| fmvsm_s_conf0.1_n_a | | | 99.26 68 | 99.06 81 | 99.85 28 | 99.52 166 | 99.62 65 | 99.54 139 | 99.62 41 | 98.69 79 | 99.99 2 | 99.96 1 | 94.47 236 | 99.94 69 | 99.88 14 | 99.92 24 | 99.98 2 |
|
| UA-Net | | | 99.42 42 | 99.29 53 | 99.80 46 | 99.62 136 | 99.55 77 | 99.50 163 | 99.70 15 | 98.79 70 | 99.77 51 | 99.96 1 | 97.45 115 | 99.96 30 | 98.92 98 | 99.90 39 | 99.89 20 |
|
| fmvsm_s_conf0.1_n | | | 99.29 62 | 99.10 75 | 99.86 21 | 99.70 101 | 99.65 57 | 99.53 147 | 99.62 41 | 98.74 75 | 99.99 2 | 99.95 3 | 94.53 234 | 99.94 69 | 99.89 13 | 99.96 12 | 99.97 4 |
|
| test_fmvs1_n | | | 98.41 171 | 98.14 182 | 99.21 162 | 99.82 42 | 97.71 258 | 99.74 44 | 99.49 143 | 99.32 14 | 99.99 2 | 99.95 3 | 85.32 370 | 99.97 21 | 99.82 16 | 99.84 77 | 99.96 7 |
|
| DeepC-MVS | | 98.35 2 | 99.30 60 | 99.19 67 | 99.64 78 | 99.82 42 | 99.23 118 | 99.62 88 | 99.55 77 | 98.94 54 | 99.63 96 | 99.95 3 | 95.82 176 | 99.94 69 | 99.37 50 | 99.97 7 | 99.73 97 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| test_cas_vis1_n_1920 | | | 99.16 82 | 99.01 94 | 99.61 84 | 99.81 46 | 98.86 175 | 99.65 75 | 99.64 36 | 99.39 10 | 99.97 13 | 99.94 6 | 93.20 272 | 99.98 13 | 99.55 29 | 99.91 31 | 99.99 1 |
|
| test_vis1_n | | | 97.92 230 | 97.44 264 | 99.34 136 | 99.53 162 | 98.08 234 | 99.74 44 | 99.49 143 | 99.15 20 | 100.00 1 | 99.94 6 | 79.51 384 | 99.98 13 | 99.88 14 | 99.76 110 | 99.97 4 |
|
| OurMVSNet-221017-0 | | | 97.88 234 | 97.77 225 | 98.19 288 | 98.71 336 | 96.53 309 | 99.88 4 | 99.00 319 | 97.79 177 | 98.78 270 | 99.94 6 | 91.68 312 | 99.35 280 | 97.21 268 | 96.99 286 | 98.69 272 |
|
| test_fmvsmconf0.01_n | | | 99.22 75 | 99.03 86 | 99.79 49 | 98.42 355 | 99.48 89 | 99.55 134 | 99.51 115 | 99.39 10 | 99.78 47 | 99.93 9 | 94.80 212 | 99.95 59 | 99.93 11 | 99.95 16 | 99.94 11 |
|
| test2506 | | | 96.81 306 | 96.65 303 | 97.29 332 | 99.74 80 | 92.21 375 | 99.60 95 | 85.06 404 | 99.13 22 | 99.77 51 | 99.93 9 | 87.82 361 | 99.85 145 | 99.38 48 | 99.38 149 | 99.80 70 |
|
| test1111 | | | 98.04 210 | 98.11 186 | 97.83 313 | 99.74 80 | 93.82 360 | 99.58 109 | 95.40 393 | 99.12 25 | 99.65 89 | 99.93 9 | 90.73 328 | 99.84 151 | 99.43 46 | 99.38 149 | 99.82 54 |
|
| ECVR-MVS |  | | 98.04 210 | 98.05 195 | 98.00 302 | 99.74 80 | 94.37 355 | 99.59 101 | 94.98 394 | 99.13 22 | 99.66 83 | 99.93 9 | 90.67 329 | 99.84 151 | 99.40 47 | 99.38 149 | 99.80 70 |
|
| SixPastTwentyTwo | | | 97.50 284 | 97.33 281 | 98.03 297 | 98.65 341 | 96.23 319 | 99.77 34 | 98.68 359 | 97.14 241 | 97.90 330 | 99.93 9 | 90.45 330 | 99.18 312 | 97.00 281 | 96.43 294 | 98.67 284 |
|
| fmvsm_s_conf0.5_n_a | | | 99.56 13 | 99.47 17 | 99.85 28 | 99.83 39 | 99.64 63 | 99.52 148 | 99.65 33 | 99.10 27 | 99.98 6 | 99.92 14 | 97.35 120 | 99.96 30 | 99.94 10 | 99.92 24 | 99.95 9 |
|
| fmvsm_s_conf0.5_n | | | 99.51 18 | 99.40 25 | 99.85 28 | 99.84 32 | 99.65 57 | 99.51 156 | 99.67 23 | 99.13 22 | 99.98 6 | 99.92 14 | 96.60 146 | 99.96 30 | 99.95 8 | 99.96 12 | 99.95 9 |
|
| test_fmvsmconf0.1_n | | | 99.55 14 | 99.45 21 | 99.86 21 | 99.44 196 | 99.65 57 | 99.50 163 | 99.61 48 | 99.45 5 | 99.87 25 | 99.92 14 | 97.31 121 | 99.97 21 | 99.95 8 | 99.99 1 | 99.97 4 |
|
| test_fmvsmconf_n | | | 99.70 3 | 99.64 4 | 99.87 11 | 99.80 52 | 99.66 53 | 99.48 178 | 99.64 36 | 99.45 5 | 99.92 15 | 99.92 14 | 98.62 70 | 99.99 4 | 99.96 7 | 99.99 1 | 99.96 7 |
|
| test_fmvsmvis_n_1920 | | | 99.65 6 | 99.61 6 | 99.77 55 | 99.38 211 | 99.37 100 | 99.58 109 | 99.62 41 | 99.41 9 | 99.87 25 | 99.92 14 | 98.81 44 | 100.00 1 | 99.97 1 | 99.93 22 | 99.94 11 |
|
| RRT_MVS | | | 98.70 150 | 98.66 138 | 98.83 223 | 98.90 308 | 98.45 216 | 99.89 2 | 99.28 281 | 97.76 180 | 98.94 246 | 99.92 14 | 96.98 134 | 99.25 297 | 99.28 63 | 97.00 285 | 98.80 246 |
|
| test_fmvsm_n_1920 | | | 99.69 4 | 99.66 3 | 99.78 52 | 99.84 32 | 99.44 94 | 99.58 109 | 99.69 18 | 99.43 7 | 99.98 6 | 99.91 20 | 98.62 70 | 100.00 1 | 99.97 1 | 99.95 16 | 99.90 17 |
|
| test_vis1_n_1920 | | | 98.63 159 | 98.40 166 | 99.31 143 | 99.86 20 | 97.94 246 | 99.67 64 | 99.62 41 | 99.43 7 | 99.99 2 | 99.91 20 | 87.29 363 | 100.00 1 | 99.92 12 | 99.92 24 | 99.98 2 |
|
| mvsany_test1 | | | 99.50 20 | 99.46 20 | 99.62 83 | 99.61 140 | 99.09 136 | 98.94 331 | 99.48 155 | 99.10 27 | 99.96 14 | 99.91 20 | 98.85 39 | 99.96 30 | 99.72 18 | 99.58 137 | 99.82 54 |
|
| test_fmvs1 | | | 98.88 123 | 98.79 125 | 99.16 167 | 99.69 106 | 97.61 260 | 99.55 134 | 99.49 143 | 99.32 14 | 99.98 6 | 99.91 20 | 91.41 319 | 99.96 30 | 99.82 16 | 99.92 24 | 99.90 17 |
|
| SD-MVS | | | 99.41 47 | 99.52 11 | 99.05 178 | 99.74 80 | 99.68 48 | 99.46 187 | 99.52 101 | 99.11 26 | 99.88 20 | 99.91 20 | 99.43 1 | 97.70 378 | 98.72 130 | 99.93 22 | 99.77 82 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| ACMH | | 97.28 8 | 98.10 199 | 97.99 201 | 98.44 266 | 99.41 202 | 96.96 294 | 99.60 95 | 99.56 69 | 98.09 143 | 98.15 320 | 99.91 20 | 90.87 327 | 99.70 218 | 98.88 102 | 97.45 266 | 98.67 284 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| patch_mono-2 | | | 99.26 68 | 99.62 5 | 98.16 290 | 99.81 46 | 94.59 352 | 99.52 148 | 99.64 36 | 99.33 13 | 99.73 62 | 99.90 26 | 99.00 22 | 99.99 4 | 99.69 19 | 99.98 4 | 99.89 20 |
|
| VDDNet | | | 97.55 279 | 97.02 297 | 99.16 167 | 99.49 180 | 98.12 233 | 99.38 224 | 99.30 275 | 95.35 336 | 99.68 74 | 99.90 26 | 82.62 380 | 99.93 84 | 99.31 58 | 98.13 235 | 99.42 193 |
|
| QAPM | | | 98.67 155 | 98.30 173 | 99.80 46 | 99.20 255 | 99.67 51 | 99.77 34 | 99.72 11 | 94.74 350 | 98.73 274 | 99.90 26 | 95.78 177 | 99.98 13 | 96.96 285 | 99.88 51 | 99.76 87 |
|
| 3Dnovator | | 97.25 9 | 99.24 73 | 99.05 82 | 99.81 44 | 99.12 273 | 99.66 53 | 99.84 13 | 99.74 10 | 99.09 32 | 98.92 249 | 99.90 26 | 95.94 170 | 99.98 13 | 98.95 93 | 99.92 24 | 99.79 74 |
|
| Anonymous20240529 | | | 98.09 200 | 97.68 236 | 99.34 136 | 99.66 119 | 98.44 217 | 99.40 215 | 99.43 207 | 93.67 360 | 99.22 195 | 99.89 30 | 90.23 335 | 99.93 84 | 99.26 67 | 98.33 218 | 99.66 125 |
|
| mvsmamba | | | 98.92 120 | 98.87 114 | 99.08 173 | 99.07 284 | 99.16 125 | 99.88 4 | 99.51 115 | 98.15 133 | 99.40 152 | 99.89 30 | 97.12 127 | 99.33 283 | 99.38 48 | 97.40 272 | 98.73 260 |
|
| CHOSEN 1792x2688 | | | 99.19 76 | 99.10 75 | 99.45 123 | 99.89 8 | 98.52 208 | 99.39 219 | 99.94 1 | 98.73 76 | 99.11 216 | 99.89 30 | 95.50 186 | 99.94 69 | 99.50 36 | 99.97 7 | 99.89 20 |
|
| RPSCF | | | 98.22 185 | 98.62 146 | 96.99 338 | 99.82 42 | 91.58 377 | 99.72 49 | 99.44 201 | 96.61 285 | 99.66 83 | 99.89 30 | 95.92 171 | 99.82 168 | 97.46 256 | 99.10 174 | 99.57 156 |
|
| 3Dnovator+ | | 97.12 13 | 99.18 78 | 98.97 100 | 99.82 41 | 99.17 266 | 99.68 48 | 99.81 20 | 99.51 115 | 99.20 18 | 98.72 275 | 99.89 30 | 95.68 182 | 99.97 21 | 98.86 110 | 99.86 62 | 99.81 61 |
|
| COLMAP_ROB |  | 97.56 6 | 98.86 127 | 98.75 128 | 99.17 166 | 99.88 11 | 98.53 204 | 99.34 238 | 99.59 57 | 97.55 202 | 98.70 282 | 99.89 30 | 95.83 175 | 99.90 116 | 98.10 194 | 99.90 39 | 99.08 221 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| SDMVSNet | | | 99.11 98 | 98.90 109 | 99.75 58 | 99.81 46 | 99.59 70 | 99.81 20 | 99.65 33 | 98.78 73 | 99.64 93 | 99.88 36 | 94.56 230 | 99.93 84 | 99.67 21 | 98.26 224 | 99.72 103 |
|
| sd_testset | | | 98.75 145 | 98.57 155 | 99.29 151 | 99.81 46 | 98.26 225 | 99.56 122 | 99.62 41 | 98.78 73 | 99.64 93 | 99.88 36 | 92.02 303 | 99.88 131 | 99.54 30 | 98.26 224 | 99.72 103 |
|
| dcpmvs_2 | | | 99.23 74 | 99.58 7 | 98.16 290 | 99.83 39 | 94.68 350 | 99.76 37 | 99.52 101 | 99.07 35 | 99.98 6 | 99.88 36 | 98.56 74 | 99.93 84 | 99.67 21 | 99.98 4 | 99.87 31 |
|
| test_djsdf | | | 98.67 155 | 98.57 155 | 98.98 188 | 98.70 337 | 98.91 169 | 99.88 4 | 99.46 182 | 97.55 202 | 99.22 195 | 99.88 36 | 95.73 179 | 99.28 292 | 99.03 85 | 97.62 248 | 98.75 255 |
|
| DP-MVS | | | 99.16 82 | 98.95 104 | 99.78 52 | 99.77 62 | 99.53 82 | 99.41 207 | 99.50 135 | 97.03 256 | 99.04 231 | 99.88 36 | 97.39 116 | 99.92 95 | 98.66 139 | 99.90 39 | 99.87 31 |
|
| TDRefinement | | | 95.42 328 | 94.57 335 | 97.97 304 | 89.83 396 | 96.11 322 | 99.48 178 | 98.75 348 | 96.74 273 | 96.68 356 | 99.88 36 | 88.65 350 | 99.71 212 | 98.37 175 | 82.74 386 | 98.09 354 |
|
| EPP-MVSNet | | | 99.13 88 | 98.99 96 | 99.53 105 | 99.65 125 | 99.06 142 | 99.81 20 | 99.33 257 | 97.43 217 | 99.60 106 | 99.88 36 | 97.14 126 | 99.84 151 | 99.13 76 | 98.94 185 | 99.69 115 |
|
| OpenMVS |  | 96.50 16 | 98.47 165 | 98.12 185 | 99.52 111 | 99.04 291 | 99.53 82 | 99.82 17 | 99.72 11 | 94.56 353 | 98.08 322 | 99.88 36 | 94.73 220 | 99.98 13 | 97.47 255 | 99.76 110 | 99.06 227 |
|
| bld_raw_dy_0_64 | | | 98.69 152 | 98.58 154 | 98.99 186 | 98.88 311 | 98.96 157 | 99.80 25 | 99.41 212 | 97.91 164 | 99.32 172 | 99.87 44 | 95.70 181 | 99.31 289 | 99.09 80 | 97.27 277 | 98.71 263 |
|
| lessismore_v0 | | | | | 97.79 317 | 98.69 338 | 95.44 337 | | 94.75 395 | | 95.71 365 | 99.87 44 | 88.69 348 | 99.32 286 | 95.89 316 | 94.93 331 | 98.62 307 |
|
| casdiffmvs_mvg |  | | 99.15 84 | 99.02 90 | 99.55 96 | 99.66 119 | 99.09 136 | 99.64 78 | 99.56 69 | 98.26 116 | 99.45 134 | 99.87 44 | 96.03 165 | 99.81 173 | 99.54 30 | 99.15 168 | 99.73 97 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| Vis-MVSNet |  | | 99.12 94 | 98.97 100 | 99.56 94 | 99.78 56 | 99.10 135 | 99.68 61 | 99.66 28 | 98.49 93 | 99.86 27 | 99.87 44 | 94.77 217 | 99.84 151 | 99.19 71 | 99.41 148 | 99.74 92 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| ACMH+ | | 97.24 10 | 97.92 230 | 97.78 223 | 98.32 278 | 99.46 190 | 96.68 304 | 99.56 122 | 99.54 85 | 98.41 100 | 97.79 336 | 99.87 44 | 90.18 336 | 99.66 228 | 98.05 203 | 97.18 282 | 98.62 307 |
|
| ACMMP_NAP | | | 99.47 29 | 99.34 36 | 99.88 5 | 99.87 15 | 99.86 13 | 99.47 184 | 99.48 155 | 98.05 153 | 99.76 56 | 99.86 49 | 98.82 43 | 99.93 84 | 98.82 122 | 99.91 31 | 99.84 40 |
|
| casdiffmvs |  | | 99.13 88 | 98.98 99 | 99.56 94 | 99.65 125 | 99.16 125 | 99.56 122 | 99.50 135 | 98.33 110 | 99.41 147 | 99.86 49 | 95.92 171 | 99.83 162 | 99.45 45 | 99.16 165 | 99.70 113 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| PVSNet_Blended_VisFu | | | 99.36 54 | 99.28 55 | 99.61 84 | 99.86 20 | 99.07 141 | 99.47 184 | 99.93 2 | 97.66 192 | 99.71 68 | 99.86 49 | 97.73 110 | 99.96 30 | 99.47 43 | 99.82 90 | 99.79 74 |
|
| IS-MVSNet | | | 99.05 107 | 98.87 114 | 99.57 92 | 99.73 87 | 99.32 104 | 99.75 41 | 99.20 296 | 98.02 157 | 99.56 114 | 99.86 49 | 96.54 149 | 99.67 225 | 98.09 195 | 99.13 170 | 99.73 97 |
|
| USDC | | | 97.34 291 | 97.20 290 | 97.75 318 | 99.07 284 | 95.20 341 | 98.51 368 | 99.04 316 | 97.99 158 | 98.31 313 | 99.86 49 | 89.02 344 | 99.55 249 | 95.67 324 | 97.36 275 | 98.49 327 |
|
| APD_test1 | | | 95.87 322 | 96.49 306 | 94.00 357 | 99.53 162 | 84.01 385 | 99.54 139 | 99.32 267 | 95.91 330 | 97.99 327 | 99.85 54 | 85.49 369 | 99.88 131 | 91.96 367 | 98.84 194 | 98.12 353 |
|
| TSAR-MVS + MP. | | | 99.58 9 | 99.50 13 | 99.81 44 | 99.91 1 | 99.66 53 | 99.63 82 | 99.39 223 | 98.91 58 | 99.78 47 | 99.85 54 | 99.36 2 | 99.94 69 | 98.84 115 | 99.88 51 | 99.82 54 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| tmp_tt | | | 82.80 357 | 81.52 360 | 86.66 374 | 66.61 403 | 68.44 403 | 92.79 393 | 97.92 374 | 68.96 392 | 80.04 395 | 99.85 54 | 85.77 367 | 96.15 388 | 97.86 214 | 43.89 397 | 95.39 387 |
|
| AllTest | | | 98.87 124 | 98.72 129 | 99.31 143 | 99.86 20 | 98.48 214 | 99.56 122 | 99.61 48 | 97.85 169 | 99.36 164 | 99.85 54 | 95.95 168 | 99.85 145 | 96.66 301 | 99.83 86 | 99.59 150 |
|
| TestCases | | | | | 99.31 143 | 99.86 20 | 98.48 214 | | 99.61 48 | 97.85 169 | 99.36 164 | 99.85 54 | 95.95 168 | 99.85 145 | 96.66 301 | 99.83 86 | 99.59 150 |
|
| VDD-MVS | | | 97.73 261 | 97.35 276 | 98.88 209 | 99.47 189 | 97.12 276 | 99.34 238 | 98.85 340 | 98.19 127 | 99.67 78 | 99.85 54 | 82.98 378 | 99.92 95 | 99.49 40 | 98.32 222 | 99.60 146 |
|
| APDe-MVS |  | | 99.66 5 | 99.57 8 | 99.92 1 | 99.77 62 | 99.89 4 | 99.75 41 | 99.56 69 | 99.02 38 | 99.88 20 | 99.85 54 | 99.18 10 | 99.96 30 | 99.22 69 | 99.92 24 | 99.90 17 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| DeepPCF-MVS | | 98.18 3 | 98.81 138 | 99.37 30 | 97.12 336 | 99.60 145 | 91.75 376 | 98.61 361 | 99.44 201 | 99.35 12 | 99.83 34 | 99.85 54 | 98.70 63 | 99.81 173 | 99.02 87 | 99.91 31 | 99.81 61 |
|
| ACMM | | 97.58 5 | 98.37 176 | 98.34 169 | 98.48 257 | 99.41 202 | 97.10 277 | 99.56 122 | 99.45 193 | 98.53 90 | 99.04 231 | 99.85 54 | 93.00 274 | 99.71 212 | 98.74 127 | 97.45 266 | 98.64 296 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| LS3D | | | 99.27 66 | 99.12 73 | 99.74 61 | 99.18 260 | 99.75 39 | 99.56 122 | 99.57 64 | 98.45 96 | 99.49 129 | 99.85 54 | 97.77 109 | 99.94 69 | 98.33 179 | 99.84 77 | 99.52 167 |
|
| DPE-MVS |  | | 99.46 31 | 99.32 40 | 99.91 2 | 99.78 56 | 99.88 8 | 99.36 230 | 99.51 115 | 98.73 76 | 99.88 20 | 99.84 64 | 98.72 61 | 99.96 30 | 98.16 192 | 99.87 54 | 99.88 26 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| XVG-OURS | | | 98.73 148 | 98.68 134 | 98.88 209 | 99.70 101 | 97.73 254 | 98.92 333 | 99.55 77 | 98.52 91 | 99.45 134 | 99.84 64 | 95.27 194 | 99.91 105 | 98.08 199 | 98.84 194 | 99.00 232 |
|
| baseline | | | 99.15 84 | 99.02 90 | 99.53 105 | 99.66 119 | 99.14 131 | 99.72 49 | 99.48 155 | 98.35 107 | 99.42 143 | 99.84 64 | 96.07 163 | 99.79 182 | 99.51 35 | 99.14 169 | 99.67 122 |
|
| ACMMP |  | | 99.45 33 | 99.32 40 | 99.82 41 | 99.89 8 | 99.67 51 | 99.62 88 | 99.69 18 | 98.12 138 | 99.63 96 | 99.84 64 | 98.73 60 | 99.96 30 | 98.55 161 | 99.83 86 | 99.81 61 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| fmvsm_l_conf0.5_n_a | | | 99.71 1 | 99.67 1 | 99.85 28 | 99.86 20 | 99.61 67 | 99.56 122 | 99.63 39 | 99.48 3 | 99.98 6 | 99.83 68 | 98.75 55 | 99.99 4 | 99.97 1 | 99.96 12 | 99.94 11 |
|
| EI-MVSNet-UG-set | | | 99.58 9 | 99.57 8 | 99.64 78 | 99.78 56 | 99.14 131 | 99.60 95 | 99.45 193 | 99.01 40 | 99.90 18 | 99.83 68 | 98.98 23 | 99.93 84 | 99.59 25 | 99.95 16 | 99.86 33 |
|
| EI-MVSNet | | | 98.67 155 | 98.67 135 | 98.68 238 | 99.35 218 | 97.97 240 | 99.50 163 | 99.38 231 | 96.93 265 | 99.20 201 | 99.83 68 | 97.87 105 | 99.36 277 | 98.38 173 | 97.56 253 | 98.71 263 |
|
| CVMVSNet | | | 98.57 161 | 98.67 135 | 98.30 280 | 99.35 218 | 95.59 330 | 99.50 163 | 99.55 77 | 98.60 85 | 99.39 155 | 99.83 68 | 94.48 235 | 99.45 255 | 98.75 126 | 98.56 208 | 99.85 36 |
|
| LPG-MVS_test | | | 98.22 185 | 98.13 184 | 98.49 255 | 99.33 224 | 97.05 283 | 99.58 109 | 99.55 77 | 97.46 211 | 99.24 190 | 99.83 68 | 92.58 290 | 99.72 206 | 98.09 195 | 97.51 258 | 98.68 277 |
|
| LGP-MVS_train | | | | | 98.49 255 | 99.33 224 | 97.05 283 | | 99.55 77 | 97.46 211 | 99.24 190 | 99.83 68 | 92.58 290 | 99.72 206 | 98.09 195 | 97.51 258 | 98.68 277 |
|
| SteuartSystems-ACMMP | | | 99.54 15 | 99.42 22 | 99.87 11 | 99.82 42 | 99.81 25 | 99.59 101 | 99.51 115 | 98.62 83 | 99.79 42 | 99.83 68 | 99.28 4 | 99.97 21 | 98.48 165 | 99.90 39 | 99.84 40 |
| Skip Steuart: Steuart Systems R&D Blog. |
| XXY-MVS | | | 98.38 175 | 98.09 190 | 99.24 159 | 99.26 243 | 99.32 104 | 99.56 122 | 99.55 77 | 97.45 214 | 98.71 276 | 99.83 68 | 93.23 269 | 99.63 241 | 98.88 102 | 96.32 297 | 98.76 253 |
|
| fmvsm_l_conf0.5_n | | | 99.71 1 | 99.67 1 | 99.85 28 | 99.84 32 | 99.63 64 | 99.56 122 | 99.63 39 | 99.47 4 | 99.98 6 | 99.82 76 | 98.75 55 | 99.99 4 | 99.97 1 | 99.97 7 | 99.94 11 |
|
| SR-MVS-dyc-post | | | 99.45 33 | 99.31 47 | 99.85 28 | 99.76 65 | 99.82 22 | 99.63 82 | 99.52 101 | 98.38 102 | 99.76 56 | 99.82 76 | 98.53 76 | 99.95 59 | 98.61 146 | 99.81 93 | 99.77 82 |
|
| RE-MVS-def | | | | 99.34 36 | | 99.76 65 | 99.82 22 | 99.63 82 | 99.52 101 | 98.38 102 | 99.76 56 | 99.82 76 | 98.75 55 | | 98.61 146 | 99.81 93 | 99.77 82 |
|
| test0726 | | | | | | 99.85 26 | 99.89 4 | 99.62 88 | 99.50 135 | 99.10 27 | 99.86 27 | 99.82 76 | 98.94 29 | | | | |
|
| SMA-MVS |  | | 99.44 37 | 99.30 49 | 99.85 28 | 99.73 87 | 99.83 16 | 99.56 122 | 99.47 173 | 97.45 214 | 99.78 47 | 99.82 76 | 99.18 10 | 99.91 105 | 98.79 123 | 99.89 48 | 99.81 61 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| nrg030 | | | 98.64 158 | 98.42 164 | 99.28 154 | 99.05 290 | 99.69 47 | 99.81 20 | 99.46 182 | 98.04 154 | 99.01 234 | 99.82 76 | 96.69 144 | 99.38 268 | 99.34 55 | 94.59 336 | 98.78 248 |
|
| FC-MVSNet-test | | | 98.75 145 | 98.62 146 | 99.15 170 | 99.08 283 | 99.45 93 | 99.86 12 | 99.60 54 | 98.23 121 | 98.70 282 | 99.82 76 | 96.80 139 | 99.22 304 | 99.07 83 | 96.38 295 | 98.79 247 |
|
| EI-MVSNet-Vis-set | | | 99.58 9 | 99.56 10 | 99.64 78 | 99.78 56 | 99.15 130 | 99.61 94 | 99.45 193 | 99.01 40 | 99.89 19 | 99.82 76 | 99.01 18 | 99.92 95 | 99.56 28 | 99.95 16 | 99.85 36 |
|
| APD-MVS_3200maxsize | | | 99.48 26 | 99.35 34 | 99.85 28 | 99.76 65 | 99.83 16 | 99.63 82 | 99.54 85 | 98.36 106 | 99.79 42 | 99.82 76 | 98.86 38 | 99.95 59 | 98.62 143 | 99.81 93 | 99.78 80 |
|
| EU-MVSNet | | | 97.98 221 | 98.03 197 | 97.81 316 | 98.72 334 | 96.65 305 | 99.66 69 | 99.66 28 | 98.09 143 | 98.35 311 | 99.82 76 | 95.25 197 | 98.01 371 | 97.41 260 | 95.30 322 | 98.78 248 |
|
| APD-MVS |  | | 99.27 66 | 99.08 79 | 99.84 39 | 99.75 73 | 99.79 30 | 99.50 163 | 99.50 135 | 97.16 240 | 99.77 51 | 99.82 76 | 98.78 48 | 99.94 69 | 97.56 246 | 99.86 62 | 99.80 70 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| TAMVS | | | 99.12 94 | 99.08 79 | 99.24 159 | 99.46 190 | 98.55 202 | 99.51 156 | 99.46 182 | 98.09 143 | 99.45 134 | 99.82 76 | 98.34 89 | 99.51 251 | 98.70 132 | 98.93 186 | 99.67 122 |
|
| DeepC-MVS_fast | | 98.69 1 | 99.49 22 | 99.39 27 | 99.77 55 | 99.63 130 | 99.59 70 | 99.36 230 | 99.46 182 | 99.07 35 | 99.79 42 | 99.82 76 | 98.85 39 | 99.92 95 | 98.68 137 | 99.87 54 | 99.82 54 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| MG-MVS | | | 99.13 88 | 99.02 90 | 99.45 123 | 99.57 151 | 98.63 195 | 99.07 299 | 99.34 250 | 98.99 45 | 99.61 103 | 99.82 76 | 97.98 104 | 99.87 136 | 97.00 281 | 99.80 97 | 99.85 36 |
|
| DVP-MVS++ | | | 99.59 8 | 99.50 13 | 99.88 5 | 99.51 169 | 99.88 8 | 99.87 9 | 99.51 115 | 98.99 45 | 99.88 20 | 99.81 90 | 99.27 5 | 99.96 30 | 98.85 112 | 99.80 97 | 99.81 61 |
|
| test_one_0601 | | | | | | 99.81 46 | 99.88 8 | | 99.49 143 | 98.97 51 | 99.65 89 | 99.81 90 | 99.09 14 | | | | |
|
| SED-MVS | | | 99.61 7 | 99.52 11 | 99.88 5 | 99.84 32 | 99.90 2 | 99.60 95 | 99.48 155 | 99.08 33 | 99.91 16 | 99.81 90 | 99.20 7 | 99.96 30 | 98.91 99 | 99.85 69 | 99.79 74 |
|
| test_241102_TWO | | | | | | | | | 99.48 155 | 99.08 33 | 99.88 20 | 99.81 90 | 98.94 29 | 99.96 30 | 98.91 99 | 99.84 77 | 99.88 26 |
|
| OPM-MVS | | | 98.19 189 | 98.10 187 | 98.45 263 | 98.88 311 | 97.07 281 | 99.28 253 | 99.38 231 | 98.57 86 | 99.22 195 | 99.81 90 | 92.12 301 | 99.66 228 | 98.08 199 | 97.54 255 | 98.61 316 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| MTAPA | | | 99.52 17 | 99.39 27 | 99.89 4 | 99.90 4 | 99.86 13 | 99.66 69 | 99.47 173 | 98.79 70 | 99.68 74 | 99.81 90 | 98.43 83 | 99.97 21 | 98.88 102 | 99.90 39 | 99.83 49 |
|
| FIs | | | 98.78 142 | 98.63 141 | 99.23 161 | 99.18 260 | 99.54 79 | 99.83 16 | 99.59 57 | 98.28 113 | 98.79 269 | 99.81 90 | 96.75 142 | 99.37 273 | 99.08 82 | 96.38 295 | 98.78 248 |
|
| mvs_tets | | | 98.40 174 | 98.23 176 | 98.91 202 | 98.67 340 | 98.51 210 | 99.66 69 | 99.53 96 | 98.19 127 | 98.65 291 | 99.81 90 | 92.75 280 | 99.44 260 | 99.31 58 | 97.48 264 | 98.77 251 |
|
| mvs_anonymous | | | 99.03 110 | 98.99 96 | 99.16 167 | 99.38 211 | 98.52 208 | 99.51 156 | 99.38 231 | 97.79 177 | 99.38 158 | 99.81 90 | 97.30 122 | 99.45 255 | 99.35 51 | 98.99 183 | 99.51 173 |
|
| TSAR-MVS + GP. | | | 99.36 54 | 99.36 32 | 99.36 135 | 99.67 111 | 98.61 198 | 99.07 299 | 99.33 257 | 99.00 43 | 99.82 35 | 99.81 90 | 99.06 16 | 99.84 151 | 99.09 80 | 99.42 147 | 99.65 129 |
|
| EPNet | | | 98.86 127 | 98.71 131 | 99.30 148 | 97.20 375 | 98.18 228 | 99.62 88 | 98.91 332 | 99.28 16 | 98.63 293 | 99.81 90 | 95.96 167 | 99.99 4 | 99.24 68 | 99.72 118 | 99.73 97 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| ab-mvs | | | 98.86 127 | 98.63 141 | 99.54 97 | 99.64 127 | 99.19 120 | 99.44 194 | 99.54 85 | 97.77 179 | 99.30 176 | 99.81 90 | 94.20 244 | 99.93 84 | 99.17 74 | 98.82 196 | 99.49 177 |
|
| OMC-MVS | | | 99.08 104 | 99.04 84 | 99.20 163 | 99.67 111 | 98.22 227 | 99.28 253 | 99.52 101 | 98.07 148 | 99.66 83 | 99.81 90 | 97.79 108 | 99.78 187 | 97.79 220 | 99.81 93 | 99.60 146 |
|
| MM | | | | | 99.74 61 | | 99.31 107 | 99.52 148 | 98.87 338 | 99.55 1 | 99.74 60 | 99.80 103 | 96.47 151 | 99.98 13 | 99.97 1 | 99.97 7 | 99.94 11 |
|
| test_fmvs2 | | | 97.25 295 | 97.30 284 | 97.09 337 | 99.43 197 | 93.31 368 | 99.73 47 | 98.87 338 | 98.83 64 | 99.28 180 | 99.80 103 | 84.45 373 | 99.66 228 | 97.88 211 | 97.45 266 | 98.30 344 |
|
| tt0805 | | | 97.97 224 | 97.77 225 | 98.57 246 | 99.59 147 | 96.61 307 | 99.45 188 | 99.08 310 | 98.21 124 | 98.88 255 | 99.80 103 | 88.66 349 | 99.70 218 | 98.58 152 | 97.72 244 | 99.39 198 |
|
| SF-MVS | | | 99.38 52 | 99.24 62 | 99.79 49 | 99.79 54 | 99.68 48 | 99.57 116 | 99.54 85 | 97.82 176 | 99.71 68 | 99.80 103 | 98.95 27 | 99.93 84 | 98.19 188 | 99.84 77 | 99.74 92 |
|
| DVP-MVS |  | | 99.57 12 | 99.47 17 | 99.88 5 | 99.85 26 | 99.89 4 | 99.57 116 | 99.37 239 | 99.10 27 | 99.81 37 | 99.80 103 | 98.94 29 | 99.96 30 | 98.93 96 | 99.86 62 | 99.81 61 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| test_0728_THIRD | | | | | | | | | | 98.99 45 | 99.81 37 | 99.80 103 | 99.09 14 | 99.96 30 | 98.85 112 | 99.90 39 | 99.88 26 |
|
| jajsoiax | | | 98.43 168 | 98.28 174 | 98.88 209 | 98.60 347 | 98.43 218 | 99.82 17 | 99.53 96 | 98.19 127 | 98.63 293 | 99.80 103 | 93.22 271 | 99.44 260 | 99.22 69 | 97.50 260 | 98.77 251 |
|
| PGM-MVS | | | 99.45 33 | 99.31 47 | 99.86 21 | 99.87 15 | 99.78 36 | 99.58 109 | 99.65 33 | 97.84 171 | 99.71 68 | 99.80 103 | 99.12 13 | 99.97 21 | 98.33 179 | 99.87 54 | 99.83 49 |
|
| TransMVSNet (Re) | | | 97.15 298 | 96.58 304 | 98.86 217 | 99.12 273 | 98.85 176 | 99.49 174 | 98.91 332 | 95.48 335 | 97.16 350 | 99.80 103 | 93.38 267 | 99.11 322 | 94.16 349 | 91.73 365 | 98.62 307 |
|
| K. test v3 | | | 97.10 300 | 96.79 301 | 98.01 300 | 98.72 334 | 96.33 316 | 99.87 9 | 97.05 384 | 97.59 196 | 96.16 361 | 99.80 103 | 88.71 347 | 99.04 329 | 96.69 299 | 96.55 292 | 98.65 294 |
|
| DELS-MVS | | | 99.48 26 | 99.42 22 | 99.65 73 | 99.72 91 | 99.40 99 | 99.05 304 | 99.66 28 | 99.14 21 | 99.57 113 | 99.80 103 | 98.46 81 | 99.94 69 | 99.57 27 | 99.84 77 | 99.60 146 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| CSCG | | | 99.32 58 | 99.32 40 | 99.32 142 | 99.85 26 | 98.29 223 | 99.71 51 | 99.66 28 | 98.11 140 | 99.41 147 | 99.80 103 | 98.37 88 | 99.96 30 | 98.99 89 | 99.96 12 | 99.72 103 |
|
| SR-MVS | | | 99.43 40 | 99.29 53 | 99.86 21 | 99.75 73 | 99.83 16 | 99.59 101 | 99.62 41 | 98.21 124 | 99.73 62 | 99.79 115 | 98.68 64 | 99.96 30 | 98.44 170 | 99.77 107 | 99.79 74 |
|
| MP-MVS-pluss | | | 99.37 53 | 99.20 66 | 99.88 5 | 99.90 4 | 99.87 12 | 99.30 245 | 99.52 101 | 97.18 238 | 99.60 106 | 99.79 115 | 98.79 47 | 99.95 59 | 98.83 118 | 99.91 31 | 99.83 49 |
| MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
| pm-mvs1 | | | 97.68 270 | 97.28 286 | 98.88 209 | 99.06 287 | 98.62 196 | 99.50 163 | 99.45 193 | 96.32 305 | 97.87 332 | 99.79 115 | 92.47 294 | 99.35 280 | 97.54 248 | 93.54 352 | 98.67 284 |
|
| LFMVS | | | 97.90 233 | 97.35 276 | 99.54 97 | 99.52 166 | 99.01 148 | 99.39 219 | 98.24 369 | 97.10 248 | 99.65 89 | 99.79 115 | 84.79 372 | 99.91 105 | 99.28 63 | 98.38 215 | 99.69 115 |
|
| TinyColmap | | | 97.12 299 | 96.89 299 | 97.83 313 | 99.07 284 | 95.52 334 | 98.57 364 | 98.74 351 | 97.58 198 | 97.81 335 | 99.79 115 | 88.16 356 | 99.56 247 | 95.10 335 | 97.21 280 | 98.39 340 |
|
| ACMP | | 97.20 11 | 98.06 204 | 97.94 208 | 98.45 263 | 99.37 214 | 97.01 288 | 99.44 194 | 99.49 143 | 97.54 205 | 98.45 306 | 99.79 115 | 91.95 305 | 99.72 206 | 97.91 209 | 97.49 263 | 98.62 307 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| GeoE | | | 98.85 134 | 98.62 146 | 99.53 105 | 99.61 140 | 99.08 139 | 99.80 25 | 99.51 115 | 97.10 248 | 99.31 174 | 99.78 121 | 95.23 198 | 99.77 189 | 98.21 186 | 99.03 180 | 99.75 88 |
|
| 9.14 | | | | 99.10 75 | | 99.72 91 | | 99.40 215 | 99.51 115 | 97.53 206 | 99.64 93 | 99.78 121 | 98.84 41 | 99.91 105 | 97.63 237 | 99.82 90 | |
|
| MVS_0304 | | | 99.42 42 | 99.32 40 | 99.72 65 | 99.70 101 | 99.27 113 | 99.52 148 | 97.57 381 | 99.51 2 | 99.82 35 | 99.78 121 | 98.09 100 | 99.96 30 | 99.97 1 | 99.97 7 | 99.94 11 |
|
| pmmvs6 | | | 96.53 310 | 96.09 315 | 97.82 315 | 98.69 338 | 95.47 335 | 99.37 226 | 99.47 173 | 93.46 364 | 97.41 341 | 99.78 121 | 87.06 364 | 99.33 283 | 96.92 290 | 92.70 362 | 98.65 294 |
|
| MSLP-MVS++ | | | 99.46 31 | 99.47 17 | 99.44 127 | 99.60 145 | 99.16 125 | 99.41 207 | 99.71 13 | 98.98 48 | 99.45 134 | 99.78 121 | 99.19 9 | 99.54 250 | 99.28 63 | 99.84 77 | 99.63 140 |
|
| VNet | | | 99.11 98 | 98.90 109 | 99.73 64 | 99.52 166 | 99.56 75 | 99.41 207 | 99.39 223 | 99.01 40 | 99.74 60 | 99.78 121 | 95.56 184 | 99.92 95 | 99.52 34 | 98.18 231 | 99.72 103 |
|
| 114514_t | | | 98.93 119 | 98.67 135 | 99.72 65 | 99.85 26 | 99.53 82 | 99.62 88 | 99.59 57 | 92.65 370 | 99.71 68 | 99.78 121 | 98.06 102 | 99.90 116 | 98.84 115 | 99.91 31 | 99.74 92 |
|
| Vis-MVSNet (Re-imp) | | | 98.87 124 | 98.72 129 | 99.31 143 | 99.71 96 | 98.88 171 | 99.80 25 | 99.44 201 | 97.91 164 | 99.36 164 | 99.78 121 | 95.49 187 | 99.43 264 | 97.91 209 | 99.11 171 | 99.62 142 |
|
| iter_conf_final | | | 98.71 149 | 98.61 152 | 98.99 186 | 99.49 180 | 98.96 157 | 99.63 82 | 99.41 212 | 98.19 127 | 99.39 155 | 99.77 129 | 94.82 209 | 99.38 268 | 99.30 61 | 97.52 256 | 98.64 296 |
|
| UniMVSNet_ETH3D | | | 97.32 292 | 96.81 300 | 98.87 213 | 99.40 207 | 97.46 263 | 99.51 156 | 99.53 96 | 95.86 331 | 98.54 301 | 99.77 129 | 82.44 381 | 99.66 228 | 98.68 137 | 97.52 256 | 99.50 176 |
|
| anonymousdsp | | | 98.44 167 | 98.28 174 | 98.94 194 | 98.50 352 | 98.96 157 | 99.77 34 | 99.50 135 | 97.07 250 | 98.87 258 | 99.77 129 | 94.76 218 | 99.28 292 | 98.66 139 | 97.60 249 | 98.57 322 |
|
| iter_conf05 | | | 98.55 162 | 98.44 162 | 98.87 213 | 99.34 222 | 98.60 199 | 99.55 134 | 99.42 209 | 98.21 124 | 99.37 160 | 99.77 129 | 93.55 265 | 99.38 268 | 99.30 61 | 97.48 264 | 98.63 304 |
|
| CDS-MVSNet | | | 99.09 103 | 99.03 86 | 99.25 157 | 99.42 199 | 98.73 187 | 99.45 188 | 99.46 182 | 98.11 140 | 99.46 133 | 99.77 129 | 98.01 103 | 99.37 273 | 98.70 132 | 98.92 188 | 99.66 125 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| MSDG | | | 98.98 115 | 98.80 122 | 99.53 105 | 99.76 65 | 99.19 120 | 98.75 350 | 99.55 77 | 97.25 232 | 99.47 131 | 99.77 129 | 97.82 107 | 99.87 136 | 96.93 288 | 99.90 39 | 99.54 161 |
|
| CHOSEN 280x420 | | | 99.12 94 | 99.13 72 | 99.08 173 | 99.66 119 | 97.89 247 | 98.43 371 | 99.71 13 | 98.88 59 | 99.62 100 | 99.76 135 | 96.63 145 | 99.70 218 | 99.46 44 | 99.99 1 | 99.66 125 |
|
| PS-MVSNAJss | | | 98.92 120 | 98.92 106 | 98.90 204 | 98.78 326 | 98.53 204 | 99.78 32 | 99.54 85 | 98.07 148 | 99.00 238 | 99.76 135 | 99.01 18 | 99.37 273 | 99.13 76 | 97.23 279 | 98.81 245 |
|
| MVS_Test | | | 99.10 102 | 98.97 100 | 99.48 117 | 99.49 180 | 99.14 131 | 99.67 64 | 99.34 250 | 97.31 227 | 99.58 110 | 99.76 135 | 97.65 112 | 99.82 168 | 98.87 105 | 99.07 177 | 99.46 186 |
|
| CANet_DTU | | | 98.97 117 | 98.87 114 | 99.25 157 | 99.33 224 | 98.42 220 | 99.08 298 | 99.30 275 | 99.16 19 | 99.43 140 | 99.75 138 | 95.27 194 | 99.97 21 | 98.56 158 | 99.95 16 | 99.36 200 |
|
| mPP-MVS | | | 99.44 37 | 99.30 49 | 99.86 21 | 99.88 11 | 99.79 30 | 99.69 55 | 99.48 155 | 98.12 138 | 99.50 126 | 99.75 138 | 98.78 48 | 99.97 21 | 98.57 155 | 99.89 48 | 99.83 49 |
|
| HPM-MVS_fast | | | 99.51 18 | 99.40 25 | 99.85 28 | 99.91 1 | 99.79 30 | 99.76 37 | 99.56 69 | 97.72 185 | 99.76 56 | 99.75 138 | 99.13 12 | 99.92 95 | 99.07 83 | 99.92 24 | 99.85 36 |
|
| HyFIR lowres test | | | 99.11 98 | 98.92 106 | 99.65 73 | 99.90 4 | 99.37 100 | 99.02 312 | 99.91 3 | 97.67 191 | 99.59 109 | 99.75 138 | 95.90 173 | 99.73 202 | 99.53 32 | 99.02 182 | 99.86 33 |
|
| ITE_SJBPF | | | | | 98.08 295 | 99.29 236 | 96.37 314 | | 98.92 328 | 98.34 108 | 98.83 263 | 99.75 138 | 91.09 324 | 99.62 242 | 95.82 317 | 97.40 272 | 98.25 348 |
|
| test_241102_ONE | | | | | | 99.84 32 | 99.90 2 | | 99.48 155 | 99.07 35 | 99.91 16 | 99.74 143 | 99.20 7 | 99.76 193 | | | |
|
| Anonymous202405211 | | | 98.30 181 | 97.98 202 | 99.26 156 | 99.57 151 | 98.16 229 | 99.41 207 | 98.55 363 | 96.03 328 | 99.19 204 | 99.74 143 | 91.87 306 | 99.92 95 | 99.16 75 | 98.29 223 | 99.70 113 |
|
| tttt0517 | | | 98.42 169 | 98.14 182 | 99.28 154 | 99.66 119 | 98.38 221 | 99.74 44 | 96.85 385 | 97.68 189 | 99.79 42 | 99.74 143 | 91.39 320 | 99.89 126 | 98.83 118 | 99.56 138 | 99.57 156 |
|
| XVS | | | 99.53 16 | 99.42 22 | 99.87 11 | 99.85 26 | 99.83 16 | 99.69 55 | 99.68 20 | 98.98 48 | 99.37 160 | 99.74 143 | 98.81 44 | 99.94 69 | 98.79 123 | 99.86 62 | 99.84 40 |
|
| MP-MVS |  | | 99.33 57 | 99.15 70 | 99.87 11 | 99.88 11 | 99.82 22 | 99.66 69 | 99.46 182 | 98.09 143 | 99.48 130 | 99.74 143 | 98.29 91 | 99.96 30 | 97.93 208 | 99.87 54 | 99.82 54 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| MVS_111021_LR | | | 99.41 47 | 99.33 38 | 99.65 73 | 99.77 62 | 99.51 86 | 98.94 331 | 99.85 6 | 98.82 65 | 99.65 89 | 99.74 143 | 98.51 78 | 99.80 179 | 98.83 118 | 99.89 48 | 99.64 136 |
|
| VPNet | | | 97.84 242 | 97.44 264 | 99.01 182 | 99.21 253 | 98.94 165 | 99.48 178 | 99.57 64 | 98.38 102 | 99.28 180 | 99.73 149 | 88.89 346 | 99.39 267 | 99.19 71 | 93.27 355 | 98.71 263 |
|
| MVSTER | | | 98.49 163 | 98.32 171 | 99.00 184 | 99.35 218 | 99.02 146 | 99.54 139 | 99.38 231 | 97.41 220 | 99.20 201 | 99.73 149 | 93.86 258 | 99.36 277 | 98.87 105 | 97.56 253 | 98.62 307 |
|
| MVS_111021_HR | | | 99.41 47 | 99.32 40 | 99.66 69 | 99.72 91 | 99.47 91 | 98.95 329 | 99.85 6 | 98.82 65 | 99.54 119 | 99.73 149 | 98.51 78 | 99.74 196 | 98.91 99 | 99.88 51 | 99.77 82 |
|
| PHI-MVS | | | 99.30 60 | 99.17 69 | 99.70 67 | 99.56 155 | 99.52 85 | 99.58 109 | 99.80 8 | 97.12 244 | 99.62 100 | 99.73 149 | 98.58 72 | 99.90 116 | 98.61 146 | 99.91 31 | 99.68 119 |
|
| IterMVS-SCA-FT | | | 97.82 247 | 97.75 230 | 98.06 296 | 99.57 151 | 96.36 315 | 99.02 312 | 99.49 143 | 97.18 238 | 98.71 276 | 99.72 153 | 92.72 283 | 99.14 314 | 97.44 258 | 95.86 309 | 98.67 284 |
|
| diffmvs |  | | 99.14 86 | 99.02 90 | 99.51 113 | 99.61 140 | 98.96 157 | 99.28 253 | 99.49 143 | 98.46 95 | 99.72 67 | 99.71 154 | 96.50 150 | 99.88 131 | 99.31 58 | 99.11 171 | 99.67 122 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| XVG-OURS-SEG-HR | | | 98.69 152 | 98.62 146 | 98.89 207 | 99.71 96 | 97.74 253 | 99.12 289 | 99.54 85 | 98.44 99 | 99.42 143 | 99.71 154 | 94.20 244 | 99.92 95 | 98.54 162 | 98.90 190 | 99.00 232 |
|
| EPNet_dtu | | | 98.03 212 | 97.96 204 | 98.23 286 | 98.27 357 | 95.54 333 | 99.23 271 | 98.75 348 | 99.02 38 | 97.82 334 | 99.71 154 | 96.11 162 | 99.48 252 | 93.04 360 | 99.65 130 | 99.69 115 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| CNVR-MVS | | | 99.42 42 | 99.30 49 | 99.78 52 | 99.62 136 | 99.71 44 | 99.26 266 | 99.52 101 | 98.82 65 | 99.39 155 | 99.71 154 | 98.96 24 | 99.85 145 | 98.59 151 | 99.80 97 | 99.77 82 |
|
| FE-MVS | | | 98.48 164 | 98.17 178 | 99.40 130 | 99.54 161 | 98.96 157 | 99.68 61 | 98.81 344 | 95.54 334 | 99.62 100 | 99.70 158 | 93.82 259 | 99.93 84 | 97.35 262 | 99.46 144 | 99.32 205 |
|
| PC_three_1452 | | | | | | | | | | 98.18 131 | 99.84 29 | 99.70 158 | 99.31 3 | 98.52 361 | 98.30 183 | 99.80 97 | 99.81 61 |
|
| OPU-MVS | | | | | 99.64 78 | 99.56 155 | 99.72 42 | 99.60 95 | | | | 99.70 158 | 99.27 5 | 99.42 265 | 98.24 185 | 99.80 97 | 99.79 74 |
|
| CS-MVS | | | 99.50 20 | 99.48 15 | 99.54 97 | 99.76 65 | 99.42 96 | 99.90 1 | 99.55 77 | 98.56 87 | 99.78 47 | 99.70 158 | 98.65 68 | 99.79 182 | 99.65 23 | 99.78 104 | 99.41 195 |
|
| tfpnnormal | | | 97.84 242 | 97.47 256 | 98.98 188 | 99.20 255 | 99.22 119 | 99.64 78 | 99.61 48 | 96.32 305 | 98.27 316 | 99.70 158 | 93.35 268 | 99.44 260 | 95.69 322 | 95.40 320 | 98.27 346 |
|
| v7n | | | 97.87 236 | 97.52 250 | 98.92 198 | 98.76 330 | 98.58 200 | 99.84 13 | 99.46 182 | 96.20 314 | 98.91 250 | 99.70 158 | 94.89 207 | 99.44 260 | 96.03 313 | 93.89 348 | 98.75 255 |
|
| testdata | | | | | 99.54 97 | 99.75 73 | 98.95 162 | | 99.51 115 | 97.07 250 | 99.43 140 | 99.70 158 | 98.87 37 | 99.94 69 | 97.76 225 | 99.64 131 | 99.72 103 |
|
| IterMVS | | | 97.83 244 | 97.77 225 | 98.02 299 | 99.58 149 | 96.27 318 | 99.02 312 | 99.48 155 | 97.22 236 | 98.71 276 | 99.70 158 | 92.75 280 | 99.13 317 | 97.46 256 | 96.00 303 | 98.67 284 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| PCF-MVS | | 97.08 14 | 97.66 274 | 97.06 296 | 99.47 120 | 99.61 140 | 99.09 136 | 98.04 384 | 99.25 287 | 91.24 375 | 98.51 302 | 99.70 158 | 94.55 232 | 99.91 105 | 92.76 364 | 99.85 69 | 99.42 193 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| LTVRE_ROB | | 97.16 12 | 98.02 214 | 97.90 211 | 98.40 271 | 99.23 249 | 96.80 300 | 99.70 52 | 99.60 54 | 97.12 244 | 98.18 319 | 99.70 158 | 91.73 311 | 99.72 206 | 98.39 172 | 97.45 266 | 98.68 277 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| CS-MVS-test | | | 99.49 22 | 99.48 15 | 99.54 97 | 99.78 56 | 99.30 109 | 99.89 2 | 99.58 61 | 98.56 87 | 99.73 62 | 99.69 168 | 98.55 75 | 99.82 168 | 99.69 19 | 99.85 69 | 99.48 178 |
|
| HFP-MVS | | | 99.49 22 | 99.37 30 | 99.86 21 | 99.87 15 | 99.80 27 | 99.66 69 | 99.67 23 | 98.15 133 | 99.68 74 | 99.69 168 | 99.06 16 | 99.96 30 | 98.69 135 | 99.87 54 | 99.84 40 |
|
| 旧先验1 | | | | | | 99.74 80 | 99.59 70 | | 99.54 85 | | | 99.69 168 | 98.47 80 | | | 99.68 126 | 99.73 97 |
|
| ACMMPR | | | 99.49 22 | 99.36 32 | 99.86 21 | 99.87 15 | 99.79 30 | 99.66 69 | 99.67 23 | 98.15 133 | 99.67 78 | 99.69 168 | 98.95 27 | 99.96 30 | 98.69 135 | 99.87 54 | 99.84 40 |
|
| CPTT-MVS | | | 99.11 98 | 98.90 109 | 99.74 61 | 99.80 52 | 99.46 92 | 99.59 101 | 99.49 143 | 97.03 256 | 99.63 96 | 99.69 168 | 97.27 124 | 99.96 30 | 97.82 218 | 99.84 77 | 99.81 61 |
|
| EC-MVSNet | | | 99.44 37 | 99.39 27 | 99.58 90 | 99.56 155 | 99.49 87 | 99.88 4 | 99.58 61 | 98.38 102 | 99.73 62 | 99.69 168 | 98.20 95 | 99.70 218 | 99.64 24 | 99.82 90 | 99.54 161 |
|
| GST-MVS | | | 99.40 50 | 99.24 62 | 99.85 28 | 99.86 20 | 99.79 30 | 99.60 95 | 99.67 23 | 97.97 159 | 99.63 96 | 99.68 174 | 98.52 77 | 99.95 59 | 98.38 173 | 99.86 62 | 99.81 61 |
|
| Anonymous20231211 | | | 97.88 234 | 97.54 249 | 98.90 204 | 99.71 96 | 98.53 204 | 99.48 178 | 99.57 64 | 94.16 356 | 98.81 265 | 99.68 174 | 93.23 269 | 99.42 265 | 98.84 115 | 94.42 339 | 98.76 253 |
|
| region2R | | | 99.48 26 | 99.35 34 | 99.87 11 | 99.88 11 | 99.80 27 | 99.65 75 | 99.66 28 | 98.13 137 | 99.66 83 | 99.68 174 | 98.96 24 | 99.96 30 | 98.62 143 | 99.87 54 | 99.84 40 |
|
| PS-CasMVS | | | 97.93 227 | 97.59 245 | 98.95 193 | 98.99 298 | 99.06 142 | 99.68 61 | 99.52 101 | 97.13 242 | 98.31 313 | 99.68 174 | 92.44 298 | 99.05 328 | 98.51 163 | 94.08 345 | 98.75 255 |
|
| HY-MVS | | 97.30 7 | 98.85 134 | 98.64 140 | 99.47 120 | 99.42 199 | 99.08 139 | 99.62 88 | 99.36 240 | 97.39 222 | 99.28 180 | 99.68 174 | 96.44 154 | 99.92 95 | 98.37 175 | 98.22 226 | 99.40 197 |
|
| DP-MVS Recon | | | 99.12 94 | 98.95 104 | 99.65 73 | 99.74 80 | 99.70 46 | 99.27 258 | 99.57 64 | 96.40 303 | 99.42 143 | 99.68 174 | 98.75 55 | 99.80 179 | 97.98 205 | 99.72 118 | 99.44 191 |
|
| ADS-MVSNet2 | | | 98.02 214 | 98.07 194 | 97.87 309 | 99.33 224 | 95.19 342 | 99.23 271 | 99.08 310 | 96.24 311 | 99.10 219 | 99.67 180 | 94.11 248 | 98.93 348 | 96.81 293 | 99.05 178 | 99.48 178 |
|
| ADS-MVSNet | | | 98.20 188 | 98.08 191 | 98.56 249 | 99.33 224 | 96.48 311 | 99.23 271 | 99.15 302 | 96.24 311 | 99.10 219 | 99.67 180 | 94.11 248 | 99.71 212 | 96.81 293 | 99.05 178 | 99.48 178 |
|
| DTE-MVSNet | | | 97.51 283 | 97.19 291 | 98.46 262 | 98.63 343 | 98.13 232 | 99.84 13 | 99.48 155 | 96.68 277 | 97.97 329 | 99.67 180 | 92.92 276 | 98.56 360 | 96.88 292 | 92.60 363 | 98.70 268 |
|
| Baseline_NR-MVSNet | | | 97.76 254 | 97.45 259 | 98.68 238 | 99.09 281 | 98.29 223 | 99.41 207 | 98.85 340 | 95.65 333 | 98.63 293 | 99.67 180 | 94.82 209 | 99.10 324 | 98.07 202 | 92.89 359 | 98.64 296 |
|
| CMPMVS |  | 69.68 23 | 94.13 340 | 94.90 332 | 91.84 364 | 97.24 374 | 80.01 394 | 98.52 367 | 99.48 155 | 89.01 381 | 91.99 382 | 99.67 180 | 85.67 368 | 99.13 317 | 95.44 328 | 97.03 284 | 96.39 383 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| 原ACMM1 | | | | | 99.65 73 | 99.73 87 | 99.33 103 | | 99.47 173 | 97.46 211 | 99.12 214 | 99.66 185 | 98.67 66 | 99.91 105 | 97.70 234 | 99.69 123 | 99.71 112 |
|
| thisisatest0530 | | | 98.35 177 | 98.03 197 | 99.31 143 | 99.63 130 | 98.56 201 | 99.54 139 | 96.75 387 | 97.53 206 | 99.73 62 | 99.65 186 | 91.25 323 | 99.89 126 | 98.62 143 | 99.56 138 | 99.48 178 |
|
| test222 | | | | | | 99.75 73 | 99.49 87 | 98.91 335 | 99.49 143 | 96.42 301 | 99.34 170 | 99.65 186 | 98.28 92 | | | 99.69 123 | 99.72 103 |
|
| MVSFormer | | | 99.17 80 | 99.12 73 | 99.29 151 | 99.51 169 | 98.94 165 | 99.88 4 | 99.46 182 | 97.55 202 | 99.80 40 | 99.65 186 | 97.39 116 | 99.28 292 | 99.03 85 | 99.85 69 | 99.65 129 |
|
| jason | | | 99.13 88 | 99.03 86 | 99.45 123 | 99.46 190 | 98.87 172 | 99.12 289 | 99.26 285 | 98.03 156 | 99.79 42 | 99.65 186 | 97.02 132 | 99.85 145 | 99.02 87 | 99.90 39 | 99.65 129 |
| jason: jason. |
| BH-RMVSNet | | | 98.41 171 | 98.08 191 | 99.40 130 | 99.41 202 | 98.83 180 | 99.30 245 | 98.77 347 | 97.70 187 | 98.94 246 | 99.65 186 | 92.91 278 | 99.74 196 | 96.52 304 | 99.55 140 | 99.64 136 |
|
| sss | | | 99.17 80 | 99.05 82 | 99.53 105 | 99.62 136 | 98.97 153 | 99.36 230 | 99.62 41 | 97.83 172 | 99.67 78 | 99.65 186 | 97.37 119 | 99.95 59 | 99.19 71 | 99.19 164 | 99.68 119 |
|
| h-mvs33 | | | 97.70 267 | 97.28 286 | 98.97 190 | 99.70 101 | 97.27 268 | 99.36 230 | 99.45 193 | 98.94 54 | 99.66 83 | 99.64 192 | 94.93 203 | 99.99 4 | 99.48 41 | 84.36 383 | 99.65 129 |
|
| ZNCC-MVS | | | 99.47 29 | 99.33 38 | 99.87 11 | 99.87 15 | 99.81 25 | 99.64 78 | 99.67 23 | 98.08 147 | 99.55 118 | 99.64 192 | 98.91 34 | 99.96 30 | 98.72 130 | 99.90 39 | 99.82 54 |
|
| æ–°å‡ ä½•1 | | | | | 99.75 58 | 99.75 73 | 99.59 70 | | 99.54 85 | 96.76 272 | 99.29 179 | 99.64 192 | 98.43 83 | 99.94 69 | 96.92 290 | 99.66 128 | 99.72 103 |
|
| PEN-MVS | | | 97.76 254 | 97.44 264 | 98.72 235 | 98.77 329 | 98.54 203 | 99.78 32 | 99.51 115 | 97.06 252 | 98.29 315 | 99.64 192 | 92.63 289 | 98.89 351 | 98.09 195 | 93.16 356 | 98.72 261 |
|
| CP-MVSNet | | | 98.09 200 | 97.78 223 | 99.01 182 | 98.97 303 | 99.24 117 | 99.67 64 | 99.46 182 | 97.25 232 | 98.48 305 | 99.64 192 | 93.79 260 | 99.06 327 | 98.63 142 | 94.10 344 | 98.74 258 |
|
| LF4IMVS | | | 97.52 281 | 97.46 258 | 97.70 321 | 98.98 301 | 95.55 331 | 99.29 249 | 98.82 343 | 98.07 148 | 98.66 285 | 99.64 192 | 89.97 337 | 99.61 243 | 97.01 280 | 96.68 287 | 97.94 365 |
|
| HPM-MVS |  | | 99.42 42 | 99.28 55 | 99.83 40 | 99.90 4 | 99.72 42 | 99.81 20 | 99.54 85 | 97.59 196 | 99.68 74 | 99.63 198 | 98.91 34 | 99.94 69 | 98.58 152 | 99.91 31 | 99.84 40 |
| Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
| NCCC | | | 99.34 56 | 99.19 67 | 99.79 49 | 99.61 140 | 99.65 57 | 99.30 245 | 99.48 155 | 98.86 60 | 99.21 198 | 99.63 198 | 98.72 61 | 99.90 116 | 98.25 184 | 99.63 133 | 99.80 70 |
|
| CP-MVS | | | 99.45 33 | 99.32 40 | 99.85 28 | 99.83 39 | 99.75 39 | 99.69 55 | 99.52 101 | 98.07 148 | 99.53 121 | 99.63 198 | 98.93 33 | 99.97 21 | 98.74 127 | 99.91 31 | 99.83 49 |
|
| AdaColmap |  | | 99.01 114 | 98.80 122 | 99.66 69 | 99.56 155 | 99.54 79 | 99.18 279 | 99.70 15 | 98.18 131 | 99.35 167 | 99.63 198 | 96.32 157 | 99.90 116 | 97.48 253 | 99.77 107 | 99.55 159 |
|
| TAPA-MVS | | 97.07 15 | 97.74 260 | 97.34 279 | 98.94 194 | 99.70 101 | 97.53 261 | 99.25 268 | 99.51 115 | 91.90 372 | 99.30 176 | 99.63 198 | 98.78 48 | 99.64 236 | 88.09 382 | 99.87 54 | 99.65 129 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| ppachtmachnet_test | | | 97.49 287 | 97.45 259 | 97.61 323 | 98.62 344 | 95.24 340 | 98.80 345 | 99.46 182 | 96.11 323 | 98.22 317 | 99.62 203 | 96.45 153 | 98.97 345 | 93.77 351 | 95.97 307 | 98.61 316 |
|
| MCST-MVS | | | 99.43 40 | 99.30 49 | 99.82 41 | 99.79 54 | 99.74 41 | 99.29 249 | 99.40 220 | 98.79 70 | 99.52 123 | 99.62 203 | 98.91 34 | 99.90 116 | 98.64 141 | 99.75 112 | 99.82 54 |
|
| WTY-MVS | | | 99.06 106 | 98.88 113 | 99.61 84 | 99.62 136 | 99.16 125 | 99.37 226 | 99.56 69 | 98.04 154 | 99.53 121 | 99.62 203 | 96.84 138 | 99.94 69 | 98.85 112 | 98.49 213 | 99.72 103 |
|
| MDTV_nov1_ep13 | | | | 98.32 171 | | 99.11 275 | 94.44 354 | 99.27 258 | 98.74 351 | 97.51 208 | 99.40 152 | 99.62 203 | 94.78 214 | 99.76 193 | 97.59 240 | 98.81 198 | |
|
| CANet | | | 99.25 72 | 99.14 71 | 99.59 87 | 99.41 202 | 99.16 125 | 99.35 235 | 99.57 64 | 98.82 65 | 99.51 125 | 99.61 207 | 96.46 152 | 99.95 59 | 99.59 25 | 99.98 4 | 99.65 129 |
|
| HQP_MVS | | | 98.27 184 | 98.22 177 | 98.44 266 | 99.29 236 | 96.97 292 | 99.39 219 | 99.47 173 | 98.97 51 | 99.11 216 | 99.61 207 | 92.71 285 | 99.69 223 | 97.78 221 | 97.63 246 | 98.67 284 |
|
| plane_prior4 | | | | | | | | | | | | 99.61 207 | | | | | |
|
| baseline1 | | | 98.31 179 | 97.95 206 | 99.38 134 | 99.50 178 | 98.74 186 | 99.59 101 | 98.93 326 | 98.41 100 | 99.14 211 | 99.60 210 | 94.59 228 | 99.79 182 | 98.48 165 | 93.29 354 | 99.61 144 |
|
| TranMVSNet+NR-MVSNet | | | 97.93 227 | 97.66 238 | 98.76 233 | 98.78 326 | 98.62 196 | 99.65 75 | 99.49 143 | 97.76 180 | 98.49 304 | 99.60 210 | 94.23 243 | 98.97 345 | 98.00 204 | 92.90 358 | 98.70 268 |
|
| FA-MVS(test-final) | | | 98.75 145 | 98.53 159 | 99.41 129 | 99.55 159 | 99.05 144 | 99.80 25 | 99.01 318 | 96.59 289 | 99.58 110 | 99.59 212 | 95.39 189 | 99.90 116 | 97.78 221 | 99.49 143 | 99.28 208 |
|
| tpmrst | | | 98.33 178 | 98.48 161 | 97.90 308 | 99.16 268 | 94.78 348 | 99.31 243 | 99.11 306 | 97.27 230 | 99.45 134 | 99.59 212 | 95.33 192 | 99.84 151 | 98.48 165 | 98.61 202 | 99.09 220 |
|
| IterMVS-LS | | | 98.46 166 | 98.42 164 | 98.58 245 | 99.59 147 | 98.00 238 | 99.37 226 | 99.43 207 | 96.94 264 | 99.07 224 | 99.59 212 | 97.87 105 | 99.03 331 | 98.32 181 | 95.62 315 | 98.71 263 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| F-COLMAP | | | 99.19 76 | 99.04 84 | 99.64 78 | 99.78 56 | 99.27 113 | 99.42 205 | 99.54 85 | 97.29 229 | 99.41 147 | 99.59 212 | 98.42 85 | 99.93 84 | 98.19 188 | 99.69 123 | 99.73 97 |
|
| pmmvs4 | | | 98.13 196 | 97.90 211 | 98.81 227 | 98.61 346 | 98.87 172 | 98.99 319 | 99.21 295 | 96.44 299 | 99.06 228 | 99.58 216 | 95.90 173 | 99.11 322 | 97.18 274 | 96.11 301 | 98.46 333 |
|
| 1112_ss | | | 98.98 115 | 98.77 126 | 99.59 87 | 99.68 110 | 99.02 146 | 99.25 268 | 99.48 155 | 97.23 235 | 99.13 212 | 99.58 216 | 96.93 137 | 99.90 116 | 98.87 105 | 98.78 199 | 99.84 40 |
|
| ab-mvs-re | | | 8.30 368 | 11.06 371 | 0.00 384 | 0.00 406 | 0.00 409 | 0.00 395 | 0.00 408 | 0.00 402 | 0.00 403 | 99.58 216 | 0.00 407 | 0.00 403 | 0.00 402 | 0.00 401 | 0.00 399 |
|
| PatchmatchNet |  | | 98.31 179 | 98.36 167 | 98.19 288 | 99.16 268 | 95.32 339 | 99.27 258 | 98.92 328 | 97.37 223 | 99.37 160 | 99.58 216 | 94.90 206 | 99.70 218 | 97.43 259 | 99.21 162 | 99.54 161 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| SCA | | | 98.19 189 | 98.16 179 | 98.27 285 | 99.30 232 | 95.55 331 | 99.07 299 | 98.97 322 | 97.57 199 | 99.43 140 | 99.57 220 | 92.72 283 | 99.74 196 | 97.58 241 | 99.20 163 | 99.52 167 |
|
| Patchmatch-test | | | 97.93 227 | 97.65 239 | 98.77 232 | 99.18 260 | 97.07 281 | 99.03 309 | 99.14 304 | 96.16 318 | 98.74 273 | 99.57 220 | 94.56 230 | 99.72 206 | 93.36 356 | 99.11 171 | 99.52 167 |
|
| PVSNet | | 96.02 17 | 98.85 134 | 98.84 119 | 98.89 207 | 99.73 87 | 97.28 267 | 98.32 377 | 99.60 54 | 97.86 167 | 99.50 126 | 99.57 220 | 96.75 142 | 99.86 139 | 98.56 158 | 99.70 122 | 99.54 161 |
|
| cdsmvs_eth3d_5k | | | 24.64 367 | 32.85 370 | 0.00 384 | 0.00 406 | 0.00 409 | 0.00 395 | 99.51 115 | 0.00 402 | 0.00 403 | 99.56 223 | 96.58 147 | 0.00 403 | 0.00 402 | 0.00 401 | 0.00 399 |
|
| 1314 | | | 98.68 154 | 98.54 158 | 99.11 172 | 98.89 310 | 98.65 193 | 99.27 258 | 99.49 143 | 96.89 266 | 97.99 327 | 99.56 223 | 97.72 111 | 99.83 162 | 97.74 228 | 99.27 160 | 98.84 244 |
|
| lupinMVS | | | 99.13 88 | 99.01 94 | 99.46 122 | 99.51 169 | 98.94 165 | 99.05 304 | 99.16 301 | 97.86 167 | 99.80 40 | 99.56 223 | 97.39 116 | 99.86 139 | 98.94 94 | 99.85 69 | 99.58 154 |
|
| miper_lstm_enhance | | | 98.00 219 | 97.91 210 | 98.28 284 | 99.34 222 | 97.43 264 | 98.88 337 | 99.36 240 | 96.48 296 | 98.80 267 | 99.55 226 | 95.98 166 | 98.91 349 | 97.27 265 | 95.50 319 | 98.51 326 |
|
| DPM-MVS | | | 98.95 118 | 98.71 131 | 99.66 69 | 99.63 130 | 99.55 77 | 98.64 360 | 99.10 307 | 97.93 162 | 99.42 143 | 99.55 226 | 98.67 66 | 99.80 179 | 95.80 319 | 99.68 126 | 99.61 144 |
|
| CDPH-MVS | | | 99.13 88 | 98.91 108 | 99.80 46 | 99.75 73 | 99.71 44 | 99.15 284 | 99.41 212 | 96.60 287 | 99.60 106 | 99.55 226 | 98.83 42 | 99.90 116 | 97.48 253 | 99.83 86 | 99.78 80 |
|
| dp | | | 97.75 258 | 97.80 219 | 97.59 324 | 99.10 278 | 93.71 363 | 99.32 241 | 98.88 336 | 96.48 296 | 99.08 223 | 99.55 226 | 92.67 288 | 99.82 168 | 96.52 304 | 98.58 205 | 99.24 210 |
|
| CLD-MVS | | | 98.16 193 | 98.10 187 | 98.33 276 | 99.29 236 | 96.82 299 | 98.75 350 | 99.44 201 | 97.83 172 | 99.13 212 | 99.55 226 | 92.92 276 | 99.67 225 | 98.32 181 | 97.69 245 | 98.48 328 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| ZD-MVS | | | | | | 99.71 96 | 99.79 30 | | 99.61 48 | 96.84 269 | 99.56 114 | 99.54 231 | 98.58 72 | 99.96 30 | 96.93 288 | 99.75 112 | |
|
| cl____ | | | 98.01 217 | 97.84 218 | 98.55 251 | 99.25 247 | 97.97 240 | 98.71 354 | 99.34 250 | 96.47 298 | 98.59 299 | 99.54 231 | 95.65 183 | 99.21 309 | 97.21 268 | 95.77 310 | 98.46 333 |
|
| DIV-MVS_self_test | | | 98.01 217 | 97.85 217 | 98.48 257 | 99.24 248 | 97.95 244 | 98.71 354 | 99.35 246 | 96.50 292 | 98.60 298 | 99.54 231 | 95.72 180 | 99.03 331 | 97.21 268 | 95.77 310 | 98.46 333 |
|
| MVS | | | 97.28 293 | 96.55 305 | 99.48 117 | 98.78 326 | 98.95 162 | 99.27 258 | 99.39 223 | 83.53 387 | 98.08 322 | 99.54 231 | 96.97 135 | 99.87 136 | 94.23 347 | 99.16 165 | 99.63 140 |
|
| pmmvs5 | | | 97.52 281 | 97.30 284 | 98.16 290 | 98.57 349 | 96.73 301 | 99.27 258 | 98.90 334 | 96.14 321 | 98.37 310 | 99.53 235 | 91.54 318 | 99.14 314 | 97.51 250 | 95.87 308 | 98.63 304 |
|
| HPM-MVS++ |  | | 99.39 51 | 99.23 64 | 99.87 11 | 99.75 73 | 99.84 15 | 99.43 198 | 99.51 115 | 98.68 81 | 99.27 184 | 99.53 235 | 98.64 69 | 99.96 30 | 98.44 170 | 99.80 97 | 99.79 74 |
|
| PatchMatch-RL | | | 98.84 137 | 98.62 146 | 99.52 111 | 99.71 96 | 99.28 111 | 99.06 302 | 99.77 9 | 97.74 184 | 99.50 126 | 99.53 235 | 95.41 188 | 99.84 151 | 97.17 275 | 99.64 131 | 99.44 191 |
|
| eth_miper_zixun_eth | | | 98.05 209 | 97.96 204 | 98.33 276 | 99.26 243 | 97.38 265 | 98.56 366 | 99.31 271 | 96.65 280 | 98.88 255 | 99.52 238 | 96.58 147 | 99.12 321 | 97.39 261 | 95.53 318 | 98.47 330 |
|
| test_prior2 | | | | | | | | 98.96 326 | | 98.34 108 | 99.01 234 | 99.52 238 | 98.68 64 | | 97.96 206 | 99.74 115 | |
|
| test_0402 | | | 96.64 308 | 96.24 311 | 97.85 310 | 98.85 319 | 96.43 313 | 99.44 194 | 99.26 285 | 93.52 362 | 96.98 354 | 99.52 238 | 88.52 352 | 99.20 311 | 92.58 366 | 97.50 260 | 97.93 366 |
|
| test_yl | | | 98.86 127 | 98.63 141 | 99.54 97 | 99.49 180 | 99.18 122 | 99.50 163 | 99.07 313 | 98.22 122 | 99.61 103 | 99.51 241 | 95.37 190 | 99.84 151 | 98.60 149 | 98.33 218 | 99.59 150 |
|
| DCV-MVSNet | | | 98.86 127 | 98.63 141 | 99.54 97 | 99.49 180 | 99.18 122 | 99.50 163 | 99.07 313 | 98.22 122 | 99.61 103 | 99.51 241 | 95.37 190 | 99.84 151 | 98.60 149 | 98.33 218 | 99.59 150 |
|
| v148 | | | 97.79 252 | 97.55 246 | 98.50 254 | 98.74 331 | 97.72 255 | 99.54 139 | 99.33 257 | 96.26 310 | 98.90 252 | 99.51 241 | 94.68 224 | 99.14 314 | 97.83 217 | 93.15 357 | 98.63 304 |
|
| DU-MVS | | | 98.08 202 | 97.79 220 | 98.96 191 | 98.87 315 | 98.98 150 | 99.41 207 | 99.45 193 | 97.87 166 | 98.71 276 | 99.50 244 | 94.82 209 | 99.22 304 | 98.57 155 | 92.87 360 | 98.68 277 |
|
| NR-MVSNet | | | 97.97 224 | 97.61 243 | 99.02 181 | 98.87 315 | 99.26 115 | 99.47 184 | 99.42 209 | 97.63 194 | 97.08 352 | 99.50 244 | 95.07 201 | 99.13 317 | 97.86 214 | 93.59 351 | 98.68 277 |
|
| XVG-ACMP-BASELINE | | | 97.83 244 | 97.71 234 | 98.20 287 | 99.11 275 | 96.33 316 | 99.41 207 | 99.52 101 | 98.06 152 | 99.05 230 | 99.50 244 | 89.64 341 | 99.73 202 | 97.73 229 | 97.38 274 | 98.53 324 |
|
| MSP-MVS | | | 99.42 42 | 99.27 57 | 99.88 5 | 99.89 8 | 99.80 27 | 99.67 64 | 99.50 135 | 98.70 78 | 99.77 51 | 99.49 247 | 98.21 94 | 99.95 59 | 98.46 169 | 99.77 107 | 99.88 26 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| TEST9 | | | | | | 99.67 111 | 99.65 57 | 99.05 304 | 99.41 212 | 96.22 313 | 98.95 244 | 99.49 247 | 98.77 51 | 99.91 105 | | | |
|
| train_agg | | | 99.02 111 | 98.77 126 | 99.77 55 | 99.67 111 | 99.65 57 | 99.05 304 | 99.41 212 | 96.28 307 | 98.95 244 | 99.49 247 | 98.76 52 | 99.91 105 | 97.63 237 | 99.72 118 | 99.75 88 |
|
| PVSNet_Blended | | | 99.08 104 | 98.97 100 | 99.42 128 | 99.76 65 | 98.79 184 | 98.78 347 | 99.91 3 | 96.74 273 | 99.67 78 | 99.49 247 | 97.53 113 | 99.88 131 | 98.98 90 | 99.85 69 | 99.60 146 |
|
| CNLPA | | | 99.14 86 | 98.99 96 | 99.59 87 | 99.58 149 | 99.41 98 | 99.16 281 | 99.44 201 | 98.45 96 | 99.19 204 | 99.49 247 | 98.08 101 | 99.89 126 | 97.73 229 | 99.75 112 | 99.48 178 |
|
| test_8 | | | | | | 99.67 111 | 99.61 67 | 99.03 309 | 99.41 212 | 96.28 307 | 98.93 248 | 99.48 252 | 98.76 52 | 99.91 105 | | | |
|
| EPMVS | | | 97.82 247 | 97.65 239 | 98.35 275 | 98.88 311 | 95.98 323 | 99.49 174 | 94.71 396 | 97.57 199 | 99.26 188 | 99.48 252 | 92.46 297 | 99.71 212 | 97.87 213 | 99.08 176 | 99.35 201 |
|
| PLC |  | 97.94 4 | 99.02 111 | 98.85 118 | 99.53 105 | 99.66 119 | 99.01 148 | 99.24 270 | 99.52 101 | 96.85 268 | 99.27 184 | 99.48 252 | 98.25 93 | 99.91 105 | 97.76 225 | 99.62 134 | 99.65 129 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| xiu_mvs_v1_base_debu | | | 99.29 62 | 99.27 57 | 99.34 136 | 99.63 130 | 98.97 153 | 99.12 289 | 99.51 115 | 98.86 60 | 99.84 29 | 99.47 255 | 98.18 96 | 99.99 4 | 99.50 36 | 99.31 157 | 99.08 221 |
|
| xiu_mvs_v1_base | | | 99.29 62 | 99.27 57 | 99.34 136 | 99.63 130 | 98.97 153 | 99.12 289 | 99.51 115 | 98.86 60 | 99.84 29 | 99.47 255 | 98.18 96 | 99.99 4 | 99.50 36 | 99.31 157 | 99.08 221 |
|
| xiu_mvs_v1_base_debi | | | 99.29 62 | 99.27 57 | 99.34 136 | 99.63 130 | 98.97 153 | 99.12 289 | 99.51 115 | 98.86 60 | 99.84 29 | 99.47 255 | 98.18 96 | 99.99 4 | 99.50 36 | 99.31 157 | 99.08 221 |
|
| v1921920 | | | 97.80 251 | 97.45 259 | 98.84 221 | 98.80 322 | 98.53 204 | 99.52 148 | 99.34 250 | 96.15 320 | 99.24 190 | 99.47 255 | 93.98 253 | 99.29 291 | 95.40 330 | 95.13 326 | 98.69 272 |
|
| UniMVSNet_NR-MVSNet | | | 98.22 185 | 97.97 203 | 98.96 191 | 98.92 307 | 98.98 150 | 99.48 178 | 99.53 96 | 97.76 180 | 98.71 276 | 99.46 259 | 96.43 155 | 99.22 304 | 98.57 155 | 92.87 360 | 98.69 272 |
|
| testgi | | | 97.65 275 | 97.50 253 | 98.13 294 | 99.36 217 | 96.45 312 | 99.42 205 | 99.48 155 | 97.76 180 | 97.87 332 | 99.45 260 | 91.09 324 | 98.81 353 | 94.53 342 | 98.52 211 | 99.13 215 |
|
| EIA-MVS | | | 99.18 78 | 99.09 78 | 99.45 123 | 99.49 180 | 99.18 122 | 99.67 64 | 99.53 96 | 97.66 192 | 99.40 152 | 99.44 261 | 98.10 99 | 99.81 173 | 98.94 94 | 99.62 134 | 99.35 201 |
|
| tpm2 | | | 97.44 289 | 97.34 279 | 97.74 319 | 99.15 271 | 94.36 356 | 99.45 188 | 98.94 325 | 93.45 365 | 98.90 252 | 99.44 261 | 91.35 321 | 99.59 245 | 97.31 263 | 98.07 237 | 99.29 207 |
|
| thisisatest0515 | | | 98.14 195 | 97.79 220 | 99.19 164 | 99.50 178 | 98.50 211 | 98.61 361 | 96.82 386 | 96.95 262 | 99.54 119 | 99.43 263 | 91.66 315 | 99.86 139 | 98.08 199 | 99.51 142 | 99.22 211 |
|
| WR-MVS | | | 98.06 204 | 97.73 232 | 99.06 176 | 98.86 318 | 99.25 116 | 99.19 278 | 99.35 246 | 97.30 228 | 98.66 285 | 99.43 263 | 93.94 254 | 99.21 309 | 98.58 152 | 94.28 341 | 98.71 263 |
|
| hse-mvs2 | | | 97.50 284 | 97.14 292 | 98.59 242 | 99.49 180 | 97.05 283 | 99.28 253 | 99.22 292 | 98.94 54 | 99.66 83 | 99.42 265 | 94.93 203 | 99.65 233 | 99.48 41 | 83.80 385 | 99.08 221 |
|
| v8 | | | 97.95 226 | 97.63 242 | 98.93 196 | 98.95 305 | 98.81 183 | 99.80 25 | 99.41 212 | 96.03 328 | 99.10 219 | 99.42 265 | 94.92 205 | 99.30 290 | 96.94 287 | 94.08 345 | 98.66 292 |
|
| tpmvs | | | 97.98 221 | 98.02 199 | 97.84 312 | 99.04 291 | 94.73 349 | 99.31 243 | 99.20 296 | 96.10 327 | 98.76 272 | 99.42 265 | 94.94 202 | 99.81 173 | 96.97 284 | 98.45 214 | 98.97 236 |
|
| UGNet | | | 98.87 124 | 98.69 133 | 99.40 130 | 99.22 252 | 98.72 188 | 99.44 194 | 99.68 20 | 99.24 17 | 99.18 207 | 99.42 265 | 92.74 282 | 99.96 30 | 99.34 55 | 99.94 21 | 99.53 166 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| AUN-MVS | | | 96.88 304 | 96.31 310 | 98.59 242 | 99.48 188 | 97.04 286 | 99.27 258 | 99.22 292 | 97.44 216 | 98.51 302 | 99.41 269 | 91.97 304 | 99.66 228 | 97.71 232 | 83.83 384 | 99.07 226 |
|
| Effi-MVS+ | | | 98.81 138 | 98.59 153 | 99.48 117 | 99.46 190 | 99.12 134 | 98.08 383 | 99.50 135 | 97.50 209 | 99.38 158 | 99.41 269 | 96.37 156 | 99.81 173 | 99.11 78 | 98.54 210 | 99.51 173 |
|
| v10 | | | 97.85 239 | 97.52 250 | 98.86 217 | 98.99 298 | 98.67 191 | 99.75 41 | 99.41 212 | 95.70 332 | 98.98 240 | 99.41 269 | 94.75 219 | 99.23 301 | 96.01 315 | 94.63 335 | 98.67 284 |
|
| v144192 | | | 97.92 230 | 97.60 244 | 98.87 213 | 98.83 321 | 98.65 193 | 99.55 134 | 99.34 250 | 96.20 314 | 99.32 172 | 99.40 272 | 94.36 239 | 99.26 296 | 96.37 309 | 95.03 328 | 98.70 268 |
|
| NP-MVS | | | | | | 99.23 249 | 96.92 295 | | | | | 99.40 272 | | | | | |
|
| HQP-MVS | | | 98.02 214 | 97.90 211 | 98.37 274 | 99.19 257 | 96.83 297 | 98.98 322 | 99.39 223 | 98.24 118 | 98.66 285 | 99.40 272 | 92.47 294 | 99.64 236 | 97.19 272 | 97.58 251 | 98.64 296 |
|
| MAR-MVS | | | 98.86 127 | 98.63 141 | 99.54 97 | 99.37 214 | 99.66 53 | 99.45 188 | 99.54 85 | 96.61 285 | 99.01 234 | 99.40 272 | 97.09 129 | 99.86 139 | 97.68 236 | 99.53 141 | 99.10 216 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| API-MVS | | | 99.04 108 | 99.03 86 | 99.06 176 | 99.40 207 | 99.31 107 | 99.55 134 | 99.56 69 | 98.54 89 | 99.33 171 | 99.39 276 | 98.76 52 | 99.78 187 | 96.98 283 | 99.78 104 | 98.07 355 |
|
| CR-MVSNet | | | 98.17 192 | 97.93 209 | 98.87 213 | 99.18 260 | 98.49 212 | 99.22 275 | 99.33 257 | 96.96 260 | 99.56 114 | 99.38 277 | 94.33 240 | 99.00 336 | 94.83 340 | 98.58 205 | 99.14 213 |
|
| Patchmtry | | | 97.75 258 | 97.40 271 | 98.81 227 | 99.10 278 | 98.87 172 | 99.11 295 | 99.33 257 | 94.83 348 | 98.81 265 | 99.38 277 | 94.33 240 | 99.02 333 | 96.10 311 | 95.57 316 | 98.53 324 |
|
| BH-untuned | | | 98.42 169 | 98.36 167 | 98.59 242 | 99.49 180 | 96.70 302 | 99.27 258 | 99.13 305 | 97.24 234 | 98.80 267 | 99.38 277 | 95.75 178 | 99.74 196 | 97.07 279 | 99.16 165 | 99.33 204 |
|
| V42 | | | 98.06 204 | 97.79 220 | 98.86 217 | 98.98 301 | 98.84 177 | 99.69 55 | 99.34 250 | 96.53 291 | 99.30 176 | 99.37 280 | 94.67 225 | 99.32 286 | 97.57 245 | 94.66 334 | 98.42 336 |
|
| VPA-MVSNet | | | 98.29 182 | 97.95 206 | 99.30 148 | 99.16 268 | 99.54 79 | 99.50 163 | 99.58 61 | 98.27 115 | 99.35 167 | 99.37 280 | 92.53 292 | 99.65 233 | 99.35 51 | 94.46 337 | 98.72 261 |
|
| PVSNet_BlendedMVS | | | 98.86 127 | 98.80 122 | 99.03 180 | 99.76 65 | 98.79 184 | 99.28 253 | 99.91 3 | 97.42 219 | 99.67 78 | 99.37 280 | 97.53 113 | 99.88 131 | 98.98 90 | 97.29 276 | 98.42 336 |
|
| D2MVS | | | 98.41 171 | 98.50 160 | 98.15 293 | 99.26 243 | 96.62 306 | 99.40 215 | 99.61 48 | 97.71 186 | 98.98 240 | 99.36 283 | 96.04 164 | 99.67 225 | 98.70 132 | 97.41 271 | 98.15 352 |
|
| MVP-Stereo | | | 97.81 249 | 97.75 230 | 97.99 303 | 97.53 368 | 96.60 308 | 98.96 326 | 98.85 340 | 97.22 236 | 97.23 347 | 99.36 283 | 95.28 193 | 99.46 254 | 95.51 326 | 99.78 104 | 97.92 367 |
| Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
| v1240 | | | 97.69 268 | 97.32 282 | 98.79 230 | 98.85 319 | 98.43 218 | 99.48 178 | 99.36 240 | 96.11 323 | 99.27 184 | 99.36 283 | 93.76 262 | 99.24 300 | 94.46 343 | 95.23 323 | 98.70 268 |
|
| dmvs_re | | | 98.08 202 | 98.16 179 | 97.85 310 | 99.55 159 | 94.67 351 | 99.70 52 | 98.92 328 | 98.15 133 | 99.06 228 | 99.35 286 | 93.67 264 | 99.25 297 | 97.77 224 | 97.25 278 | 99.64 136 |
|
| v1144 | | | 97.98 221 | 97.69 235 | 98.85 220 | 98.87 315 | 98.66 192 | 99.54 139 | 99.35 246 | 96.27 309 | 99.23 194 | 99.35 286 | 94.67 225 | 99.23 301 | 96.73 296 | 95.16 325 | 98.68 277 |
|
| v2v482 | | | 98.06 204 | 97.77 225 | 98.92 198 | 98.90 308 | 98.82 181 | 99.57 116 | 99.36 240 | 96.65 280 | 99.19 204 | 99.35 286 | 94.20 244 | 99.25 297 | 97.72 231 | 94.97 329 | 98.69 272 |
|
| CostFormer | | | 97.72 263 | 97.73 232 | 97.71 320 | 99.15 271 | 94.02 359 | 99.54 139 | 99.02 317 | 94.67 351 | 99.04 231 | 99.35 286 | 92.35 300 | 99.77 189 | 98.50 164 | 97.94 239 | 99.34 203 |
|
| our_test_3 | | | 97.65 275 | 97.68 236 | 97.55 325 | 98.62 344 | 94.97 346 | 98.84 341 | 99.30 275 | 96.83 271 | 98.19 318 | 99.34 290 | 97.01 133 | 99.02 333 | 95.00 338 | 96.01 302 | 98.64 296 |
|
| c3_l | | | 98.12 198 | 98.04 196 | 98.38 273 | 99.30 232 | 97.69 259 | 98.81 344 | 99.33 257 | 96.67 278 | 98.83 263 | 99.34 290 | 97.11 128 | 98.99 337 | 97.58 241 | 95.34 321 | 98.48 328 |
|
| Fast-Effi-MVS+-dtu | | | 98.77 144 | 98.83 121 | 98.60 241 | 99.41 202 | 96.99 290 | 99.52 148 | 99.49 143 | 98.11 140 | 99.24 190 | 99.34 290 | 96.96 136 | 99.79 182 | 97.95 207 | 99.45 145 | 99.02 231 |
|
| Fast-Effi-MVS+ | | | 98.70 150 | 98.43 163 | 99.51 113 | 99.51 169 | 99.28 111 | 99.52 148 | 99.47 173 | 96.11 323 | 99.01 234 | 99.34 290 | 96.20 161 | 99.84 151 | 97.88 211 | 98.82 196 | 99.39 198 |
|
| v1192 | | | 97.81 249 | 97.44 264 | 98.91 202 | 98.88 311 | 98.68 190 | 99.51 156 | 99.34 250 | 96.18 316 | 99.20 201 | 99.34 290 | 94.03 251 | 99.36 277 | 95.32 332 | 95.18 324 | 98.69 272 |
|
| tpm | | | 97.67 273 | 97.55 246 | 98.03 297 | 99.02 293 | 95.01 345 | 99.43 198 | 98.54 364 | 96.44 299 | 99.12 214 | 99.34 290 | 91.83 308 | 99.60 244 | 97.75 227 | 96.46 293 | 99.48 178 |
|
| PAPM | | | 97.59 278 | 97.09 295 | 99.07 175 | 99.06 287 | 98.26 225 | 98.30 378 | 99.10 307 | 94.88 346 | 98.08 322 | 99.34 290 | 96.27 159 | 99.64 236 | 89.87 375 | 98.92 188 | 99.31 206 |
|
| GBi-Net | | | 97.68 270 | 97.48 254 | 98.29 281 | 99.51 169 | 97.26 270 | 99.43 198 | 99.48 155 | 96.49 293 | 99.07 224 | 99.32 297 | 90.26 332 | 98.98 338 | 97.10 276 | 96.65 288 | 98.62 307 |
|
| test1 | | | 97.68 270 | 97.48 254 | 98.29 281 | 99.51 169 | 97.26 270 | 99.43 198 | 99.48 155 | 96.49 293 | 99.07 224 | 99.32 297 | 90.26 332 | 98.98 338 | 97.10 276 | 96.65 288 | 98.62 307 |
|
| FMVSNet1 | | | 96.84 305 | 96.36 309 | 98.29 281 | 99.32 230 | 97.26 270 | 99.43 198 | 99.48 155 | 95.11 340 | 98.55 300 | 99.32 297 | 83.95 375 | 98.98 338 | 95.81 318 | 96.26 298 | 98.62 307 |
|
| MS-PatchMatch | | | 97.24 297 | 97.32 282 | 96.99 338 | 98.45 354 | 93.51 367 | 98.82 343 | 99.32 267 | 97.41 220 | 98.13 321 | 99.30 300 | 88.99 345 | 99.56 247 | 95.68 323 | 99.80 97 | 97.90 368 |
|
| GA-MVS | | | 97.85 239 | 97.47 256 | 99.00 184 | 99.38 211 | 97.99 239 | 98.57 364 | 99.15 302 | 97.04 255 | 98.90 252 | 99.30 300 | 89.83 338 | 99.38 268 | 96.70 298 | 98.33 218 | 99.62 142 |
|
| miper_ehance_all_eth | | | 98.18 191 | 98.10 187 | 98.41 269 | 99.23 249 | 97.72 255 | 98.72 353 | 99.31 271 | 96.60 287 | 98.88 255 | 99.29 302 | 97.29 123 | 99.13 317 | 97.60 239 | 95.99 304 | 98.38 341 |
|
| FMVSNet2 | | | 97.72 263 | 97.36 274 | 98.80 229 | 99.51 169 | 98.84 177 | 99.45 188 | 99.42 209 | 96.49 293 | 98.86 262 | 99.29 302 | 90.26 332 | 98.98 338 | 96.44 306 | 96.56 291 | 98.58 321 |
|
| TESTMET0.1,1 | | | 97.55 279 | 97.27 289 | 98.40 271 | 98.93 306 | 96.53 309 | 98.67 356 | 97.61 380 | 96.96 260 | 98.64 292 | 99.28 304 | 88.63 351 | 99.45 255 | 97.30 264 | 99.38 149 | 99.21 212 |
|
| FMVSNet3 | | | 98.03 212 | 97.76 229 | 98.84 221 | 99.39 210 | 98.98 150 | 99.40 215 | 99.38 231 | 96.67 278 | 99.07 224 | 99.28 304 | 92.93 275 | 98.98 338 | 97.10 276 | 96.65 288 | 98.56 323 |
|
| PAPM_NR | | | 99.04 108 | 98.84 119 | 99.66 69 | 99.74 80 | 99.44 94 | 99.39 219 | 99.38 231 | 97.70 187 | 99.28 180 | 99.28 304 | 98.34 89 | 99.85 145 | 96.96 285 | 99.45 145 | 99.69 115 |
|
| EGC-MVSNET | | | 82.80 357 | 77.86 363 | 97.62 322 | 97.91 361 | 96.12 321 | 99.33 240 | 99.28 281 | 8.40 401 | 25.05 402 | 99.27 307 | 84.11 374 | 99.33 283 | 89.20 377 | 98.22 226 | 97.42 376 |
|
| ETV-MVS | | | 99.26 68 | 99.21 65 | 99.40 130 | 99.46 190 | 99.30 109 | 99.56 122 | 99.52 101 | 98.52 91 | 99.44 139 | 99.27 307 | 98.41 86 | 99.86 139 | 99.10 79 | 99.59 136 | 99.04 228 |
|
| xiu_mvs_v2_base | | | 99.26 68 | 99.25 61 | 99.29 151 | 99.53 162 | 98.91 169 | 99.02 312 | 99.45 193 | 98.80 69 | 99.71 68 | 99.26 309 | 98.94 29 | 99.98 13 | 99.34 55 | 99.23 161 | 98.98 235 |
|
| test20.03 | | | 96.12 319 | 95.96 318 | 96.63 347 | 97.44 369 | 95.45 336 | 99.51 156 | 99.38 231 | 96.55 290 | 96.16 361 | 99.25 310 | 93.76 262 | 96.17 387 | 87.35 385 | 94.22 342 | 98.27 346 |
|
| PS-MVSNAJ | | | 99.32 58 | 99.32 40 | 99.30 148 | 99.57 151 | 98.94 165 | 98.97 325 | 99.46 182 | 98.92 57 | 99.71 68 | 99.24 311 | 99.01 18 | 99.98 13 | 99.35 51 | 99.66 128 | 98.97 236 |
|
| Test_1112_low_res | | | 98.89 122 | 98.66 138 | 99.57 92 | 99.69 106 | 98.95 162 | 99.03 309 | 99.47 173 | 96.98 258 | 99.15 210 | 99.23 312 | 96.77 141 | 99.89 126 | 98.83 118 | 98.78 199 | 99.86 33 |
|
| cl22 | | | 97.85 239 | 97.64 241 | 98.48 257 | 99.09 281 | 97.87 248 | 98.60 363 | 99.33 257 | 97.11 247 | 98.87 258 | 99.22 313 | 92.38 299 | 99.17 313 | 98.21 186 | 95.99 304 | 98.42 336 |
|
| EG-PatchMatch MVS | | | 95.97 321 | 95.69 323 | 96.81 345 | 97.78 364 | 92.79 371 | 99.16 281 | 98.93 326 | 96.16 318 | 94.08 374 | 99.22 313 | 82.72 379 | 99.47 253 | 95.67 324 | 97.50 260 | 98.17 351 |
|
| TR-MVS | | | 97.76 254 | 97.41 270 | 98.82 224 | 99.06 287 | 97.87 248 | 98.87 339 | 98.56 362 | 96.63 284 | 98.68 284 | 99.22 313 | 92.49 293 | 99.65 233 | 95.40 330 | 97.79 242 | 98.95 240 |
|
| ET-MVSNet_ETH3D | | | 96.49 311 | 95.64 325 | 99.05 178 | 99.53 162 | 98.82 181 | 98.84 341 | 97.51 382 | 97.63 194 | 84.77 387 | 99.21 316 | 92.09 302 | 98.91 349 | 98.98 90 | 92.21 364 | 99.41 195 |
|
| WR-MVS_H | | | 98.13 196 | 97.87 216 | 98.90 204 | 99.02 293 | 98.84 177 | 99.70 52 | 99.59 57 | 97.27 230 | 98.40 308 | 99.19 317 | 95.53 185 | 99.23 301 | 98.34 178 | 93.78 350 | 98.61 316 |
|
| miper_enhance_ethall | | | 98.16 193 | 98.08 191 | 98.41 269 | 98.96 304 | 97.72 255 | 98.45 370 | 99.32 267 | 96.95 262 | 98.97 242 | 99.17 318 | 97.06 131 | 99.22 304 | 97.86 214 | 95.99 304 | 98.29 345 |
|
| baseline2 | | | 97.87 236 | 97.55 246 | 98.82 224 | 99.18 260 | 98.02 237 | 99.41 207 | 96.58 390 | 96.97 259 | 96.51 357 | 99.17 318 | 93.43 266 | 99.57 246 | 97.71 232 | 99.03 180 | 98.86 242 |
|
| MIMVSNet1 | | | 95.51 326 | 95.04 331 | 96.92 343 | 97.38 370 | 95.60 329 | 99.52 148 | 99.50 135 | 93.65 361 | 96.97 355 | 99.17 318 | 85.28 371 | 96.56 386 | 88.36 381 | 95.55 317 | 98.60 319 |
|
| gm-plane-assit | | | | | | 98.54 351 | 92.96 370 | | | 94.65 352 | | 99.15 321 | | 99.64 236 | 97.56 246 | | |
|
| MIMVSNet | | | 97.73 261 | 97.45 259 | 98.57 246 | 99.45 195 | 97.50 262 | 99.02 312 | 98.98 321 | 96.11 323 | 99.41 147 | 99.14 322 | 90.28 331 | 98.74 356 | 95.74 320 | 98.93 186 | 99.47 184 |
|
| LCM-MVSNet-Re | | | 97.83 244 | 98.15 181 | 96.87 344 | 99.30 232 | 92.25 374 | 99.59 101 | 98.26 367 | 97.43 217 | 96.20 360 | 99.13 323 | 96.27 159 | 98.73 357 | 98.17 191 | 98.99 183 | 99.64 136 |
|
| UniMVSNet (Re) | | | 98.29 182 | 98.00 200 | 99.13 171 | 99.00 295 | 99.36 102 | 99.49 174 | 99.51 115 | 97.95 160 | 98.97 242 | 99.13 323 | 96.30 158 | 99.38 268 | 98.36 177 | 93.34 353 | 98.66 292 |
|
| N_pmnet | | | 94.95 334 | 95.83 321 | 92.31 363 | 98.47 353 | 79.33 395 | 99.12 289 | 92.81 401 | 93.87 358 | 97.68 337 | 99.13 323 | 93.87 257 | 99.01 335 | 91.38 370 | 96.19 299 | 98.59 320 |
|
| PAPR | | | 98.63 159 | 98.34 169 | 99.51 113 | 99.40 207 | 99.03 145 | 98.80 345 | 99.36 240 | 96.33 304 | 99.00 238 | 99.12 326 | 98.46 81 | 99.84 151 | 95.23 334 | 99.37 156 | 99.66 125 |
|
| tpm cat1 | | | 97.39 290 | 97.36 274 | 97.50 327 | 99.17 266 | 93.73 362 | 99.43 198 | 99.31 271 | 91.27 374 | 98.71 276 | 99.08 327 | 94.31 242 | 99.77 189 | 96.41 308 | 98.50 212 | 99.00 232 |
|
| FMVSNet5 | | | 96.43 313 | 96.19 312 | 97.15 333 | 99.11 275 | 95.89 325 | 99.32 241 | 99.52 101 | 94.47 355 | 98.34 312 | 99.07 328 | 87.54 362 | 97.07 382 | 92.61 365 | 95.72 313 | 98.47 330 |
|
| PMMVS | | | 98.80 141 | 98.62 146 | 99.34 136 | 99.27 241 | 98.70 189 | 98.76 349 | 99.31 271 | 97.34 224 | 99.21 198 | 99.07 328 | 97.20 125 | 99.82 168 | 98.56 158 | 98.87 191 | 99.52 167 |
|
| Anonymous20231206 | | | 96.22 315 | 96.03 316 | 96.79 346 | 97.31 373 | 94.14 358 | 99.63 82 | 99.08 310 | 96.17 317 | 97.04 353 | 99.06 330 | 93.94 254 | 97.76 377 | 86.96 386 | 95.06 327 | 98.47 330 |
|
| DeepMVS_CX |  | | | | 93.34 360 | 99.29 236 | 82.27 388 | | 99.22 292 | 85.15 385 | 96.33 359 | 99.05 331 | 90.97 326 | 99.73 202 | 93.57 354 | 97.77 243 | 98.01 359 |
|
| YYNet1 | | | 95.36 329 | 94.51 336 | 97.92 306 | 97.89 362 | 97.10 277 | 99.10 297 | 99.23 290 | 93.26 366 | 80.77 392 | 99.04 332 | 92.81 279 | 98.02 370 | 94.30 344 | 94.18 343 | 98.64 296 |
|
| Anonymous20240521 | | | 96.20 317 | 95.89 320 | 97.13 335 | 97.72 367 | 94.96 347 | 99.79 31 | 99.29 279 | 93.01 367 | 97.20 349 | 99.03 333 | 89.69 340 | 98.36 364 | 91.16 371 | 96.13 300 | 98.07 355 |
|
| MDA-MVSNet-bldmvs | | | 94.96 333 | 93.98 340 | 97.92 306 | 98.24 358 | 97.27 268 | 99.15 284 | 99.33 257 | 93.80 359 | 80.09 394 | 99.03 333 | 88.31 354 | 97.86 375 | 93.49 355 | 94.36 340 | 98.62 307 |
|
| test_method | | | 91.10 349 | 91.36 351 | 90.31 369 | 95.85 381 | 73.72 402 | 94.89 390 | 99.25 287 | 68.39 393 | 95.82 364 | 99.02 335 | 80.50 383 | 98.95 347 | 93.64 353 | 94.89 333 | 98.25 348 |
|
| BH-w/o | | | 98.00 219 | 97.89 215 | 98.32 278 | 99.35 218 | 96.20 320 | 99.01 317 | 98.90 334 | 96.42 301 | 98.38 309 | 99.00 336 | 95.26 196 | 99.72 206 | 96.06 312 | 98.61 202 | 99.03 229 |
|
| Effi-MVS+-dtu | | | 98.78 142 | 98.89 112 | 98.47 261 | 99.33 224 | 96.91 296 | 99.57 116 | 99.30 275 | 98.47 94 | 99.41 147 | 98.99 337 | 96.78 140 | 99.74 196 | 98.73 129 | 99.38 149 | 98.74 258 |
|
| UnsupCasMVSNet_eth | | | 96.44 312 | 96.12 313 | 97.40 329 | 98.65 341 | 95.65 328 | 99.36 230 | 99.51 115 | 97.13 242 | 96.04 363 | 98.99 337 | 88.40 353 | 98.17 367 | 96.71 297 | 90.27 373 | 98.40 339 |
|
| test0.0.03 1 | | | 97.71 266 | 97.42 269 | 98.56 249 | 98.41 356 | 97.82 251 | 98.78 347 | 98.63 360 | 97.34 224 | 98.05 326 | 98.98 339 | 94.45 237 | 98.98 338 | 95.04 337 | 97.15 283 | 98.89 241 |
|
| MDA-MVSNet_test_wron | | | 95.45 327 | 94.60 334 | 98.01 300 | 98.16 359 | 97.21 273 | 99.11 295 | 99.24 289 | 93.49 363 | 80.73 393 | 98.98 339 | 93.02 273 | 98.18 366 | 94.22 348 | 94.45 338 | 98.64 296 |
|
| FPMVS | | | 84.93 356 | 85.65 357 | 82.75 378 | 86.77 398 | 63.39 404 | 98.35 373 | 98.92 328 | 74.11 390 | 83.39 389 | 98.98 339 | 50.85 397 | 92.40 393 | 84.54 391 | 94.97 329 | 92.46 388 |
|
| testing3 | | | 97.28 293 | 96.76 302 | 98.82 224 | 99.37 214 | 98.07 235 | 99.45 188 | 99.36 240 | 97.56 201 | 97.89 331 | 98.95 342 | 83.70 376 | 98.82 352 | 96.03 313 | 98.56 208 | 99.58 154 |
|
| SSC-MVS | | | 92.73 346 | 93.73 342 | 89.72 371 | 95.02 389 | 81.38 391 | 99.76 37 | 99.23 290 | 94.87 347 | 92.80 380 | 98.93 343 | 94.71 222 | 91.37 395 | 74.49 395 | 93.80 349 | 96.42 382 |
|
| testf1 | | | 90.42 351 | 90.68 353 | 89.65 372 | 97.78 364 | 73.97 400 | 99.13 287 | 98.81 344 | 89.62 379 | 91.80 383 | 98.93 343 | 62.23 392 | 98.80 354 | 86.61 388 | 91.17 367 | 96.19 384 |
|
| APD_test2 | | | 90.42 351 | 90.68 353 | 89.65 372 | 97.78 364 | 73.97 400 | 99.13 287 | 98.81 344 | 89.62 379 | 91.80 383 | 98.93 343 | 62.23 392 | 98.80 354 | 86.61 388 | 91.17 367 | 96.19 384 |
|
| alignmvs | | | 98.81 138 | 98.56 157 | 99.58 90 | 99.43 197 | 99.42 96 | 99.51 156 | 98.96 324 | 98.61 84 | 99.35 167 | 98.92 346 | 94.78 214 | 99.77 189 | 99.35 51 | 98.11 236 | 99.54 161 |
|
| WB-MVS | | | 93.10 344 | 94.10 338 | 90.12 370 | 95.51 387 | 81.88 390 | 99.73 47 | 99.27 284 | 95.05 343 | 93.09 379 | 98.91 347 | 94.70 223 | 91.89 394 | 76.62 393 | 94.02 347 | 96.58 381 |
|
| test-LLR | | | 98.06 204 | 97.90 211 | 98.55 251 | 98.79 323 | 97.10 277 | 98.67 356 | 97.75 377 | 97.34 224 | 98.61 296 | 98.85 348 | 94.45 237 | 99.45 255 | 97.25 266 | 99.38 149 | 99.10 216 |
|
| test-mter | | | 97.49 287 | 97.13 294 | 98.55 251 | 98.79 323 | 97.10 277 | 98.67 356 | 97.75 377 | 96.65 280 | 98.61 296 | 98.85 348 | 88.23 355 | 99.45 255 | 97.25 266 | 99.38 149 | 99.10 216 |
|
| dmvs_testset | | | 95.02 331 | 96.12 313 | 91.72 365 | 99.10 278 | 80.43 393 | 99.58 109 | 97.87 376 | 97.47 210 | 95.22 367 | 98.82 350 | 93.99 252 | 95.18 390 | 88.09 382 | 94.91 332 | 99.56 158 |
|
| canonicalmvs | | | 99.02 111 | 98.86 117 | 99.51 113 | 99.42 199 | 99.32 104 | 99.80 25 | 99.48 155 | 98.63 82 | 99.31 174 | 98.81 351 | 97.09 129 | 99.75 195 | 99.27 66 | 97.90 240 | 99.47 184 |
|
| new_pmnet | | | 96.38 314 | 96.03 316 | 97.41 328 | 98.13 360 | 95.16 344 | 99.05 304 | 99.20 296 | 93.94 357 | 97.39 344 | 98.79 352 | 91.61 317 | 99.04 329 | 90.43 373 | 95.77 310 | 98.05 357 |
|
| cascas | | | 97.69 268 | 97.43 268 | 98.48 257 | 98.60 347 | 97.30 266 | 98.18 382 | 99.39 223 | 92.96 368 | 98.41 307 | 98.78 353 | 93.77 261 | 99.27 295 | 98.16 192 | 98.61 202 | 98.86 242 |
|
| PVSNet_0 | | 94.43 19 | 96.09 320 | 95.47 326 | 97.94 305 | 99.31 231 | 94.34 357 | 97.81 385 | 99.70 15 | 97.12 244 | 97.46 340 | 98.75 354 | 89.71 339 | 99.79 182 | 97.69 235 | 81.69 387 | 99.68 119 |
|
| patchmatchnet-post | | | | | | | | | | | | 98.70 355 | 94.79 213 | 99.74 196 | | | |
|
| Patchmatch-RL test | | | 95.84 323 | 95.81 322 | 95.95 353 | 95.61 383 | 90.57 379 | 98.24 379 | 98.39 366 | 95.10 342 | 95.20 368 | 98.67 356 | 94.78 214 | 97.77 376 | 96.28 310 | 90.02 374 | 99.51 173 |
|
| thres100view900 | | | 97.76 254 | 97.45 259 | 98.69 237 | 99.72 91 | 97.86 250 | 99.59 101 | 98.74 351 | 97.93 162 | 99.26 188 | 98.62 357 | 91.75 309 | 99.83 162 | 93.22 357 | 98.18 231 | 98.37 342 |
|
| thres600view7 | | | 97.86 238 | 97.51 252 | 98.92 198 | 99.72 91 | 97.95 244 | 99.59 101 | 98.74 351 | 97.94 161 | 99.27 184 | 98.62 357 | 91.75 309 | 99.86 139 | 93.73 352 | 98.19 230 | 98.96 238 |
|
| DSMNet-mixed | | | 97.25 295 | 97.35 276 | 96.95 341 | 97.84 363 | 93.61 366 | 99.57 116 | 96.63 389 | 96.13 322 | 98.87 258 | 98.61 359 | 94.59 228 | 97.70 378 | 95.08 336 | 98.86 192 | 99.55 159 |
|
| IB-MVS | | 95.67 18 | 96.22 315 | 95.44 328 | 98.57 246 | 99.21 253 | 96.70 302 | 98.65 359 | 97.74 379 | 96.71 275 | 97.27 346 | 98.54 360 | 86.03 366 | 99.92 95 | 98.47 168 | 86.30 381 | 99.10 216 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| GG-mvs-BLEND | | | | | 98.45 263 | 98.55 350 | 98.16 229 | 99.43 198 | 93.68 398 | | 97.23 347 | 98.46 361 | 89.30 343 | 99.22 304 | 95.43 329 | 98.22 226 | 97.98 363 |
|
| tfpn200view9 | | | 97.72 263 | 97.38 272 | 98.72 235 | 99.69 106 | 97.96 242 | 99.50 163 | 98.73 356 | 97.83 172 | 99.17 208 | 98.45 362 | 91.67 313 | 99.83 162 | 93.22 357 | 98.18 231 | 98.37 342 |
|
| thres400 | | | 97.77 253 | 97.38 272 | 98.92 198 | 99.69 106 | 97.96 242 | 99.50 163 | 98.73 356 | 97.83 172 | 99.17 208 | 98.45 362 | 91.67 313 | 99.83 162 | 93.22 357 | 98.18 231 | 98.96 238 |
|
| KD-MVS_2432*1600 | | | 94.62 335 | 93.72 343 | 97.31 330 | 97.19 376 | 95.82 326 | 98.34 374 | 99.20 296 | 95.00 344 | 97.57 338 | 98.35 364 | 87.95 358 | 98.10 368 | 92.87 362 | 77.00 391 | 98.01 359 |
|
| miper_refine_blended | | | 94.62 335 | 93.72 343 | 97.31 330 | 97.19 376 | 95.82 326 | 98.34 374 | 99.20 296 | 95.00 344 | 97.57 338 | 98.35 364 | 87.95 358 | 98.10 368 | 92.87 362 | 77.00 391 | 98.01 359 |
|
| thres200 | | | 97.61 277 | 97.28 286 | 98.62 240 | 99.64 127 | 98.03 236 | 99.26 266 | 98.74 351 | 97.68 189 | 99.09 222 | 98.32 366 | 91.66 315 | 99.81 173 | 92.88 361 | 98.22 226 | 98.03 358 |
|
| OpenMVS_ROB |  | 92.34 20 | 94.38 339 | 93.70 345 | 96.41 350 | 97.38 370 | 93.17 369 | 99.06 302 | 98.75 348 | 86.58 384 | 94.84 372 | 98.26 367 | 81.53 382 | 99.32 286 | 89.01 378 | 97.87 241 | 96.76 379 |
|
| Syy-MVS | | | 97.09 301 | 97.14 292 | 96.95 341 | 99.00 295 | 92.73 372 | 99.29 249 | 99.39 223 | 97.06 252 | 97.41 341 | 98.15 368 | 93.92 256 | 98.68 358 | 91.71 368 | 98.34 216 | 99.45 189 |
|
| myMVS_eth3d | | | 96.89 303 | 96.37 308 | 98.43 268 | 99.00 295 | 97.16 274 | 99.29 249 | 99.39 223 | 97.06 252 | 97.41 341 | 98.15 368 | 83.46 377 | 98.68 358 | 95.27 333 | 98.34 216 | 99.45 189 |
|
| CL-MVSNet_self_test | | | 94.49 337 | 93.97 341 | 96.08 352 | 96.16 380 | 93.67 365 | 98.33 376 | 99.38 231 | 95.13 338 | 97.33 345 | 98.15 368 | 92.69 287 | 96.57 385 | 88.67 379 | 79.87 389 | 97.99 362 |
|
| test_vis1_rt | | | 95.81 324 | 95.65 324 | 96.32 351 | 99.67 111 | 91.35 378 | 99.49 174 | 96.74 388 | 98.25 117 | 95.24 366 | 98.10 371 | 74.96 385 | 99.90 116 | 99.53 32 | 98.85 193 | 97.70 371 |
|
| pmmvs3 | | | 94.09 341 | 93.25 347 | 96.60 348 | 94.76 390 | 94.49 353 | 98.92 333 | 98.18 372 | 89.66 378 | 96.48 358 | 98.06 372 | 86.28 365 | 97.33 380 | 89.68 376 | 87.20 380 | 97.97 364 |
|
| mvsany_test3 | | | 93.77 342 | 93.45 346 | 94.74 356 | 95.78 382 | 88.01 382 | 99.64 78 | 98.25 368 | 98.28 113 | 94.31 373 | 97.97 373 | 68.89 388 | 98.51 362 | 97.50 251 | 90.37 372 | 97.71 369 |
|
| PM-MVS | | | 92.96 345 | 92.23 349 | 95.14 355 | 95.61 383 | 89.98 381 | 99.37 226 | 98.21 370 | 94.80 349 | 95.04 371 | 97.69 374 | 65.06 389 | 97.90 374 | 94.30 344 | 89.98 375 | 97.54 375 |
|
| pmmvs-eth3d | | | 95.34 330 | 94.73 333 | 97.15 333 | 95.53 385 | 95.94 324 | 99.35 235 | 99.10 307 | 95.13 338 | 93.55 376 | 97.54 375 | 88.15 357 | 97.91 373 | 94.58 341 | 89.69 376 | 97.61 372 |
|
| ambc | | | | | 93.06 362 | 92.68 392 | 82.36 387 | 98.47 369 | 98.73 356 | | 95.09 370 | 97.41 376 | 55.55 394 | 99.10 324 | 96.42 307 | 91.32 366 | 97.71 369 |
|
| RPMNet | | | 96.72 307 | 95.90 319 | 99.19 164 | 99.18 260 | 98.49 212 | 99.22 275 | 99.52 101 | 88.72 383 | 99.56 114 | 97.38 377 | 94.08 250 | 99.95 59 | 86.87 387 | 98.58 205 | 99.14 213 |
|
| new-patchmatchnet | | | 94.48 338 | 94.08 339 | 95.67 354 | 95.08 388 | 92.41 373 | 99.18 279 | 99.28 281 | 94.55 354 | 93.49 377 | 97.37 378 | 87.86 360 | 97.01 383 | 91.57 369 | 88.36 377 | 97.61 372 |
|
| KD-MVS_self_test | | | 95.00 332 | 94.34 337 | 96.96 340 | 97.07 378 | 95.39 338 | 99.56 122 | 99.44 201 | 95.11 340 | 97.13 351 | 97.32 379 | 91.86 307 | 97.27 381 | 90.35 374 | 81.23 388 | 98.23 350 |
|
| PatchT | | | 97.03 302 | 96.44 307 | 98.79 230 | 98.99 298 | 98.34 222 | 99.16 281 | 99.07 313 | 92.13 371 | 99.52 123 | 97.31 380 | 94.54 233 | 98.98 338 | 88.54 380 | 98.73 201 | 99.03 229 |
|
| test_fmvs3 | | | 92.10 347 | 91.77 350 | 93.08 361 | 96.19 379 | 86.25 383 | 99.82 17 | 98.62 361 | 96.65 280 | 95.19 369 | 96.90 381 | 55.05 396 | 95.93 389 | 96.63 303 | 90.92 371 | 97.06 378 |
|
| UnsupCasMVSNet_bld | | | 93.53 343 | 92.51 348 | 96.58 349 | 97.38 370 | 93.82 360 | 98.24 379 | 99.48 155 | 91.10 376 | 93.10 378 | 96.66 382 | 74.89 386 | 98.37 363 | 94.03 350 | 87.71 379 | 97.56 374 |
|
| LCM-MVSNet | | | 86.80 355 | 85.22 359 | 91.53 366 | 87.81 397 | 80.96 392 | 98.23 381 | 98.99 320 | 71.05 391 | 90.13 386 | 96.51 383 | 48.45 399 | 96.88 384 | 90.51 372 | 85.30 382 | 96.76 379 |
|
| test_f | | | 91.90 348 | 91.26 352 | 93.84 358 | 95.52 386 | 85.92 384 | 99.69 55 | 98.53 365 | 95.31 337 | 93.87 375 | 96.37 384 | 55.33 395 | 98.27 365 | 95.70 321 | 90.98 370 | 97.32 377 |
|
| PMMVS2 | | | 86.87 354 | 85.37 358 | 91.35 367 | 90.21 395 | 83.80 386 | 98.89 336 | 97.45 383 | 83.13 388 | 91.67 385 | 95.03 385 | 48.49 398 | 94.70 391 | 85.86 390 | 77.62 390 | 95.54 386 |
|
| Gipuma |  | | 90.99 350 | 90.15 355 | 93.51 359 | 98.73 332 | 90.12 380 | 93.98 391 | 99.45 193 | 79.32 389 | 92.28 381 | 94.91 386 | 69.61 387 | 97.98 372 | 87.42 384 | 95.67 314 | 92.45 389 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| JIA-IIPM | | | 97.50 284 | 97.02 297 | 98.93 196 | 98.73 332 | 97.80 252 | 99.30 245 | 98.97 322 | 91.73 373 | 98.91 250 | 94.86 387 | 95.10 200 | 99.71 212 | 97.58 241 | 97.98 238 | 99.28 208 |
|
| PMVS |  | 70.75 22 | 75.98 363 | 74.97 364 | 79.01 380 | 70.98 402 | 55.18 405 | 93.37 392 | 98.21 370 | 65.08 397 | 61.78 398 | 93.83 388 | 21.74 405 | 92.53 392 | 78.59 392 | 91.12 369 | 89.34 393 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| MVS-HIRNet | | | 95.75 325 | 95.16 330 | 97.51 326 | 99.30 232 | 93.69 364 | 98.88 337 | 95.78 391 | 85.09 386 | 98.78 270 | 92.65 389 | 91.29 322 | 99.37 273 | 94.85 339 | 99.85 69 | 99.46 186 |
|
| E-PMN | | | 80.61 359 | 79.88 361 | 82.81 377 | 90.75 394 | 76.38 398 | 97.69 386 | 95.76 392 | 66.44 395 | 83.52 388 | 92.25 390 | 62.54 391 | 87.16 397 | 68.53 397 | 61.40 394 | 84.89 395 |
|
| test_vis3_rt | | | 87.04 353 | 85.81 356 | 90.73 368 | 93.99 391 | 81.96 389 | 99.76 37 | 90.23 403 | 92.81 369 | 81.35 391 | 91.56 391 | 40.06 400 | 99.07 326 | 94.27 346 | 88.23 378 | 91.15 391 |
|
| EMVS | | | 80.02 360 | 79.22 362 | 82.43 379 | 91.19 393 | 76.40 397 | 97.55 388 | 92.49 402 | 66.36 396 | 83.01 390 | 91.27 392 | 64.63 390 | 85.79 398 | 65.82 398 | 60.65 395 | 85.08 394 |
|
| gg-mvs-nofinetune | | | 96.17 318 | 95.32 329 | 98.73 234 | 98.79 323 | 98.14 231 | 99.38 224 | 94.09 397 | 91.07 377 | 98.07 325 | 91.04 393 | 89.62 342 | 99.35 280 | 96.75 295 | 99.09 175 | 98.68 277 |
|
| ANet_high | | | 77.30 361 | 74.86 365 | 84.62 376 | 75.88 401 | 77.61 396 | 97.63 387 | 93.15 400 | 88.81 382 | 64.27 397 | 89.29 394 | 36.51 401 | 83.93 399 | 75.89 394 | 52.31 396 | 92.33 390 |
|
| MVE |  | 76.82 21 | 76.91 362 | 74.31 366 | 84.70 375 | 85.38 400 | 76.05 399 | 96.88 389 | 93.17 399 | 67.39 394 | 71.28 396 | 89.01 395 | 21.66 406 | 87.69 396 | 71.74 396 | 72.29 393 | 90.35 392 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| testmvs | | | 39.17 365 | 43.78 367 | 25.37 383 | 36.04 405 | 16.84 408 | 98.36 372 | 26.56 405 | 20.06 399 | 38.51 400 | 67.32 396 | 29.64 403 | 15.30 402 | 37.59 400 | 39.90 398 | 43.98 397 |
|
| test123 | | | 39.01 366 | 42.50 368 | 28.53 382 | 39.17 404 | 20.91 407 | 98.75 350 | 19.17 407 | 19.83 400 | 38.57 399 | 66.67 397 | 33.16 402 | 15.42 401 | 37.50 401 | 29.66 399 | 49.26 396 |
|
| test_post | | | | | | | | | | | | 65.99 398 | 94.65 227 | 99.73 202 | | | |
|
| test_post1 | | | | | | | | 99.23 271 | | | | 65.14 399 | 94.18 247 | 99.71 212 | 97.58 241 | | |
|
| X-MVStestdata | | | 96.55 309 | 95.45 327 | 99.87 11 | 99.85 26 | 99.83 16 | 99.69 55 | 99.68 20 | 98.98 48 | 99.37 160 | 64.01 400 | 98.81 44 | 99.94 69 | 98.79 123 | 99.86 62 | 99.84 40 |
|
| wuyk23d | | | 40.18 364 | 41.29 369 | 36.84 381 | 86.18 399 | 49.12 406 | 79.73 394 | 22.81 406 | 27.64 398 | 25.46 401 | 28.45 401 | 21.98 404 | 48.89 400 | 55.80 399 | 23.56 400 | 12.51 398 |
|
| test_blank | | | 0.13 370 | 0.17 373 | 0.00 384 | 0.00 406 | 0.00 409 | 0.00 395 | 0.00 408 | 0.00 402 | 0.00 403 | 1.57 402 | 0.00 407 | 0.00 403 | 0.00 402 | 0.00 401 | 0.00 399 |
|
| uanet_test | | | 0.02 371 | 0.03 374 | 0.00 384 | 0.00 406 | 0.00 409 | 0.00 395 | 0.00 408 | 0.00 402 | 0.00 403 | 0.27 403 | 0.00 407 | 0.00 403 | 0.00 402 | 0.00 401 | 0.00 399 |
|
| DCPMVS | | | 0.02 371 | 0.03 374 | 0.00 384 | 0.00 406 | 0.00 409 | 0.00 395 | 0.00 408 | 0.00 402 | 0.00 403 | 0.27 403 | 0.00 407 | 0.00 403 | 0.00 402 | 0.00 401 | 0.00 399 |
|
| pcd_1.5k_mvsjas | | | 8.27 369 | 11.03 372 | 0.00 384 | 0.00 406 | 0.00 409 | 0.00 395 | 0.00 408 | 0.00 402 | 0.00 403 | 0.27 403 | 99.01 18 | 0.00 403 | 0.00 402 | 0.00 401 | 0.00 399 |
|
| sosnet-low-res | | | 0.02 371 | 0.03 374 | 0.00 384 | 0.00 406 | 0.00 409 | 0.00 395 | 0.00 408 | 0.00 402 | 0.00 403 | 0.27 403 | 0.00 407 | 0.00 403 | 0.00 402 | 0.00 401 | 0.00 399 |
|
| sosnet | | | 0.02 371 | 0.03 374 | 0.00 384 | 0.00 406 | 0.00 409 | 0.00 395 | 0.00 408 | 0.00 402 | 0.00 403 | 0.27 403 | 0.00 407 | 0.00 403 | 0.00 402 | 0.00 401 | 0.00 399 |
|
| uncertanet | | | 0.02 371 | 0.03 374 | 0.00 384 | 0.00 406 | 0.00 409 | 0.00 395 | 0.00 408 | 0.00 402 | 0.00 403 | 0.27 403 | 0.00 407 | 0.00 403 | 0.00 402 | 0.00 401 | 0.00 399 |
|
| Regformer | | | 0.02 371 | 0.03 374 | 0.00 384 | 0.00 406 | 0.00 409 | 0.00 395 | 0.00 408 | 0.00 402 | 0.00 403 | 0.27 403 | 0.00 407 | 0.00 403 | 0.00 402 | 0.00 401 | 0.00 399 |
|
| uanet | | | 0.02 371 | 0.03 374 | 0.00 384 | 0.00 406 | 0.00 409 | 0.00 395 | 0.00 408 | 0.00 402 | 0.00 403 | 0.27 403 | 0.00 407 | 0.00 403 | 0.00 402 | 0.00 401 | 0.00 399 |
|
| WAC-MVS | | | | | | | 97.16 274 | | | | | | | | 95.47 327 | | |
|
| FOURS1 | | | | | | 99.91 1 | 99.93 1 | 99.87 9 | 99.56 69 | 99.10 27 | 99.81 37 | | | | | | |
|
| MSC_two_6792asdad | | | | | 99.87 11 | 99.51 169 | 99.76 37 | | 99.33 257 | | | | | 99.96 30 | 98.87 105 | 99.84 77 | 99.89 20 |
|
| No_MVS | | | | | 99.87 11 | 99.51 169 | 99.76 37 | | 99.33 257 | | | | | 99.96 30 | 98.87 105 | 99.84 77 | 99.89 20 |
|
| eth-test2 | | | | | | 0.00 406 | | | | | | | | | | | |
|
| eth-test | | | | | | 0.00 406 | | | | | | | | | | | |
|
| IU-MVS | | | | | | 99.84 32 | 99.88 8 | | 99.32 267 | 98.30 112 | 99.84 29 | | | | 98.86 110 | 99.85 69 | 99.89 20 |
|
| save fliter | | | | | | 99.76 65 | 99.59 70 | 99.14 286 | 99.40 220 | 99.00 43 | | | | | | | |
|
| test_0728_SECOND | | | | | 99.91 2 | 99.84 32 | 99.89 4 | 99.57 116 | 99.51 115 | | | | | 99.96 30 | 98.93 96 | 99.86 62 | 99.88 26 |
|
| GSMVS | | | | | | | | | | | | | | | | | 99.52 167 |
|
| test_part2 | | | | | | 99.81 46 | 99.83 16 | | | | 99.77 51 | | | | | | |
|
| sam_mvs1 | | | | | | | | | | | | | 94.86 208 | | | | 99.52 167 |
|
| sam_mvs | | | | | | | | | | | | | 94.72 221 | | | | |
|
| MTGPA |  | | | | | | | | 99.47 173 | | | | | | | | |
|
| MTMP | | | | | | | | 99.54 139 | 98.88 336 | | | | | | | | |
|
| test9_res | | | | | | | | | | | | | | | 97.49 252 | 99.72 118 | 99.75 88 |
|
| agg_prior2 | | | | | | | | | | | | | | | 97.21 268 | 99.73 117 | 99.75 88 |
|
| agg_prior | | | | | | 99.67 111 | 99.62 65 | | 99.40 220 | | 98.87 258 | | | 99.91 105 | | | |
|
| test_prior4 | | | | | | | 99.56 75 | 98.99 319 | | | | | | | | | |
|
| test_prior | | | | | 99.68 68 | 99.67 111 | 99.48 89 | | 99.56 69 | | | | | 99.83 162 | | | 99.74 92 |
|
| 旧先验2 | | | | | | | | 98.96 326 | | 96.70 276 | 99.47 131 | | | 99.94 69 | 98.19 188 | | |
|
| æ–°å‡ ä½•2 | | | | | | | | 99.01 317 | | | | | | | | | |
|
| æ— å…ˆéªŒ | | | | | | | | 98.99 319 | 99.51 115 | 96.89 266 | | | | 99.93 84 | 97.53 249 | | 99.72 103 |
|
| 原ACMM2 | | | | | | | | 98.95 329 | | | | | | | | | |
|
| testdata2 | | | | | | | | | | | | | | 99.95 59 | 96.67 300 | | |
|
| segment_acmp | | | | | | | | | | | | | 98.96 24 | | | | |
|
| testdata1 | | | | | | | | 98.85 340 | | 98.32 111 | | | | | | | |
|
| test12 | | | | | 99.75 58 | 99.64 127 | 99.61 67 | | 99.29 279 | | 99.21 198 | | 98.38 87 | 99.89 126 | | 99.74 115 | 99.74 92 |
|
| plane_prior7 | | | | | | 99.29 236 | 97.03 287 | | | | | | | | | | |
|
| plane_prior6 | | | | | | 99.27 241 | 96.98 291 | | | | | | 92.71 285 | | | | |
|
| plane_prior5 | | | | | | | | | 99.47 173 | | | | | 99.69 223 | 97.78 221 | 97.63 246 | 98.67 284 |
|
| plane_prior3 | | | | | | | 97.00 289 | | | 98.69 79 | 99.11 216 | | | | | | |
|
| plane_prior2 | | | | | | | | 99.39 219 | | 98.97 51 | | | | | | | |
|
| plane_prior1 | | | | | | 99.26 243 | | | | | | | | | | | |
|
| plane_prior | | | | | | | 96.97 292 | 99.21 277 | | 98.45 96 | | | | | | 97.60 249 | |
|
| n2 | | | | | | | | | 0.00 408 | | | | | | | | |
|
| nn | | | | | | | | | 0.00 408 | | | | | | | | |
|
| door-mid | | | | | | | | | 98.05 373 | | | | | | | | |
|
| test11 | | | | | | | | | 99.35 246 | | | | | | | | |
|
| door | | | | | | | | | 97.92 374 | | | | | | | | |
|
| HQP5-MVS | | | | | | | 96.83 297 | | | | | | | | | | |
|
| HQP-NCC | | | | | | 99.19 257 | | 98.98 322 | | 98.24 118 | 98.66 285 | | | | | | |
|
| ACMP_Plane | | | | | | 99.19 257 | | 98.98 322 | | 98.24 118 | 98.66 285 | | | | | | |
|
| BP-MVS | | | | | | | | | | | | | | | 97.19 272 | | |
|
| HQP4-MVS | | | | | | | | | | | 98.66 285 | | | 99.64 236 | | | 98.64 296 |
|
| HQP3-MVS | | | | | | | | | 99.39 223 | | | | | | | 97.58 251 | |
|
| HQP2-MVS | | | | | | | | | | | | | 92.47 294 | | | | |
|
| MDTV_nov1_ep13_2view | | | | | | | 95.18 343 | 99.35 235 | | 96.84 269 | 99.58 110 | | 95.19 199 | | 97.82 218 | | 99.46 186 |
|
| ACMMP++_ref | | | | | | | | | | | | | | | | 97.19 281 | |
|
| ACMMP++ | | | | | | | | | | | | | | | | 97.43 270 | |
|
| Test By Simon | | | | | | | | | | | | | 98.75 55 | | | | |
|