This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort by
SMA-MVScopyleft87.56 790.17 784.52 991.71 390.57 990.77 875.19 1390.67 780.50 1386.59 1788.86 878.09 1589.92 189.41 190.84 1095.19 5
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DVP-MVS++89.14 191.86 185.97 192.55 292.38 191.69 476.31 393.31 183.11 392.44 491.18 181.17 289.55 287.93 891.01 796.21 1
SED-MVS88.85 291.59 385.67 290.54 1592.29 391.71 376.40 292.41 383.24 292.50 390.64 481.10 389.53 388.02 791.00 895.73 3
ACMMP_NAP86.52 1389.01 1183.62 1690.28 1890.09 1390.32 1374.05 1988.32 1379.74 1587.04 1585.59 2376.97 2889.35 488.44 490.35 3094.27 11
CNVR-MVS86.36 1488.19 1784.23 1191.33 589.84 1490.34 1175.56 1087.36 1778.97 1781.19 2886.76 1878.74 1189.30 588.58 290.45 2794.33 10
DVP-MVScopyleft88.67 391.62 285.22 490.47 1692.36 290.69 976.15 493.08 282.75 492.19 690.71 380.45 689.27 687.91 990.82 1195.84 2
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
SteuartSystems-ACMMP85.99 1688.31 1683.27 2090.73 1089.84 1490.27 1474.31 1584.56 2975.88 3087.32 1485.04 2477.31 2389.01 788.46 391.14 493.96 12
Skip Steuart: Steuart Systems R&D Blog.
DPE-MVScopyleft88.63 491.29 485.53 390.87 892.20 491.98 276.00 690.55 882.09 693.85 190.75 281.25 188.62 887.59 1490.96 995.48 4
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
HPM-MVS++copyleft87.09 988.92 1384.95 692.61 187.91 4090.23 1576.06 588.85 1281.20 987.33 1387.93 1279.47 988.59 988.23 590.15 3493.60 20
DeepC-MVS78.47 284.81 2586.03 2883.37 1889.29 3290.38 1188.61 2676.50 186.25 2277.22 2375.12 4080.28 4577.59 2188.39 1088.17 691.02 693.66 18
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DeepPCF-MVS79.04 185.30 2088.93 1281.06 3188.77 3690.48 1085.46 4673.08 2890.97 673.77 3784.81 2285.95 2077.43 2288.22 1187.73 1187.85 8694.34 9
NCCC85.34 1986.59 2483.88 1591.48 488.88 2589.79 1775.54 1186.67 2077.94 2276.55 3484.99 2578.07 1688.04 1287.68 1290.46 2693.31 21
DeepC-MVS_fast78.24 384.27 2885.50 3082.85 2290.46 1789.24 2187.83 3374.24 1784.88 2576.23 2875.26 3981.05 4377.62 2088.02 1387.62 1390.69 1692.41 27
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
APDe-MVScopyleft88.00 690.50 685.08 590.95 791.58 792.03 175.53 1291.15 580.10 1492.27 588.34 1180.80 588.00 1486.99 1891.09 595.16 6
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
MSP-MVS88.09 590.84 584.88 790.00 2391.80 691.63 575.80 791.99 481.23 892.54 289.18 680.89 487.99 1587.91 989.70 4594.51 7
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MCST-MVS85.13 2286.62 2383.39 1790.55 1489.82 1689.29 2173.89 2284.38 3076.03 2979.01 3185.90 2178.47 1287.81 1686.11 3392.11 193.29 22
HFP-MVS86.15 1587.95 1884.06 1390.80 989.20 2389.62 1974.26 1687.52 1480.63 1186.82 1684.19 2878.22 1487.58 1787.19 1690.81 1293.13 24
SD-MVS86.96 1089.45 984.05 1490.13 1989.23 2289.77 1874.59 1489.17 1080.70 1089.93 1189.67 578.47 1287.57 1886.79 2290.67 1793.76 16
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
SF-MVS87.47 889.70 884.86 891.26 691.10 890.90 675.65 889.21 981.25 791.12 888.93 778.82 1087.42 1986.23 3091.28 393.90 13
ACMMPR85.52 1787.53 2083.17 2190.13 1989.27 2089.30 2073.97 2086.89 1977.14 2486.09 1883.18 3277.74 1987.42 1987.20 1590.77 1392.63 25
MP-MVScopyleft85.50 1887.40 2183.28 1990.65 1289.51 1989.16 2374.11 1883.70 3378.06 2185.54 2084.89 2777.31 2387.40 2187.14 1790.41 2893.65 19
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
3Dnovator+75.73 482.40 3482.76 3981.97 2888.02 3889.67 1786.60 3771.48 3681.28 4378.18 2064.78 8777.96 5277.13 2687.32 2286.83 2190.41 2891.48 35
PHI-MVS82.36 3585.89 2978.24 4786.40 4789.52 1885.52 4469.52 4882.38 4165.67 7181.35 2782.36 3473.07 4787.31 2386.76 2389.24 5291.56 34
PGM-MVS84.42 2786.29 2782.23 2590.04 2288.82 2689.23 2271.74 3582.82 3874.61 3384.41 2382.09 3577.03 2787.13 2486.73 2490.73 1592.06 31
APD-MVScopyleft86.84 1288.91 1484.41 1090.66 1190.10 1290.78 775.64 987.38 1678.72 1890.68 1086.82 1780.15 787.13 2486.45 2890.51 2193.83 14
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
TSAR-MVS + ACMM85.10 2388.81 1580.77 3489.55 2988.53 3288.59 2772.55 3087.39 1571.90 4290.95 987.55 1374.57 3687.08 2686.54 2687.47 9393.67 17
MVS_030481.73 3883.86 3579.26 4186.22 4989.18 2486.41 3867.15 6475.28 5570.75 5274.59 4283.49 3174.42 3887.05 2786.34 2990.58 2091.08 39
X-MVS83.23 3285.20 3280.92 3389.71 2788.68 2788.21 3273.60 2382.57 3971.81 4577.07 3281.92 3771.72 5886.98 2886.86 2090.47 2392.36 28
TSAR-MVS + MP.86.88 1189.23 1084.14 1289.78 2688.67 3090.59 1073.46 2688.99 1180.52 1291.26 788.65 979.91 886.96 2986.22 3190.59 1993.83 14
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
CP-MVS84.74 2686.43 2682.77 2389.48 3088.13 3988.64 2573.93 2184.92 2476.77 2681.94 2683.50 3077.29 2586.92 3086.49 2790.49 2293.14 23
CSCG85.28 2187.68 1982.49 2489.95 2491.99 588.82 2471.20 3786.41 2179.63 1679.26 2988.36 1073.94 4186.64 3186.67 2591.40 294.41 8
DELS-MVS79.15 5581.07 5176.91 5583.54 6187.31 4284.45 5164.92 8069.98 7169.34 5671.62 5676.26 5569.84 6886.57 3285.90 3489.39 4989.88 50
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
train_agg84.86 2487.21 2282.11 2690.59 1385.47 5589.81 1673.55 2583.95 3173.30 3889.84 1287.23 1575.61 3386.47 3385.46 3889.78 4092.06 31
MVS_111021_HR80.13 4281.46 4678.58 4585.77 5185.17 5983.45 5569.28 4974.08 6270.31 5474.31 4475.26 6373.13 4686.46 3485.15 4189.53 4789.81 51
DPM-MVS83.30 3184.33 3482.11 2689.56 2888.49 3390.33 1273.24 2783.85 3276.46 2772.43 5282.65 3373.02 4886.37 3586.91 1990.03 3689.62 53
OPM-MVS79.68 4779.28 6280.15 3787.99 3986.77 4688.52 2872.72 2964.55 10067.65 6367.87 7674.33 6774.31 3986.37 3585.25 4089.73 4489.81 51
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
CS-MVS79.22 5181.11 5077.01 5481.36 7784.03 6780.35 6763.25 9673.43 6670.37 5374.10 4676.03 5976.40 3086.32 3783.95 5090.34 3189.93 49
ACMMPcopyleft83.42 3085.27 3181.26 3088.47 3788.49 3388.31 3172.09 3283.42 3472.77 4082.65 2478.22 5075.18 3486.24 3885.76 3590.74 1492.13 30
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CANet81.62 3983.41 3679.53 4087.06 4288.59 3185.47 4567.96 5776.59 5374.05 3474.69 4181.98 3672.98 4986.14 3985.47 3789.68 4690.42 46
EC-MVSNet79.44 4881.35 4777.22 5282.95 6384.67 6381.31 6063.65 9272.47 6968.75 5773.15 4778.33 4975.99 3286.06 4083.96 4990.67 1790.79 41
CDPH-MVS82.64 3385.03 3379.86 3889.41 3188.31 3688.32 3071.84 3480.11 4567.47 6482.09 2581.44 4171.85 5685.89 4186.15 3290.24 3291.25 37
TSAR-MVS + GP.83.69 2986.58 2580.32 3585.14 5486.96 4484.91 5070.25 4184.71 2873.91 3685.16 2185.63 2277.92 1785.44 4285.71 3689.77 4192.45 26
MAR-MVS79.21 5280.32 5777.92 4987.46 4088.15 3883.95 5367.48 6374.28 5968.25 5964.70 8877.04 5372.17 5285.42 4385.00 4288.22 7287.62 67
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
CLD-MVS79.35 5081.23 4877.16 5385.01 5786.92 4585.87 4160.89 13380.07 4775.35 3272.96 4873.21 7168.43 7985.41 4484.63 4487.41 9485.44 89
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
ETV-MVS77.32 6478.81 6375.58 6282.24 7183.64 7579.98 6964.02 8869.64 7663.90 7970.89 6069.94 8773.41 4485.39 4583.91 5189.92 3788.31 61
MSLP-MVS++82.09 3682.66 4081.42 2987.03 4387.22 4385.82 4270.04 4280.30 4478.66 1968.67 7281.04 4477.81 1885.19 4684.88 4389.19 5691.31 36
3Dnovator73.76 579.75 4580.52 5578.84 4384.94 5987.35 4184.43 5265.54 7578.29 4973.97 3563.00 9575.62 6274.07 4085.00 4785.34 3990.11 3589.04 56
test250671.72 9572.95 9970.29 9681.49 7583.27 7875.74 10967.59 6168.19 7949.81 14661.15 9949.73 19358.82 13684.76 4882.94 5788.27 7080.63 138
ECVR-MVScopyleft72.20 9173.91 9170.20 9881.49 7583.27 7875.74 10967.59 6168.19 7949.31 15055.77 13362.00 12058.82 13684.76 4882.94 5788.27 7080.41 142
LGP-MVS_train79.83 4381.22 4978.22 4886.28 4885.36 5886.76 3669.59 4677.34 5065.14 7475.68 3670.79 8171.37 6284.60 5084.01 4790.18 3390.74 42
test111171.56 9773.44 9469.38 10981.16 7982.95 8374.99 12167.68 5966.89 8446.33 16655.19 13960.91 12357.99 14484.59 5182.70 6188.12 7780.85 135
IS_MVSNet73.33 8477.34 7568.65 11681.29 7883.47 7674.45 12763.58 9465.75 9248.49 15267.11 8070.61 8254.63 17084.51 5283.58 5489.48 4886.34 79
CS-MVS-test78.79 5880.72 5276.53 5781.11 8283.88 7079.69 7663.72 9173.80 6369.95 5575.40 3876.17 5674.85 3584.50 5382.78 6089.87 3988.54 60
HQP-MVS81.19 4083.27 3778.76 4487.40 4185.45 5686.95 3570.47 4081.31 4266.91 6879.24 3076.63 5471.67 5984.43 5483.78 5289.19 5692.05 33
PVSNet_Blended_VisFu76.57 6777.90 6775.02 6680.56 8786.58 4879.24 8066.18 6964.81 9768.18 6065.61 8171.45 7667.05 8384.16 5581.80 6888.90 6090.92 40
ACMM72.26 878.86 5778.13 6679.71 3986.89 4483.40 7786.02 4070.50 3975.28 5571.49 4963.01 9469.26 9173.57 4384.11 5683.98 4889.76 4287.84 65
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
OMC-MVS80.26 4182.59 4177.54 5083.04 6285.54 5483.25 5665.05 7987.32 1872.42 4172.04 5478.97 4773.30 4583.86 5781.60 7188.15 7588.83 58
Vis-MVSNetpermissive72.77 8877.20 7667.59 12874.19 14384.01 6876.61 10861.69 12760.62 13250.61 14270.25 6471.31 7955.57 16583.85 5882.28 6386.90 10688.08 63
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
QAPM78.47 5980.22 5876.43 5885.03 5686.75 4780.62 6666.00 7273.77 6465.35 7365.54 8378.02 5172.69 5083.71 5983.36 5688.87 6290.41 47
EPNet79.08 5680.62 5377.28 5188.90 3583.17 8283.65 5472.41 3174.41 5867.15 6776.78 3374.37 6664.43 9983.70 6083.69 5387.15 9788.19 62
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
AdaColmapbinary79.74 4678.62 6481.05 3289.23 3386.06 5284.95 4971.96 3379.39 4875.51 3163.16 9368.84 9776.51 2983.55 6182.85 5988.13 7686.46 78
PVSNet_BlendedMVS76.21 6977.52 7174.69 7079.46 9783.79 7277.50 9864.34 8569.88 7271.88 4368.54 7370.42 8367.05 8383.48 6279.63 10287.89 8486.87 74
PVSNet_Blended76.21 6977.52 7174.69 7079.46 9783.79 7277.50 9864.34 8569.88 7271.88 4368.54 7370.42 8367.05 8383.48 6279.63 10287.89 8486.87 74
sasdasda79.16 5382.37 4275.41 6382.33 6986.38 5080.80 6363.18 9882.90 3667.34 6572.79 4976.07 5769.62 6983.46 6484.41 4589.20 5490.60 43
canonicalmvs79.16 5382.37 4275.41 6382.33 6986.38 5080.80 6363.18 9882.90 3667.34 6572.79 4976.07 5769.62 6983.46 6484.41 4589.20 5490.60 43
casdiffmvs_mvgpermissive77.79 6279.55 6175.73 6181.56 7484.70 6282.12 5764.26 8774.27 6067.93 6170.83 6174.66 6569.19 7483.33 6681.94 6689.29 5187.14 72
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
ACMP73.23 779.79 4480.53 5478.94 4285.61 5285.68 5385.61 4369.59 4677.33 5171.00 5174.45 4369.16 9271.88 5483.15 6783.37 5589.92 3790.57 45
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
UA-Net74.47 7877.80 6870.59 9285.33 5385.40 5773.54 14565.98 7360.65 13156.00 11072.11 5379.15 4654.63 17083.13 6882.25 6488.04 8081.92 127
MGCFI-Net76.55 6881.71 4470.52 9381.71 7384.62 6475.02 12062.17 12182.91 3553.58 12572.78 5175.87 6161.75 12282.96 6982.61 6288.86 6390.26 48
TSAR-MVS + COLMAP78.34 6081.64 4574.48 7380.13 9485.01 6081.73 5865.93 7484.75 2761.68 8585.79 1966.27 10771.39 6182.91 7080.78 8086.01 13485.98 80
CPTT-MVS81.77 3783.10 3880.21 3685.93 5086.45 4987.72 3470.98 3882.54 4071.53 4874.23 4581.49 4076.31 3182.85 7181.87 6788.79 6592.26 29
MVS_111021_LR78.13 6179.85 6076.13 5981.12 8181.50 9280.28 6865.25 7776.09 5471.32 5076.49 3572.87 7372.21 5182.79 7281.29 7386.59 11987.91 64
EIA-MVS75.64 7376.60 8074.53 7282.43 6883.84 7178.32 9162.28 12065.96 9063.28 8368.95 6867.54 10271.61 6082.55 7381.63 7089.24 5285.72 83
casdiffmvspermissive76.76 6678.46 6574.77 6980.32 9183.73 7480.65 6563.24 9773.58 6566.11 7069.39 6774.09 6869.49 7282.52 7479.35 11188.84 6486.52 77
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
EPP-MVSNet74.00 8177.41 7370.02 10180.53 8883.91 6974.99 12162.68 11365.06 9549.77 14768.68 7172.09 7563.06 10782.49 7580.73 8189.12 5888.91 57
OpenMVScopyleft70.44 1076.15 7176.82 7975.37 6585.01 5784.79 6178.99 8462.07 12271.27 7067.88 6257.91 12472.36 7470.15 6782.23 7681.41 7288.12 7787.78 66
Fast-Effi-MVS+73.11 8673.66 9272.48 8077.72 11280.88 10278.55 8858.83 15965.19 9460.36 8859.98 10862.42 11971.22 6481.66 7780.61 9188.20 7384.88 100
TAPA-MVS71.42 977.69 6380.05 5974.94 6780.68 8684.52 6581.36 5963.14 10084.77 2664.82 7668.72 7075.91 6071.86 5581.62 7879.55 10687.80 8885.24 92
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
CANet_DTU73.29 8576.96 7869.00 11377.04 11882.06 8879.49 7856.30 17067.85 8153.29 12771.12 5970.37 8561.81 12181.59 7980.96 7886.09 12884.73 101
Effi-MVS+75.28 7576.20 8174.20 7481.15 8083.24 8081.11 6163.13 10166.37 8660.27 8964.30 9168.88 9670.93 6681.56 8081.69 6988.61 6687.35 68
baseline170.10 11372.17 10667.69 12579.74 9576.80 14573.91 13864.38 8462.74 11648.30 15464.94 8564.08 11354.17 17281.46 8178.92 11485.66 14176.22 169
FC-MVSNet-train72.60 8975.07 8569.71 10481.10 8378.79 12373.74 14465.23 7866.10 8953.34 12670.36 6363.40 11656.92 15481.44 8280.96 7887.93 8284.46 105
MVSTER72.06 9274.24 8869.51 10770.39 17875.97 15376.91 10457.36 16764.64 9961.39 8768.86 6963.76 11463.46 10481.44 8279.70 10187.56 9285.31 91
EG-PatchMatch MVS67.24 14866.94 15667.60 12778.73 10281.35 9473.28 14959.49 14946.89 20151.42 13843.65 19553.49 16655.50 16681.38 8480.66 8887.15 9781.17 133
GBi-Net70.78 10373.37 9667.76 12172.95 15578.00 13075.15 11562.72 10864.13 10351.44 13558.37 11969.02 9357.59 14681.33 8580.72 8286.70 11382.02 121
test170.78 10373.37 9667.76 12172.95 15578.00 13075.15 11562.72 10864.13 10351.44 13558.37 11969.02 9357.59 14681.33 8580.72 8286.70 11382.02 121
FMVSNet168.84 12670.47 11766.94 14071.35 17277.68 13874.71 12562.35 11956.93 15249.94 14550.01 17964.59 11157.07 15181.33 8580.72 8286.25 12482.00 124
DCV-MVSNet73.65 8375.78 8371.16 8680.19 9279.27 11777.45 10061.68 12866.73 8558.72 9465.31 8469.96 8662.19 11281.29 8880.97 7786.74 11286.91 73
PCF-MVS73.28 679.42 4980.41 5678.26 4684.88 6088.17 3786.08 3969.85 4375.23 5768.43 5868.03 7578.38 4871.76 5781.26 8980.65 8988.56 6891.18 38
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
gg-mvs-nofinetune62.55 17265.05 17059.62 18078.72 10377.61 13970.83 15953.63 17439.71 21322.04 21536.36 20864.32 11247.53 18581.16 9079.03 11385.00 15277.17 164
Anonymous20240521172.16 10780.85 8581.85 8976.88 10565.40 7662.89 11546.35 19067.99 10162.05 11481.15 9180.38 9385.97 13684.50 104
CNLPA77.20 6577.54 7076.80 5682.63 6584.31 6679.77 7364.64 8185.17 2373.18 3956.37 13169.81 8874.53 3781.12 9278.69 11786.04 13387.29 70
UGNet72.78 8777.67 6967.07 13871.65 16783.24 8075.20 11463.62 9364.93 9656.72 10671.82 5573.30 6949.02 18381.02 9380.70 8786.22 12588.67 59
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
DI_MVS_plusplus_trai75.13 7676.12 8273.96 7578.18 10681.55 9080.97 6262.54 11568.59 7765.13 7561.43 9874.81 6469.32 7381.01 9479.59 10487.64 9185.89 81
FMVSNet270.39 10972.67 10367.72 12472.95 15578.00 13075.15 11562.69 11263.29 11151.25 13955.64 13468.49 10057.59 14680.91 9580.35 9486.70 11382.02 121
FA-MVS(training)73.66 8274.95 8672.15 8178.63 10480.46 10678.92 8554.79 17369.71 7565.37 7262.04 9666.89 10567.10 8280.72 9679.87 9988.10 7984.97 97
Anonymous2023121171.90 9372.48 10471.21 8580.14 9381.53 9176.92 10362.89 10464.46 10258.94 9143.80 19470.98 8062.22 11180.70 9780.19 9686.18 12685.73 82
ACMH65.37 1470.71 10570.00 12071.54 8482.51 6782.47 8777.78 9568.13 5456.19 15946.06 16954.30 14351.20 18568.68 7780.66 9880.72 8286.07 12984.45 106
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
tfpn200view968.11 13268.72 13867.40 13077.83 11078.93 11974.28 13262.81 10556.64 15446.82 16252.65 16653.47 16856.59 15580.41 9978.43 12086.11 12780.52 140
thres600view767.68 14068.43 14266.80 14277.90 10778.86 12173.84 14062.75 10656.07 16044.70 17752.85 16452.81 17555.58 16480.41 9977.77 12886.05 13180.28 143
thres20067.98 13468.55 14167.30 13377.89 10978.86 12174.18 13662.75 10656.35 15746.48 16552.98 16253.54 16456.46 15680.41 9977.97 12686.05 13179.78 148
PLCcopyleft68.99 1175.68 7275.31 8476.12 6082.94 6481.26 9679.94 7166.10 7077.15 5266.86 6959.13 11468.53 9973.73 4280.38 10279.04 11287.13 10181.68 129
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
LS3D74.08 8073.39 9574.88 6885.05 5582.62 8679.71 7568.66 5272.82 6758.80 9357.61 12561.31 12271.07 6580.32 10378.87 11686.00 13580.18 144
tttt051771.41 10072.95 9969.60 10673.70 15078.70 12474.42 13059.12 15363.89 10758.35 9864.56 9058.39 13664.27 10080.29 10480.17 9787.74 8984.69 102
thisisatest053071.48 9973.01 9869.70 10573.83 14878.62 12574.53 12659.12 15364.13 10358.63 9564.60 8958.63 13464.27 10080.28 10580.17 9787.82 8784.64 103
NR-MVSNet68.79 12770.56 11566.71 14577.48 11579.54 11373.52 14669.20 5061.20 12839.76 18658.52 11650.11 19151.37 17980.26 10680.71 8688.97 5983.59 113
GeoE74.23 7974.84 8773.52 7680.42 9081.46 9379.77 7361.06 13167.23 8363.67 8059.56 11168.74 9867.90 8080.25 10779.37 11088.31 6987.26 71
thres40067.95 13568.62 14067.17 13577.90 10778.59 12674.27 13362.72 10856.34 15845.77 17153.00 16153.35 17156.46 15680.21 10878.43 12085.91 13880.43 141
MVS_Test75.37 7477.13 7773.31 7879.07 10081.32 9579.98 6960.12 14469.72 7464.11 7870.53 6273.22 7068.90 7580.14 10979.48 10887.67 9085.50 87
pm-mvs165.62 15567.42 15263.53 16373.66 15176.39 14969.66 16160.87 13449.73 19443.97 17851.24 17557.00 14448.16 18479.89 11077.84 12784.85 15579.82 147
gm-plane-assit57.00 19657.62 20356.28 19276.10 12262.43 20947.62 21746.57 20833.84 21723.24 21137.52 20540.19 21459.61 13479.81 11177.55 13384.55 15672.03 188
CDS-MVSNet67.65 14269.83 12365.09 15175.39 13176.55 14874.42 13063.75 9053.55 17749.37 14959.41 11262.45 11844.44 19079.71 11279.82 10083.17 16577.36 163
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
TranMVSNet+NR-MVSNet69.25 12270.81 11467.43 12977.23 11779.46 11573.48 14769.66 4460.43 13339.56 18758.82 11553.48 16755.74 16379.59 11381.21 7488.89 6182.70 117
TransMVSNet (Re)64.74 16165.66 16463.66 16277.40 11675.33 15969.86 16062.67 11447.63 19941.21 18550.01 17952.33 17845.31 18979.57 11477.69 13085.49 14377.07 166
UniMVSNet_NR-MVSNet70.59 10672.19 10568.72 11477.72 11280.72 10373.81 14269.65 4561.99 12043.23 17960.54 10457.50 13958.57 13879.56 11581.07 7689.34 5083.97 107
dmvs_re67.22 14967.92 14766.40 14675.94 12670.55 18074.97 12363.87 8957.07 15144.75 17554.29 14456.72 14554.65 16979.53 11677.51 13484.20 15879.78 148
UniMVSNet (Re)69.53 11871.90 10866.76 14376.42 12180.93 9972.59 15268.03 5661.75 12341.68 18458.34 12257.23 14153.27 17579.53 11680.62 9088.57 6784.90 99
FMVSNet370.49 10772.90 10167.67 12672.88 15877.98 13374.96 12462.72 10864.13 10351.44 13558.37 11969.02 9357.43 14979.43 11879.57 10586.59 11981.81 128
Vis-MVSNet (Re-imp)67.83 13873.52 9361.19 17178.37 10576.72 14766.80 17762.96 10265.50 9334.17 19867.19 7969.68 8939.20 20179.39 11979.44 10985.68 14076.73 168
DU-MVS69.63 11770.91 11368.13 12075.99 12379.54 11373.81 14269.20 5061.20 12843.23 17958.52 11653.50 16558.57 13879.22 12080.45 9287.97 8183.97 107
Baseline_NR-MVSNet67.53 14568.77 13766.09 14875.99 12374.75 16472.43 15368.41 5361.33 12738.33 19151.31 17454.13 16056.03 15979.22 12078.19 12385.37 14682.45 119
MS-PatchMatch70.17 11270.49 11669.79 10380.98 8477.97 13577.51 9758.95 15662.33 11855.22 11453.14 15965.90 10862.03 11579.08 12277.11 14284.08 15977.91 159
diffmvspermissive74.86 7777.37 7471.93 8275.62 12980.35 10879.42 7960.15 14372.81 6864.63 7771.51 5773.11 7266.53 9379.02 12377.98 12585.25 14886.83 76
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MSDG71.52 9869.87 12173.44 7782.21 7279.35 11679.52 7764.59 8266.15 8861.87 8453.21 15856.09 14865.85 9778.94 12478.50 11986.60 11876.85 167
ACMH+66.54 1371.36 10170.09 11972.85 7982.59 6681.13 9878.56 8768.04 5561.55 12452.52 13351.50 17354.14 15868.56 7878.85 12579.50 10786.82 10983.94 109
thres100view90067.60 14468.02 14567.12 13777.83 11077.75 13773.90 13962.52 11656.64 15446.82 16252.65 16653.47 16855.92 16078.77 12677.62 13185.72 13979.23 152
tfpnnormal64.27 16463.64 18065.02 15275.84 12775.61 15671.24 15862.52 11647.79 19842.97 18142.65 19744.49 20752.66 17778.77 12676.86 14484.88 15479.29 151
ET-MVSNet_ETH3D72.46 9074.19 8970.44 9462.50 20281.17 9779.90 7262.46 11864.52 10157.52 10271.49 5859.15 13272.08 5378.61 12881.11 7588.16 7483.29 115
CHOSEN 1792x268869.20 12369.26 13069.13 11076.86 11978.93 11977.27 10160.12 14461.86 12254.42 11542.54 19861.61 12166.91 8878.55 12978.14 12479.23 17983.23 116
GA-MVS68.14 13169.17 13266.93 14173.77 14978.50 12774.45 12758.28 16155.11 16648.44 15360.08 10653.99 16161.50 12478.43 13077.57 13285.13 14980.54 139
v1070.22 11169.76 12470.74 8774.79 13780.30 11079.22 8159.81 14757.71 14756.58 10854.22 14955.31 15166.95 8678.28 13177.47 13587.12 10385.07 95
thisisatest051567.40 14668.78 13665.80 14970.02 18075.24 16069.36 16457.37 16654.94 17053.67 12355.53 13754.85 15458.00 14378.19 13278.91 11586.39 12383.78 111
v114469.93 11569.36 12970.61 9174.89 13680.93 9979.11 8260.64 13555.97 16155.31 11353.85 15154.14 15866.54 9278.10 13377.44 13687.14 10085.09 94
baseline269.69 11670.27 11869.01 11275.72 12877.13 14373.82 14158.94 15761.35 12657.09 10461.68 9757.17 14261.99 11678.10 13376.58 14986.48 12279.85 146
v119269.50 11968.83 13570.29 9674.49 14080.92 10178.55 8860.54 13755.04 16754.21 11652.79 16552.33 17866.92 8777.88 13577.35 13987.04 10485.51 86
v7n67.05 15166.94 15667.17 13572.35 16078.97 11873.26 15058.88 15851.16 19050.90 14048.21 18650.11 19160.96 12777.70 13677.38 13786.68 11685.05 96
pmmvs662.41 17562.88 18361.87 16871.38 17175.18 16367.76 17059.45 15141.64 20942.52 18337.33 20652.91 17446.87 18677.67 13776.26 15283.23 16479.18 153
v870.23 11069.86 12270.67 9074.69 13879.82 11278.79 8659.18 15258.80 14058.20 9955.00 14057.33 14066.31 9577.51 13876.71 14786.82 10983.88 110
V4268.76 12869.63 12567.74 12364.93 19878.01 12978.30 9256.48 16958.65 14156.30 10954.26 14757.03 14364.85 9877.47 13977.01 14385.60 14284.96 98
UniMVSNet_ETH3D67.18 15067.03 15567.36 13174.44 14178.12 12874.07 13766.38 6752.22 18446.87 16148.64 18451.84 18256.96 15277.29 14078.53 11885.42 14582.59 118
v2v48270.05 11469.46 12870.74 8774.62 13980.32 10979.00 8360.62 13657.41 14956.89 10555.43 13855.14 15366.39 9477.25 14177.14 14186.90 10683.57 114
v192192069.03 12468.32 14369.86 10274.03 14580.37 10777.55 9660.25 14154.62 17153.59 12452.36 16951.50 18466.75 8977.17 14276.69 14886.96 10585.56 85
v14419269.34 12168.68 13970.12 9974.06 14480.54 10478.08 9460.54 13754.99 16954.13 11852.92 16352.80 17666.73 9077.13 14376.72 14687.15 9785.63 84
IterMVS-LS71.69 9672.82 10270.37 9577.54 11476.34 15075.13 11860.46 13961.53 12557.57 10164.89 8667.33 10366.04 9677.09 14477.37 13885.48 14485.18 93
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Effi-MVS+-dtu71.82 9471.86 10971.78 8378.77 10180.47 10578.55 8861.67 12960.68 13055.49 11158.48 11865.48 10968.85 7676.92 14575.55 15787.35 9585.46 88
COLMAP_ROBcopyleft62.73 1567.66 14166.76 15868.70 11580.49 8977.98 13375.29 11362.95 10363.62 10949.96 14447.32 18950.72 18858.57 13876.87 14675.50 15884.94 15375.33 178
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
v124068.64 12967.89 14969.51 10773.89 14780.26 11176.73 10659.97 14653.43 17953.08 12851.82 17250.84 18766.62 9176.79 14776.77 14586.78 11185.34 90
IB-MVS66.94 1271.21 10271.66 11070.68 8979.18 9982.83 8572.61 15161.77 12659.66 13663.44 8253.26 15659.65 13059.16 13576.78 14882.11 6587.90 8387.33 69
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
anonymousdsp65.28 15867.98 14662.13 16758.73 21173.98 16767.10 17450.69 19448.41 19747.66 16054.27 14552.75 17761.45 12676.71 14980.20 9587.13 10189.53 55
USDC67.36 14767.90 14866.74 14471.72 16575.23 16171.58 15560.28 14067.45 8250.54 14360.93 10045.20 20662.08 11376.56 15074.50 16384.25 15775.38 177
HyFIR lowres test69.47 12068.94 13470.09 10076.77 12082.93 8476.63 10760.17 14259.00 13954.03 11940.54 20465.23 11067.89 8176.54 15178.30 12285.03 15180.07 145
Fast-Effi-MVS+-dtu68.34 13069.47 12767.01 13975.15 13277.97 13577.12 10255.40 17257.87 14246.68 16456.17 13260.39 12462.36 11076.32 15276.25 15385.35 14781.34 131
TDRefinement66.09 15465.03 17167.31 13269.73 18276.75 14675.33 11164.55 8360.28 13449.72 14845.63 19242.83 20960.46 13275.75 15375.95 15484.08 15978.04 158
PatchMatch-RL67.78 13966.65 15969.10 11173.01 15472.69 17168.49 16761.85 12562.93 11460.20 9056.83 13050.42 18969.52 7175.62 15474.46 16481.51 16973.62 186
EPNet_dtu68.08 13371.00 11264.67 15579.64 9668.62 18775.05 11963.30 9566.36 8745.27 17367.40 7866.84 10643.64 19275.37 15574.98 16181.15 17177.44 162
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
v14867.85 13767.53 15068.23 11873.25 15377.57 14174.26 13457.36 16755.70 16257.45 10353.53 15255.42 15061.96 11775.23 15673.92 16585.08 15081.32 132
ambc53.42 20664.99 19763.36 20449.96 21447.07 20037.12 19428.97 21516.36 22741.82 19475.10 15767.34 19471.55 20775.72 173
IterMVS-SCA-FT66.89 15269.22 13164.17 15771.30 17375.64 15571.33 15653.17 17957.63 14849.08 15160.72 10260.05 12863.09 10674.99 15873.92 16577.07 18781.57 130
baseline70.45 10874.09 9066.20 14770.95 17575.67 15474.26 13453.57 17568.33 7858.42 9669.87 6571.45 7661.55 12374.84 15974.76 16278.42 18183.72 112
TinyColmap62.84 17061.03 19564.96 15369.61 18371.69 17468.48 16859.76 14855.41 16347.69 15947.33 18834.20 21862.76 10974.52 16072.59 17381.44 17071.47 189
LTVRE_ROB59.44 1661.82 18462.64 18660.87 17372.83 15977.19 14264.37 18958.97 15533.56 21828.00 20552.59 16842.21 21063.93 10374.52 16076.28 15177.15 18682.13 120
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
PMMVS65.06 15969.17 13260.26 17655.25 21763.43 20366.71 17843.01 21262.41 11750.64 14169.44 6667.04 10463.29 10574.36 16273.54 16882.68 16673.99 185
IterMVS66.36 15368.30 14464.10 15869.48 18574.61 16573.41 14850.79 19357.30 15048.28 15560.64 10359.92 12960.85 13174.14 16372.66 17281.80 16878.82 155
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
WR-MVS63.03 16867.40 15357.92 18675.14 13377.60 14060.56 20066.10 7054.11 17623.88 20953.94 15053.58 16334.50 20573.93 16477.71 12987.35 9580.94 134
pmmvs467.89 13667.39 15468.48 11771.60 16973.57 16874.45 12760.98 13264.65 9857.97 10054.95 14151.73 18361.88 11873.78 16575.11 15983.99 16177.91 159
CHOSEN 280x42058.70 19361.88 19254.98 19655.45 21650.55 21964.92 18640.36 21355.21 16438.13 19248.31 18563.76 11463.03 10873.73 16668.58 19068.00 21473.04 187
MIMVSNet58.52 19461.34 19455.22 19560.76 20567.01 19266.81 17649.02 20056.43 15638.90 18940.59 20354.54 15740.57 19973.16 16771.65 17575.30 19766.00 201
pmmvs562.37 17864.04 17760.42 17465.03 19671.67 17567.17 17352.70 18450.30 19144.80 17454.23 14851.19 18649.37 18272.88 16873.48 16983.45 16274.55 181
pmmvs-eth3d63.52 16762.44 18964.77 15466.82 19370.12 18169.41 16359.48 15054.34 17552.71 12946.24 19144.35 20856.93 15372.37 16973.77 16783.30 16375.91 171
FMVSNet557.24 19560.02 19853.99 19956.45 21462.74 20765.27 18547.03 20755.14 16539.55 18840.88 20153.42 17041.83 19372.35 17071.10 17973.79 20164.50 204
TAMVS59.58 19162.81 18555.81 19366.03 19465.64 19763.86 19148.74 20149.95 19337.07 19554.77 14258.54 13544.44 19072.29 17171.79 17474.70 19866.66 200
CMPMVSbinary47.78 1762.49 17462.52 18762.46 16670.01 18170.66 17962.97 19451.84 18851.98 18656.71 10742.87 19653.62 16257.80 14572.23 17270.37 18075.45 19675.91 171
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
DTE-MVSNet61.85 18164.96 17258.22 18574.32 14274.39 16661.01 19967.85 5851.76 18921.91 21653.28 15548.17 19637.74 20272.22 17376.44 15086.52 12178.49 156
CR-MVSNet64.83 16065.54 16564.01 16070.64 17769.41 18265.97 18252.74 18257.81 14452.65 13054.27 14556.31 14760.92 12872.20 17473.09 17081.12 17275.69 174
PatchT61.97 18064.04 17759.55 18160.49 20667.40 19056.54 20748.65 20256.69 15352.65 13051.10 17652.14 18160.92 12872.20 17473.09 17078.03 18275.69 174
PEN-MVS62.96 16965.77 16359.70 17973.98 14675.45 15763.39 19367.61 6052.49 18225.49 20853.39 15349.12 19540.85 19871.94 17677.26 14086.86 10880.72 137
CVMVSNet62.55 17265.89 16158.64 18466.95 19169.15 18466.49 18156.29 17152.46 18332.70 19959.27 11358.21 13850.09 18171.77 17771.39 17779.31 17878.99 154
RPSCF67.64 14371.25 11163.43 16461.86 20470.73 17867.26 17250.86 19274.20 6158.91 9267.49 7769.33 9064.10 10271.41 17868.45 19277.61 18377.17 164
CP-MVSNet62.68 17165.49 16659.40 18271.84 16375.34 15862.87 19567.04 6552.64 18127.19 20653.38 15448.15 19741.40 19671.26 17975.68 15586.07 12982.00 124
test0.0.03 158.80 19261.58 19355.56 19475.02 13468.45 18859.58 20461.96 12352.74 18029.57 20249.75 18254.56 15631.46 20871.19 18069.77 18175.75 19264.57 203
FC-MVSNet-test56.90 19765.20 16847.21 20766.98 19063.20 20549.11 21658.60 16059.38 13811.50 22365.60 8256.68 14624.66 21571.17 18171.36 17872.38 20569.02 196
PS-CasMVS62.38 17765.06 16959.25 18371.73 16475.21 16262.77 19666.99 6651.94 18826.96 20752.00 17147.52 20041.06 19771.16 18275.60 15685.97 13681.97 126
WR-MVS_H61.83 18365.87 16257.12 18971.72 16576.87 14461.45 19866.19 6851.97 18722.92 21353.13 16052.30 18033.80 20671.03 18375.00 16086.65 11780.78 136
test-mter60.84 18764.62 17456.42 19155.99 21564.18 19865.39 18434.23 21754.39 17446.21 16857.40 12859.49 13155.86 16171.02 18469.65 18280.87 17476.20 170
test-LLR64.42 16264.36 17564.49 15675.02 13463.93 20066.61 17961.96 12354.41 17247.77 15757.46 12660.25 12555.20 16770.80 18569.33 18380.40 17574.38 182
TESTMET0.1,161.10 18664.36 17557.29 18857.53 21263.93 20066.61 17936.22 21654.41 17247.77 15757.46 12660.25 12555.20 16770.80 18569.33 18380.40 17574.38 182
GG-mvs-BLEND46.86 21167.51 15122.75 2170.05 22976.21 15164.69 1870.04 22561.90 1210.09 23055.57 13571.32 780.08 22570.54 18767.19 19671.58 20669.86 193
testgi54.39 20357.86 20150.35 20471.59 17067.24 19154.95 20953.25 17843.36 20623.78 21044.64 19347.87 19824.96 21370.45 18868.66 18973.60 20262.78 208
Anonymous2023120656.36 19857.80 20254.67 19770.08 17966.39 19460.46 20157.54 16449.50 19629.30 20333.86 21146.64 20135.18 20470.44 18968.88 18775.47 19568.88 197
test20.0353.93 20456.28 20551.19 20372.19 16265.83 19553.20 21161.08 13042.74 20722.08 21437.07 20745.76 20524.29 21670.44 18969.04 18574.31 20063.05 207
CostFormer68.92 12569.58 12668.15 11975.98 12576.17 15278.22 9351.86 18765.80 9161.56 8663.57 9262.83 11761.85 11970.40 19168.67 18879.42 17779.62 150
SCA65.40 15766.58 16064.02 15970.65 17673.37 16967.35 17153.46 17763.66 10854.14 11760.84 10160.20 12761.50 12469.96 19268.14 19377.01 18869.91 192
SixPastTwentyTwo61.84 18262.45 18861.12 17269.20 18672.20 17262.03 19757.40 16546.54 20238.03 19357.14 12941.72 21158.12 14269.67 19371.58 17681.94 16778.30 157
dps64.00 16662.99 18265.18 15073.29 15272.07 17368.98 16653.07 18057.74 14658.41 9755.55 13647.74 19960.89 13069.53 19467.14 19776.44 19171.19 190
MDTV_nov1_ep1364.37 16365.24 16763.37 16568.94 18770.81 17772.40 15450.29 19660.10 13553.91 12160.07 10759.15 13257.21 15069.43 19567.30 19577.47 18469.78 194
PM-MVS60.48 18860.94 19659.94 17758.85 20966.83 19364.27 19051.39 19055.03 16848.03 15650.00 18140.79 21358.26 14169.20 19667.13 19878.84 18077.60 161
MDTV_nov1_ep13_2view60.16 18960.51 19759.75 17865.39 19569.05 18568.00 16948.29 20451.99 18545.95 17048.01 18749.64 19453.39 17468.83 19766.52 19977.47 18469.55 195
PatchmatchNetpermissive64.21 16564.65 17363.69 16171.29 17468.66 18669.63 16251.70 18963.04 11253.77 12259.83 11058.34 13760.23 13368.54 19866.06 20075.56 19468.08 198
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
MIMVSNet149.27 20753.25 20744.62 20944.61 21961.52 21053.61 21052.18 18541.62 21018.68 21928.14 21741.58 21225.50 21168.46 19969.04 18573.15 20362.37 209
RPMNet61.71 18562.88 18360.34 17569.51 18469.41 18263.48 19249.23 19857.81 14445.64 17250.51 17750.12 19053.13 17668.17 20068.49 19181.07 17375.62 176
tpm62.41 17563.15 18161.55 17072.24 16163.79 20271.31 15746.12 21057.82 14355.33 11259.90 10954.74 15553.63 17367.24 20164.29 20370.65 20974.25 184
tpm cat165.41 15663.81 17967.28 13475.61 13072.88 17075.32 11252.85 18162.97 11363.66 8153.24 15753.29 17361.83 12065.54 20264.14 20474.43 19974.60 180
EU-MVSNet54.63 20158.69 19949.90 20556.99 21362.70 20856.41 20850.64 19545.95 20423.14 21250.42 17846.51 20236.63 20365.51 20364.85 20275.57 19374.91 179
pmnet_mix0255.30 20057.01 20453.30 20264.14 19959.09 21158.39 20650.24 19753.47 17838.68 19049.75 18245.86 20440.14 20065.38 20460.22 20968.19 21365.33 202
EPMVS60.00 19061.97 19157.71 18768.46 18863.17 20664.54 18848.23 20563.30 11044.72 17660.19 10556.05 14950.85 18065.27 20562.02 20769.44 21163.81 205
pmmvs347.65 20849.08 21345.99 20844.61 21954.79 21650.04 21331.95 22033.91 21629.90 20130.37 21333.53 21946.31 18763.50 20663.67 20573.14 20463.77 206
tpmrst62.00 17962.35 19061.58 16971.62 16864.14 19969.07 16548.22 20662.21 11953.93 12058.26 12355.30 15255.81 16263.22 20762.62 20670.85 20870.70 191
MVS-HIRNet54.41 20252.10 20957.11 19058.99 20856.10 21549.68 21549.10 19946.18 20352.15 13433.18 21246.11 20356.10 15863.19 20859.70 21176.64 19060.25 211
ADS-MVSNet55.94 19958.01 20053.54 20162.48 20358.48 21259.12 20546.20 20959.65 13742.88 18252.34 17053.31 17246.31 18762.00 20960.02 21064.23 21660.24 212
new-patchmatchnet46.97 21049.47 21244.05 21162.82 20156.55 21445.35 21852.01 18642.47 20817.04 22135.73 21035.21 21721.84 21961.27 21054.83 21565.26 21560.26 210
N_pmnet47.35 20950.13 21044.11 21059.98 20751.64 21851.86 21244.80 21149.58 19520.76 21740.65 20240.05 21529.64 20959.84 21155.15 21457.63 21754.00 215
Gipumacopyleft36.38 21535.80 21737.07 21245.76 21833.90 22229.81 22148.47 20339.91 21218.02 2208.00 2258.14 22925.14 21259.29 21261.02 20855.19 21940.31 218
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
FPMVS51.87 20650.00 21154.07 19866.83 19257.25 21360.25 20250.91 19150.25 19234.36 19736.04 20932.02 22041.49 19558.98 21356.07 21370.56 21059.36 213
WB-MVS40.01 21345.06 21434.13 21358.84 21053.28 21728.60 22258.10 16232.93 2204.65 22840.92 20028.33 2237.26 22258.86 21456.09 21247.36 22044.98 217
PMVScopyleft39.38 1846.06 21243.30 21549.28 20662.93 20038.75 22141.88 21953.50 17633.33 21935.46 19628.90 21631.01 22133.04 20758.61 21554.63 21668.86 21257.88 214
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MDA-MVSNet-bldmvs53.37 20553.01 20853.79 20043.67 22167.95 18959.69 20357.92 16343.69 20532.41 20041.47 19927.89 22452.38 17856.97 21665.99 20176.68 18967.13 199
new_pmnet38.40 21442.64 21633.44 21437.54 22445.00 22036.60 22032.72 21940.27 21112.72 22229.89 21428.90 22224.78 21453.17 21752.90 21756.31 21848.34 216
PMMVS225.60 21629.75 21820.76 21828.00 22530.93 22323.10 22429.18 22123.14 2221.46 22918.23 22116.54 2265.08 22340.22 21841.40 21937.76 22137.79 220
test_method22.26 21725.94 21917.95 2193.24 2287.17 22823.83 2237.27 22337.35 21520.44 21821.87 22039.16 21618.67 22034.56 21920.84 22334.28 22220.64 224
tmp_tt14.50 22114.68 2267.17 22810.46 2292.21 22437.73 21428.71 20425.26 21816.98 2254.37 22431.49 22029.77 22026.56 225
MVEpermissive19.12 1920.47 22023.27 22017.20 22012.66 22725.41 22410.52 22834.14 21814.79 2256.53 2278.79 2244.68 23016.64 22129.49 22141.63 21822.73 22638.11 219
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
DeepMVS_CXcopyleft18.74 22718.55 2258.02 22226.96 2217.33 22423.81 21913.05 22825.99 21025.17 22222.45 22736.25 221
E-PMN21.77 21818.24 22125.89 21540.22 22219.58 22512.46 22739.87 21418.68 2246.71 2259.57 2224.31 23222.36 21819.89 22327.28 22133.73 22328.34 222
EMVS20.98 21917.15 22225.44 21639.51 22319.37 22612.66 22639.59 21519.10 2236.62 2269.27 2234.40 23122.43 21717.99 22424.40 22231.81 22425.53 223
testmvs0.09 2210.15 2230.02 2220.01 2300.02 2300.05 2310.01 2260.11 2260.01 2310.26 2270.01 2330.06 2270.10 2250.10 2240.01 2280.43 226
test1230.09 2210.14 2240.02 2220.00 2310.02 2300.02 2320.01 2260.09 2270.00 2320.30 2260.00 2340.08 2250.03 2260.09 2250.01 2280.45 225
uanet_test0.00 2230.00 2250.00 2240.00 2310.00 2320.00 2330.00 2280.00 2280.00 2320.00 2280.00 2340.00 2280.00 2270.00 2260.00 2300.00 227
sosnet-low-res0.00 2230.00 2250.00 2240.00 2310.00 2320.00 2330.00 2280.00 2280.00 2320.00 2280.00 2340.00 2280.00 2270.00 2260.00 2300.00 227
sosnet0.00 2230.00 2250.00 2240.00 2310.00 2320.00 2330.00 2280.00 2280.00 2320.00 2280.00 2340.00 2280.00 2270.00 2260.00 2300.00 227
TPM-MVS90.07 2188.36 3588.45 2977.10 2575.60 3783.98 2971.33 6389.75 4389.62 53
Ray Leroy Khuboni and Hongjun Xu: Textureless Resilient Propagation Matching in Multiple View Stereosis (TPM-MVS). SATNAC 2025
RE-MVS-def46.24 167
9.1486.88 16
SR-MVS88.99 3473.57 2487.54 14
our_test_367.93 18970.99 17666.89 175
MTAPA83.48 186.45 19
MTMP82.66 584.91 26
Patchmatch-RL test2.85 230
XVS86.63 4588.68 2785.00 4771.81 4581.92 3790.47 23
X-MVStestdata86.63 4588.68 2785.00 4771.81 4581.92 3790.47 23
mPP-MVS89.90 2581.29 42
NP-MVS80.10 46
Patchmtry65.80 19665.97 18252.74 18252.65 130