435.52 22017.78 22320.90 21814.36 22644.47 21535.89 21947.86 21859.15 22056.47 218
MVEpermissive39.81 1939.52 21541.58 21637.11 21633.93 22249.06 22026.45 22454.22 21729.46 22124.15 22120.77 21910.60 22734.42 21751.12 21865.27 21649.49 22264.81 217
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
testmvs4.35 2176.54 2191.79 2180.60 2241.82 2253.06 2260.95 2217.22 2220.88 22612.38 2211.25 2283.87 2216.09 2215.58 2201.40 22311.42 221
test1233.48 2185.31 2201.34 2190.20 2261.52 2262.17 2270.58 2226.13 2230.31 2279.85 2220.31 2293.90 2202.65 2225.28 2210.87 22411.46 220
uanet_test0.00 2190.00 2210.00 2200.00 2270.00 2270.00 2280.00 2240.00 2240.00 2280.00 2230.00 2300.00 2230.00 2230.00 2220.00 2250.00 222
sosnet-low-res0.00 2190.00 2210.00 2200.00 2270.00 2270.00 2280.00 2240.00 2240.00 2280.00 2230.00 2300.00 2230.00 2230.00 2220.00 2250.00 222
sosnet0.00 2190.00 2210.00 2200.00 2270.00 2270.00 2280.00 2240.00 2240.00 2280.00 2230.00 2300.00 2230.00 2230.00 2220.00 2250.00 222
RE-MVS-def60.19 201
9.1497.28 23
SR-MVS98.93 1896.00 1697.75 15
our_test_386.93 18789.77 19881.61 200
MTAPA95.36 297.46 21
MTMP95.70 196.90 26
Patchmatch-RL test18.47 225
XVS95.68 6398.66 1494.96 6188.03 5396.06 3198.46 34
X-MVStestdata95.68 6398.66 1494.96 6188.03 5396.06 3198.46 34
mPP-MVS98.76 2395.49 38
Patchmtry92.39 17289.18 15773.30 20271.08 151