This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort by
SMA-MVScopyleft77.32 782.51 771.26 775.43 1480.19 882.22 758.26 384.83 764.36 778.19 1583.46 663.61 881.00 180.28 183.66 489.62 6
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
SteuartSystems-ACMMP75.23 1379.60 1570.13 1376.81 678.92 1281.74 857.99 675.30 2959.83 2575.69 1878.45 2460.48 2980.58 279.77 283.94 388.52 10
Skip Steuart: Steuart Systems R&D Blog.
DVP-MVS++78.76 384.44 372.14 276.63 781.93 382.92 558.10 585.86 466.53 387.86 586.16 266.45 180.46 378.53 982.19 2790.29 4
SED-MVS79.21 184.74 272.75 178.66 281.96 282.94 458.16 486.82 267.66 188.29 486.15 366.42 280.41 478.65 682.65 1690.92 2
CNVR-MVS75.62 1279.91 1470.61 1075.76 1078.82 1481.66 957.12 1379.77 1663.04 1370.69 2481.15 1662.99 1180.23 579.54 383.11 889.16 8
ACMMP_NAP76.15 981.17 970.30 1174.09 2079.47 1081.59 1257.09 1481.38 1163.89 1079.02 1380.48 1962.24 1780.05 679.12 482.94 1188.64 9
DVP-MVScopyleft78.77 284.89 171.62 478.04 382.05 181.64 1057.96 787.53 166.64 288.77 186.31 163.16 1079.99 778.56 782.31 2291.03 1
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
NCCC74.27 1977.83 2470.13 1375.70 1177.41 2280.51 1557.09 1478.25 2062.28 1765.54 3778.26 2562.18 1879.13 878.51 1083.01 1087.68 17
DeepC-MVS66.32 273.85 2278.10 2368.90 2267.92 4879.31 1178.16 2859.28 178.24 2161.13 1967.36 3576.10 3263.40 979.11 978.41 1183.52 588.16 13
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
HPM-MVS++copyleft76.01 1080.47 1270.81 976.60 874.96 3580.18 1758.36 281.96 1063.50 1178.80 1482.53 1164.40 678.74 1078.84 581.81 3287.46 18
DPE-MVScopyleft78.11 483.84 471.42 577.82 581.32 482.92 557.81 984.04 863.19 1288.63 286.00 464.52 578.71 1177.63 1582.26 2390.57 3
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
HFP-MVS74.87 1578.86 2070.21 1273.99 2177.91 1880.36 1656.63 1678.41 1964.27 874.54 2077.75 2762.96 1278.70 1277.82 1383.02 986.91 21
DeepPCF-MVS66.49 174.25 2080.97 1066.41 3167.75 5078.87 1375.61 3854.16 3384.86 658.22 3277.94 1681.01 1762.52 1578.34 1377.38 1680.16 4888.40 11
ACMMPR73.79 2378.41 2168.40 2472.35 2777.79 1979.32 2056.38 1877.67 2358.30 3174.16 2176.66 2861.40 2278.32 1477.80 1482.68 1586.51 22
APDe-MVS77.58 682.93 671.35 677.86 480.55 683.38 157.61 1085.57 561.11 2086.10 782.98 864.76 478.29 1576.78 2283.40 690.20 5
PGM-MVS72.89 2577.13 2667.94 2572.47 2677.25 2379.27 2154.63 2973.71 3457.95 3372.38 2275.33 3460.75 2778.25 1677.36 1882.57 1985.62 28
MSP-MVS77.82 583.46 571.24 875.26 1680.22 782.95 357.85 885.90 364.79 588.54 383.43 766.24 378.21 1778.56 780.34 4589.39 7
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MCST-MVS73.67 2477.39 2569.33 1876.26 978.19 1778.77 2554.54 3075.33 2759.99 2467.96 3179.23 2262.43 1678.00 1875.71 2984.02 287.30 19
DeepC-MVS_fast65.08 372.00 2976.11 2867.21 2868.93 4477.46 2176.54 3454.35 3174.92 3158.64 3065.18 3974.04 4262.62 1477.92 1977.02 2182.16 3086.21 23
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
X-MVS71.18 3275.66 3265.96 3571.71 2976.96 2577.26 3255.88 2272.75 3754.48 4764.39 4374.47 3754.19 6577.84 2077.37 1782.21 2685.85 26
MP-MVScopyleft74.31 1878.87 1868.99 2173.49 2378.56 1579.25 2256.51 1775.33 2760.69 2275.30 1979.12 2361.81 2077.78 2177.93 1282.18 2988.06 14
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
CP-MVS72.63 2776.95 2767.59 2670.67 3575.53 3377.95 3056.01 2175.65 2658.82 2869.16 2976.48 3060.46 3077.66 2277.20 2081.65 3686.97 20
OPM-MVS69.33 3771.05 4567.32 2772.34 2875.70 3279.57 1956.34 1955.21 7453.81 5259.51 6368.96 5559.67 3477.61 2376.44 2582.19 2783.88 38
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
CSCG74.68 1679.22 1669.40 1775.69 1280.01 979.12 2352.83 4179.34 1763.99 970.49 2582.02 1260.35 3277.48 2477.22 1984.38 187.97 15
train_agg73.89 2178.25 2268.80 2375.25 1772.27 5079.75 1856.05 2074.87 3258.97 2781.83 1179.76 2161.05 2577.39 2576.01 2881.71 3585.61 29
SF-MVS77.13 881.70 871.79 379.32 180.76 582.96 257.49 1182.82 964.79 583.69 1084.46 562.83 1377.13 2675.21 3183.35 787.85 16
ACMMPcopyleft71.57 3075.84 3066.59 3070.30 3976.85 2878.46 2753.95 3473.52 3555.56 3870.13 2671.36 4758.55 4077.00 2776.23 2682.71 1485.81 27
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
TSAR-MVS + MP.75.22 1480.06 1369.56 1674.61 1872.74 4880.59 1455.70 2380.80 1362.65 1586.25 682.92 962.07 1976.89 2875.66 3081.77 3485.19 32
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
APD-MVScopyleft75.80 1180.90 1169.86 1575.42 1578.48 1681.43 1357.44 1280.45 1459.32 2685.28 880.82 1863.96 776.89 2876.08 2781.58 3888.30 12
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
3Dnovator+62.63 469.51 3572.62 3965.88 3668.21 4776.47 2973.50 4852.74 4270.85 4258.65 2955.97 7669.95 5061.11 2476.80 3075.09 3281.09 4183.23 43
CLD-MVS67.02 4971.57 4261.71 5171.01 3474.81 3771.62 5038.91 15871.86 4060.70 2164.97 4167.88 6351.88 9176.77 3174.98 3676.11 9469.75 122
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
DPM-MVS72.80 2675.90 2969.19 2075.51 1377.68 2081.62 1154.83 2675.96 2562.06 1863.96 4676.58 2958.55 4076.66 3276.77 2382.60 1883.68 40
CDPH-MVS71.47 3175.82 3166.41 3172.97 2577.15 2478.14 2954.71 2769.88 4653.07 5570.98 2374.83 3656.95 5276.22 3376.57 2482.62 1785.09 33
MVS_111021_HR67.62 4670.39 4964.39 4369.77 4070.45 5771.44 5251.72 4760.77 6355.06 4262.14 5566.40 6658.13 4376.13 3474.79 3780.19 4782.04 48
HQP-MVS70.88 3375.02 3366.05 3471.69 3074.47 4077.51 3153.17 3872.89 3654.88 4470.03 2770.48 4957.26 4876.02 3575.01 3581.78 3386.21 23
LGP-MVS_train68.87 3972.03 4165.18 3969.33 4274.03 4376.67 3353.88 3568.46 4752.05 5963.21 4863.89 6956.31 5575.99 3674.43 3982.83 1384.18 35
MVS_030469.49 3673.96 3564.28 4467.92 4876.13 3174.90 4147.60 6863.29 5754.09 5167.44 3476.35 3159.53 3575.81 3775.03 3381.62 3783.70 39
ACMM60.30 767.58 4768.82 5966.13 3370.59 3672.01 5276.54 3454.26 3265.64 5254.78 4650.35 10561.72 8058.74 3875.79 3875.03 3381.88 3181.17 51
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
PHI-MVS69.27 3874.84 3462.76 5066.83 5374.83 3673.88 4649.32 6070.61 4350.93 6269.62 2874.84 3557.25 4975.53 3974.32 4078.35 6684.17 36
SD-MVS74.43 1778.87 1869.26 1974.39 1973.70 4479.06 2455.24 2581.04 1262.71 1480.18 1282.61 1061.70 2175.43 4073.92 4382.44 2185.22 31
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
MAR-MVS68.04 4470.74 4764.90 4171.68 3176.33 3074.63 4350.48 5563.81 5455.52 3954.88 8269.90 5157.39 4775.42 4174.79 3779.71 5080.03 55
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
AdaColmapbinary67.89 4568.85 5866.77 2973.73 2274.30 4275.28 3953.58 3670.24 4457.59 3451.19 10259.19 9160.74 2875.33 4273.72 4579.69 5377.96 69
TSAR-MVS + ACMM72.56 2879.07 1764.96 4073.24 2473.16 4778.50 2648.80 6679.34 1755.32 4085.04 981.49 1558.57 3975.06 4373.75 4475.35 10685.61 29
DROMVSNet67.01 5070.27 5263.21 4767.21 5170.47 5669.01 5546.96 7159.16 6653.23 5464.01 4569.71 5360.37 3174.92 4471.24 5582.50 2082.41 44
CS-MVS65.88 5269.71 5461.41 5261.76 8068.14 6767.65 6144.00 10559.14 6752.69 5665.19 3868.13 6060.90 2674.74 4571.58 5181.46 3981.04 52
ACMP61.42 568.72 4271.37 4365.64 3769.06 4374.45 4175.88 3753.30 3768.10 4855.74 3761.53 5862.29 7656.97 5174.70 4674.23 4182.88 1284.31 34
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
DELS-MVS65.87 5370.30 5160.71 5464.05 7072.68 4970.90 5345.43 8157.49 6949.05 6964.43 4268.66 5655.11 6374.31 4773.02 4879.70 5181.51 49
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CANet68.77 4073.01 3763.83 4568.30 4575.19 3473.73 4747.90 6763.86 5354.84 4567.51 3374.36 4057.62 4474.22 4873.57 4780.56 4382.36 45
3Dnovator60.86 666.99 5170.32 5063.11 4866.63 5474.52 3871.56 5145.76 7767.37 5055.00 4354.31 8768.19 5958.49 4273.97 4973.63 4681.22 4080.23 54
ETV-MVS63.23 6366.08 6859.91 5963.13 7468.13 6867.62 6244.62 9253.39 8246.23 7858.74 6558.19 9457.45 4673.60 5071.38 5480.39 4479.13 59
TSAR-MVS + GP.69.71 3473.92 3664.80 4268.27 4670.56 5571.90 4950.75 5171.38 4157.46 3568.68 3075.42 3360.10 3373.47 5173.99 4280.32 4683.97 37
CPTT-MVS68.76 4173.01 3763.81 4665.42 6073.66 4576.39 3652.08 4372.61 3850.33 6460.73 5972.65 4559.43 3673.32 5272.12 4979.19 5985.99 25
PVSNet_Blended_VisFu63.65 6166.92 6259.83 6060.03 9273.44 4666.33 7548.95 6252.20 9350.81 6356.07 7560.25 8753.56 7173.23 5370.01 6479.30 5683.24 42
MSLP-MVS++68.17 4370.72 4865.19 3869.41 4170.64 5474.99 4045.76 7770.20 4560.17 2356.42 7473.01 4361.14 2372.80 5470.54 5879.70 5181.42 50
CS-MVS-test65.18 5768.70 6061.07 5361.92 7768.06 6967.09 6945.18 8558.47 6852.02 6065.76 3666.44 6559.24 3772.71 5570.05 6380.98 4279.40 58
QAPM65.27 5569.49 5660.35 5565.43 5972.20 5165.69 8447.23 6963.46 5549.14 6753.56 8871.04 4857.01 5072.60 5671.41 5377.62 7082.14 47
EPNet65.14 5969.54 5560.00 5866.61 5567.67 7567.53 6355.32 2462.67 5946.22 7967.74 3265.93 6748.07 10972.17 5772.12 4976.28 9078.47 65
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
canonicalmvs65.62 5472.06 4058.11 6863.94 7171.05 5364.49 9443.18 12674.08 3347.35 7264.17 4471.97 4651.17 9471.87 5870.74 5678.51 6480.56 53
casdiffmvs_mvgpermissive65.26 5669.48 5760.33 5662.99 7569.34 6069.80 5445.27 8363.38 5651.11 6165.12 4069.75 5253.51 7371.74 5968.86 7579.33 5578.19 68
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
EG-PatchMatch MVS56.98 10658.24 13055.50 9164.66 6368.62 6361.48 10543.63 11438.44 19141.44 10238.05 18146.18 15843.95 12771.71 6070.61 5777.87 6774.08 102
PCF-MVS59.98 867.32 4871.04 4662.97 4964.77 6274.49 3974.78 4249.54 5767.44 4954.39 5058.35 6872.81 4455.79 6171.54 6169.24 6978.57 6183.41 41
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
ACMH52.42 1358.24 9759.56 11756.70 8466.34 5769.59 5866.71 7249.12 6146.08 13928.90 15942.67 16941.20 18652.60 8371.39 6270.28 6076.51 8675.72 89
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
OMC-MVS65.16 5871.35 4457.94 7252.95 14868.82 6269.00 5638.28 16679.89 1555.20 4162.76 5168.31 5856.14 5871.30 6368.70 7776.06 9879.67 56
Fast-Effi-MVS+60.36 7663.35 8356.87 8258.70 9965.86 9465.08 9037.11 17253.00 8745.36 8452.12 9656.07 10756.27 5671.28 6469.42 6878.71 6075.69 90
IS_MVSNet57.95 10064.26 8050.60 12161.62 8265.25 10157.18 13045.42 8250.79 9726.49 17257.81 7060.05 8834.51 17371.24 6570.20 6278.36 6574.44 98
Vis-MVSNetpermissive58.48 9165.70 7150.06 12653.40 14567.20 8160.24 11443.32 12348.83 11530.23 15262.38 5461.61 8140.35 14571.03 6669.77 6572.82 13479.11 60
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
test250655.82 11859.57 11651.46 11760.39 8964.55 10758.69 12248.87 6353.91 7826.99 16848.97 11141.72 18537.71 15770.96 6769.49 6676.08 9567.37 142
ECVR-MVScopyleft56.44 11360.74 9551.42 11860.39 8964.55 10758.69 12248.87 6353.91 7826.76 17045.55 14353.43 11537.71 15770.96 6769.49 6676.08 9567.32 144
EIA-MVS61.53 7463.79 8258.89 6563.82 7267.61 7665.35 8742.15 13649.98 10145.66 8257.47 7256.62 10156.59 5470.91 6969.15 7079.78 4974.80 96
EPP-MVSNet59.39 8165.45 7252.32 11460.96 8567.70 7458.42 12444.75 9049.71 10327.23 16759.03 6462.20 7743.34 13170.71 7069.13 7179.25 5879.63 57
test111155.24 12459.98 10949.71 12759.80 9564.10 11256.48 13749.34 5952.27 9221.56 18444.49 15051.96 12135.93 16870.59 7169.07 7275.13 10867.40 140
casdiffmvspermissive64.09 6068.13 6159.37 6361.81 7868.32 6668.48 5944.45 9561.95 6049.12 6863.04 4969.67 5453.83 6970.46 7266.06 11678.55 6277.43 71
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PVSNet_BlendedMVS61.63 7264.82 7557.91 7457.21 12067.55 7763.47 10046.08 7554.72 7552.46 5758.59 6660.73 8351.82 9270.46 7265.20 13076.44 8776.50 83
PVSNet_Blended61.63 7264.82 7557.91 7457.21 12067.55 7763.47 10046.08 7554.72 7552.46 5758.59 6660.73 8351.82 9270.46 7265.20 13076.44 8776.50 83
Effi-MVS+63.28 6265.96 6960.17 5764.26 6668.06 6968.78 5845.71 7954.08 7746.64 7655.92 7763.13 7355.94 5970.38 7571.43 5279.68 5478.70 62
MVS_111021_LR63.05 6466.43 6559.10 6461.33 8363.77 11465.87 8143.58 11560.20 6453.70 5362.09 5662.38 7555.84 6070.24 7668.08 8274.30 11478.28 67
OpenMVScopyleft57.13 962.81 6565.75 7059.39 6266.47 5669.52 5964.26 9643.07 12861.34 6250.19 6547.29 12364.41 6854.60 6470.18 7768.62 7977.73 6878.89 61
GeoE62.43 6864.79 7759.68 6164.15 6967.17 8268.80 5744.42 9655.65 7347.38 7151.54 9962.51 7454.04 6869.99 7868.07 8379.28 5778.57 63
ACMH+53.71 1259.26 8260.28 10158.06 6964.17 6868.46 6467.51 6450.93 5052.46 9135.83 13140.83 17445.12 16752.32 8669.88 7969.00 7477.59 7276.21 86
CNLPA62.78 6666.31 6658.65 6658.47 10268.41 6565.98 8041.22 14378.02 2256.04 3646.65 12659.50 9057.50 4569.67 8065.27 12872.70 13876.67 78
TSAR-MVS + COLMAP62.65 6769.90 5354.19 9746.31 18566.73 8665.49 8641.36 14176.57 2446.31 7776.80 1756.68 10053.27 8069.50 8166.65 10672.40 14376.36 85
DCV-MVSNet59.49 8064.00 8154.23 9661.81 7864.33 10961.42 10643.77 10852.85 8838.94 11955.62 7962.15 7843.24 13469.39 8267.66 9276.22 9275.97 87
Anonymous20240521160.60 9763.44 7366.71 8961.00 11047.23 6950.62 9936.85 18460.63 8643.03 13569.17 8367.72 9075.41 10372.54 107
DI_MVS_plusplus_trai61.88 7065.17 7458.06 6960.05 9165.26 9966.03 7844.22 9755.75 7246.73 7454.64 8568.12 6154.13 6769.13 8466.66 10577.18 7776.61 79
TranMVSNet+NR-MVSNet55.87 11660.14 10650.88 12059.46 9863.82 11357.93 12652.98 3948.94 11320.52 18752.87 9147.33 14536.81 16569.12 8569.03 7377.56 7369.89 121
FA-MVS(training)60.00 7963.14 8556.33 8659.50 9764.30 11065.15 8938.75 16356.20 7145.77 8053.08 8956.45 10252.10 8969.04 8667.67 9176.69 8375.27 95
LS3D60.20 7861.70 8858.45 6764.18 6767.77 7267.19 6548.84 6561.67 6141.27 10545.89 13851.81 12254.18 6668.78 8766.50 11175.03 10969.48 128
UniMVSNet_NR-MVSNet56.94 10861.14 9152.05 11660.02 9365.21 10257.44 12852.93 4049.37 10724.31 17954.62 8650.54 12839.04 14968.69 8868.84 7678.53 6370.72 115
FC-MVSNet-train58.40 9363.15 8452.85 11064.29 6561.84 12355.98 14346.47 7353.06 8534.96 13461.95 5756.37 10539.49 14768.67 8968.36 8175.92 10071.81 110
MSDG58.46 9258.97 12357.85 7666.27 5866.23 9267.72 6042.33 13253.43 8143.68 9143.39 16045.35 16349.75 9868.66 9067.77 8877.38 7467.96 137
NR-MVSNet55.35 12359.46 11850.56 12261.33 8362.97 11757.91 12751.80 4548.62 12120.59 18651.99 9744.73 17334.10 17668.58 9168.64 7877.66 6970.67 119
MVS_Test62.40 6966.23 6757.94 7259.77 9664.77 10566.50 7441.76 13757.26 7049.33 6662.68 5267.47 6453.50 7568.57 9266.25 11376.77 8276.58 80
Anonymous2023121157.71 10260.79 9454.13 9861.68 8165.81 9560.81 11143.70 11251.97 9439.67 11434.82 18963.59 7043.31 13268.55 9366.63 10775.59 10174.13 101
TAPA-MVS54.74 1060.85 7566.61 6354.12 9947.38 18165.33 9765.35 8736.51 17575.16 3048.82 7054.70 8463.51 7153.31 7968.36 9464.97 13473.37 12674.27 99
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
MS-PatchMatch58.19 9960.20 10455.85 8965.17 6164.16 11164.82 9141.48 14050.95 9642.17 10045.38 14456.42 10348.08 10868.30 9566.70 10473.39 12569.46 130
CANet_DTU58.88 8564.68 7852.12 11555.77 12866.75 8563.92 9737.04 17353.32 8337.45 12759.81 6161.81 7944.43 12668.25 9667.47 9574.12 11675.33 93
UGNet57.03 10565.25 7347.44 15546.54 18466.73 8656.30 13843.28 12450.06 10032.99 13862.57 5363.26 7233.31 17868.25 9667.58 9372.20 14678.29 66
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
PLCcopyleft52.09 1459.21 8362.47 8655.41 9253.24 14664.84 10464.47 9540.41 15265.92 5144.53 8846.19 13455.69 10855.33 6268.24 9865.30 12774.50 11271.09 113
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
UA-Net58.50 9064.68 7851.30 11966.97 5267.13 8353.68 15945.65 8049.51 10631.58 14662.91 5068.47 5735.85 16968.20 9967.28 9674.03 11769.24 132
MVSTER57.19 10461.11 9252.62 11250.82 16858.79 15061.55 10437.86 16948.81 11641.31 10457.43 7352.10 12048.60 10468.19 10066.75 10375.56 10275.68 91
DU-MVS55.41 12259.59 11350.54 12354.60 13662.97 11757.44 12851.80 4548.62 12124.31 17951.99 9747.00 14839.04 14968.11 10167.75 8976.03 9970.72 115
Baseline_NR-MVSNet53.50 13557.89 13248.37 14654.60 13659.25 14756.10 13951.84 4449.32 10817.92 19445.38 14447.68 14036.93 16468.11 10165.95 11872.84 13369.57 126
Effi-MVS+-dtu60.34 7762.32 8758.03 7164.31 6467.44 7965.99 7942.26 13349.55 10442.00 10148.92 11359.79 8956.27 5668.07 10367.03 9777.35 7575.45 92
GBi-Net55.20 12560.25 10249.31 13052.42 15161.44 12557.03 13144.04 10149.18 11030.47 14848.28 11558.19 9438.22 15268.05 10466.96 9873.69 12169.65 123
test155.20 12560.25 10249.31 13052.42 15161.44 12557.03 13144.04 10149.18 11030.47 14848.28 11558.19 9438.22 15268.05 10466.96 9873.69 12169.65 123
FMVSNet154.08 13358.68 12548.71 14050.90 16761.35 12856.73 13543.94 10645.91 14029.32 15842.72 16856.26 10637.70 15968.05 10466.96 9873.69 12169.50 127
v1059.17 8460.60 9757.50 7757.95 10566.73 8667.09 6944.11 9846.85 13245.42 8348.18 11951.07 12453.63 7067.84 10766.59 10976.79 8176.92 76
UniMVSNet (Re)55.15 12860.39 10049.03 13655.31 13064.59 10655.77 14450.63 5248.66 12020.95 18551.47 10050.40 12934.41 17567.81 10867.89 8577.11 8071.88 109
v114458.88 8560.16 10557.39 7858.03 10467.26 8067.14 6744.46 9445.17 14444.33 8947.81 12049.92 13253.20 8167.77 10966.62 10877.15 7876.58 80
tttt051756.53 11259.59 11352.95 10952.66 15060.99 13259.21 11940.51 14847.89 12740.40 11052.50 9546.04 15949.78 9667.75 11067.83 8675.15 10774.17 100
v7n55.67 11957.46 13853.59 10256.06 12665.29 9861.06 10943.26 12540.17 18237.99 12340.79 17545.27 16647.09 11367.67 11166.21 11476.08 9576.82 77
thisisatest053056.68 11059.68 11153.19 10652.97 14760.96 13359.41 11740.51 14848.26 12441.06 10752.67 9246.30 15549.78 9667.66 11267.83 8675.39 10474.07 103
TransMVSNet (Re)51.92 14855.38 14747.88 15260.95 8659.90 14153.95 15645.14 8639.47 18524.85 17643.87 15546.51 15429.15 18567.55 11365.23 12973.26 13065.16 161
v858.88 8560.57 9956.92 8157.35 11565.69 9666.69 7342.64 13047.89 12745.77 8049.04 11052.98 11752.77 8267.51 11465.57 12376.26 9175.30 94
V4256.97 10760.14 10653.28 10448.16 17762.78 12066.30 7637.93 16847.44 12942.68 9648.19 11852.59 11951.90 9067.46 11565.94 11972.72 13676.55 82
v119258.51 8959.66 11257.17 7957.82 10667.72 7366.21 7744.83 8944.15 15243.49 9246.68 12547.94 13653.55 7267.39 11666.51 11077.13 7977.20 74
v2v48258.69 8860.12 10857.03 8057.16 12266.05 9367.17 6643.52 11746.33 13645.19 8549.46 10951.02 12552.51 8467.30 11766.03 11776.61 8474.62 97
diffmvspermissive61.64 7166.55 6455.90 8856.63 12463.71 11567.13 6841.27 14259.49 6546.70 7563.93 4768.01 6250.46 9567.30 11765.51 12473.24 13177.87 70
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
anonymousdsp52.84 13857.78 13447.06 15640.24 20158.95 14953.70 15833.54 19136.51 19832.69 14143.88 15445.40 16247.97 11067.17 11970.28 6074.22 11582.29 46
Fast-Effi-MVS+-dtu56.30 11459.29 12052.82 11158.64 10164.89 10365.56 8532.89 19545.80 14135.04 13345.89 13854.14 11249.41 9967.16 12066.45 11275.37 10570.69 117
baseline154.48 13258.69 12449.57 12860.63 8858.29 15755.70 14544.95 8849.20 10929.62 15554.77 8354.75 11035.29 17067.15 12164.08 14071.21 15362.58 174
CHOSEN 1792x268855.85 11758.01 13153.33 10357.26 11962.82 11963.29 10241.55 13946.65 13438.34 12034.55 19053.50 11352.43 8567.10 12267.56 9467.13 16873.92 104
FMVSNet255.04 12959.95 11049.31 13052.42 15161.44 12557.03 13144.08 10049.55 10430.40 15146.89 12458.84 9238.22 15267.07 12366.21 11473.69 12169.65 123
ET-MVSNet_ETH3D58.38 9461.57 8954.67 9542.15 19865.26 9965.70 8243.82 10748.84 11442.34 9859.76 6247.76 13956.68 5367.02 12468.60 8077.33 7673.73 105
v14419258.23 9859.40 11956.87 8257.56 10766.89 8465.70 8245.01 8744.06 15342.88 9446.61 12748.09 13553.49 7666.94 12565.90 12076.61 8477.29 72
v192192057.89 10159.02 12256.58 8557.55 10866.66 9064.72 9344.70 9143.55 15642.73 9546.17 13546.93 14953.51 7366.78 12665.75 12276.29 8977.28 73
CDS-MVSNet52.42 14157.06 14047.02 15753.92 14358.30 15655.50 14746.47 7342.52 16829.38 15749.50 10852.85 11828.49 18866.70 12766.89 10168.34 16362.63 173
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
IB-MVS54.11 1158.36 9560.70 9655.62 9058.67 10068.02 7161.56 10343.15 12746.09 13844.06 9044.24 15250.99 12748.71 10366.70 12770.33 5977.60 7178.50 64
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
tfpn200view952.53 14055.51 14549.06 13557.31 11660.24 13755.42 14943.77 10842.85 16427.81 16343.00 16645.06 16937.32 16166.38 12964.54 13672.71 13766.54 146
thres600view751.91 14955.14 14948.14 14857.43 11260.18 13854.60 15443.73 11042.61 16725.20 17543.10 16544.47 17635.19 17166.36 13063.28 14872.66 13966.01 154
thres20052.39 14255.37 14848.90 13757.39 11360.18 13855.60 14643.73 11042.93 16227.41 16543.35 16145.09 16836.61 16666.36 13063.92 14372.66 13965.78 156
v124057.55 10358.63 12656.29 8757.30 11866.48 9163.77 9844.56 9342.77 16642.48 9745.64 14146.28 15653.46 7766.32 13265.80 12176.16 9377.13 75
gg-mvs-nofinetune49.07 16652.56 16645.00 16661.99 7659.78 14253.55 16141.63 13831.62 20712.08 20229.56 20153.28 11629.57 18466.27 13364.49 13871.19 15462.92 170
UniMVSNet_ETH3D52.62 13955.98 14348.70 14151.04 16560.71 13556.87 13446.74 7242.52 16826.96 16942.50 17045.95 16037.87 15666.22 13465.15 13372.74 13568.78 135
thres40052.38 14355.51 14548.74 13957.49 11160.10 14055.45 14843.54 11642.90 16326.72 17143.34 16245.03 17136.61 16666.20 13564.53 13772.66 13966.43 147
thisisatest051553.85 13456.84 14150.37 12450.25 17158.17 15855.99 14239.90 15541.88 17138.16 12245.91 13745.30 16444.58 12566.15 13666.89 10173.36 12773.57 106
tfpnnormal50.16 15852.19 17047.78 15456.86 12358.37 15554.15 15544.01 10438.35 19325.94 17336.10 18537.89 19934.50 17465.93 13763.42 14671.26 15265.28 159
GA-MVS55.67 11958.33 12852.58 11355.23 13363.09 11661.08 10840.15 15442.95 16137.02 12952.61 9347.68 14047.51 11165.92 13865.35 12574.49 11370.68 118
pm-mvs151.02 15255.55 14445.73 16154.16 14058.52 15250.92 16642.56 13140.32 18025.67 17443.66 15750.34 13030.06 18365.85 13963.97 14270.99 15566.21 150
COLMAP_ROBcopyleft46.52 1551.99 14754.86 15148.63 14249.13 17561.73 12460.53 11236.57 17453.14 8432.95 13937.10 18238.68 19740.49 14465.72 14063.08 14972.11 14764.60 164
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
ambc45.54 19850.66 17052.63 17840.99 20338.36 19224.67 17722.62 21013.94 22029.14 18665.71 14158.06 17458.60 19367.43 139
baseline255.89 11557.82 13353.64 10057.36 11461.09 13159.75 11540.45 15047.38 13041.26 10651.23 10146.90 15048.11 10765.63 14264.38 13974.90 11068.16 136
FMVSNet354.78 13059.58 11549.17 13352.37 15461.31 12956.72 13644.04 10149.18 11030.47 14848.28 11558.19 9438.09 15565.48 14365.20 13073.31 12869.45 131
HyFIR lowres test56.87 10958.60 12754.84 9356.62 12569.27 6164.77 9242.21 13445.66 14237.50 12633.08 19257.47 9953.33 7865.46 14467.94 8474.60 11171.35 112
IterMVS-LS58.30 9661.39 9054.71 9459.92 9458.40 15459.42 11643.64 11348.71 11840.25 11257.53 7158.55 9352.15 8865.42 14565.34 12672.85 13275.77 88
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v14855.58 12157.61 13753.20 10554.59 13861.86 12261.18 10738.70 16444.30 15142.25 9947.53 12150.24 13148.73 10265.15 14662.61 15673.79 11971.61 111
gm-plane-assit44.74 18645.95 19443.33 17460.88 8746.79 19936.97 20832.24 19824.15 21311.79 20329.26 20232.97 20846.64 11465.09 14762.95 15171.45 15160.42 181
thres100view90052.04 14654.81 15248.80 13857.31 11659.33 14555.30 15042.92 12942.85 16427.81 16343.00 16645.06 16936.99 16364.74 14863.51 14572.47 14265.21 160
pmmvs648.35 17051.64 17244.51 16951.92 15757.94 16149.44 17242.17 13534.45 20024.62 17828.87 20346.90 15029.07 18764.60 14963.08 14969.83 15965.68 157
TDRefinement49.31 16152.44 16745.67 16330.44 21159.42 14459.24 11839.78 15648.76 11731.20 14735.73 18629.90 21142.81 13664.24 15062.59 15770.55 15666.43 147
USDC51.11 15153.71 15648.08 15044.76 19055.99 16853.01 16340.90 14452.49 9036.14 13044.67 14933.66 20743.27 13363.23 15161.10 16270.39 15864.82 162
EPNet_dtu52.05 14558.26 12944.81 16754.10 14150.09 18652.01 16440.82 14653.03 8627.41 16554.90 8157.96 9826.72 19062.97 15262.70 15567.78 16666.19 152
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Vis-MVSNet (Re-imp)50.37 15657.73 13641.80 18157.53 10954.35 17145.70 18945.24 8449.80 10213.43 20058.23 6956.42 10320.11 20162.96 15363.36 14768.76 16258.96 186
CMPMVSbinary37.70 1749.24 16352.71 16445.19 16445.97 18751.23 18247.44 18129.31 20043.04 16044.69 8634.45 19148.35 13443.64 12862.59 15459.82 16860.08 18969.48 128
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
pmmvs454.66 13156.07 14253.00 10854.63 13557.08 16560.43 11344.10 9951.69 9540.55 10946.55 13044.79 17245.95 11962.54 15563.66 14472.36 14466.20 151
IterMVS-SCA-FT52.18 14457.75 13545.68 16251.01 16662.06 12155.10 15234.75 18144.85 14532.86 14051.13 10351.22 12348.74 10162.47 15661.51 16051.61 20771.02 114
IterMVS53.45 13657.12 13949.17 13349.23 17460.93 13459.05 12034.63 18344.53 14733.22 13651.09 10451.01 12648.38 10562.43 15760.79 16470.54 15769.05 133
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
LTVRE_ROB44.17 1647.06 18050.15 18343.44 17351.39 16058.42 15342.90 19943.51 11822.27 21514.85 19841.94 17334.57 20545.43 12062.28 15862.77 15462.56 18568.83 134
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
TinyColmap47.08 17847.56 19246.52 15842.35 19753.44 17451.77 16540.70 14743.44 15831.92 14429.78 20023.72 21745.04 12461.99 15959.54 17067.35 16761.03 178
pmmvs-eth3d51.33 15052.25 16950.26 12550.82 16854.65 17056.03 14143.45 12243.51 15737.20 12839.20 17839.04 19642.28 13761.85 16062.78 15371.78 14964.72 163
WR-MVS48.78 16855.06 15041.45 18255.50 12960.40 13643.77 19749.99 5641.92 1708.10 21345.24 14745.56 16117.47 20261.57 16164.60 13573.85 11866.14 153
baseline55.19 12760.88 9348.55 14349.87 17258.10 15958.70 12134.75 18152.82 8939.48 11860.18 6060.86 8245.41 12161.05 16260.74 16563.10 18172.41 108
PatchMatch-RL50.11 15951.56 17348.43 14446.23 18651.94 17950.21 16938.62 16546.62 13537.51 12542.43 17139.38 19452.24 8760.98 16359.56 16965.76 17260.01 184
PEN-MVS49.21 16454.32 15443.24 17654.33 13959.26 14647.04 18351.37 4941.67 1729.97 20846.22 13341.80 18422.97 19860.52 16464.03 14173.73 12066.75 145
DTE-MVSNet48.03 17453.28 16141.91 18054.64 13457.50 16344.63 19651.66 4841.02 1767.97 21446.26 13240.90 18720.24 20060.45 16562.89 15272.33 14563.97 166
CostFormer56.57 11159.13 12153.60 10157.52 11061.12 13066.94 7135.95 17753.44 8044.68 8755.87 7854.44 11148.21 10660.37 16658.33 17368.27 16470.33 120
SixPastTwentyTwo47.55 17750.25 18244.41 17047.30 18254.31 17247.81 17840.36 15333.76 20119.93 18943.75 15632.77 20942.07 13859.82 16760.94 16368.98 16066.37 149
PMMVS49.20 16554.28 15543.28 17534.13 20645.70 20148.98 17326.09 20846.31 13734.92 13555.22 8053.47 11447.48 11259.43 16859.04 17168.05 16560.77 179
dps50.42 15551.20 17649.51 12955.88 12756.07 16753.73 15738.89 15943.66 15440.36 11145.66 14037.63 20145.23 12259.05 16956.18 17762.94 18260.16 182
MDTV_nov1_ep13_2view47.62 17649.72 18545.18 16548.05 17853.70 17354.90 15333.80 18939.90 18429.79 15438.85 17941.89 18339.17 14858.99 17055.55 18265.34 17559.17 185
CR-MVSNet50.47 15452.61 16547.98 15149.03 17652.94 17548.27 17538.86 16044.41 14839.59 11544.34 15144.65 17546.63 11558.97 17160.31 16665.48 17362.66 171
PatchT48.08 17251.03 17744.64 16842.96 19550.12 18540.36 20435.09 17943.17 15939.59 11542.00 17239.96 19346.63 11558.97 17160.31 16663.21 18062.66 171
MIMVSNet43.79 19048.53 18838.27 19141.46 19948.97 18950.81 16732.88 19644.55 14622.07 18232.05 19347.15 14624.76 19358.73 17356.09 17957.63 19652.14 195
CP-MVSNet48.37 16953.53 15842.34 17851.35 16158.01 16046.56 18450.54 5341.62 17310.61 20446.53 13140.68 19023.18 19658.71 17461.83 15871.81 14867.36 143
PS-CasMVS48.18 17153.25 16242.27 17951.26 16257.94 16146.51 18550.52 5441.30 17410.56 20545.35 14640.34 19223.04 19758.66 17561.79 15971.74 15067.38 141
SCA50.99 15353.22 16348.40 14551.07 16456.78 16650.25 16839.05 15748.31 12341.38 10349.54 10746.70 15346.00 11858.31 17656.28 17662.65 18356.60 191
pmmvs547.07 17951.02 17842.46 17745.18 18951.47 18148.23 17733.09 19438.17 19428.62 16146.60 12843.48 18030.74 18158.28 17758.63 17268.92 16160.48 180
TAMVS44.02 18949.18 18637.99 19347.03 18345.97 20045.04 19228.47 20339.11 18820.23 18843.22 16448.52 13328.49 18858.15 17857.95 17558.71 19151.36 197
MDTV_nov1_ep1350.32 15752.43 16847.86 15349.87 17254.70 16958.10 12534.29 18545.59 14337.71 12447.44 12247.42 14441.86 13958.07 17955.21 18565.34 17558.56 187
WR-MVS_H47.65 17553.67 15740.63 18551.45 15959.74 14344.71 19549.37 5840.69 1787.61 21546.04 13644.34 17817.32 20357.79 18061.18 16173.30 12965.86 155
FMVSNet540.96 19545.81 19635.29 20034.30 20544.55 20447.28 18228.84 20240.76 17721.62 18329.85 19942.44 18124.77 19257.53 18155.00 18654.93 19950.56 200
test-mter45.30 18550.37 17939.38 18833.65 20846.99 19647.59 17918.59 21438.75 18928.00 16243.28 16346.82 15241.50 14157.28 18255.78 18066.93 17163.70 168
PatchmatchNetpermissive49.92 16051.29 17448.32 14751.83 15851.86 18053.38 16237.63 17147.90 12640.83 10848.54 11445.30 16445.19 12356.86 18353.99 19461.08 18854.57 194
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
test-LLR49.28 16250.29 18048.10 14955.26 13147.16 19449.52 17043.48 12039.22 18631.98 14243.65 15847.93 13741.29 14256.80 18455.36 18367.08 16961.94 175
TESTMET0.1,146.09 18450.29 18041.18 18336.91 20447.16 19449.52 17020.32 21339.22 18631.98 14243.65 15847.93 13741.29 14256.80 18455.36 18367.08 16961.94 175
CHOSEN 280x42040.80 19645.05 19935.84 19932.95 20929.57 21444.98 19323.71 21137.54 19618.42 19231.36 19647.07 14746.41 11756.71 18654.65 19048.55 21058.47 188
Anonymous2023120642.28 19245.89 19538.07 19251.96 15648.98 18843.66 19838.81 16238.74 19014.32 19926.74 20540.90 18720.94 19956.64 18754.67 18958.71 19154.59 193
CVMVSNet46.38 18352.01 17139.81 18742.40 19650.26 18446.15 18637.68 17040.03 18315.09 19746.56 12947.56 14233.72 17756.50 18855.65 18163.80 17967.53 138
test20.0340.38 20044.20 20035.92 19853.73 14449.05 18738.54 20643.49 11932.55 2049.54 20927.88 20439.12 19512.24 20956.28 18954.69 18857.96 19549.83 205
RPSCF46.41 18154.42 15337.06 19525.70 21845.14 20245.39 19120.81 21262.79 5835.10 13244.92 14855.60 10943.56 12956.12 19052.45 19851.80 20663.91 167
PM-MVS44.55 18848.13 19040.37 18632.85 21046.82 19846.11 18729.28 20140.48 17929.99 15339.98 17734.39 20641.80 14056.08 19153.88 19662.19 18665.31 158
test0.0.03 143.15 19146.95 19338.72 19055.26 13150.56 18342.48 20043.48 12038.16 19515.11 19635.07 18844.69 17416.47 20455.95 19254.34 19159.54 19049.87 204
tpm cat153.30 13753.41 15953.17 10758.16 10359.15 14863.73 9938.27 16750.73 9846.98 7345.57 14244.00 17949.20 10055.90 19354.02 19262.65 18364.50 165
testgi38.71 20243.64 20232.95 20252.30 15548.63 19035.59 21135.05 18031.58 2089.03 21230.29 19740.75 18911.19 21555.30 19453.47 19754.53 20245.48 208
FC-MVSNet-test39.65 20148.35 18929.49 20544.43 19139.28 21130.23 21440.44 15143.59 1553.12 22153.00 9042.03 18210.02 21755.09 19554.77 18748.66 20950.71 199
MIMVSNet135.51 20541.41 20528.63 20627.53 21543.36 20538.09 20733.82 18832.01 2056.77 21621.63 21135.43 20411.97 21155.05 19653.99 19453.59 20448.36 207
GG-mvs-BLEND36.62 20453.39 16017.06 2120.01 22458.61 15148.63 1740.01 22147.13 1310.02 22543.98 15360.64 850.03 22054.92 19751.47 20053.64 20356.99 190
tpm48.82 16751.27 17545.96 16054.10 14147.35 19356.05 14030.23 19946.70 13343.21 9352.54 9447.55 14337.28 16254.11 19850.50 20154.90 20060.12 183
RPMNet46.41 18148.72 18743.72 17147.77 18052.94 17546.02 18833.92 18744.41 14831.82 14536.89 18337.42 20237.41 16053.88 19954.02 19265.37 17461.47 177
pmnet_mix0240.48 19943.80 20136.61 19645.79 18840.45 20842.12 20133.18 19340.30 18124.11 18138.76 18037.11 20324.30 19452.97 20046.66 20950.17 20850.33 201
EU-MVSNet40.63 19845.65 19734.78 20139.11 20246.94 19740.02 20534.03 18633.50 20210.37 20635.57 18737.80 20023.65 19551.90 20150.21 20261.49 18763.62 169
EPMVS44.66 18747.86 19140.92 18447.97 17944.70 20347.58 18033.27 19248.11 12529.58 15649.65 10644.38 17734.65 17251.71 20247.90 20552.49 20548.57 206
PMVScopyleft27.84 1833.81 20735.28 21132.09 20334.13 20624.81 21632.51 21326.48 20726.41 21119.37 19023.76 20824.02 21625.18 19150.78 20347.24 20654.89 20149.95 203
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVS-HIRNet42.24 19341.15 20643.51 17244.06 19440.74 20635.77 21035.35 17835.38 19938.34 12025.63 20738.55 19843.48 13050.77 20447.03 20764.07 17749.98 202
pmmvs335.10 20638.47 20831.17 20426.37 21740.47 20734.51 21218.09 21524.75 21216.88 19523.05 20926.69 21332.69 17950.73 20551.60 19958.46 19451.98 196
MDA-MVSNet-bldmvs41.36 19443.15 20439.27 18928.74 21352.68 17744.95 19440.84 14532.89 20318.13 19331.61 19522.09 21838.97 15150.45 20656.11 17864.01 17856.23 192
tpmrst48.08 17249.88 18445.98 15952.71 14948.11 19153.62 16033.70 19048.70 11939.74 11348.96 11246.23 15740.29 14650.14 20749.28 20355.80 19757.71 189
new-patchmatchnet33.24 20837.20 20928.62 20744.32 19338.26 21229.68 21536.05 17631.97 2066.33 21726.59 20627.33 21211.12 21650.08 20841.05 21244.23 21245.15 209
FPMVS38.36 20340.41 20735.97 19738.92 20339.85 20945.50 19025.79 20941.13 17518.70 19130.10 19824.56 21531.86 18049.42 20946.80 20855.04 19851.03 198
Gipumacopyleft25.87 21026.91 21324.66 20928.98 21220.17 21720.46 21634.62 18429.55 2099.10 2104.91 2205.31 22415.76 20649.37 21049.10 20439.03 21329.95 213
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
ADS-MVSNet40.67 19743.38 20337.50 19444.36 19239.79 21042.09 20232.67 19744.34 15028.87 16040.76 17640.37 19130.22 18248.34 21145.87 21046.81 21144.21 210
N_pmnet32.67 20936.85 21027.79 20840.55 20032.13 21335.80 20926.79 20637.24 1979.10 21032.02 19430.94 21016.30 20547.22 21241.21 21138.21 21437.21 211
new_pmnet23.19 21128.17 21217.37 21017.03 21924.92 21519.66 21716.16 21727.05 2104.42 21820.77 21219.20 21912.19 21037.71 21336.38 21334.77 21531.17 212
PMMVS215.84 21219.68 21411.35 21415.74 22016.95 21813.31 21817.64 21616.08 2170.36 22413.12 21411.47 2211.69 21928.82 21427.24 21519.38 21924.09 215
MVEpermissive12.28 1913.53 21515.72 21510.96 2157.39 22115.71 2196.05 22223.73 21010.29 2213.01 2225.77 2193.41 22511.91 21220.11 21529.79 21413.67 22024.98 214
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_method12.44 21614.66 2169.85 2161.30 2233.32 22313.00 2193.21 21822.42 21410.22 20714.13 21325.64 21411.43 21419.75 21611.61 21919.96 2185.79 219
E-PMN15.09 21313.19 21717.30 21127.80 21412.62 2207.81 22127.54 20414.62 2193.19 2196.89 2172.52 22715.09 20715.93 21720.22 21622.38 21619.53 216
tmp_tt5.40 2173.97 2222.35 2243.26 2240.44 22017.56 21612.09 20111.48 2167.14 2221.98 21815.68 21815.49 21810.69 221
EMVS14.49 21412.45 21816.87 21327.02 21612.56 2218.13 22027.19 20515.05 2183.14 2206.69 2182.67 22615.08 20814.60 21918.05 21720.67 21717.56 218
DeepMVS_CXcopyleft6.95 2225.98 2232.25 21911.73 2202.07 22311.85 2155.43 22311.75 21311.40 2208.10 22218.38 217
testmvs0.01 2170.02 2190.00 2180.00 2250.00 2250.01 2260.00 2220.01 2220.00 2260.03 2220.00 2280.01 2210.01 2210.01 2200.00 2230.06 221
uanet_test0.00 2190.00 2210.00 2180.00 2250.00 2250.00 2270.00 2220.00 2240.00 2260.00 2230.00 2280.00 2230.00 2220.00 2220.00 2230.00 222
sosnet-low-res0.00 2190.00 2210.00 2180.00 2250.00 2250.00 2270.00 2220.00 2240.00 2260.00 2230.00 2280.00 2230.00 2220.00 2220.00 2230.00 222
sosnet0.00 2190.00 2210.00 2180.00 2250.00 2250.00 2270.00 2220.00 2240.00 2260.00 2230.00 2280.00 2230.00 2220.00 2220.00 2230.00 222
test1230.01 2170.02 2190.00 2180.00 2250.00 2250.00 2270.00 2220.01 2220.00 2260.04 2210.00 2280.01 2210.00 2220.01 2200.00 2230.07 220
RE-MVS-def33.01 137
9.1481.81 13
SR-MVS71.46 3354.67 2881.54 14
our_test_351.15 16357.31 16455.12 151
MTAPA65.14 480.20 20
MTMP62.63 1678.04 26
Patchmatch-RL test1.04 225
XVS70.49 3776.96 2574.36 4454.48 4774.47 3782.24 24
X-MVStestdata70.49 3776.96 2574.36 4454.48 4774.47 3782.24 24
mPP-MVS71.67 3274.36 40
NP-MVS72.00 39
Patchmtry47.61 19248.27 17538.86 16039.59 115