This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort by
CHOSEN 1792x268899.19 6499.10 6699.45 10899.89 898.52 19399.39 19899.94 198.73 6199.11 20099.89 2095.50 17699.94 5799.50 2099.97 599.89 6
PVSNet_Blended_VisFu99.36 4599.28 4699.61 7099.86 2099.07 12799.47 16499.93 297.66 17599.71 5499.86 3797.73 10499.96 2299.47 2799.82 7699.79 60
PVSNet_BlendedMVS98.86 11398.80 10899.03 16499.76 5698.79 16999.28 23099.91 397.42 20099.67 6499.37 26497.53 10799.88 11698.98 7497.29 25898.42 316
PVSNet_Blended99.08 9098.97 8799.42 11399.76 5698.79 16998.78 32599.91 396.74 25299.67 6499.49 23197.53 10799.88 11698.98 7499.85 5599.60 129
HyFIR lowres test99.11 8598.92 9399.65 5999.90 499.37 8999.02 29099.91 397.67 17499.59 9399.75 12295.90 16399.73 18699.53 1699.02 16999.86 19
MVS_111021_LR99.41 3899.33 3099.65 5999.77 5399.51 7798.94 30999.85 698.82 5399.65 7599.74 12798.51 7399.80 16398.83 10299.89 3499.64 120
MVS_111021_HR99.41 3899.32 3299.66 5599.72 8299.47 8198.95 30799.85 698.82 5399.54 10399.73 13398.51 7399.74 18098.91 8399.88 3799.77 68
PHI-MVS99.30 5199.17 6099.70 5399.56 14499.52 7699.58 10499.80 897.12 22599.62 8499.73 13398.58 6799.90 10198.61 13099.91 1899.68 103
PatchMatch-RL98.84 12398.62 13299.52 9699.71 8799.28 9899.06 27999.77 997.74 16799.50 11099.53 21995.41 17899.84 13597.17 25899.64 11799.44 170
3Dnovator97.25 999.24 6299.05 7199.81 3699.12 25899.66 5399.84 1399.74 1099.09 2098.92 23299.90 1695.94 16099.98 898.95 7799.92 1399.79 60
QAPM98.67 14098.30 15899.80 3899.20 24099.67 5199.77 3399.72 1194.74 32898.73 25799.90 1695.78 16799.98 896.96 26999.88 3799.76 73
OpenMVScopyleft96.50 1698.47 15098.12 16999.52 9699.04 27599.53 7399.82 1799.72 1194.56 33198.08 30699.88 2694.73 20999.98 897.47 23899.76 9699.06 206
CHOSEN 280x42099.12 8199.13 6399.08 15799.66 10897.89 23098.43 34999.71 1398.88 4799.62 8499.76 11996.63 13799.70 20299.46 2899.99 199.66 109
MSLP-MVS++99.46 2399.47 1299.44 11299.60 13499.16 11199.41 18699.71 1398.98 3699.45 11899.78 10699.19 999.54 23499.28 4799.84 6399.63 123
UA-Net99.42 3499.29 4499.80 3899.62 12599.55 6899.50 14599.70 1598.79 5899.77 3899.96 197.45 10999.96 2298.92 8299.90 2599.89 6
PVSNet_094.43 1996.09 30295.47 30797.94 28799.31 21594.34 33897.81 36399.70 1597.12 22597.46 32398.75 33489.71 31899.79 16697.69 21881.69 36599.68 103
AdaColmapbinary99.01 10098.80 10899.66 5599.56 14499.54 7099.18 25699.70 1598.18 11599.35 15199.63 18296.32 14799.90 10197.48 23699.77 9399.55 140
ACMMPcopyleft99.45 2599.32 3299.82 3399.89 899.67 5199.62 8399.69 1898.12 12199.63 8099.84 5298.73 5799.96 2298.55 14599.83 7299.81 47
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
XVS99.53 999.42 1599.87 1199.85 2599.83 1699.69 5199.68 1998.98 3699.37 14499.74 12798.81 4499.94 5798.79 10799.86 4899.84 26
X-MVStestdata96.55 29195.45 30899.87 1199.85 2599.83 1699.69 5199.68 1998.98 3699.37 14464.01 37898.81 4499.94 5798.79 10799.86 4899.84 26
UGNet98.87 11098.69 11999.40 11599.22 23698.72 17399.44 17399.68 1999.24 799.18 19199.42 24992.74 26299.96 2299.34 3999.94 1199.53 147
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
ZNCC-MVS99.47 2199.33 3099.87 1199.87 1599.81 2599.64 7399.67 2298.08 13099.55 10299.64 17698.91 3499.96 2298.72 11499.90 2599.82 40
GST-MVS99.40 4199.24 5399.85 2599.86 2099.79 3099.60 9099.67 2297.97 14299.63 8099.68 15898.52 7299.95 4898.38 15799.86 4899.81 47
HFP-MVS99.49 1499.37 2299.86 2099.87 1599.80 2799.66 6599.67 2298.15 11799.68 6099.69 15299.06 1699.96 2298.69 11999.87 4099.84 26
ACMMPR99.49 1499.36 2499.86 2099.87 1599.79 3099.66 6599.67 2298.15 11799.67 6499.69 15298.95 2799.96 2298.69 11999.87 4099.84 26
region2R99.48 1899.35 2699.87 1199.88 1199.80 2799.65 7199.66 2698.13 12099.66 6999.68 15898.96 2499.96 2298.62 12799.87 4099.84 26
EU-MVSNet97.98 20598.03 18197.81 29798.72 31696.65 28699.66 6599.66 2698.09 12698.35 29599.82 6395.25 18798.01 35297.41 24395.30 30398.78 227
DELS-MVS99.48 1899.42 1599.65 5999.72 8299.40 8899.05 28199.66 2699.14 1199.57 9799.80 8998.46 7699.94 5799.57 1399.84 6399.60 129
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
Vis-MVSNetpermissive99.12 8198.97 8799.56 7999.78 4799.10 12199.68 5799.66 2698.49 7799.86 1699.87 3294.77 20699.84 13599.19 5599.41 13499.74 78
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
CSCG99.32 4999.32 3299.32 12799.85 2598.29 20899.71 4899.66 2698.11 12399.41 13199.80 8998.37 8399.96 2298.99 7399.96 799.72 89
PGM-MVS99.45 2599.31 3899.86 2099.87 1599.78 3699.58 10499.65 3197.84 15499.71 5499.80 8999.12 1399.97 1498.33 16399.87 4099.83 35
patch_mono-299.26 5899.62 198.16 27299.81 4194.59 33399.52 13499.64 3299.33 399.73 4899.90 1699.00 2299.99 299.69 699.98 299.89 6
test_vis1_n_192098.63 14498.40 15199.31 12899.86 2097.94 22999.67 6099.62 3399.43 199.99 299.91 1187.29 342100.00 199.92 199.92 1399.98 1
SR-MVS99.43 3299.29 4499.86 2099.75 6499.83 1699.59 9699.62 3398.21 10899.73 4899.79 10098.68 6199.96 2298.44 15499.77 9399.79 60
sss99.17 6899.05 7199.53 9099.62 12598.97 13999.36 20999.62 3397.83 15599.67 6499.65 17097.37 11399.95 4899.19 5599.19 15199.68 103
ZD-MVS99.71 8799.79 3099.61 3696.84 24899.56 9899.54 21598.58 6799.96 2296.93 27299.75 98
D2MVS98.41 15698.50 14598.15 27599.26 22796.62 28799.40 19499.61 3697.71 16998.98 22399.36 26796.04 15499.67 20998.70 11697.41 25398.15 332
tfpnnormal97.84 22697.47 24098.98 17299.20 24099.22 10599.64 7399.61 3696.32 28598.27 30099.70 14293.35 24999.44 24495.69 30595.40 30198.27 326
AllTest98.87 11098.72 11599.31 12899.86 2098.48 19999.56 11499.61 3697.85 15299.36 14899.85 4295.95 15899.85 12996.66 28599.83 7299.59 133
TestCases99.31 12899.86 2098.48 19999.61 3697.85 15299.36 14899.85 4295.95 15899.85 12996.66 28599.83 7299.59 133
FC-MVSNet-test98.75 13198.62 13299.15 15499.08 26799.45 8399.86 1299.60 4198.23 10598.70 26599.82 6396.80 13199.22 28899.07 6796.38 27698.79 226
PVSNet96.02 1798.85 12098.84 10598.89 19199.73 7897.28 25098.32 35599.60 4197.86 15099.50 11099.57 20496.75 13499.86 12398.56 14299.70 10899.54 142
LTVRE_ROB97.16 1298.02 19897.90 19598.40 25399.23 23396.80 28199.70 4999.60 4197.12 22598.18 30399.70 14291.73 29099.72 19098.39 15697.45 24898.68 256
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
MVS_030496.79 28896.52 28897.59 30599.22 23694.92 32999.04 28699.59 4496.49 27298.43 29098.99 32080.48 36199.39 25197.15 25999.27 14698.47 309
FIs98.78 12898.63 12799.23 14599.18 24599.54 7099.83 1699.59 4498.28 9798.79 25299.81 7696.75 13499.37 25899.08 6696.38 27698.78 227
WR-MVS_H98.13 18197.87 20098.90 18899.02 27798.84 16299.70 4999.59 4497.27 21198.40 29299.19 30095.53 17599.23 28598.34 16293.78 32898.61 295
114514_t98.93 10598.67 12199.72 5299.85 2599.53 7399.62 8399.59 4492.65 34899.71 5499.78 10698.06 9699.90 10198.84 9999.91 1899.74 78
COLMAP_ROBcopyleft97.56 698.86 11398.75 11499.17 15099.88 1198.53 18999.34 21799.59 4497.55 18498.70 26599.89 2095.83 16599.90 10198.10 17899.90 2599.08 200
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
CS-MVS-test99.49 1499.48 1099.54 8299.78 4799.30 9699.89 299.58 4998.56 7199.73 4899.69 15298.55 7099.82 15299.69 699.85 5599.48 159
VPA-MVSNet98.29 16797.95 19099.30 13399.16 25399.54 7099.50 14599.58 4998.27 9999.35 15199.37 26492.53 27299.65 21799.35 3594.46 31798.72 240
DROMVSNet99.44 2999.39 1999.58 7599.56 14499.49 7899.88 499.58 4998.38 8699.73 4899.69 15298.20 9099.70 20299.64 1099.82 7699.54 142
CANet99.25 6199.14 6299.59 7299.41 18899.16 11199.35 21499.57 5298.82 5399.51 10999.61 19196.46 14299.95 4899.59 1199.98 299.65 113
Anonymous2023121197.88 21897.54 23398.90 18899.71 8798.53 18999.48 15999.57 5294.16 33498.81 24899.68 15893.23 25099.42 24998.84 9994.42 31998.76 232
VPNet97.84 22697.44 24899.01 16699.21 23898.94 15199.48 15999.57 5298.38 8699.28 16499.73 13388.89 32599.39 25199.19 5593.27 33398.71 242
DP-MVS Recon99.12 8198.95 9199.65 5999.74 7199.70 4699.27 23599.57 5296.40 28399.42 12799.68 15898.75 5499.80 16397.98 18999.72 10499.44 170
LS3D99.27 5699.12 6499.74 4999.18 24599.75 3999.56 11499.57 5298.45 8099.49 11399.85 4297.77 10399.94 5798.33 16399.84 6399.52 148
FOURS199.91 199.93 199.87 999.56 5799.10 1699.81 25
test_prior99.68 5499.67 10099.48 8099.56 5799.83 14699.74 78
APDe-MVS99.66 199.57 399.92 199.77 5399.89 499.75 3999.56 5799.02 2699.88 1199.85 4299.18 1099.96 2299.22 5399.92 1399.90 4
HPM-MVS_fast99.51 1199.40 1899.85 2599.91 199.79 3099.76 3699.56 5797.72 16899.76 4399.75 12299.13 1299.92 8099.07 6799.92 1399.85 22
casdiffmvs_mvgpermissive99.15 7199.02 7899.55 8199.66 10899.09 12299.64 7399.56 5798.26 10099.45 11899.87 3296.03 15599.81 15799.54 1599.15 15599.73 83
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
WTY-MVS99.06 9298.88 9999.61 7099.62 12599.16 11199.37 20599.56 5798.04 13799.53 10599.62 18796.84 13099.94 5798.85 9698.49 19999.72 89
API-MVS99.04 9499.03 7599.06 16099.40 19399.31 9599.55 12399.56 5798.54 7399.33 15599.39 26098.76 5199.78 17196.98 26799.78 9098.07 335
ACMH97.28 898.10 18497.99 18598.44 24999.41 18896.96 27599.60 9099.56 5798.09 12698.15 30499.91 1190.87 30699.70 20298.88 8697.45 24898.67 263
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CS-MVS99.50 1299.48 1099.54 8299.76 5699.42 8599.90 199.55 6598.56 7199.78 3599.70 14298.65 6599.79 16699.65 999.78 9099.41 174
CVMVSNet98.57 14698.67 12198.30 26299.35 20295.59 31199.50 14599.55 6598.60 6999.39 13999.83 5694.48 22099.45 23998.75 11098.56 19599.85 22
XVG-OURS98.73 13398.68 12098.88 19399.70 9297.73 23798.92 31199.55 6598.52 7599.45 11899.84 5295.27 18499.91 9098.08 18398.84 18199.00 211
LPG-MVS_test98.22 17098.13 16898.49 23899.33 20897.05 26499.58 10499.55 6597.46 19299.24 17499.83 5692.58 27099.72 19098.09 17997.51 24098.68 256
LGP-MVS_train98.49 23899.33 20897.05 26499.55 6597.46 19299.24 17499.83 5692.58 27099.72 19098.09 17997.51 24098.68 256
XXY-MVS98.38 16098.09 17499.24 14399.26 22799.32 9299.56 11499.55 6597.45 19598.71 25999.83 5693.23 25099.63 22598.88 8696.32 27898.76 232
DeepC-MVS98.35 299.30 5199.19 5899.64 6499.82 3799.23 10499.62 8399.55 6598.94 4299.63 8099.95 295.82 16699.94 5799.37 3499.97 599.73 83
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MSDG98.98 10198.80 10899.53 9099.76 5699.19 10698.75 32899.55 6597.25 21399.47 11599.77 11397.82 10199.87 12096.93 27299.90 2599.54 142
SF-MVS99.38 4399.24 5399.79 4199.79 4599.68 4899.57 10899.54 7397.82 15999.71 5499.80 8998.95 2799.93 7098.19 17299.84 6399.74 78
PS-MVSNAJss98.92 10698.92 9398.90 18898.78 30898.53 18999.78 3199.54 7398.07 13199.00 22199.76 11999.01 1899.37 25899.13 6097.23 26098.81 224
新几何199.75 4799.75 6499.59 6299.54 7396.76 25199.29 16399.64 17698.43 7899.94 5796.92 27499.66 11499.72 89
旧先验199.74 7199.59 6299.54 7399.69 15298.47 7599.68 11299.73 83
APD-MVS_3200maxsize99.48 1899.35 2699.85 2599.76 5699.83 1699.63 7799.54 7398.36 9099.79 3099.82 6398.86 3899.95 4898.62 12799.81 7999.78 66
XVG-OURS-SEG-HR98.69 13798.62 13298.89 19199.71 8797.74 23699.12 26699.54 7398.44 8399.42 12799.71 13894.20 22899.92 8098.54 14698.90 17799.00 211
HPM-MVScopyleft99.42 3499.28 4699.83 3299.90 499.72 4299.81 2099.54 7397.59 17999.68 6099.63 18298.91 3499.94 5798.58 13699.91 1899.84 26
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
ab-mvs98.86 11398.63 12799.54 8299.64 11699.19 10699.44 17399.54 7397.77 16299.30 16099.81 7694.20 22899.93 7099.17 5898.82 18399.49 158
F-COLMAP99.19 6499.04 7399.64 6499.78 4799.27 10099.42 18499.54 7397.29 21099.41 13199.59 19698.42 8099.93 7098.19 17299.69 10999.73 83
ACMH+97.24 1097.92 21497.78 20798.32 26099.46 17796.68 28599.56 11499.54 7398.41 8497.79 31999.87 3290.18 31599.66 21298.05 18797.18 26398.62 286
MAR-MVS98.86 11398.63 12799.54 8299.37 19999.66 5399.45 16899.54 7396.61 26499.01 21799.40 25697.09 12199.86 12397.68 21999.53 12799.10 195
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
UniMVSNet_ETH3D97.32 27696.81 28398.87 19799.40 19397.46 24699.51 13999.53 8495.86 31198.54 28499.77 11382.44 35899.66 21298.68 12197.52 23899.50 157
EIA-MVS99.18 6699.09 6899.45 10899.49 16799.18 10899.67 6099.53 8497.66 17599.40 13699.44 24598.10 9499.81 15798.94 7899.62 12099.35 180
jajsoiax98.43 15398.28 15998.88 19398.60 32998.43 20399.82 1799.53 8498.19 11198.63 27699.80 8993.22 25299.44 24499.22 5397.50 24298.77 230
mvs_tets98.40 15998.23 16198.91 18698.67 32298.51 19599.66 6599.53 8498.19 11198.65 27499.81 7692.75 26099.44 24499.31 4297.48 24698.77 230
UniMVSNet_NR-MVSNet98.22 17097.97 18798.96 17598.92 28998.98 13699.48 15999.53 8497.76 16398.71 25999.46 24396.43 14599.22 28898.57 13992.87 33898.69 251
SR-MVS-dyc-post99.45 2599.31 3899.85 2599.76 5699.82 2299.63 7799.52 8998.38 8699.76 4399.82 6398.53 7199.95 4898.61 13099.81 7999.77 68
RE-MVS-def99.34 2899.76 5699.82 2299.63 7799.52 8998.38 8699.76 4399.82 6398.75 5498.61 13099.81 7999.77 68
dcpmvs_299.23 6399.58 298.16 27299.83 3594.68 33299.76 3699.52 8999.07 2399.98 499.88 2698.56 6999.93 7099.67 899.98 299.87 17
ETV-MVS99.26 5899.21 5699.40 11599.46 17799.30 9699.56 11499.52 8998.52 7599.44 12399.27 29098.41 8199.86 12399.10 6399.59 12299.04 207
MP-MVS-pluss99.37 4499.20 5799.88 599.90 499.87 1299.30 22499.52 8997.18 21999.60 9099.79 10098.79 4699.95 4898.83 10299.91 1899.83 35
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
SD-MVS99.41 3899.52 699.05 16299.74 7199.68 4899.46 16799.52 8999.11 1599.88 1199.91 1199.43 197.70 35998.72 11499.93 1299.77 68
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
PS-CasMVS97.93 21197.59 22998.95 17798.99 28099.06 12899.68 5799.52 8997.13 22398.31 29799.68 15892.44 27899.05 31298.51 14794.08 32598.75 234
XVG-ACMP-BASELINE97.83 22897.71 21898.20 26999.11 26096.33 29799.41 18699.52 8998.06 13599.05 21399.50 22889.64 32099.73 18697.73 21297.38 25698.53 303
CNVR-MVS99.42 3499.30 4099.78 4399.62 12599.71 4499.26 24399.52 8998.82 5399.39 13999.71 13898.96 2499.85 12998.59 13599.80 8399.77 68
CP-MVS99.45 2599.32 3299.85 2599.83 3599.75 3999.69 5199.52 8998.07 13199.53 10599.63 18298.93 3399.97 1498.74 11199.91 1899.83 35
RPMNet96.72 28995.90 30099.19 14899.18 24598.49 19799.22 25299.52 8988.72 36199.56 9897.38 35594.08 23499.95 4886.87 36698.58 19299.14 192
FMVSNet596.43 29596.19 29497.15 31599.11 26095.89 30699.32 22099.52 8994.47 33398.34 29699.07 31187.54 34197.07 36392.61 34695.72 29498.47 309
OMC-MVS99.08 9099.04 7399.20 14799.67 10098.22 21199.28 23099.52 8998.07 13199.66 6999.81 7697.79 10299.78 17197.79 20499.81 7999.60 129
PLCcopyleft97.94 499.02 9798.85 10499.53 9099.66 10899.01 13499.24 24799.52 8996.85 24799.27 16899.48 23698.25 8899.91 9097.76 20899.62 12099.65 113
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
DVP-MVS++99.59 399.50 899.88 599.51 15699.88 899.87 999.51 10398.99 3399.88 1199.81 7699.27 599.96 2298.85 9699.80 8399.81 47
GeoE98.85 12098.62 13299.53 9099.61 12999.08 12599.80 2499.51 10397.10 22999.31 15899.78 10695.23 18899.77 17398.21 17099.03 16799.75 74
9.1499.10 6699.72 8299.40 19499.51 10397.53 18899.64 7999.78 10698.84 4199.91 9097.63 22099.82 76
test_0728_SECOND99.91 299.84 3199.89 499.57 10899.51 10399.96 2298.93 8099.86 4899.88 12
DPE-MVScopyleft99.46 2399.32 3299.91 299.78 4799.88 899.36 20999.51 10398.73 6199.88 1199.84 5298.72 5899.96 2298.16 17699.87 4099.88 12
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
xiu_mvs_v1_base_debu99.29 5399.27 4899.34 12199.63 11998.97 13999.12 26699.51 10398.86 4899.84 1899.47 23998.18 9199.99 299.50 2099.31 14399.08 200
xiu_mvs_v1_base99.29 5399.27 4899.34 12199.63 11998.97 13999.12 26699.51 10398.86 4899.84 1899.47 23998.18 9199.99 299.50 2099.31 14399.08 200
xiu_mvs_v1_base_debi99.29 5399.27 4899.34 12199.63 11998.97 13999.12 26699.51 10398.86 4899.84 1899.47 23998.18 9199.99 299.50 2099.31 14399.08 200
cdsmvs_eth3d_5k24.64 34632.85 3490.00 3620.00 3850.00 3860.00 37399.51 1030.00 3800.00 38199.56 20796.58 1380.00 3810.00 3790.00 3790.00 377
HPM-MVS++copyleft99.39 4299.23 5599.87 1199.75 6499.84 1599.43 17799.51 10398.68 6599.27 16899.53 21998.64 6699.96 2298.44 15499.80 8399.79 60
无先验98.99 29799.51 10396.89 24599.93 7097.53 23299.72 89
testdata99.54 8299.75 6498.95 14899.51 10397.07 23199.43 12499.70 14298.87 3799.94 5797.76 20899.64 11799.72 89
PEN-MVS97.76 23897.44 24898.72 21898.77 31198.54 18899.78 3199.51 10397.06 23398.29 29999.64 17692.63 26998.89 33598.09 17993.16 33498.72 240
UniMVSNet (Re)98.29 16798.00 18499.13 15599.00 27999.36 9099.49 15599.51 10397.95 14398.97 22599.13 30696.30 14899.38 25398.36 16193.34 33198.66 271
mvsmamba98.92 10698.87 10099.08 15799.07 26899.16 11199.88 499.51 10398.15 11799.40 13699.89 2097.12 11999.33 26899.38 3297.40 25498.73 239
SteuartSystems-ACMMP99.54 899.42 1599.87 1199.82 3799.81 2599.59 9699.51 10398.62 6799.79 3099.83 5699.28 499.97 1498.48 14999.90 2599.84 26
Skip Steuart: Steuart Systems R&D Blog.
UnsupCasMVSNet_eth96.44 29496.12 29597.40 31198.65 32395.65 30999.36 20999.51 10397.13 22396.04 34498.99 32088.40 33298.17 34896.71 28190.27 35198.40 319
3Dnovator+97.12 1399.18 6698.97 8799.82 3399.17 25199.68 4899.81 2099.51 10399.20 898.72 25899.89 2095.68 17299.97 1498.86 9499.86 4899.81 47
TAPA-MVS97.07 1597.74 24497.34 26398.94 17899.70 9297.53 24499.25 24599.51 10391.90 35099.30 16099.63 18298.78 4799.64 22088.09 36299.87 4099.65 113
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
test072699.85 2599.89 499.62 8399.50 12299.10 1699.86 1699.82 6398.94 29
MSP-MVS99.42 3499.27 4899.88 599.89 899.80 2799.67 6099.50 12298.70 6399.77 3899.49 23198.21 8999.95 4898.46 15399.77 9399.88 12
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
Effi-MVS+98.81 12498.59 13999.48 10299.46 17799.12 12098.08 36199.50 12297.50 19199.38 14299.41 25396.37 14699.81 15799.11 6298.54 19699.51 154
anonymousdsp98.44 15298.28 15998.94 17898.50 33498.96 14399.77 3399.50 12297.07 23198.87 24199.77 11394.76 20799.28 27798.66 12397.60 23198.57 301
casdiffmvspermissive99.13 7598.98 8699.56 7999.65 11499.16 11199.56 11499.50 12298.33 9499.41 13199.86 3795.92 16199.83 14699.45 2999.16 15299.70 97
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
APD-MVScopyleft99.27 5699.08 6999.84 3199.75 6499.79 3099.50 14599.50 12297.16 22199.77 3899.82 6398.78 4799.94 5797.56 22999.86 4899.80 56
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
MIMVSNet195.51 30895.04 31296.92 32497.38 35195.60 31099.52 13499.50 12293.65 33996.97 33699.17 30185.28 35096.56 36788.36 36195.55 29898.60 298
DP-MVS99.16 7098.95 9199.78 4399.77 5399.53 7399.41 18699.50 12297.03 23599.04 21499.88 2697.39 11099.92 8098.66 12399.90 2599.87 17
test_vis1_n97.92 21497.44 24899.34 12199.53 15098.08 21899.74 4299.49 13099.15 10100.00 199.94 479.51 36299.98 899.88 299.76 9699.97 2
test_fmvs1_n98.41 15698.14 16699.21 14699.82 3797.71 24199.74 4299.49 13099.32 499.99 299.95 285.32 34999.97 1499.82 399.84 6399.96 3
test_fmvs198.88 10998.79 11199.16 15199.69 9597.61 24399.55 12399.49 13099.32 499.98 499.91 1191.41 29899.96 2299.82 399.92 1399.90 4
test_one_060199.81 4199.88 899.49 13098.97 3999.65 7599.81 7699.09 14
Fast-Effi-MVS+-dtu98.77 13098.83 10798.60 22499.41 18896.99 27199.52 13499.49 13098.11 12399.24 17499.34 27396.96 12899.79 16697.95 19199.45 13199.02 210
IterMVS-SCA-FT97.82 23197.75 21498.06 27899.57 14096.36 29699.02 29099.49 13097.18 21998.71 25999.72 13792.72 26399.14 29897.44 24195.86 29098.67 263
test22299.75 6499.49 7898.91 31399.49 13096.42 28199.34 15499.65 17098.28 8799.69 10999.72 89
131498.68 13998.54 14399.11 15698.89 29298.65 17899.27 23599.49 13096.89 24597.99 31199.56 20797.72 10599.83 14697.74 21199.27 14698.84 223
diffmvspermissive99.14 7399.02 7899.51 9899.61 12998.96 14399.28 23099.49 13098.46 7999.72 5399.71 13896.50 14199.88 11699.31 4299.11 15899.67 106
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
TranMVSNet+NR-MVSNet97.93 21197.66 22298.76 21698.78 30898.62 18199.65 7199.49 13097.76 16398.49 28799.60 19494.23 22798.97 32998.00 18892.90 33698.70 247
CPTT-MVS99.11 8598.90 9699.74 4999.80 4499.46 8299.59 9699.49 13097.03 23599.63 8099.69 15297.27 11699.96 2297.82 20299.84 6399.81 47
ACMP97.20 1198.06 18897.94 19298.45 24699.37 19997.01 26999.44 17399.49 13097.54 18798.45 28999.79 10091.95 28499.72 19097.91 19397.49 24598.62 286
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
mvsany_test199.50 1299.46 1499.62 6999.61 12999.09 12298.94 30999.48 14299.10 1699.96 699.91 1198.85 3999.96 2299.72 599.58 12399.82 40
SED-MVS99.61 299.52 699.88 599.84 3199.90 299.60 9099.48 14299.08 2199.91 799.81 7699.20 799.96 2298.91 8399.85 5599.79 60
test_241102_TWO99.48 14299.08 2199.88 1199.81 7698.94 2999.96 2298.91 8399.84 6399.88 12
test_241102_ONE99.84 3199.90 299.48 14299.07 2399.91 799.74 12799.20 799.76 177
ACMMP_NAP99.47 2199.34 2899.88 599.87 1599.86 1399.47 16499.48 14298.05 13699.76 4399.86 3798.82 4399.93 7098.82 10699.91 1899.84 26
canonicalmvs99.02 9798.86 10399.51 9899.42 18599.32 9299.80 2499.48 14298.63 6699.31 15898.81 33197.09 12199.75 17999.27 5097.90 22299.47 165
testgi97.65 25997.50 23798.13 27699.36 20196.45 29399.42 18499.48 14297.76 16397.87 31599.45 24491.09 30398.81 33694.53 32398.52 19799.13 194
DTE-MVSNet97.51 26797.19 27598.46 24598.63 32598.13 21699.84 1399.48 14296.68 25697.97 31399.67 16492.92 25698.56 34196.88 27692.60 34198.70 247
mPP-MVS99.44 2999.30 4099.86 2099.88 1199.79 3099.69 5199.48 14298.12 12199.50 11099.75 12298.78 4799.97 1498.57 13999.89 3499.83 35
baseline99.15 7199.02 7899.53 9099.66 10899.14 11799.72 4699.48 14298.35 9199.42 12799.84 5296.07 15399.79 16699.51 1999.14 15699.67 106
NCCC99.34 4799.19 5899.79 4199.61 12999.65 5699.30 22499.48 14298.86 4899.21 18299.63 18298.72 5899.90 10198.25 16899.63 11999.80 56
GBi-Net97.68 25497.48 23898.29 26399.51 15697.26 25399.43 17799.48 14296.49 27299.07 20899.32 28090.26 31198.98 32297.10 26096.65 26998.62 286
UnsupCasMVSNet_bld93.53 32492.51 32796.58 33097.38 35193.82 34198.24 35799.48 14291.10 35493.10 35896.66 36074.89 36498.37 34494.03 33187.71 35797.56 354
test197.68 25497.48 23898.29 26399.51 15697.26 25399.43 17799.48 14296.49 27299.07 20899.32 28090.26 31198.98 32297.10 26096.65 26998.62 286
FMVSNet196.84 28696.36 29198.29 26399.32 21497.26 25399.43 17799.48 14295.11 32098.55 28399.32 28083.95 35498.98 32295.81 30196.26 27998.62 286
1112_ss98.98 10198.77 11299.59 7299.68 9999.02 13299.25 24599.48 14297.23 21699.13 19699.58 20096.93 12999.90 10198.87 8998.78 18699.84 26
IterMVS97.83 22897.77 20998.02 28199.58 13896.27 29999.02 29099.48 14297.22 21798.71 25999.70 14292.75 26099.13 30197.46 23996.00 28498.67 263
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CMPMVSbinary69.68 2394.13 32194.90 31391.84 34597.24 35580.01 37198.52 34599.48 14289.01 35991.99 36099.67 16485.67 34799.13 30195.44 31097.03 26596.39 361
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
SMA-MVScopyleft99.44 2999.30 4099.85 2599.73 7899.83 1699.56 11499.47 16097.45 19599.78 3599.82 6399.18 1099.91 9098.79 10799.89 3499.81 47
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MTGPAbinary99.47 160
pmmvs696.53 29296.09 29697.82 29698.69 32095.47 31699.37 20599.47 16093.46 34297.41 32499.78 10687.06 34399.33 26896.92 27492.70 34098.65 273
Fast-Effi-MVS+98.70 13598.43 14899.51 9899.51 15699.28 9899.52 13499.47 16096.11 30399.01 21799.34 27396.20 15199.84 13597.88 19598.82 18399.39 177
MTAPA99.52 1099.39 1999.89 499.90 499.86 1399.66 6599.47 16098.79 5899.68 6099.81 7698.43 7899.97 1498.88 8699.90 2599.83 35
原ACMM199.65 5999.73 7899.33 9199.47 16097.46 19299.12 19899.66 16998.67 6399.91 9097.70 21799.69 10999.71 96
HQP_MVS98.27 16998.22 16298.44 24999.29 22096.97 27399.39 19899.47 16098.97 3999.11 20099.61 19192.71 26599.69 20797.78 20597.63 22898.67 263
plane_prior599.47 16099.69 20797.78 20597.63 22898.67 263
Test_1112_low_res98.89 10898.66 12499.57 7799.69 9598.95 14899.03 28799.47 16096.98 23799.15 19499.23 29596.77 13399.89 11198.83 10298.78 18699.86 19
ppachtmachnet_test97.49 27197.45 24397.61 30498.62 32695.24 32198.80 32399.46 16996.11 30398.22 30199.62 18796.45 14398.97 32993.77 33295.97 28898.61 295
nrg03098.64 14398.42 14999.28 13899.05 27499.69 4799.81 2099.46 16998.04 13799.01 21799.82 6396.69 13699.38 25399.34 3994.59 31698.78 227
v7n97.87 22097.52 23498.92 18298.76 31298.58 18599.84 1399.46 16996.20 29498.91 23399.70 14294.89 19799.44 24496.03 29793.89 32798.75 234
PS-MVSNAJ99.32 4999.32 3299.30 13399.57 14098.94 15198.97 30399.46 16998.92 4599.71 5499.24 29499.01 1899.98 899.35 3599.66 11498.97 215
MP-MVScopyleft99.33 4899.15 6199.87 1199.88 1199.82 2299.66 6599.46 16998.09 12699.48 11499.74 12798.29 8699.96 2297.93 19299.87 4099.82 40
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
CP-MVSNet98.09 18597.78 20799.01 16698.97 28599.24 10399.67 6099.46 16997.25 21398.48 28899.64 17693.79 24299.06 31198.63 12694.10 32498.74 237
MVSFormer99.17 6899.12 6499.29 13699.51 15698.94 15199.88 499.46 16997.55 18499.80 2899.65 17097.39 11099.28 27799.03 6999.85 5599.65 113
test_djsdf98.67 14098.57 14198.98 17298.70 31998.91 15599.88 499.46 16997.55 18499.22 17999.88 2695.73 16999.28 27799.03 6997.62 23098.75 234
CDS-MVSNet99.09 8999.03 7599.25 14199.42 18598.73 17299.45 16899.46 16998.11 12399.46 11799.77 11398.01 9799.37 25898.70 11698.92 17599.66 109
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
TAMVS99.12 8199.08 6999.24 14399.46 17798.55 18799.51 13999.46 16998.09 12699.45 11899.82 6398.34 8499.51 23598.70 11698.93 17399.67 106
DeepC-MVS_fast98.69 199.49 1499.39 1999.77 4599.63 11999.59 6299.36 20999.46 16999.07 2399.79 3099.82 6398.85 3999.92 8098.68 12199.87 4099.82 40
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
h-mvs3397.70 25197.28 27098.97 17499.70 9297.27 25199.36 20999.45 18098.94 4299.66 6999.64 17694.93 19399.99 299.48 2584.36 36199.65 113
xiu_mvs_v2_base99.26 5899.25 5299.29 13699.53 15098.91 15599.02 29099.45 18098.80 5799.71 5499.26 29298.94 2999.98 899.34 3999.23 14898.98 214
EI-MVSNet-UG-set99.58 499.57 399.64 6499.78 4799.14 11799.60 9099.45 18099.01 2899.90 999.83 5698.98 2399.93 7099.59 1199.95 899.86 19
EI-MVSNet-Vis-set99.58 499.56 599.64 6499.78 4799.15 11699.61 8999.45 18099.01 2899.89 1099.82 6399.01 1899.92 8099.56 1499.95 899.85 22
pm-mvs197.68 25497.28 27098.88 19399.06 27198.62 18199.50 14599.45 18096.32 28597.87 31599.79 10092.47 27499.35 26597.54 23193.54 33098.67 263
DU-MVS98.08 18797.79 20498.96 17598.87 29798.98 13699.41 18699.45 18097.87 14998.71 25999.50 22894.82 19999.22 28898.57 13992.87 33898.68 256
ACMM97.58 598.37 16198.34 15498.48 24099.41 18897.10 25899.56 11499.45 18098.53 7499.04 21499.85 4293.00 25499.71 19698.74 11197.45 24898.64 275
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Gipumacopyleft90.99 32990.15 33493.51 34098.73 31490.12 36093.98 36999.45 18079.32 36792.28 35994.91 36469.61 36597.98 35387.42 36395.67 29592.45 367
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
KD-MVS_self_test95.00 31394.34 31896.96 32297.07 35995.39 31999.56 11499.44 18895.11 32097.13 33297.32 35791.86 28697.27 36290.35 35481.23 36698.23 330
RPSCF98.22 17098.62 13296.99 32099.82 3791.58 35799.72 4699.44 18896.61 26499.66 6999.89 2095.92 16199.82 15297.46 23999.10 16199.57 138
Vis-MVSNet (Re-imp)98.87 11098.72 11599.31 12899.71 8798.88 15799.80 2499.44 18897.91 14799.36 14899.78 10695.49 17799.43 24897.91 19399.11 15899.62 125
CNLPA99.14 7398.99 8399.59 7299.58 13899.41 8799.16 25899.44 18898.45 8099.19 18899.49 23198.08 9599.89 11197.73 21299.75 9899.48 159
DeepPCF-MVS98.18 398.81 12499.37 2297.12 31899.60 13491.75 35698.61 33999.44 18899.35 299.83 2399.85 4298.70 6099.81 15799.02 7199.91 1899.81 47
CLD-MVS98.16 17898.10 17198.33 25899.29 22096.82 28098.75 32899.44 18897.83 15599.13 19699.55 21092.92 25699.67 20998.32 16597.69 22798.48 307
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
Anonymous2024052998.09 18597.68 22099.34 12199.66 10898.44 20299.40 19499.43 19493.67 33899.22 17999.89 2090.23 31499.93 7099.26 5198.33 20299.66 109
IterMVS-LS98.46 15198.42 14998.58 22899.59 13698.00 22199.37 20599.43 19496.94 24399.07 20899.59 19697.87 9999.03 31598.32 16595.62 29698.71 242
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
iter_conf0598.55 14798.44 14798.87 19799.34 20698.60 18499.55 12399.42 19698.21 10899.37 14499.77 11393.55 24699.38 25399.30 4597.48 24698.63 283
NR-MVSNet97.97 20897.61 22799.02 16598.87 29799.26 10199.47 16499.42 19697.63 17797.08 33399.50 22895.07 19199.13 30197.86 19893.59 32998.68 256
FMVSNet297.72 24797.36 25898.80 21299.51 15698.84 16299.45 16899.42 19696.49 27298.86 24599.29 28590.26 31198.98 32296.44 29096.56 27298.58 300
iter_conf_final98.71 13498.61 13898.99 17099.49 16798.96 14399.63 7799.41 19998.19 11199.39 13999.77 11394.82 19999.38 25399.30 4597.52 23898.64 275
bld_raw_dy_0_6498.69 13798.58 14098.99 17098.88 29398.96 14399.80 2499.41 19997.91 14799.32 15699.87 3295.70 17199.31 27499.09 6497.27 25998.71 242
TEST999.67 10099.65 5699.05 28199.41 19996.22 29398.95 22799.49 23198.77 5099.91 90
train_agg99.02 9798.77 11299.77 4599.67 10099.65 5699.05 28199.41 19996.28 28798.95 22799.49 23198.76 5199.91 9097.63 22099.72 10499.75 74
test_899.67 10099.61 6099.03 28799.41 19996.28 28798.93 23199.48 23698.76 5199.91 90
v897.95 21097.63 22698.93 18098.95 28798.81 16899.80 2499.41 19996.03 30899.10 20399.42 24994.92 19599.30 27596.94 27194.08 32598.66 271
v1097.85 22397.52 23498.86 20198.99 28098.67 17699.75 3999.41 19995.70 31298.98 22399.41 25394.75 20899.23 28596.01 29894.63 31598.67 263
CDPH-MVS99.13 7598.91 9599.80 3899.75 6499.71 4499.15 26199.41 19996.60 26699.60 9099.55 21098.83 4299.90 10197.48 23699.83 7299.78 66
save fliter99.76 5699.59 6299.14 26399.40 20799.00 31
agg_prior99.67 10099.62 5999.40 20798.87 24199.91 90
MCST-MVS99.43 3299.30 4099.82 3399.79 4599.74 4199.29 22899.40 20798.79 5899.52 10799.62 18798.91 3499.90 10198.64 12599.75 9899.82 40
TSAR-MVS + MP.99.58 499.50 899.81 3699.91 199.66 5399.63 7799.39 21098.91 4699.78 3599.85 4299.36 299.94 5798.84 9999.88 3799.82 40
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
MVS97.28 27796.55 28799.48 10298.78 30898.95 14899.27 23599.39 21083.53 36598.08 30699.54 21596.97 12799.87 12094.23 32899.16 15299.63 123
VNet99.11 8598.90 9699.73 5199.52 15499.56 6699.41 18699.39 21099.01 2899.74 4799.78 10695.56 17499.92 8099.52 1898.18 21399.72 89
HQP3-MVS99.39 21097.58 233
cascas97.69 25297.43 25298.48 24098.60 32997.30 24998.18 36099.39 21092.96 34698.41 29198.78 33393.77 24399.27 28098.16 17698.61 18998.86 221
HQP-MVS98.02 19897.90 19598.37 25699.19 24296.83 27898.98 30099.39 21098.24 10298.66 26899.40 25692.47 27499.64 22097.19 25597.58 23398.64 275
CL-MVSNet_self_test94.49 31893.97 32196.08 33396.16 36193.67 34698.33 35499.38 21695.13 31897.33 32698.15 34892.69 26796.57 36688.67 35979.87 36797.99 342
OPM-MVS98.19 17498.10 17198.45 24698.88 29397.07 26299.28 23099.38 21698.57 7099.22 17999.81 7692.12 28199.66 21298.08 18397.54 23798.61 295
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
EI-MVSNet98.67 14098.67 12198.68 22199.35 20297.97 22399.50 14599.38 21696.93 24499.20 18599.83 5697.87 9999.36 26298.38 15797.56 23598.71 242
test20.0396.12 30195.96 29996.63 32897.44 35095.45 31799.51 13999.38 21696.55 26996.16 34299.25 29393.76 24496.17 36887.35 36494.22 32298.27 326
mvs_anonymous99.03 9698.99 8399.16 15199.38 19798.52 19399.51 13999.38 21697.79 16099.38 14299.81 7697.30 11499.45 23999.35 3598.99 17099.51 154
MVSTER98.49 14898.32 15699.00 16899.35 20299.02 13299.54 12799.38 21697.41 20199.20 18599.73 13393.86 24099.36 26298.87 8997.56 23598.62 286
FMVSNet398.03 19697.76 21398.84 20599.39 19698.98 13699.40 19499.38 21696.67 25799.07 20899.28 28792.93 25598.98 32297.10 26096.65 26998.56 302
PAPM_NR99.04 9498.84 10599.66 5599.74 7199.44 8499.39 19899.38 21697.70 17099.28 16499.28 28798.34 8499.85 12996.96 26999.45 13199.69 99
DVP-MVScopyleft99.57 799.47 1299.88 599.85 2599.89 499.57 10899.37 22499.10 1699.81 2599.80 8998.94 2999.96 2298.93 8099.86 4899.81 47
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
miper_lstm_enhance98.00 20397.91 19498.28 26699.34 20697.43 24798.88 31599.36 22596.48 27698.80 25099.55 21095.98 15698.91 33397.27 24895.50 30098.51 305
v124097.69 25297.32 26698.79 21398.85 30198.43 20399.48 15999.36 22596.11 30399.27 16899.36 26793.76 24499.24 28494.46 32495.23 30498.70 247
v2v48298.06 18897.77 20998.92 18298.90 29098.82 16699.57 10899.36 22596.65 25999.19 18899.35 27094.20 22899.25 28297.72 21494.97 31098.69 251
HY-MVS97.30 798.85 12098.64 12699.47 10599.42 18599.08 12599.62 8399.36 22597.39 20399.28 16499.68 15896.44 14499.92 8098.37 15998.22 20899.40 176
PAPR98.63 14498.34 15499.51 9899.40 19399.03 13198.80 32399.36 22596.33 28499.00 22199.12 30998.46 7699.84 13595.23 31599.37 14299.66 109
DIV-MVS_self_test98.01 20197.85 20198.48 24099.24 23297.95 22798.71 33299.35 23096.50 27198.60 28199.54 21595.72 17099.03 31597.21 25195.77 29198.46 313
v114497.98 20597.69 21998.85 20498.87 29798.66 17799.54 12799.35 23096.27 28999.23 17899.35 27094.67 21299.23 28596.73 28095.16 30698.68 256
WR-MVS98.06 18897.73 21699.06 16098.86 30099.25 10299.19 25599.35 23097.30 20998.66 26899.43 24793.94 23799.21 29398.58 13694.28 32198.71 242
test1199.35 230
cl____98.01 20197.84 20298.55 23499.25 23197.97 22398.71 33299.34 23496.47 27898.59 28299.54 21595.65 17399.21 29397.21 25195.77 29198.46 313
v14419297.92 21497.60 22898.87 19798.83 30398.65 17899.55 12399.34 23496.20 29499.32 15699.40 25694.36 22399.26 28196.37 29395.03 30998.70 247
v192192097.80 23597.45 24398.84 20598.80 30498.53 18999.52 13499.34 23496.15 30099.24 17499.47 23993.98 23699.29 27695.40 31295.13 30798.69 251
v119297.81 23397.44 24898.91 18698.88 29398.68 17599.51 13999.34 23496.18 29699.20 18599.34 27394.03 23599.36 26295.32 31495.18 30598.69 251
V4298.06 18897.79 20498.86 20198.98 28398.84 16299.69 5199.34 23496.53 27099.30 16099.37 26494.67 21299.32 27197.57 22894.66 31498.42 316
MVS_Test99.10 8898.97 8799.48 10299.49 16799.14 11799.67 6099.34 23497.31 20899.58 9499.76 11997.65 10699.82 15298.87 8999.07 16499.46 167
MG-MVS99.13 7599.02 7899.45 10899.57 14098.63 18099.07 27699.34 23498.99 3399.61 8799.82 6397.98 9899.87 12097.00 26599.80 8399.85 22
MSC_two_6792asdad99.87 1199.51 15699.76 3799.33 24199.96 2298.87 8999.84 6399.89 6
No_MVS99.87 1199.51 15699.76 3799.33 24199.96 2298.87 8999.84 6399.89 6
cl2297.85 22397.64 22598.48 24099.09 26597.87 23198.60 34199.33 24197.11 22898.87 24199.22 29692.38 27999.17 29798.21 17095.99 28598.42 316
c3_l98.12 18398.04 18098.38 25599.30 21697.69 24298.81 32299.33 24196.67 25798.83 24699.34 27397.11 12098.99 32197.58 22495.34 30298.48 307
v14897.79 23697.55 23098.50 23798.74 31397.72 23899.54 12799.33 24196.26 29098.90 23599.51 22594.68 21199.14 29897.83 20193.15 33598.63 283
MDA-MVSNet-bldmvs94.96 31493.98 32097.92 28898.24 33997.27 25199.15 26199.33 24193.80 33780.09 37299.03 31688.31 33397.86 35693.49 33694.36 32098.62 286
TSAR-MVS + GP.99.36 4599.36 2499.36 12099.67 10098.61 18399.07 27699.33 24199.00 3199.82 2499.81 7699.06 1699.84 13599.09 6499.42 13399.65 113
CR-MVSNet98.17 17797.93 19398.87 19799.18 24598.49 19799.22 25299.33 24196.96 23999.56 9899.38 26194.33 22499.00 32094.83 32198.58 19299.14 192
Patchmtry97.75 24297.40 25598.81 21099.10 26398.87 15899.11 27299.33 24194.83 32698.81 24899.38 26194.33 22499.02 31796.10 29595.57 29798.53 303
EPP-MVSNet99.13 7598.99 8399.53 9099.65 11499.06 12899.81 2099.33 24197.43 19899.60 9099.88 2697.14 11899.84 13599.13 6098.94 17299.69 99
APD_test195.87 30496.49 28994.00 33899.53 15084.01 36599.54 12799.32 25195.91 31097.99 31199.85 4285.49 34899.88 11691.96 34898.84 18198.12 333
IU-MVS99.84 3199.88 899.32 25198.30 9699.84 1898.86 9499.85 5599.89 6
miper_enhance_ethall98.16 17898.08 17598.41 25198.96 28697.72 23898.45 34899.32 25196.95 24198.97 22599.17 30197.06 12399.22 28897.86 19895.99 28598.29 325
MS-PatchMatch97.24 28097.32 26696.99 32098.45 33693.51 34898.82 32199.32 25197.41 20198.13 30599.30 28388.99 32499.56 23195.68 30699.80 8397.90 348
miper_ehance_all_eth98.18 17698.10 17198.41 25199.23 23397.72 23898.72 33199.31 25596.60 26698.88 23899.29 28597.29 11599.13 30197.60 22295.99 28598.38 321
eth_miper_zixun_eth98.05 19397.96 18898.33 25899.26 22797.38 24898.56 34499.31 25596.65 25998.88 23899.52 22296.58 13899.12 30597.39 24495.53 29998.47 309
tpm cat197.39 27497.36 25897.50 30999.17 25193.73 34399.43 17799.31 25591.27 35298.71 25999.08 31094.31 22699.77 17396.41 29298.50 19899.00 211
PMMVS98.80 12798.62 13299.34 12199.27 22598.70 17498.76 32799.31 25597.34 20599.21 18299.07 31197.20 11799.82 15298.56 14298.87 17899.52 148
our_test_397.65 25997.68 22097.55 30798.62 32694.97 32798.84 31999.30 25996.83 25098.19 30299.34 27397.01 12599.02 31795.00 31996.01 28398.64 275
Effi-MVS+-dtu98.78 12898.89 9898.47 24499.33 20896.91 27799.57 10899.30 25998.47 7899.41 13198.99 32096.78 13299.74 18098.73 11399.38 13598.74 237
CANet_DTU98.97 10398.87 10099.25 14199.33 20898.42 20599.08 27599.30 25999.16 999.43 12499.75 12295.27 18499.97 1498.56 14299.95 899.36 179
VDDNet97.55 26397.02 28099.16 15199.49 16798.12 21799.38 20399.30 25995.35 31699.68 6099.90 1682.62 35799.93 7099.31 4298.13 21799.42 172
Anonymous2024052196.20 29995.89 30197.13 31797.72 34894.96 32899.79 3099.29 26393.01 34597.20 33099.03 31689.69 31998.36 34591.16 35196.13 28198.07 335
test1299.75 4799.64 11699.61 6099.29 26399.21 18298.38 8299.89 11199.74 10199.74 78
EGC-MVSNET82.80 33677.86 34297.62 30397.91 34296.12 30299.33 21999.28 2658.40 37925.05 38099.27 29084.11 35399.33 26889.20 35798.22 20897.42 356
new-patchmatchnet94.48 31994.08 31995.67 33595.08 36892.41 35399.18 25699.28 26594.55 33293.49 35797.37 35687.86 33997.01 36491.57 34988.36 35597.61 352
RRT_MVS98.70 13598.66 12498.83 20798.90 29098.45 20199.89 299.28 26597.76 16398.94 22999.92 1096.98 12699.25 28299.28 4797.00 26698.80 225
jason99.13 7599.03 7599.45 10899.46 17798.87 15899.12 26699.26 26898.03 13999.79 3099.65 17097.02 12499.85 12999.02 7199.90 2599.65 113
jason: jason.
test_040296.64 29096.24 29397.85 29298.85 30196.43 29499.44 17399.26 26893.52 34096.98 33599.52 22288.52 33199.20 29592.58 34797.50 24297.93 346
test_method91.10 32891.36 33090.31 34995.85 36273.72 37994.89 36899.25 27068.39 37195.82 34599.02 31880.50 36098.95 33193.64 33494.89 31398.25 328
PCF-MVS97.08 1497.66 25897.06 27999.47 10599.61 12999.09 12298.04 36299.25 27091.24 35398.51 28599.70 14294.55 21899.91 9092.76 34599.85 5599.42 172
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
MDA-MVSNet_test_wron95.45 30994.60 31598.01 28298.16 34097.21 25699.11 27299.24 27293.49 34180.73 37198.98 32393.02 25398.18 34794.22 32994.45 31898.64 275
YYNet195.36 31194.51 31797.92 28897.89 34397.10 25899.10 27499.23 27393.26 34480.77 37099.04 31592.81 25998.02 35194.30 32594.18 32398.64 275
hse-mvs297.50 26897.14 27698.59 22599.49 16797.05 26499.28 23099.22 27498.94 4299.66 6999.42 24994.93 19399.65 21799.48 2583.80 36399.08 200
AUN-MVS96.88 28596.31 29298.59 22599.48 17597.04 26799.27 23599.22 27497.44 19798.51 28599.41 25391.97 28399.66 21297.71 21583.83 36299.07 205
DeepMVS_CXcopyleft93.34 34199.29 22082.27 36899.22 27485.15 36396.33 34099.05 31490.97 30599.73 18693.57 33597.77 22598.01 339
pmmvs498.13 18197.90 19598.81 21098.61 32898.87 15898.99 29799.21 27796.44 27999.06 21299.58 20095.90 16399.11 30697.18 25796.11 28298.46 313
KD-MVS_2432*160094.62 31693.72 32297.31 31297.19 35795.82 30798.34 35299.20 27895.00 32397.57 32198.35 34487.95 33798.10 34992.87 34377.00 36998.01 339
miper_refine_blended94.62 31693.72 32297.31 31297.19 35795.82 30798.34 35299.20 27895.00 32397.57 32198.35 34487.95 33798.10 34992.87 34377.00 36998.01 339
tpmvs97.98 20598.02 18397.84 29399.04 27594.73 33199.31 22299.20 27896.10 30798.76 25599.42 24994.94 19299.81 15796.97 26898.45 20098.97 215
new_pmnet96.38 29696.03 29797.41 31098.13 34195.16 32599.05 28199.20 27893.94 33597.39 32598.79 33291.61 29699.04 31390.43 35395.77 29198.05 337
IS-MVSNet99.05 9398.87 10099.57 7799.73 7899.32 9299.75 3999.20 27898.02 14099.56 9899.86 3796.54 14099.67 20998.09 17999.13 15799.73 83
lupinMVS99.13 7599.01 8299.46 10799.51 15698.94 15199.05 28199.16 28397.86 15099.80 2899.56 20797.39 11099.86 12398.94 7899.85 5599.58 137
GA-MVS97.85 22397.47 24099.00 16899.38 19797.99 22298.57 34299.15 28497.04 23498.90 23599.30 28389.83 31799.38 25396.70 28298.33 20299.62 125
ADS-MVSNet98.20 17398.08 17598.56 23299.33 20896.48 29299.23 24899.15 28496.24 29199.10 20399.67 16494.11 23299.71 19696.81 27799.05 16599.48 159
Patchmatch-test97.93 21197.65 22398.77 21599.18 24597.07 26299.03 28799.14 28696.16 29898.74 25699.57 20494.56 21799.72 19093.36 33799.11 15899.52 148
BH-untuned98.42 15498.36 15298.59 22599.49 16796.70 28399.27 23599.13 28797.24 21598.80 25099.38 26195.75 16899.74 18097.07 26399.16 15299.33 183
tpmrst98.33 16398.48 14697.90 29099.16 25394.78 33099.31 22299.11 28897.27 21199.45 11899.59 19695.33 18299.84 13598.48 14998.61 18999.09 199
DPM-MVS98.95 10498.71 11799.66 5599.63 11999.55 6898.64 33899.10 28997.93 14599.42 12799.55 21098.67 6399.80 16395.80 30299.68 11299.61 127
pmmvs-eth3d95.34 31294.73 31497.15 31595.53 36695.94 30599.35 21499.10 28995.13 31893.55 35697.54 35388.15 33697.91 35494.58 32289.69 35497.61 352
PAPM97.59 26297.09 27899.07 15999.06 27198.26 21098.30 35699.10 28994.88 32598.08 30699.34 27396.27 14999.64 22089.87 35598.92 17599.31 185
tt080597.97 20897.77 20998.57 22999.59 13696.61 28899.45 16899.08 29298.21 10898.88 23899.80 8988.66 32899.70 20298.58 13697.72 22699.39 177
Anonymous2023120696.22 29796.03 29796.79 32797.31 35494.14 33999.63 7799.08 29296.17 29797.04 33499.06 31393.94 23797.76 35886.96 36595.06 30898.47 309
ADS-MVSNet298.02 19898.07 17897.87 29199.33 20895.19 32399.23 24899.08 29296.24 29199.10 20399.67 16494.11 23298.93 33296.81 27799.05 16599.48 159
test_yl98.86 11398.63 12799.54 8299.49 16799.18 10899.50 14599.07 29598.22 10699.61 8799.51 22595.37 18099.84 13598.60 13398.33 20299.59 133
DCV-MVSNet98.86 11398.63 12799.54 8299.49 16799.18 10899.50 14599.07 29598.22 10699.61 8799.51 22595.37 18099.84 13598.60 13398.33 20299.59 133
PatchT97.03 28496.44 29098.79 21398.99 28098.34 20799.16 25899.07 29592.13 34999.52 10797.31 35894.54 21998.98 32288.54 36098.73 18899.03 208
USDC97.34 27597.20 27497.75 29999.07 26895.20 32298.51 34699.04 29897.99 14198.31 29799.86 3789.02 32399.55 23395.67 30797.36 25798.49 306
CostFormer97.72 24797.73 21697.71 30199.15 25694.02 34099.54 12799.02 29994.67 32999.04 21499.35 27092.35 28099.77 17398.50 14897.94 22199.34 182
FA-MVS(test-final)98.75 13198.53 14499.41 11499.55 14899.05 13099.80 2499.01 30096.59 26899.58 9499.59 19695.39 17999.90 10197.78 20599.49 12999.28 187
OurMVSNet-221017-097.88 21897.77 20998.19 27098.71 31896.53 29099.88 499.00 30197.79 16098.78 25399.94 491.68 29199.35 26597.21 25196.99 26798.69 251
LCM-MVSNet86.80 33485.22 33891.53 34687.81 37680.96 37098.23 35998.99 30271.05 36990.13 36496.51 36148.45 37796.88 36590.51 35285.30 36096.76 359
MIMVSNet97.73 24597.45 24398.57 22999.45 18297.50 24599.02 29098.98 30396.11 30399.41 13199.14 30590.28 31098.74 33995.74 30398.93 17399.47 165
SCA98.19 17498.16 16498.27 26799.30 21695.55 31299.07 27698.97 30497.57 18299.43 12499.57 20492.72 26399.74 18097.58 22499.20 15099.52 148
JIA-IIPM97.50 26897.02 28098.93 18098.73 31497.80 23599.30 22498.97 30491.73 35198.91 23394.86 36595.10 19099.71 19697.58 22497.98 22099.28 187
alignmvs98.81 12498.56 14299.58 7599.43 18399.42 8599.51 13998.96 30698.61 6899.35 15198.92 32894.78 20399.77 17399.35 3598.11 21899.54 142
tpm297.44 27397.34 26397.74 30099.15 25694.36 33799.45 16898.94 30793.45 34398.90 23599.44 24591.35 30099.59 22997.31 24698.07 21999.29 186
baseline198.31 16497.95 19099.38 11999.50 16598.74 17199.59 9698.93 30898.41 8499.14 19599.60 19494.59 21599.79 16698.48 14993.29 33299.61 127
EG-PatchMatch MVS95.97 30395.69 30496.81 32697.78 34592.79 35299.16 25898.93 30896.16 29894.08 35499.22 29682.72 35699.47 23795.67 30797.50 24298.17 331
PatchmatchNetpermissive98.31 16498.36 15298.19 27099.16 25395.32 32099.27 23598.92 31097.37 20499.37 14499.58 20094.90 19699.70 20297.43 24299.21 14999.54 142
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
ITE_SJBPF98.08 27799.29 22096.37 29598.92 31098.34 9298.83 24699.75 12291.09 30399.62 22695.82 30097.40 25498.25 328
FPMVS84.93 33585.65 33682.75 35686.77 37763.39 38198.35 35198.92 31074.11 36883.39 36798.98 32350.85 37592.40 37384.54 37094.97 31092.46 366
TransMVSNet (Re)97.15 28196.58 28698.86 20199.12 25898.85 16199.49 15598.91 31395.48 31597.16 33199.80 8993.38 24899.11 30694.16 33091.73 34398.62 286
EPNet98.86 11398.71 11799.30 13397.20 35698.18 21299.62 8398.91 31399.28 698.63 27699.81 7695.96 15799.99 299.24 5299.72 10499.73 83
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
pmmvs597.52 26597.30 26898.16 27298.57 33196.73 28299.27 23598.90 31596.14 30198.37 29499.53 21991.54 29799.14 29897.51 23395.87 28998.63 283
BH-w/o98.00 20397.89 19998.32 26099.35 20296.20 30199.01 29598.90 31596.42 28198.38 29399.00 31995.26 18699.72 19096.06 29698.61 18999.03 208
MTMP99.54 12798.88 317
dp97.75 24297.80 20397.59 30599.10 26393.71 34499.32 22098.88 31796.48 27699.08 20799.55 21092.67 26899.82 15296.52 28898.58 19299.24 189
test_fmvs297.25 27897.30 26897.09 31999.43 18393.31 34999.73 4598.87 31998.83 5299.28 16499.80 8984.45 35299.66 21297.88 19597.45 24898.30 324
MVP-Stereo97.81 23397.75 21497.99 28597.53 34996.60 28998.96 30498.85 32097.22 21797.23 32899.36 26795.28 18399.46 23895.51 30999.78 9097.92 347
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
VDD-MVS97.73 24597.35 26098.88 19399.47 17697.12 25799.34 21798.85 32098.19 11199.67 6499.85 4282.98 35599.92 8099.49 2498.32 20699.60 129
Baseline_NR-MVSNet97.76 23897.45 24398.68 22199.09 26598.29 20899.41 18698.85 32095.65 31398.63 27699.67 16494.82 19999.10 30898.07 18692.89 33798.64 275
LF4IMVS97.52 26597.46 24297.70 30298.98 28395.55 31299.29 22898.82 32398.07 13198.66 26899.64 17689.97 31699.61 22797.01 26496.68 26897.94 345
testf190.42 33090.68 33289.65 35097.78 34573.97 37799.13 26498.81 32489.62 35791.80 36198.93 32662.23 37098.80 33786.61 36791.17 34596.19 362
APD_test290.42 33090.68 33289.65 35097.78 34573.97 37799.13 26498.81 32489.62 35791.80 36198.93 32662.23 37098.80 33786.61 36791.17 34596.19 362
FE-MVS98.48 14998.17 16399.40 11599.54 14998.96 14399.68 5798.81 32495.54 31499.62 8499.70 14293.82 24199.93 7097.35 24599.46 13099.32 184
BH-RMVSNet98.41 15698.08 17599.40 11599.41 18898.83 16599.30 22498.77 32797.70 17098.94 22999.65 17092.91 25899.74 18096.52 28899.55 12699.64 120
EPNet_dtu98.03 19697.96 18898.23 26898.27 33895.54 31499.23 24898.75 32899.02 2697.82 31799.71 13896.11 15299.48 23693.04 34199.65 11699.69 99
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
TDRefinement95.42 31094.57 31697.97 28689.83 37596.11 30399.48 15998.75 32896.74 25296.68 33799.88 2688.65 32999.71 19698.37 15982.74 36498.09 334
OpenMVS_ROBcopyleft92.34 2094.38 32093.70 32496.41 33197.38 35193.17 35099.06 27998.75 32886.58 36294.84 35298.26 34781.53 35999.32 27189.01 35897.87 22396.76 359
thres100view90097.76 23897.45 24398.69 22099.72 8297.86 23399.59 9698.74 33197.93 14599.26 17298.62 33791.75 28899.83 14693.22 33898.18 21398.37 322
thres600view797.86 22297.51 23698.92 18299.72 8297.95 22799.59 9698.74 33197.94 14499.27 16898.62 33791.75 28899.86 12393.73 33398.19 21298.96 217
thres20097.61 26197.28 27098.62 22399.64 11698.03 21999.26 24398.74 33197.68 17299.09 20698.32 34691.66 29499.81 15792.88 34298.22 20898.03 338
MDTV_nov1_ep1398.32 15699.11 26094.44 33599.27 23598.74 33197.51 19099.40 13699.62 18794.78 20399.76 17797.59 22398.81 185
TinyColmap97.12 28296.89 28297.83 29499.07 26895.52 31598.57 34298.74 33197.58 18197.81 31899.79 10088.16 33599.56 23195.10 31697.21 26198.39 320
tfpn200view997.72 24797.38 25698.72 21899.69 9597.96 22599.50 14598.73 33697.83 15599.17 19298.45 34291.67 29299.83 14693.22 33898.18 21398.37 322
ambc93.06 34392.68 37182.36 36798.47 34798.73 33695.09 35097.41 35455.55 37299.10 30896.42 29191.32 34497.71 349
thres40097.77 23797.38 25698.92 18299.69 9597.96 22599.50 14598.73 33697.83 15599.17 19298.45 34291.67 29299.83 14693.22 33898.18 21398.96 217
SixPastTwentyTwo97.50 26897.33 26598.03 27998.65 32396.23 30099.77 3398.68 33997.14 22297.90 31499.93 690.45 30999.18 29697.00 26596.43 27598.67 263
test0.0.03 197.71 25097.42 25398.56 23298.41 33797.82 23498.78 32598.63 34097.34 20598.05 31098.98 32394.45 22198.98 32295.04 31897.15 26498.89 220
test_fmvs392.10 32691.77 32993.08 34296.19 36086.25 36399.82 1798.62 34196.65 25995.19 34996.90 35955.05 37495.93 37096.63 28790.92 34997.06 358
TR-MVS97.76 23897.41 25498.82 20899.06 27197.87 23198.87 31798.56 34296.63 26398.68 26799.22 29692.49 27399.65 21795.40 31297.79 22498.95 219
Anonymous20240521198.30 16697.98 18699.26 14099.57 14098.16 21399.41 18698.55 34396.03 30899.19 18899.74 12791.87 28599.92 8099.16 5998.29 20799.70 97
tpm97.67 25797.55 23098.03 27999.02 27795.01 32699.43 17798.54 34496.44 27999.12 19899.34 27391.83 28799.60 22897.75 21096.46 27499.48 159
test_f91.90 32791.26 33193.84 33995.52 36785.92 36499.69 5198.53 34595.31 31793.87 35596.37 36255.33 37398.27 34695.70 30490.98 34897.32 357
Patchmatch-RL test95.84 30595.81 30395.95 33495.61 36490.57 35998.24 35798.39 34695.10 32295.20 34898.67 33694.78 20397.77 35796.28 29490.02 35299.51 154
LCM-MVSNet-Re97.83 22898.15 16596.87 32599.30 21692.25 35499.59 9698.26 34797.43 19896.20 34199.13 30696.27 14998.73 34098.17 17598.99 17099.64 120
mvsany_test393.77 32393.45 32594.74 33795.78 36388.01 36299.64 7398.25 34898.28 9794.31 35397.97 35168.89 36698.51 34397.50 23490.37 35097.71 349
LFMVS97.90 21797.35 26099.54 8299.52 15499.01 13499.39 19898.24 34997.10 22999.65 7599.79 10084.79 35199.91 9099.28 4798.38 20199.69 99
PM-MVS92.96 32592.23 32895.14 33695.61 36489.98 36199.37 20598.21 35094.80 32795.04 35197.69 35265.06 36797.90 35594.30 32589.98 35397.54 355
PMVScopyleft70.75 2275.98 34274.97 34379.01 35870.98 38155.18 38293.37 37098.21 35065.08 37561.78 37693.83 36621.74 38392.53 37278.59 37191.12 34789.34 371
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
pmmvs394.09 32293.25 32696.60 32994.76 36994.49 33498.92 31198.18 35289.66 35696.48 33998.06 35086.28 34497.33 36189.68 35687.20 35897.97 344
door-mid98.05 353
tmp_tt82.80 33681.52 33986.66 35266.61 38268.44 38092.79 37197.92 35468.96 37080.04 37399.85 4285.77 34696.15 36997.86 19843.89 37595.39 365
door97.92 354
test-LLR98.06 18897.90 19598.55 23498.79 30597.10 25898.67 33497.75 35697.34 20598.61 27998.85 32994.45 22199.45 23997.25 24999.38 13599.10 195
test-mter97.49 27197.13 27798.55 23498.79 30597.10 25898.67 33497.75 35696.65 25998.61 27998.85 32988.23 33499.45 23997.25 24999.38 13599.10 195
IB-MVS95.67 1896.22 29795.44 30998.57 22999.21 23896.70 28398.65 33797.74 35896.71 25497.27 32798.54 34086.03 34599.92 8098.47 15286.30 35999.10 195
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
TESTMET0.1,197.55 26397.27 27398.40 25398.93 28896.53 29098.67 33497.61 35996.96 23998.64 27599.28 28788.63 33099.45 23997.30 24799.38 13599.21 191
ET-MVSNet_ETH3D96.49 29395.64 30699.05 16299.53 15098.82 16698.84 31997.51 36097.63 17784.77 36599.21 29992.09 28298.91 33398.98 7492.21 34299.41 174
PMMVS286.87 33385.37 33791.35 34790.21 37483.80 36698.89 31497.45 36183.13 36691.67 36395.03 36348.49 37694.70 37185.86 36977.62 36895.54 364
K. test v397.10 28396.79 28498.01 28298.72 31696.33 29799.87 997.05 36297.59 17996.16 34299.80 8988.71 32699.04 31396.69 28396.55 27398.65 273
tttt051798.42 15498.14 16699.28 13899.66 10898.38 20699.74 4296.85 36397.68 17299.79 3099.74 12791.39 29999.89 11198.83 10299.56 12499.57 138
thisisatest051598.14 18097.79 20499.19 14899.50 16598.50 19698.61 33996.82 36496.95 24199.54 10399.43 24791.66 29499.86 12398.08 18399.51 12899.22 190
thisisatest053098.35 16298.03 18199.31 12899.63 11998.56 18699.54 12796.75 36597.53 18899.73 4899.65 17091.25 30299.89 11198.62 12799.56 12499.48 159
test_vis1_rt95.81 30695.65 30596.32 33299.67 10091.35 35899.49 15596.74 36698.25 10195.24 34798.10 34974.96 36399.90 10199.53 1698.85 18097.70 351
DSMNet-mixed97.25 27897.35 26096.95 32397.84 34493.61 34799.57 10896.63 36796.13 30298.87 24198.61 33994.59 21597.70 35995.08 31798.86 17999.55 140
baseline297.87 22097.55 23098.82 20899.18 24598.02 22099.41 18696.58 36896.97 23896.51 33899.17 30193.43 24799.57 23097.71 21599.03 16798.86 221
MVS-HIRNet95.75 30795.16 31197.51 30899.30 21693.69 34598.88 31595.78 36985.09 36498.78 25392.65 36791.29 30199.37 25894.85 32099.85 5599.46 167
E-PMN80.61 33879.88 34082.81 35590.75 37376.38 37597.69 36495.76 37066.44 37383.52 36692.25 36862.54 36987.16 37568.53 37461.40 37284.89 373
test111198.04 19498.11 17097.83 29499.74 7193.82 34199.58 10495.40 37199.12 1499.65 7599.93 690.73 30799.84 13599.43 3099.38 13599.82 40
ECVR-MVScopyleft98.04 19498.05 17998.00 28499.74 7194.37 33699.59 9694.98 37299.13 1299.66 6999.93 690.67 30899.84 13599.40 3199.38 13599.80 56
lessismore_v097.79 29898.69 32095.44 31894.75 37395.71 34699.87 3288.69 32799.32 27195.89 29994.93 31298.62 286
EPMVS97.82 23197.65 22398.35 25798.88 29395.98 30499.49 15594.71 37497.57 18299.26 17299.48 23692.46 27799.71 19697.87 19799.08 16399.35 180
gg-mvs-nofinetune96.17 30095.32 31098.73 21798.79 30598.14 21599.38 20394.09 37591.07 35598.07 30991.04 37189.62 32199.35 26596.75 27999.09 16298.68 256
GG-mvs-BLEND98.45 24698.55 33298.16 21399.43 17793.68 37697.23 32898.46 34189.30 32299.22 28895.43 31198.22 20897.98 343
MVEpermissive76.82 2176.91 34174.31 34584.70 35385.38 37976.05 37696.88 36793.17 37767.39 37271.28 37489.01 37321.66 38487.69 37471.74 37372.29 37190.35 370
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
ANet_high77.30 34074.86 34484.62 35475.88 38077.61 37397.63 36593.15 37888.81 36064.27 37589.29 37236.51 37983.93 37775.89 37252.31 37492.33 368
N_pmnet94.95 31595.83 30292.31 34498.47 33579.33 37299.12 26692.81 37993.87 33697.68 32099.13 30693.87 23999.01 31991.38 35096.19 28098.59 299
EMVS80.02 33979.22 34182.43 35791.19 37276.40 37497.55 36692.49 38066.36 37483.01 36891.27 37064.63 36885.79 37665.82 37560.65 37385.08 372
test_vis3_rt87.04 33285.81 33590.73 34893.99 37081.96 36999.76 3690.23 38192.81 34781.35 36991.56 36940.06 37899.07 31094.27 32788.23 35691.15 369
test250696.81 28796.65 28597.29 31499.74 7192.21 35599.60 9085.06 38299.13 1299.77 3899.93 687.82 34099.85 12999.38 3299.38 13599.80 56
testmvs39.17 34443.78 34625.37 36136.04 38416.84 38598.36 35026.56 38320.06 37738.51 37867.32 37429.64 38115.30 38037.59 37739.90 37643.98 375
wuyk23d40.18 34341.29 34836.84 35986.18 37849.12 38379.73 37222.81 38427.64 37625.46 37928.45 37921.98 38248.89 37855.80 37623.56 37812.51 376
test12339.01 34542.50 34728.53 36039.17 38320.91 38498.75 32819.17 38519.83 37838.57 37766.67 37533.16 38015.42 37937.50 37829.66 37749.26 374
test_blank0.13 3490.17 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3811.57 3800.00 3850.00 3810.00 3790.00 3790.00 377
uanet_test0.02 3500.03 3530.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.27 3810.00 3850.00 3810.00 3790.00 3790.00 377
DCPMVS0.02 3500.03 3530.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.27 3810.00 3850.00 3810.00 3790.00 3790.00 377
pcd_1.5k_mvsjas8.27 34811.03 3510.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.27 38199.01 180.00 3810.00 3790.00 3790.00 377
sosnet-low-res0.02 3500.03 3530.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.27 3810.00 3850.00 3810.00 3790.00 3790.00 377
sosnet0.02 3500.03 3530.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.27 3810.00 3850.00 3810.00 3790.00 3790.00 377
uncertanet0.02 3500.03 3530.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.27 3810.00 3850.00 3810.00 3790.00 3790.00 377
Regformer0.02 3500.03 3530.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.27 3810.00 3850.00 3810.00 3790.00 3790.00 377
n20.00 386
nn0.00 386
ab-mvs-re8.30 34711.06 3500.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 38199.58 2000.00 3850.00 3810.00 3790.00 3790.00 377
uanet0.02 3500.03 3530.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.27 3810.00 3850.00 3810.00 3790.00 3790.00 377
PC_three_145298.18 11599.84 1899.70 14299.31 398.52 34298.30 16799.80 8399.81 47
eth-test20.00 385
eth-test0.00 385
OPU-MVS99.64 6499.56 14499.72 4299.60 9099.70 14299.27 599.42 24998.24 16999.80 8399.79 60
test_0728_THIRD98.99 3399.81 2599.80 8999.09 1499.96 2298.85 9699.90 2599.88 12
GSMVS99.52 148
test_part299.81 4199.83 1699.77 38
sam_mvs194.86 19899.52 148
sam_mvs94.72 210
test_post199.23 24865.14 37794.18 23199.71 19697.58 224
test_post65.99 37694.65 21499.73 186
patchmatchnet-post98.70 33594.79 20299.74 180
gm-plane-assit98.54 33392.96 35194.65 33099.15 30499.64 22097.56 229
test9_res97.49 23599.72 10499.75 74
agg_prior297.21 25199.73 10399.75 74
test_prior499.56 6698.99 297
test_prior298.96 30498.34 9299.01 21799.52 22298.68 6197.96 19099.74 101
旧先验298.96 30496.70 25599.47 11599.94 5798.19 172
新几何299.01 295
原ACMM298.95 307
testdata299.95 4896.67 284
segment_acmp98.96 24
testdata198.85 31898.32 95
plane_prior799.29 22097.03 268
plane_prior699.27 22596.98 27292.71 265
plane_prior499.61 191
plane_prior397.00 27098.69 6499.11 200
plane_prior299.39 19898.97 39
plane_prior199.26 227
plane_prior96.97 27399.21 25498.45 8097.60 231
HQP5-MVS96.83 278
HQP-NCC99.19 24298.98 30098.24 10298.66 268
ACMP_Plane99.19 24298.98 30098.24 10298.66 268
BP-MVS97.19 255
HQP4-MVS98.66 26899.64 22098.64 275
HQP2-MVS92.47 274
NP-MVS99.23 23396.92 27699.40 256
MDTV_nov1_ep13_2view95.18 32499.35 21496.84 24899.58 9495.19 18997.82 20299.46 167
ACMMP++_ref97.19 262
ACMMP++97.43 252
Test By Simon98.75 54