This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort by
test_vis1_n97.92 23097.44 26499.34 13699.53 16298.08 23499.74 4499.49 14399.15 20100.00 199.94 679.51 38499.98 1399.88 1499.76 11099.97 4
fmvsm_s_conf0.1_n_a99.26 6899.06 8199.85 2899.52 16699.62 6599.54 13999.62 4198.69 7999.99 299.96 194.47 23699.94 6999.88 1499.92 2499.98 2
fmvsm_s_conf0.1_n99.29 6299.10 7599.86 2199.70 10199.65 5799.53 14799.62 4198.74 7599.99 299.95 394.53 23499.94 6999.89 1399.96 1299.97 4
test_vis1_n_192098.63 15998.40 16699.31 14399.86 2097.94 24699.67 6499.62 4199.43 799.99 299.91 2087.29 363100.00 199.92 1299.92 2499.98 2
test_fmvs1_n98.41 17198.14 18299.21 16299.82 4297.71 25899.74 4499.49 14399.32 1499.99 299.95 385.32 37099.97 2199.82 1699.84 7799.96 7
fmvsm_l_conf0.5_n_a99.71 199.67 199.85 2899.86 2099.61 6799.56 12299.63 3999.48 399.98 699.83 6898.75 5599.99 499.97 199.96 1299.94 11
fmvsm_l_conf0.5_n99.71 199.67 199.85 2899.84 3299.63 6499.56 12299.63 3999.47 499.98 699.82 7698.75 5599.99 499.97 199.97 799.94 11
fmvsm_s_conf0.5_n_a99.56 1399.47 1799.85 2899.83 3999.64 6399.52 14899.65 3399.10 2799.98 699.92 1497.35 12099.96 3099.94 1099.92 2499.95 9
fmvsm_s_conf0.5_n99.51 1899.40 2599.85 2899.84 3299.65 5799.51 15699.67 2399.13 2299.98 699.92 1496.60 14699.96 3099.95 899.96 1299.95 9
test_fmvsm_n_192099.69 499.66 399.78 5299.84 3299.44 9499.58 10999.69 1899.43 799.98 699.91 2098.62 70100.00 199.97 199.95 1699.90 17
test_fmvs198.88 12398.79 12599.16 16799.69 10697.61 26099.55 13499.49 14399.32 1499.98 699.91 2091.41 31999.96 3099.82 1699.92 2499.90 17
dcpmvs_299.23 7499.58 798.16 29099.83 3994.68 35099.76 3799.52 10199.07 3599.98 699.88 3698.56 7499.93 8499.67 2199.98 499.87 31
test_cas_vis1_n_192099.16 8299.01 9499.61 8499.81 4698.86 17599.65 7599.64 3699.39 1099.97 1399.94 693.20 27299.98 1399.55 2999.91 3199.99 1
mvsany_test199.50 2099.46 2099.62 8399.61 14099.09 13698.94 33199.48 15599.10 2799.96 1499.91 2098.85 3999.96 3099.72 1899.58 13799.82 54
test_fmvsmconf_n99.70 399.64 499.87 1199.80 5299.66 5399.48 17899.64 3699.45 599.92 1599.92 1498.62 7099.99 499.96 799.99 199.96 7
SED-MVS99.61 799.52 1199.88 599.84 3299.90 299.60 9599.48 15599.08 3399.91 1699.81 9099.20 799.96 3098.91 9999.85 6999.79 74
test_241102_ONE99.84 3299.90 299.48 15599.07 3599.91 1699.74 14399.20 799.76 193
EI-MVSNet-UG-set99.58 999.57 899.64 7899.78 5699.14 13199.60 9599.45 19399.01 4099.90 1899.83 6898.98 2399.93 8499.59 2599.95 1699.86 33
EI-MVSNet-Vis-set99.58 999.56 1099.64 7899.78 5699.15 13099.61 9499.45 19399.01 4099.89 1999.82 7699.01 1899.92 9599.56 2899.95 1699.85 36
DVP-MVS++99.59 899.50 1399.88 599.51 16999.88 899.87 999.51 11598.99 4599.88 2099.81 9099.27 599.96 3098.85 11299.80 9799.81 61
test_241102_TWO99.48 15599.08 3399.88 2099.81 9098.94 2999.96 3098.91 9999.84 7799.88 26
DPE-MVScopyleft99.46 3199.32 4099.91 299.78 5699.88 899.36 23099.51 11598.73 7699.88 2099.84 6498.72 6199.96 3098.16 19299.87 5499.88 26
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
SD-MVS99.41 4799.52 1199.05 17899.74 8099.68 4899.46 18799.52 10199.11 2699.88 2099.91 2099.43 197.70 37898.72 13099.93 2299.77 82
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
APDe-MVScopyleft99.66 599.57 899.92 199.77 6299.89 499.75 4199.56 6999.02 3899.88 2099.85 5499.18 1099.96 3099.22 6999.92 2499.90 17
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
test_fmvsmconf0.1_n99.55 1499.45 2199.86 2199.44 19699.65 5799.50 16399.61 4899.45 599.87 2599.92 1497.31 12199.97 2199.95 899.99 199.97 4
test_fmvsmvis_n_192099.65 699.61 699.77 5599.38 21199.37 10099.58 10999.62 4199.41 999.87 2599.92 1498.81 44100.00 199.97 199.93 2299.94 11
test072699.85 2699.89 499.62 8899.50 13599.10 2799.86 2799.82 7698.94 29
Vis-MVSNetpermissive99.12 9498.97 10099.56 9499.78 5699.10 13599.68 6199.66 2898.49 9399.86 2799.87 4494.77 21799.84 15199.19 7199.41 14899.74 92
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
PC_three_145298.18 13199.84 2999.70 15899.31 398.52 36198.30 18399.80 9799.81 61
IU-MVS99.84 3299.88 899.32 26798.30 11299.84 2998.86 11099.85 6999.89 20
xiu_mvs_v1_base_debu99.29 6299.27 5799.34 13699.63 13098.97 15399.12 28999.51 11598.86 6099.84 2999.47 25598.18 9699.99 499.50 3699.31 15799.08 221
xiu_mvs_v1_base99.29 6299.27 5799.34 13699.63 13098.97 15399.12 28999.51 11598.86 6099.84 2999.47 25598.18 9699.99 499.50 3699.31 15799.08 221
xiu_mvs_v1_base_debi99.29 6299.27 5799.34 13699.63 13098.97 15399.12 28999.51 11598.86 6099.84 2999.47 25598.18 9699.99 499.50 3699.31 15799.08 221
DeepPCF-MVS98.18 398.81 13899.37 3097.12 33699.60 14591.75 37698.61 36199.44 20199.35 1299.83 3499.85 5498.70 6399.81 17399.02 8799.91 3199.81 61
MVS_030499.42 4299.32 4099.72 6599.70 10199.27 11399.52 14897.57 38199.51 299.82 3599.78 12198.09 10099.96 3099.97 199.97 799.94 11
TSAR-MVS + GP.99.36 5499.36 3299.36 13599.67 11198.61 19899.07 29999.33 25799.00 4399.82 3599.81 9099.06 1699.84 15199.09 8099.42 14799.65 129
FOURS199.91 199.93 199.87 999.56 6999.10 2799.81 37
DVP-MVScopyleft99.57 1299.47 1799.88 599.85 2699.89 499.57 11699.37 23999.10 2799.81 3799.80 10398.94 2999.96 3098.93 9699.86 6299.81 61
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD98.99 4599.81 3799.80 10399.09 1499.96 3098.85 11299.90 3999.88 26
MVSFormer99.17 8099.12 7399.29 15199.51 16998.94 16599.88 499.46 18297.55 20299.80 4099.65 18697.39 11699.28 29299.03 8599.85 6999.65 129
lupinMVS99.13 8899.01 9499.46 12299.51 16998.94 16599.05 30499.16 30197.86 16799.80 4099.56 22397.39 11699.86 13998.94 9499.85 6999.58 154
tttt051798.42 16998.14 18299.28 15499.66 11998.38 22199.74 4496.85 38597.68 18999.79 4299.74 14391.39 32099.89 12698.83 11899.56 13899.57 156
APD-MVS_3200maxsize99.48 2699.35 3499.85 2899.76 6599.83 1699.63 8299.54 8598.36 10699.79 4299.82 7698.86 3899.95 5998.62 14399.81 9399.78 80
jason99.13 8899.03 8699.45 12399.46 19098.87 17299.12 28999.26 28598.03 15699.79 4299.65 18697.02 13299.85 14599.02 8799.90 3999.65 129
jason: jason.
SteuartSystems-ACMMP99.54 1599.42 2299.87 1199.82 4299.81 2599.59 10199.51 11598.62 8399.79 4299.83 6899.28 499.97 2198.48 16599.90 3999.84 40
Skip Steuart: Steuart Systems R&D Blog.
DeepC-MVS_fast98.69 199.49 2299.39 2799.77 5599.63 13099.59 7099.36 23099.46 18299.07 3599.79 4299.82 7698.85 3999.92 9598.68 13799.87 5499.82 54
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test_fmvsmconf0.01_n99.22 7599.03 8699.79 4998.42 35599.48 8999.55 13499.51 11599.39 1099.78 4799.93 994.80 21299.95 5999.93 1199.95 1699.94 11
CS-MVS99.50 2099.48 1599.54 9799.76 6599.42 9699.90 199.55 7798.56 8799.78 4799.70 15898.65 6899.79 18299.65 2399.78 10499.41 195
SMA-MVScopyleft99.44 3799.30 4999.85 2899.73 8799.83 1699.56 12299.47 17397.45 21499.78 4799.82 7699.18 1099.91 10598.79 12399.89 4899.81 61
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
TSAR-MVS + MP.99.58 999.50 1399.81 4499.91 199.66 5399.63 8299.39 22398.91 5899.78 4799.85 5499.36 299.94 6998.84 11599.88 5199.82 54
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
test250696.81 30696.65 30397.29 33299.74 8092.21 37599.60 9585.06 40499.13 2299.77 5199.93 987.82 36199.85 14599.38 4899.38 14999.80 70
test_part299.81 4699.83 1699.77 51
MSP-MVS99.42 4299.27 5799.88 599.89 899.80 2799.67 6499.50 13598.70 7899.77 5199.49 24798.21 9499.95 5998.46 16999.77 10799.88 26
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
UA-Net99.42 4299.29 5399.80 4699.62 13699.55 7799.50 16399.70 1598.79 7099.77 5199.96 197.45 11599.96 3098.92 9899.90 3999.89 20
APD-MVScopyleft99.27 6699.08 7999.84 3999.75 7399.79 3099.50 16399.50 13597.16 24099.77 5199.82 7698.78 4899.94 6997.56 24699.86 6299.80 70
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
SR-MVS-dyc-post99.45 3399.31 4799.85 2899.76 6599.82 2299.63 8299.52 10198.38 10299.76 5699.82 7698.53 7699.95 5998.61 14699.81 9399.77 82
RE-MVS-def99.34 3699.76 6599.82 2299.63 8299.52 10198.38 10299.76 5699.82 7698.75 5598.61 14699.81 9399.77 82
ACMMP_NAP99.47 2999.34 3699.88 599.87 1599.86 1399.47 18499.48 15598.05 15399.76 5699.86 4998.82 4399.93 8498.82 12299.91 3199.84 40
HPM-MVS_fast99.51 1899.40 2599.85 2899.91 199.79 3099.76 3799.56 6997.72 18599.76 5699.75 13899.13 1299.92 9599.07 8399.92 2499.85 36
MM99.74 6199.31 10799.52 14898.87 33899.55 199.74 6099.80 10396.47 15199.98 1399.97 199.97 799.94 11
VNet99.11 9898.90 10999.73 6499.52 16699.56 7599.41 20799.39 22399.01 4099.74 6099.78 12195.56 18499.92 9599.52 3498.18 23199.72 103
patch_mono-299.26 6899.62 598.16 29099.81 4694.59 35299.52 14899.64 3699.33 1399.73 6299.90 2699.00 2299.99 499.69 1999.98 499.89 20
SR-MVS99.43 4099.29 5399.86 2199.75 7399.83 1699.59 10199.62 4198.21 12499.73 6299.79 11598.68 6499.96 3098.44 17099.77 10799.79 74
thisisatest053098.35 17798.03 19799.31 14399.63 13098.56 20199.54 13996.75 38797.53 20699.73 6299.65 18691.25 32399.89 12698.62 14399.56 13899.48 178
CS-MVS-test99.49 2299.48 1599.54 9799.78 5699.30 10999.89 299.58 6198.56 8799.73 6299.69 16898.55 7599.82 16899.69 1999.85 6999.48 178
EC-MVSNet99.44 3799.39 2799.58 9099.56 15599.49 8799.88 499.58 6198.38 10299.73 6299.69 16898.20 9599.70 21899.64 2499.82 9099.54 161
diffmvspermissive99.14 8699.02 9099.51 11399.61 14098.96 15799.28 25399.49 14398.46 9599.72 6799.71 15496.50 15099.88 13199.31 5899.11 17199.67 122
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
SF-MVS99.38 5299.24 6299.79 4999.79 5499.68 4899.57 11699.54 8597.82 17699.71 6899.80 10398.95 2799.93 8498.19 18899.84 7799.74 92
xiu_mvs_v2_base99.26 6899.25 6199.29 15199.53 16298.91 16999.02 31299.45 19398.80 6999.71 6899.26 30998.94 2999.98 1399.34 5599.23 16198.98 235
PS-MVSNAJ99.32 5899.32 4099.30 14899.57 15198.94 16598.97 32599.46 18298.92 5799.71 6899.24 31199.01 1899.98 1399.35 5199.66 12898.97 236
PGM-MVS99.45 3399.31 4799.86 2199.87 1599.78 3699.58 10999.65 3397.84 17199.71 6899.80 10399.12 1399.97 2198.33 17999.87 5499.83 49
114514_t98.93 11998.67 13599.72 6599.85 2699.53 8299.62 8899.59 5792.65 37099.71 6899.78 12198.06 10299.90 11698.84 11599.91 3199.74 92
PVSNet_Blended_VisFu99.36 5499.28 5599.61 8499.86 2099.07 14199.47 18499.93 297.66 19299.71 6899.86 4997.73 11099.96 3099.47 4399.82 9099.79 74
MTAPA99.52 1799.39 2799.89 499.90 499.86 1399.66 6999.47 17398.79 7099.68 7499.81 9098.43 8399.97 2198.88 10299.90 3999.83 49
HFP-MVS99.49 2299.37 3099.86 2199.87 1599.80 2799.66 6999.67 2398.15 13399.68 7499.69 16899.06 1699.96 3098.69 13599.87 5499.84 40
VDDNet97.55 27997.02 29799.16 16799.49 18098.12 23399.38 22499.30 27595.35 33699.68 7499.90 2682.62 38099.93 8499.31 5898.13 23599.42 193
HPM-MVScopyleft99.42 4299.28 5599.83 4099.90 499.72 4299.81 2099.54 8597.59 19699.68 7499.63 19898.91 3499.94 6998.58 15299.91 3199.84 40
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
VDD-MVS97.73 26197.35 27698.88 20999.47 18997.12 27699.34 23898.85 34098.19 12799.67 7899.85 5482.98 37899.92 9599.49 4098.32 22299.60 146
ACMMPR99.49 2299.36 3299.86 2199.87 1599.79 3099.66 6999.67 2398.15 13399.67 7899.69 16898.95 2799.96 3098.69 13599.87 5499.84 40
PVSNet_BlendedMVS98.86 12798.80 12299.03 18099.76 6598.79 18499.28 25399.91 397.42 21999.67 7899.37 28097.53 11399.88 13198.98 9097.29 27698.42 336
PVSNet_Blended99.08 10498.97 10099.42 12899.76 6598.79 18498.78 34799.91 396.74 27399.67 7899.49 24797.53 11399.88 13198.98 9099.85 6999.60 146
sss99.17 8099.05 8299.53 10599.62 13698.97 15399.36 23099.62 4197.83 17299.67 7899.65 18697.37 11999.95 5999.19 7199.19 16499.68 119
ECVR-MVScopyleft98.04 21098.05 19598.00 30299.74 8094.37 35599.59 10194.98 39499.13 2299.66 8399.93 990.67 32999.84 15199.40 4799.38 14999.80 70
h-mvs3397.70 26797.28 28698.97 19099.70 10197.27 26899.36 23099.45 19398.94 5499.66 8399.64 19294.93 20399.99 499.48 4184.36 38399.65 129
hse-mvs297.50 28497.14 29298.59 24299.49 18097.05 28399.28 25399.22 29298.94 5499.66 8399.42 26594.93 20399.65 23399.48 4183.80 38599.08 221
region2R99.48 2699.35 3499.87 1199.88 1199.80 2799.65 7599.66 2898.13 13799.66 8399.68 17498.96 2499.96 3098.62 14399.87 5499.84 40
RPSCF98.22 18598.62 14696.99 33899.82 4291.58 37799.72 4999.44 20196.61 28599.66 8399.89 3095.92 17199.82 16897.46 25699.10 17499.57 156
OMC-MVS99.08 10499.04 8499.20 16399.67 11198.22 22799.28 25399.52 10198.07 14899.66 8399.81 9097.79 10899.78 18797.79 22099.81 9399.60 146
test111198.04 21098.11 18697.83 31399.74 8093.82 36099.58 10995.40 39399.12 2599.65 8999.93 990.73 32899.84 15199.43 4699.38 14999.82 54
test_one_060199.81 4699.88 899.49 14398.97 5199.65 8999.81 9099.09 14
LFMVS97.90 23397.35 27699.54 9799.52 16699.01 14899.39 21998.24 36997.10 24899.65 8999.79 11584.79 37299.91 10599.28 6398.38 21599.69 115
MVS_111021_LR99.41 4799.33 3899.65 7399.77 6299.51 8698.94 33199.85 698.82 6599.65 8999.74 14398.51 7899.80 17998.83 11899.89 4899.64 136
SDMVSNet99.11 9898.90 10999.75 5899.81 4699.59 7099.81 2099.65 3398.78 7399.64 9399.88 3694.56 23099.93 8499.67 2198.26 22499.72 103
sd_testset98.75 14598.57 15599.29 15199.81 4698.26 22599.56 12299.62 4198.78 7399.64 9399.88 3692.02 30399.88 13199.54 3098.26 22499.72 103
9.1499.10 7599.72 9199.40 21599.51 11597.53 20699.64 9399.78 12198.84 4199.91 10597.63 23799.82 90
GST-MVS99.40 5099.24 6299.85 2899.86 2099.79 3099.60 9599.67 2397.97 15999.63 9699.68 17498.52 7799.95 5998.38 17399.86 6299.81 61
CPTT-MVS99.11 9898.90 10999.74 6199.80 5299.46 9299.59 10199.49 14397.03 25699.63 9699.69 16897.27 12499.96 3097.82 21899.84 7799.81 61
ACMMPcopyleft99.45 3399.32 4099.82 4199.89 899.67 5199.62 8899.69 1898.12 13899.63 9699.84 6498.73 6099.96 3098.55 16199.83 8699.81 61
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DeepC-MVS98.35 299.30 6099.19 6799.64 7899.82 4299.23 11899.62 8899.55 7798.94 5499.63 9699.95 395.82 17699.94 6999.37 5099.97 799.73 97
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
FE-MVS98.48 16498.17 17899.40 13099.54 16198.96 15799.68 6198.81 34495.54 33499.62 10099.70 15893.82 25999.93 8497.35 26299.46 14499.32 205
CHOSEN 280x42099.12 9499.13 7299.08 17399.66 11997.89 24798.43 37199.71 1398.88 5999.62 10099.76 13596.63 14599.70 21899.46 4499.99 199.66 125
PHI-MVS99.30 6099.17 6999.70 6799.56 15599.52 8599.58 10999.80 897.12 24499.62 10099.73 14998.58 7299.90 11698.61 14699.91 3199.68 119
test_yl98.86 12798.63 14199.54 9799.49 18099.18 12299.50 16399.07 31398.22 12299.61 10399.51 24195.37 19099.84 15198.60 14998.33 21899.59 150
DCV-MVSNet98.86 12798.63 14199.54 9799.49 18099.18 12299.50 16399.07 31398.22 12299.61 10399.51 24195.37 19099.84 15198.60 14998.33 21899.59 150
MG-MVS99.13 8899.02 9099.45 12399.57 15198.63 19599.07 29999.34 25098.99 4599.61 10399.82 7697.98 10499.87 13697.00 28199.80 9799.85 36
MP-MVS-pluss99.37 5399.20 6699.88 599.90 499.87 1299.30 24599.52 10197.18 23899.60 10699.79 11598.79 4799.95 5998.83 11899.91 3199.83 49
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
CDPH-MVS99.13 8898.91 10899.80 4699.75 7399.71 4499.15 28499.41 21296.60 28799.60 10699.55 22698.83 4299.90 11697.48 25399.83 8699.78 80
EPP-MVSNet99.13 8898.99 9699.53 10599.65 12599.06 14299.81 2099.33 25797.43 21799.60 10699.88 3697.14 12699.84 15199.13 7698.94 18599.69 115
HyFIR lowres test99.11 9898.92 10699.65 7399.90 499.37 10099.02 31299.91 397.67 19199.59 10999.75 13895.90 17399.73 20299.53 3299.02 18299.86 33
FA-MVS(test-final)98.75 14598.53 15999.41 12999.55 15999.05 14499.80 2599.01 31896.59 28999.58 11099.59 21295.39 18999.90 11697.78 22199.49 14399.28 208
MVS_Test99.10 10298.97 10099.48 11799.49 18099.14 13199.67 6499.34 25097.31 22799.58 11099.76 13597.65 11299.82 16898.87 10599.07 17799.46 186
MDTV_nov1_ep13_2view95.18 34399.35 23596.84 26999.58 11095.19 19997.82 21899.46 186
DELS-MVS99.48 2699.42 2299.65 7399.72 9199.40 9999.05 30499.66 2899.14 2199.57 11399.80 10398.46 8199.94 6999.57 2799.84 7799.60 146
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
ZD-MVS99.71 9699.79 3099.61 4896.84 26999.56 11499.54 23198.58 7299.96 3096.93 28899.75 112
CR-MVSNet98.17 19297.93 20998.87 21399.18 26098.49 21299.22 27599.33 25796.96 26099.56 11499.38 27794.33 24099.00 33694.83 34098.58 20599.14 213
RPMNet96.72 30795.90 31999.19 16499.18 26098.49 21299.22 27599.52 10188.72 38399.56 11497.38 37794.08 25099.95 5986.87 38798.58 20599.14 213
IS-MVSNet99.05 10798.87 11499.57 9299.73 8799.32 10499.75 4199.20 29698.02 15799.56 11499.86 4996.54 14999.67 22598.09 19599.13 17099.73 97
ZNCC-MVS99.47 2999.33 3899.87 1199.87 1599.81 2599.64 7899.67 2398.08 14799.55 11899.64 19298.91 3499.96 3098.72 13099.90 3999.82 54
thisisatest051598.14 19597.79 22099.19 16499.50 17898.50 21198.61 36196.82 38696.95 26299.54 11999.43 26391.66 31599.86 13998.08 19999.51 14299.22 211
MVS_111021_HR99.41 4799.32 4099.66 6999.72 9199.47 9198.95 32999.85 698.82 6599.54 11999.73 14998.51 7899.74 19698.91 9999.88 5199.77 82
CP-MVS99.45 3399.32 4099.85 2899.83 3999.75 3999.69 5599.52 10198.07 14899.53 12199.63 19898.93 3399.97 2198.74 12799.91 3199.83 49
WTY-MVS99.06 10698.88 11399.61 8499.62 13699.16 12599.37 22699.56 6998.04 15499.53 12199.62 20396.84 13899.94 6998.85 11298.49 21399.72 103
MCST-MVS99.43 4099.30 4999.82 4199.79 5499.74 4199.29 24999.40 22098.79 7099.52 12399.62 20398.91 3499.90 11698.64 14199.75 11299.82 54
PatchT97.03 30296.44 30798.79 23098.99 29898.34 22299.16 28199.07 31392.13 37199.52 12397.31 38094.54 23398.98 33888.54 38098.73 20199.03 229
CANet99.25 7299.14 7199.59 8799.41 20299.16 12599.35 23599.57 6498.82 6599.51 12599.61 20796.46 15299.95 5999.59 2599.98 499.65 129
mPP-MVS99.44 3799.30 4999.86 2199.88 1199.79 3099.69 5599.48 15598.12 13899.50 12699.75 13898.78 4899.97 2198.57 15599.89 4899.83 49
PatchMatch-RL98.84 13798.62 14699.52 11199.71 9699.28 11199.06 30299.77 997.74 18499.50 12699.53 23595.41 18899.84 15197.17 27599.64 13199.44 191
PVSNet96.02 1798.85 13498.84 11998.89 20799.73 8797.28 26798.32 37799.60 5497.86 16799.50 12699.57 22096.75 14299.86 13998.56 15899.70 12299.54 161
LS3D99.27 6699.12 7399.74 6199.18 26099.75 3999.56 12299.57 6498.45 9699.49 12999.85 5497.77 10999.94 6998.33 17999.84 7799.52 167
MP-MVScopyleft99.33 5799.15 7099.87 1199.88 1199.82 2299.66 6999.46 18298.09 14399.48 13099.74 14398.29 9199.96 3097.93 20899.87 5499.82 54
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
旧先验298.96 32696.70 27699.47 13199.94 6998.19 188
MSDG98.98 11598.80 12299.53 10599.76 6599.19 12098.75 35099.55 7797.25 23299.47 13199.77 12997.82 10799.87 13696.93 28899.90 3999.54 161
CDS-MVSNet99.09 10399.03 8699.25 15799.42 19998.73 18799.45 18899.46 18298.11 14099.46 13399.77 12998.01 10399.37 27398.70 13298.92 18899.66 125
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MSLP-MVS++99.46 3199.47 1799.44 12799.60 14599.16 12599.41 20799.71 1398.98 4899.45 13499.78 12199.19 999.54 25099.28 6399.84 7799.63 140
XVG-OURS98.73 14898.68 13498.88 20999.70 10197.73 25498.92 33399.55 7798.52 9199.45 13499.84 6495.27 19499.91 10598.08 19998.84 19499.00 232
casdiffmvs_mvgpermissive99.15 8499.02 9099.55 9699.66 11999.09 13699.64 7899.56 6998.26 11699.45 13499.87 4496.03 16599.81 17399.54 3099.15 16899.73 97
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
tpmrst98.33 17898.48 16197.90 30899.16 26894.78 34899.31 24399.11 30697.27 23099.45 13499.59 21295.33 19299.84 15198.48 16598.61 20299.09 220
TAMVS99.12 9499.08 7999.24 15999.46 19098.55 20299.51 15699.46 18298.09 14399.45 13499.82 7698.34 8999.51 25198.70 13298.93 18699.67 122
ETV-MVS99.26 6899.21 6599.40 13099.46 19099.30 10999.56 12299.52 10198.52 9199.44 13999.27 30798.41 8699.86 13999.10 7999.59 13699.04 228
CANet_DTU98.97 11798.87 11499.25 15799.33 22498.42 22099.08 29899.30 27599.16 1999.43 14099.75 13895.27 19499.97 2198.56 15899.95 1699.36 200
SCA98.19 18998.16 17998.27 28599.30 23295.55 33199.07 29998.97 32297.57 19999.43 14099.57 22092.72 28399.74 19697.58 24199.20 16399.52 167
testdata99.54 9799.75 7398.95 16299.51 11597.07 25099.43 14099.70 15898.87 3799.94 6997.76 22599.64 13199.72 103
DPM-MVS98.95 11898.71 13199.66 6999.63 13099.55 7798.64 36099.10 30797.93 16299.42 14399.55 22698.67 6699.80 17995.80 31999.68 12699.61 144
XVG-OURS-SEG-HR98.69 15298.62 14698.89 20799.71 9697.74 25399.12 28999.54 8598.44 9999.42 14399.71 15494.20 24499.92 9598.54 16298.90 19099.00 232
baseline99.15 8499.02 9099.53 10599.66 11999.14 13199.72 4999.48 15598.35 10799.42 14399.84 6496.07 16399.79 18299.51 3599.14 16999.67 122
DP-MVS Recon99.12 9498.95 10499.65 7399.74 8099.70 4699.27 25899.57 6496.40 30399.42 14399.68 17498.75 5599.80 17997.98 20599.72 11899.44 191
Effi-MVS+-dtu98.78 14298.89 11298.47 26199.33 22496.91 29699.57 11699.30 27598.47 9499.41 14798.99 33796.78 14099.74 19698.73 12999.38 14998.74 258
casdiffmvspermissive99.13 8898.98 9999.56 9499.65 12599.16 12599.56 12299.50 13598.33 11099.41 14799.86 4995.92 17199.83 16299.45 4599.16 16599.70 113
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MIMVSNet97.73 26197.45 25998.57 24699.45 19597.50 26299.02 31298.98 32196.11 32399.41 14799.14 32290.28 33198.74 35695.74 32098.93 18699.47 184
CSCG99.32 5899.32 4099.32 14299.85 2698.29 22399.71 5199.66 2898.11 14099.41 14799.80 10398.37 8899.96 3098.99 8999.96 1299.72 103
F-COLMAP99.19 7699.04 8499.64 7899.78 5699.27 11399.42 20599.54 8597.29 22999.41 14799.59 21298.42 8599.93 8498.19 18899.69 12399.73 97
EIA-MVS99.18 7899.09 7899.45 12399.49 18099.18 12299.67 6499.53 9697.66 19299.40 15299.44 26198.10 9999.81 17398.94 9499.62 13499.35 201
mvsmamba98.92 12098.87 11499.08 17399.07 28499.16 12599.88 499.51 11598.15 13399.40 15299.89 3097.12 12799.33 28399.38 4897.40 27298.73 260
MDTV_nov1_ep1398.32 17199.11 27594.44 35499.27 25898.74 35197.51 20899.40 15299.62 20394.78 21499.76 19397.59 24098.81 198
iter_conf_final98.71 14998.61 15298.99 18699.49 18098.96 15799.63 8299.41 21298.19 12799.39 15599.77 12994.82 20999.38 26899.30 6197.52 25698.64 296
CVMVSNet98.57 16198.67 13598.30 28099.35 21895.59 33099.50 16399.55 7798.60 8599.39 15599.83 6894.48 23599.45 25598.75 12698.56 20899.85 36
CNVR-MVS99.42 4299.30 4999.78 5299.62 13699.71 4499.26 26699.52 10198.82 6599.39 15599.71 15498.96 2499.85 14598.59 15199.80 9799.77 82
Effi-MVS+98.81 13898.59 15399.48 11799.46 19099.12 13498.08 38399.50 13597.50 20999.38 15899.41 26996.37 15699.81 17399.11 7898.54 21099.51 173
mvs_anonymous99.03 11098.99 9699.16 16799.38 21198.52 20899.51 15699.38 23197.79 17799.38 15899.81 9097.30 12299.45 25599.35 5198.99 18399.51 173
iter_conf0598.55 16298.44 16298.87 21399.34 22298.60 19999.55 13499.42 20998.21 12499.37 16099.77 12993.55 26599.38 26899.30 6197.48 26498.63 304
XVS99.53 1699.42 2299.87 1199.85 2699.83 1699.69 5599.68 2098.98 4899.37 16099.74 14398.81 4499.94 6998.79 12399.86 6299.84 40
X-MVStestdata96.55 30995.45 32799.87 1199.85 2699.83 1699.69 5599.68 2098.98 4899.37 16064.01 40098.81 4499.94 6998.79 12399.86 6299.84 40
PatchmatchNetpermissive98.31 17998.36 16798.19 28899.16 26895.32 33999.27 25898.92 32897.37 22399.37 16099.58 21694.90 20699.70 21897.43 25999.21 16299.54 161
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
AllTest98.87 12498.72 12999.31 14399.86 2098.48 21499.56 12299.61 4897.85 16999.36 16499.85 5495.95 16899.85 14596.66 30199.83 8699.59 150
TestCases99.31 14399.86 2098.48 21499.61 4897.85 16999.36 16499.85 5495.95 16899.85 14596.66 30199.83 8699.59 150
Vis-MVSNet (Re-imp)98.87 12498.72 12999.31 14399.71 9698.88 17199.80 2599.44 20197.91 16499.36 16499.78 12195.49 18799.43 26497.91 20999.11 17199.62 142
alignmvs98.81 13898.56 15799.58 9099.43 19799.42 9699.51 15698.96 32498.61 8499.35 16798.92 34694.78 21499.77 18999.35 5198.11 23699.54 161
VPA-MVSNet98.29 18297.95 20699.30 14899.16 26899.54 7999.50 16399.58 6198.27 11599.35 16799.37 28092.53 29299.65 23399.35 5194.46 33798.72 261
AdaColmapbinary99.01 11498.80 12299.66 6999.56 15599.54 7999.18 27999.70 1598.18 13199.35 16799.63 19896.32 15799.90 11697.48 25399.77 10799.55 159
test22299.75 7399.49 8798.91 33599.49 14396.42 30199.34 17099.65 18698.28 9299.69 12399.72 103
API-MVS99.04 10899.03 8699.06 17699.40 20799.31 10799.55 13499.56 6998.54 8999.33 17199.39 27698.76 5299.78 18796.98 28399.78 10498.07 355
bld_raw_dy_0_6498.69 15298.58 15498.99 18698.88 31198.96 15799.80 2599.41 21297.91 16499.32 17299.87 4495.70 18199.31 28999.09 8097.27 27798.71 263
v14419297.92 23097.60 24498.87 21398.83 32198.65 19399.55 13499.34 25096.20 31499.32 17299.40 27294.36 23999.26 29696.37 30995.03 32898.70 268
GeoE98.85 13498.62 14699.53 10599.61 14099.08 13999.80 2599.51 11597.10 24899.31 17499.78 12195.23 19899.77 18998.21 18699.03 18099.75 88
canonicalmvs99.02 11198.86 11799.51 11399.42 19999.32 10499.80 2599.48 15598.63 8299.31 17498.81 35197.09 12999.75 19599.27 6697.90 24099.47 184
V4298.06 20497.79 22098.86 21798.98 30198.84 17799.69 5599.34 25096.53 29199.30 17699.37 28094.67 22599.32 28697.57 24594.66 33498.42 336
ab-mvs98.86 12798.63 14199.54 9799.64 12799.19 12099.44 19499.54 8597.77 17999.30 17699.81 9094.20 24499.93 8499.17 7498.82 19699.49 177
TAPA-MVS97.07 1597.74 26097.34 27998.94 19499.70 10197.53 26199.25 26899.51 11591.90 37299.30 17699.63 19898.78 4899.64 23688.09 38299.87 5499.65 129
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
新几何199.75 5899.75 7399.59 7099.54 8596.76 27299.29 17999.64 19298.43 8399.94 6996.92 29099.66 12899.72 103
test_fmvs297.25 29597.30 28497.09 33799.43 19793.31 36899.73 4798.87 33898.83 6499.28 18099.80 10384.45 37399.66 22897.88 21197.45 26698.30 344
VPNet97.84 24297.44 26499.01 18299.21 25398.94 16599.48 17899.57 6498.38 10299.28 18099.73 14988.89 34699.39 26799.19 7193.27 35598.71 263
HY-MVS97.30 798.85 13498.64 14099.47 12099.42 19999.08 13999.62 8899.36 24097.39 22299.28 18099.68 17496.44 15499.92 9598.37 17598.22 22699.40 197
PAPM_NR99.04 10898.84 11999.66 6999.74 8099.44 9499.39 21999.38 23197.70 18799.28 18099.28 30498.34 8999.85 14596.96 28599.45 14599.69 115
HPM-MVS++copyleft99.39 5199.23 6499.87 1199.75 7399.84 1599.43 19899.51 11598.68 8199.27 18499.53 23598.64 6999.96 3098.44 17099.80 9799.79 74
v124097.69 26897.32 28298.79 23098.85 31998.43 21899.48 17899.36 24096.11 32399.27 18499.36 28393.76 26299.24 30094.46 34395.23 32398.70 268
thres600view797.86 23897.51 25298.92 19899.72 9197.95 24499.59 10198.74 35197.94 16199.27 18498.62 35791.75 30999.86 13993.73 35298.19 23098.96 238
PLCcopyleft97.94 499.02 11198.85 11899.53 10599.66 11999.01 14899.24 27099.52 10196.85 26899.27 18499.48 25298.25 9399.91 10597.76 22599.62 13499.65 129
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
thres100view90097.76 25497.45 25998.69 23799.72 9197.86 25099.59 10198.74 35197.93 16299.26 18898.62 35791.75 30999.83 16293.22 35798.18 23198.37 342
EPMVS97.82 24797.65 23998.35 27598.88 31195.98 32399.49 17494.71 39697.57 19999.26 18899.48 25292.46 29799.71 21297.87 21399.08 17699.35 201
Fast-Effi-MVS+-dtu98.77 14498.83 12198.60 24199.41 20296.99 29099.52 14899.49 14398.11 14099.24 19099.34 29096.96 13699.79 18297.95 20799.45 14599.02 231
v192192097.80 25197.45 25998.84 22198.80 32298.53 20499.52 14899.34 25096.15 32099.24 19099.47 25593.98 25399.29 29195.40 33095.13 32698.69 272
LPG-MVS_test98.22 18598.13 18498.49 25599.33 22497.05 28399.58 10999.55 7797.46 21199.24 19099.83 6892.58 29099.72 20698.09 19597.51 25898.68 277
LGP-MVS_train98.49 25599.33 22497.05 28399.55 7797.46 21199.24 19099.83 6892.58 29099.72 20698.09 19597.51 25898.68 277
v114497.98 22197.69 23598.85 22098.87 31598.66 19299.54 13999.35 24696.27 30999.23 19499.35 28694.67 22599.23 30196.73 29695.16 32598.68 277
Anonymous2024052998.09 20097.68 23699.34 13699.66 11998.44 21799.40 21599.43 20793.67 36099.22 19599.89 3090.23 33599.93 8499.26 6798.33 21899.66 125
OPM-MVS98.19 18998.10 18798.45 26398.88 31197.07 28199.28 25399.38 23198.57 8699.22 19599.81 9092.12 30199.66 22898.08 19997.54 25598.61 316
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
test_djsdf98.67 15598.57 15598.98 18898.70 33798.91 16999.88 499.46 18297.55 20299.22 19599.88 3695.73 17999.28 29299.03 8597.62 24898.75 255
test1299.75 5899.64 12799.61 6799.29 27999.21 19898.38 8799.89 12699.74 11599.74 92
NCCC99.34 5699.19 6799.79 4999.61 14099.65 5799.30 24599.48 15598.86 6099.21 19899.63 19898.72 6199.90 11698.25 18499.63 13399.80 70
PMMVS98.80 14198.62 14699.34 13699.27 24198.70 18998.76 34999.31 27197.34 22499.21 19899.07 32897.20 12599.82 16898.56 15898.87 19199.52 167
v119297.81 24997.44 26498.91 20298.88 31198.68 19099.51 15699.34 25096.18 31699.20 20199.34 29094.03 25199.36 27795.32 33295.18 32498.69 272
EI-MVSNet98.67 15598.67 13598.68 23899.35 21897.97 24099.50 16399.38 23196.93 26599.20 20199.83 6897.87 10599.36 27798.38 17397.56 25398.71 263
MVSTER98.49 16398.32 17199.00 18499.35 21899.02 14699.54 13999.38 23197.41 22099.20 20199.73 14993.86 25899.36 27798.87 10597.56 25398.62 307
Anonymous20240521198.30 18197.98 20299.26 15699.57 15198.16 22999.41 20798.55 36396.03 32899.19 20499.74 14391.87 30699.92 9599.16 7598.29 22399.70 113
v2v48298.06 20497.77 22598.92 19898.90 30898.82 18199.57 11699.36 24096.65 28099.19 20499.35 28694.20 24499.25 29797.72 23194.97 32998.69 272
CNLPA99.14 8698.99 9699.59 8799.58 14999.41 9899.16 28199.44 20198.45 9699.19 20499.49 24798.08 10199.89 12697.73 22999.75 11299.48 178
UGNet98.87 12498.69 13399.40 13099.22 25298.72 18899.44 19499.68 2099.24 1799.18 20799.42 26592.74 28299.96 3099.34 5599.94 2199.53 166
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
tfpn200view997.72 26397.38 27298.72 23599.69 10697.96 24299.50 16398.73 35697.83 17299.17 20898.45 36291.67 31399.83 16293.22 35798.18 23198.37 342
thres40097.77 25397.38 27298.92 19899.69 10697.96 24299.50 16398.73 35697.83 17299.17 20898.45 36291.67 31399.83 16293.22 35798.18 23198.96 238
Test_1112_low_res98.89 12298.66 13899.57 9299.69 10698.95 16299.03 30999.47 17396.98 25899.15 21099.23 31296.77 14199.89 12698.83 11898.78 19999.86 33
baseline198.31 17997.95 20699.38 13499.50 17898.74 18699.59 10198.93 32698.41 10099.14 21199.60 21094.59 22899.79 18298.48 16593.29 35499.61 144
1112_ss98.98 11598.77 12699.59 8799.68 11099.02 14699.25 26899.48 15597.23 23599.13 21299.58 21696.93 13799.90 11698.87 10598.78 19999.84 40
CLD-MVS98.16 19398.10 18798.33 27699.29 23696.82 29998.75 35099.44 20197.83 17299.13 21299.55 22692.92 27699.67 22598.32 18197.69 24598.48 328
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
原ACMM199.65 7399.73 8799.33 10399.47 17397.46 21199.12 21499.66 18598.67 6699.91 10597.70 23499.69 12399.71 112
tpm97.67 27397.55 24698.03 29799.02 29395.01 34599.43 19898.54 36496.44 29999.12 21499.34 29091.83 30899.60 24497.75 22796.46 29399.48 178
HQP_MVS98.27 18498.22 17798.44 26699.29 23696.97 29299.39 21999.47 17398.97 5199.11 21699.61 20792.71 28599.69 22397.78 22197.63 24698.67 284
plane_prior397.00 28998.69 7999.11 216
CHOSEN 1792x268899.19 7699.10 7599.45 12399.89 898.52 20899.39 21999.94 198.73 7699.11 21699.89 3095.50 18699.94 6999.50 3699.97 799.89 20
v897.95 22697.63 24298.93 19698.95 30598.81 18399.80 2599.41 21296.03 32899.10 21999.42 26594.92 20599.30 29096.94 28794.08 34598.66 292
ADS-MVSNet298.02 21498.07 19497.87 30999.33 22495.19 34299.23 27199.08 31096.24 31199.10 21999.67 18094.11 24898.93 34896.81 29399.05 17899.48 178
ADS-MVSNet98.20 18898.08 19198.56 24999.33 22496.48 31199.23 27199.15 30296.24 31199.10 21999.67 18094.11 24899.71 21296.81 29399.05 17899.48 178
thres20097.61 27797.28 28698.62 24099.64 12798.03 23699.26 26698.74 35197.68 18999.09 22298.32 36691.66 31599.81 17392.88 36198.22 22698.03 358
dp97.75 25897.80 21997.59 32499.10 27893.71 36399.32 24198.88 33696.48 29699.08 22399.55 22692.67 28899.82 16896.52 30498.58 20599.24 210
GBi-Net97.68 27097.48 25498.29 28199.51 16997.26 27099.43 19899.48 15596.49 29399.07 22499.32 29790.26 33298.98 33897.10 27696.65 28898.62 307
test197.68 27097.48 25498.29 28199.51 16997.26 27099.43 19899.48 15596.49 29399.07 22499.32 29790.26 33298.98 33897.10 27696.65 28898.62 307
FMVSNet398.03 21297.76 22998.84 22199.39 21098.98 15099.40 21599.38 23196.67 27899.07 22499.28 30492.93 27598.98 33897.10 27696.65 28898.56 323
IterMVS-LS98.46 16698.42 16498.58 24599.59 14798.00 23899.37 22699.43 20796.94 26499.07 22499.59 21297.87 10599.03 33198.32 18195.62 31598.71 263
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
dmvs_re98.08 20298.16 17997.85 31099.55 15994.67 35199.70 5298.92 32898.15 13399.06 22899.35 28693.67 26499.25 29797.77 22497.25 27899.64 136
pmmvs498.13 19697.90 21198.81 22798.61 34698.87 17298.99 31999.21 29596.44 29999.06 22899.58 21695.90 17399.11 32297.18 27496.11 30198.46 333
XVG-ACMP-BASELINE97.83 24497.71 23498.20 28799.11 27596.33 31699.41 20799.52 10198.06 15299.05 23099.50 24489.64 34199.73 20297.73 22997.38 27498.53 324
CostFormer97.72 26397.73 23297.71 32099.15 27194.02 35999.54 13999.02 31794.67 35199.04 23199.35 28692.35 30099.77 18998.50 16497.94 23999.34 203
DP-MVS99.16 8298.95 10499.78 5299.77 6299.53 8299.41 20799.50 13597.03 25699.04 23199.88 3697.39 11699.92 9598.66 13999.90 3999.87 31
ACMM97.58 598.37 17698.34 16998.48 25799.41 20297.10 27799.56 12299.45 19398.53 9099.04 23199.85 5493.00 27499.71 21298.74 12797.45 26698.64 296
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Fast-Effi-MVS+98.70 15098.43 16399.51 11399.51 16999.28 11199.52 14899.47 17396.11 32399.01 23499.34 29096.20 16199.84 15197.88 21198.82 19699.39 198
nrg03098.64 15898.42 16499.28 15499.05 29099.69 4799.81 2099.46 18298.04 15499.01 23499.82 7696.69 14499.38 26899.34 5594.59 33698.78 248
test_prior298.96 32698.34 10899.01 23499.52 23898.68 6497.96 20699.74 115
MAR-MVS98.86 12798.63 14199.54 9799.37 21499.66 5399.45 18899.54 8596.61 28599.01 23499.40 27297.09 12999.86 13997.68 23699.53 14199.10 216
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PS-MVSNAJss98.92 12098.92 10698.90 20498.78 32698.53 20499.78 3299.54 8598.07 14899.00 23899.76 13599.01 1899.37 27399.13 7697.23 27998.81 245
PAPR98.63 15998.34 16999.51 11399.40 20799.03 14598.80 34599.36 24096.33 30499.00 23899.12 32698.46 8199.84 15195.23 33499.37 15699.66 125
D2MVS98.41 17198.50 16098.15 29399.26 24396.62 30699.40 21599.61 4897.71 18698.98 24099.36 28396.04 16499.67 22598.70 13297.41 27198.15 352
v1097.85 23997.52 25098.86 21798.99 29898.67 19199.75 4199.41 21295.70 33298.98 24099.41 26994.75 21999.23 30196.01 31594.63 33598.67 284
miper_enhance_ethall98.16 19398.08 19198.41 26998.96 30497.72 25598.45 37099.32 26796.95 26298.97 24299.17 31897.06 13199.22 30497.86 21495.99 30498.29 345
UniMVSNet (Re)98.29 18298.00 20099.13 17199.00 29599.36 10299.49 17499.51 11597.95 16098.97 24299.13 32396.30 15899.38 26898.36 17793.34 35398.66 292
TEST999.67 11199.65 5799.05 30499.41 21296.22 31398.95 24499.49 24798.77 5199.91 105
train_agg99.02 11198.77 12699.77 5599.67 11199.65 5799.05 30499.41 21296.28 30798.95 24499.49 24798.76 5299.91 10597.63 23799.72 11899.75 88
RRT_MVS98.70 15098.66 13898.83 22398.90 30898.45 21699.89 299.28 28197.76 18098.94 24699.92 1496.98 13499.25 29799.28 6397.00 28598.80 246
BH-RMVSNet98.41 17198.08 19199.40 13099.41 20298.83 18099.30 24598.77 34797.70 18798.94 24699.65 18692.91 27899.74 19696.52 30499.55 14099.64 136
test_899.67 11199.61 6799.03 30999.41 21296.28 30798.93 24899.48 25298.76 5299.91 105
3Dnovator97.25 999.24 7399.05 8299.81 4499.12 27399.66 5399.84 1399.74 1099.09 3298.92 24999.90 2695.94 17099.98 1398.95 9399.92 2499.79 74
v7n97.87 23697.52 25098.92 19898.76 33098.58 20099.84 1399.46 18296.20 31498.91 25099.70 15894.89 20799.44 26096.03 31393.89 34898.75 255
JIA-IIPM97.50 28497.02 29798.93 19698.73 33297.80 25299.30 24598.97 32291.73 37398.91 25094.86 38795.10 20099.71 21297.58 24197.98 23899.28 208
v14897.79 25297.55 24698.50 25498.74 33197.72 25599.54 13999.33 25796.26 31098.90 25299.51 24194.68 22499.14 31497.83 21793.15 35798.63 304
GA-MVS97.85 23997.47 25699.00 18499.38 21197.99 23998.57 36499.15 30297.04 25598.90 25299.30 30089.83 33899.38 26896.70 29898.33 21899.62 142
tpm297.44 28997.34 27997.74 31999.15 27194.36 35699.45 18898.94 32593.45 36598.90 25299.44 26191.35 32199.59 24597.31 26398.07 23799.29 207
tt080597.97 22497.77 22598.57 24699.59 14796.61 30799.45 18899.08 31098.21 12498.88 25599.80 10388.66 34999.70 21898.58 15297.72 24499.39 198
miper_ehance_all_eth98.18 19198.10 18798.41 26999.23 24997.72 25598.72 35399.31 27196.60 28798.88 25599.29 30297.29 12399.13 31797.60 23995.99 30498.38 341
eth_miper_zixun_eth98.05 20997.96 20498.33 27699.26 24397.38 26598.56 36699.31 27196.65 28098.88 25599.52 23896.58 14799.12 32197.39 26195.53 31898.47 330
cl2297.85 23997.64 24198.48 25799.09 28197.87 24898.60 36399.33 25797.11 24798.87 25899.22 31392.38 29999.17 31398.21 18695.99 30498.42 336
agg_prior99.67 11199.62 6599.40 22098.87 25899.91 105
anonymousdsp98.44 16798.28 17498.94 19498.50 35298.96 15799.77 3499.50 13597.07 25098.87 25899.77 12994.76 21899.28 29298.66 13997.60 24998.57 322
DSMNet-mixed97.25 29597.35 27696.95 34197.84 36393.61 36699.57 11696.63 38996.13 32298.87 25898.61 35994.59 22897.70 37895.08 33698.86 19299.55 159
FMVSNet297.72 26397.36 27498.80 22999.51 16998.84 17799.45 18899.42 20996.49 29398.86 26299.29 30290.26 33298.98 33896.44 30696.56 29198.58 321
c3_l98.12 19898.04 19698.38 27399.30 23297.69 25998.81 34499.33 25796.67 27898.83 26399.34 29097.11 12898.99 33797.58 24195.34 32198.48 328
ITE_SJBPF98.08 29599.29 23696.37 31498.92 32898.34 10898.83 26399.75 13891.09 32499.62 24295.82 31797.40 27298.25 348
Anonymous2023121197.88 23497.54 24998.90 20499.71 9698.53 20499.48 17899.57 6494.16 35698.81 26599.68 17493.23 26999.42 26598.84 11594.42 33998.76 253
Patchmtry97.75 25897.40 27198.81 22799.10 27898.87 17299.11 29599.33 25794.83 34898.81 26599.38 27794.33 24099.02 33396.10 31195.57 31698.53 324
miper_lstm_enhance98.00 21997.91 21098.28 28499.34 22297.43 26498.88 33799.36 24096.48 29698.80 26799.55 22695.98 16698.91 34997.27 26595.50 31998.51 326
BH-untuned98.42 16998.36 16798.59 24299.49 18096.70 30299.27 25899.13 30597.24 23498.80 26799.38 27795.75 17899.74 19697.07 27999.16 16599.33 204
FIs98.78 14298.63 14199.23 16199.18 26099.54 7999.83 1699.59 5798.28 11398.79 26999.81 9096.75 14299.37 27399.08 8296.38 29598.78 248
OurMVSNet-221017-097.88 23497.77 22598.19 28898.71 33696.53 30999.88 499.00 31997.79 17798.78 27099.94 691.68 31299.35 28097.21 26896.99 28698.69 272
MVS-HIRNet95.75 32595.16 33097.51 32699.30 23293.69 36498.88 33795.78 39185.09 38698.78 27092.65 38991.29 32299.37 27394.85 33999.85 6999.46 186
tpmvs97.98 22198.02 19997.84 31299.04 29194.73 34999.31 24399.20 29696.10 32798.76 27299.42 26594.94 20299.81 17396.97 28498.45 21498.97 236
Patchmatch-test97.93 22797.65 23998.77 23299.18 26097.07 28199.03 30999.14 30496.16 31898.74 27399.57 22094.56 23099.72 20693.36 35699.11 17199.52 167
QAPM98.67 15598.30 17399.80 4699.20 25599.67 5199.77 3499.72 1194.74 35098.73 27499.90 2695.78 17799.98 1396.96 28599.88 5199.76 87
3Dnovator+97.12 1399.18 7898.97 10099.82 4199.17 26699.68 4899.81 2099.51 11599.20 1898.72 27599.89 3095.68 18299.97 2198.86 11099.86 6299.81 61
IterMVS-SCA-FT97.82 24797.75 23098.06 29699.57 15196.36 31599.02 31299.49 14397.18 23898.71 27699.72 15392.72 28399.14 31497.44 25895.86 30998.67 284
UniMVSNet_NR-MVSNet98.22 18597.97 20398.96 19198.92 30798.98 15099.48 17899.53 9697.76 18098.71 27699.46 25996.43 15599.22 30498.57 15592.87 36098.69 272
DU-MVS98.08 20297.79 22098.96 19198.87 31598.98 15099.41 20799.45 19397.87 16698.71 27699.50 24494.82 20999.22 30498.57 15592.87 36098.68 277
tpm cat197.39 29097.36 27497.50 32799.17 26693.73 36299.43 19899.31 27191.27 37498.71 27699.08 32794.31 24299.77 18996.41 30898.50 21299.00 232
XXY-MVS98.38 17598.09 19099.24 15999.26 24399.32 10499.56 12299.55 7797.45 21498.71 27699.83 6893.23 26999.63 24198.88 10296.32 29798.76 253
IterMVS97.83 24497.77 22598.02 29999.58 14996.27 31899.02 31299.48 15597.22 23698.71 27699.70 15892.75 28099.13 31797.46 25696.00 30398.67 284
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
FC-MVSNet-test98.75 14598.62 14699.15 17099.08 28399.45 9399.86 1299.60 5498.23 12198.70 28299.82 7696.80 13999.22 30499.07 8396.38 29598.79 247
COLMAP_ROBcopyleft97.56 698.86 12798.75 12899.17 16699.88 1198.53 20499.34 23899.59 5797.55 20298.70 28299.89 3095.83 17599.90 11698.10 19499.90 3999.08 221
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
TR-MVS97.76 25497.41 27098.82 22499.06 28797.87 24898.87 33998.56 36296.63 28498.68 28499.22 31392.49 29399.65 23395.40 33097.79 24298.95 240
WR-MVS98.06 20497.73 23299.06 17698.86 31899.25 11699.19 27899.35 24697.30 22898.66 28599.43 26393.94 25499.21 30998.58 15294.28 34198.71 263
HQP-NCC99.19 25798.98 32298.24 11898.66 285
ACMP_Plane99.19 25798.98 32298.24 11898.66 285
HQP4-MVS98.66 28599.64 23698.64 296
HQP-MVS98.02 21497.90 21198.37 27499.19 25796.83 29798.98 32299.39 22398.24 11898.66 28599.40 27292.47 29499.64 23697.19 27297.58 25198.64 296
LF4IMVS97.52 28197.46 25897.70 32198.98 30195.55 33199.29 24998.82 34398.07 14898.66 28599.64 19289.97 33799.61 24397.01 28096.68 28797.94 365
mvs_tets98.40 17498.23 17698.91 20298.67 34098.51 21099.66 6999.53 9698.19 12798.65 29199.81 9092.75 28099.44 26099.31 5897.48 26498.77 251
TESTMET0.1,197.55 27997.27 28998.40 27198.93 30696.53 30998.67 35697.61 38096.96 26098.64 29299.28 30488.63 35199.45 25597.30 26499.38 14999.21 212
jajsoiax98.43 16898.28 17498.88 20998.60 34798.43 21899.82 1799.53 9698.19 12798.63 29399.80 10393.22 27199.44 26099.22 6997.50 26098.77 251
Baseline_NR-MVSNet97.76 25497.45 25998.68 23899.09 28198.29 22399.41 20798.85 34095.65 33398.63 29399.67 18094.82 20999.10 32498.07 20292.89 35998.64 296
EPNet98.86 12798.71 13199.30 14897.20 37598.18 22899.62 8898.91 33299.28 1698.63 29399.81 9095.96 16799.99 499.24 6899.72 11899.73 97
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test-LLR98.06 20497.90 21198.55 25198.79 32397.10 27798.67 35697.75 37797.34 22498.61 29698.85 34894.45 23799.45 25597.25 26699.38 14999.10 216
test-mter97.49 28797.13 29498.55 25198.79 32397.10 27798.67 35697.75 37796.65 28098.61 29698.85 34888.23 35599.45 25597.25 26699.38 14999.10 216
DIV-MVS_self_test98.01 21797.85 21798.48 25799.24 24897.95 24498.71 35499.35 24696.50 29298.60 29899.54 23195.72 18099.03 33197.21 26895.77 31098.46 333
cl____98.01 21797.84 21898.55 25199.25 24797.97 24098.71 35499.34 25096.47 29898.59 29999.54 23195.65 18399.21 30997.21 26895.77 31098.46 333
FMVSNet196.84 30596.36 30998.29 28199.32 23097.26 27099.43 19899.48 15595.11 34098.55 30099.32 29783.95 37598.98 33895.81 31896.26 29898.62 307
UniMVSNet_ETH3D97.32 29296.81 30098.87 21399.40 20797.46 26399.51 15699.53 9695.86 33198.54 30199.77 12982.44 38199.66 22898.68 13797.52 25699.50 176
AUN-MVS96.88 30496.31 31098.59 24299.48 18897.04 28699.27 25899.22 29297.44 21698.51 30299.41 26991.97 30499.66 22897.71 23283.83 38499.07 226
PCF-MVS97.08 1497.66 27497.06 29699.47 12099.61 14099.09 13698.04 38499.25 28791.24 37598.51 30299.70 15894.55 23299.91 10592.76 36499.85 6999.42 193
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
TranMVSNet+NR-MVSNet97.93 22797.66 23898.76 23398.78 32698.62 19699.65 7599.49 14397.76 18098.49 30499.60 21094.23 24398.97 34598.00 20492.90 35898.70 268
CP-MVSNet98.09 20097.78 22399.01 18298.97 30399.24 11799.67 6499.46 18297.25 23298.48 30599.64 19293.79 26099.06 32798.63 14294.10 34498.74 258
ACMP97.20 1198.06 20497.94 20898.45 26399.37 21497.01 28899.44 19499.49 14397.54 20598.45 30699.79 11591.95 30599.72 20697.91 20997.49 26398.62 307
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
cascas97.69 26897.43 26898.48 25798.60 34797.30 26698.18 38299.39 22392.96 36898.41 30798.78 35393.77 26199.27 29598.16 19298.61 20298.86 242
WR-MVS_H98.13 19697.87 21698.90 20499.02 29398.84 17799.70 5299.59 5797.27 23098.40 30899.19 31795.53 18599.23 30198.34 17893.78 35098.61 316
BH-w/o98.00 21997.89 21598.32 27899.35 21896.20 32099.01 31798.90 33496.42 30198.38 30999.00 33695.26 19699.72 20696.06 31298.61 20299.03 229
pmmvs597.52 28197.30 28498.16 29098.57 34996.73 30199.27 25898.90 33496.14 32198.37 31099.53 23591.54 31899.14 31497.51 25095.87 30898.63 304
EU-MVSNet97.98 22198.03 19797.81 31698.72 33496.65 30599.66 6999.66 2898.09 14398.35 31199.82 7695.25 19798.01 37197.41 26095.30 32298.78 248
FMVSNet596.43 31396.19 31297.15 33399.11 27595.89 32599.32 24199.52 10194.47 35598.34 31299.07 32887.54 36297.07 38292.61 36595.72 31398.47 330
PS-CasMVS97.93 22797.59 24598.95 19398.99 29899.06 14299.68 6199.52 10197.13 24298.31 31399.68 17492.44 29899.05 32898.51 16394.08 34598.75 255
USDC97.34 29197.20 29097.75 31899.07 28495.20 34198.51 36899.04 31697.99 15898.31 31399.86 4989.02 34499.55 24995.67 32497.36 27598.49 327
PEN-MVS97.76 25497.44 26498.72 23598.77 32998.54 20399.78 3299.51 11597.06 25298.29 31599.64 19292.63 28998.89 35198.09 19593.16 35698.72 261
tfpnnormal97.84 24297.47 25698.98 18899.20 25599.22 11999.64 7899.61 4896.32 30598.27 31699.70 15893.35 26899.44 26095.69 32295.40 32098.27 346
ppachtmachnet_test97.49 28797.45 25997.61 32398.62 34495.24 34098.80 34599.46 18296.11 32398.22 31799.62 20396.45 15398.97 34593.77 35195.97 30798.61 316
our_test_397.65 27597.68 23697.55 32598.62 34494.97 34698.84 34199.30 27596.83 27198.19 31899.34 29097.01 13399.02 33395.00 33896.01 30298.64 296
LTVRE_ROB97.16 1298.02 21497.90 21198.40 27199.23 24996.80 30099.70 5299.60 5497.12 24498.18 31999.70 15891.73 31199.72 20698.39 17297.45 26698.68 277
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
ACMH97.28 898.10 19997.99 20198.44 26699.41 20296.96 29499.60 9599.56 6998.09 14398.15 32099.91 2090.87 32799.70 21898.88 10297.45 26698.67 284
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MS-PatchMatch97.24 29797.32 28296.99 33898.45 35493.51 36798.82 34399.32 26797.41 22098.13 32199.30 30088.99 34599.56 24795.68 32399.80 9797.90 368
MVS97.28 29396.55 30599.48 11798.78 32698.95 16299.27 25899.39 22383.53 38798.08 32299.54 23196.97 13599.87 13694.23 34799.16 16599.63 140
PAPM97.59 27897.09 29599.07 17599.06 28798.26 22598.30 37899.10 30794.88 34698.08 32299.34 29096.27 15999.64 23689.87 37598.92 18899.31 206
OpenMVScopyleft96.50 1698.47 16598.12 18599.52 11199.04 29199.53 8299.82 1799.72 1194.56 35398.08 32299.88 3694.73 22099.98 1397.47 25599.76 11099.06 227
gg-mvs-nofinetune96.17 31895.32 32998.73 23498.79 32398.14 23199.38 22494.09 39791.07 37798.07 32591.04 39389.62 34299.35 28096.75 29599.09 17598.68 277
test0.0.03 197.71 26697.42 26998.56 24998.41 35697.82 25198.78 34798.63 36097.34 22498.05 32698.98 33994.45 23798.98 33895.04 33797.15 28398.89 241
APD_test195.87 32296.49 30694.00 35799.53 16284.01 38599.54 13999.32 26795.91 33097.99 32799.85 5485.49 36999.88 13191.96 36798.84 19498.12 353
131498.68 15498.54 15899.11 17298.89 31098.65 19399.27 25899.49 14396.89 26697.99 32799.56 22397.72 11199.83 16297.74 22899.27 16098.84 244
DTE-MVSNet97.51 28397.19 29198.46 26298.63 34398.13 23299.84 1399.48 15596.68 27797.97 32999.67 18092.92 27698.56 36096.88 29292.60 36398.70 268
SixPastTwentyTwo97.50 28497.33 28198.03 29798.65 34196.23 31999.77 3498.68 35997.14 24197.90 33099.93 990.45 33099.18 31297.00 28196.43 29498.67 284
testing397.28 29396.76 30298.82 22499.37 21498.07 23599.45 18899.36 24097.56 20197.89 33198.95 34283.70 37698.82 35296.03 31398.56 20899.58 154
pm-mvs197.68 27097.28 28698.88 20999.06 28798.62 19699.50 16399.45 19396.32 30597.87 33299.79 11592.47 29499.35 28097.54 24893.54 35298.67 284
testgi97.65 27597.50 25398.13 29499.36 21796.45 31299.42 20599.48 15597.76 18097.87 33299.45 26091.09 32498.81 35394.53 34298.52 21199.13 215
EPNet_dtu98.03 21297.96 20498.23 28698.27 35795.54 33399.23 27198.75 34899.02 3897.82 33499.71 15496.11 16299.48 25293.04 36099.65 13099.69 115
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
TinyColmap97.12 29996.89 29997.83 31399.07 28495.52 33498.57 36498.74 35197.58 19897.81 33599.79 11588.16 35699.56 24795.10 33597.21 28098.39 340
ACMH+97.24 1097.92 23097.78 22398.32 27899.46 19096.68 30499.56 12299.54 8598.41 10097.79 33699.87 4490.18 33699.66 22898.05 20397.18 28298.62 307
N_pmnet94.95 33495.83 32192.31 36398.47 35379.33 39599.12 28992.81 40193.87 35897.68 33799.13 32393.87 25799.01 33591.38 37096.19 29998.59 320
KD-MVS_2432*160094.62 33593.72 34397.31 33097.19 37695.82 32698.34 37499.20 29695.00 34497.57 33898.35 36487.95 35898.10 36892.87 36277.00 39198.01 359
miper_refine_blended94.62 33593.72 34397.31 33097.19 37695.82 32698.34 37499.20 29695.00 34497.57 33898.35 36487.95 35898.10 36892.87 36277.00 39198.01 359
PVSNet_094.43 1996.09 32095.47 32697.94 30599.31 23194.34 35797.81 38599.70 1597.12 24497.46 34098.75 35489.71 33999.79 18297.69 23581.69 38799.68 119
Syy-MVS97.09 30197.14 29296.95 34199.00 29592.73 37299.29 24999.39 22397.06 25297.41 34198.15 36893.92 25698.68 35891.71 36898.34 21699.45 189
myMVS_eth3d96.89 30396.37 30898.43 26899.00 29597.16 27499.29 24999.39 22397.06 25297.41 34198.15 36883.46 37798.68 35895.27 33398.34 21699.45 189
pmmvs696.53 31096.09 31597.82 31598.69 33895.47 33599.37 22699.47 17393.46 36497.41 34199.78 12187.06 36499.33 28396.92 29092.70 36298.65 294
new_pmnet96.38 31496.03 31697.41 32898.13 36095.16 34499.05 30499.20 29693.94 35797.39 34498.79 35291.61 31799.04 32990.43 37395.77 31098.05 357
CL-MVSNet_self_test94.49 33793.97 34196.08 35296.16 38093.67 36598.33 37699.38 23195.13 33897.33 34598.15 36892.69 28796.57 38588.67 37979.87 38997.99 362
IB-MVS95.67 1896.22 31595.44 32898.57 24699.21 25396.70 30298.65 35997.74 37996.71 27597.27 34698.54 36086.03 36699.92 9598.47 16886.30 38199.10 216
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
GG-mvs-BLEND98.45 26398.55 35098.16 22999.43 19893.68 39897.23 34798.46 36189.30 34399.22 30495.43 32998.22 22697.98 363
MVP-Stereo97.81 24997.75 23097.99 30397.53 36896.60 30898.96 32698.85 34097.22 23697.23 34799.36 28395.28 19399.46 25495.51 32699.78 10497.92 367
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
Anonymous2024052196.20 31795.89 32097.13 33597.72 36794.96 34799.79 3199.29 27993.01 36797.20 34999.03 33389.69 34098.36 36491.16 37196.13 30098.07 355
TransMVSNet (Re)97.15 29896.58 30498.86 21799.12 27398.85 17699.49 17498.91 33295.48 33597.16 35099.80 10393.38 26799.11 32294.16 34991.73 36598.62 307
KD-MVS_self_test95.00 33294.34 33796.96 34097.07 37895.39 33899.56 12299.44 20195.11 34097.13 35197.32 37991.86 30797.27 38190.35 37481.23 38898.23 350
NR-MVSNet97.97 22497.61 24399.02 18198.87 31599.26 11599.47 18499.42 20997.63 19497.08 35299.50 24495.07 20199.13 31797.86 21493.59 35198.68 277
Anonymous2023120696.22 31596.03 31696.79 34697.31 37394.14 35899.63 8299.08 31096.17 31797.04 35399.06 33093.94 25497.76 37786.96 38695.06 32798.47 330
test_040296.64 30896.24 31197.85 31098.85 31996.43 31399.44 19499.26 28593.52 36296.98 35499.52 23888.52 35299.20 31192.58 36697.50 26097.93 366
MIMVSNet195.51 32695.04 33196.92 34397.38 37095.60 32999.52 14899.50 13593.65 36196.97 35599.17 31885.28 37196.56 38688.36 38195.55 31798.60 319
TDRefinement95.42 32894.57 33597.97 30489.83 39696.11 32299.48 17898.75 34896.74 27396.68 35699.88 3688.65 35099.71 21298.37 17582.74 38698.09 354
baseline297.87 23697.55 24698.82 22499.18 26098.02 23799.41 20796.58 39096.97 25996.51 35799.17 31893.43 26699.57 24697.71 23299.03 18098.86 242
pmmvs394.09 34193.25 34796.60 34894.76 39094.49 35398.92 33398.18 37289.66 37896.48 35898.06 37286.28 36597.33 38089.68 37687.20 38097.97 364
DeepMVS_CXcopyleft93.34 36099.29 23682.27 38899.22 29285.15 38596.33 35999.05 33190.97 32699.73 20293.57 35497.77 24398.01 359
LCM-MVSNet-Re97.83 24498.15 18196.87 34499.30 23292.25 37499.59 10198.26 36797.43 21796.20 36099.13 32396.27 15998.73 35798.17 19198.99 18399.64 136
test20.0396.12 31995.96 31896.63 34797.44 36995.45 33699.51 15699.38 23196.55 29096.16 36199.25 31093.76 26296.17 38787.35 38594.22 34298.27 346
K. test v397.10 30096.79 30198.01 30098.72 33496.33 31699.87 997.05 38497.59 19696.16 36199.80 10388.71 34799.04 32996.69 29996.55 29298.65 294
UnsupCasMVSNet_eth96.44 31296.12 31397.40 32998.65 34195.65 32899.36 23099.51 11597.13 24296.04 36398.99 33788.40 35398.17 36796.71 29790.27 37398.40 339
test_method91.10 34991.36 35190.31 36995.85 38173.72 40294.89 39099.25 28768.39 39395.82 36499.02 33580.50 38398.95 34793.64 35394.89 33398.25 348
lessismore_v097.79 31798.69 33895.44 33794.75 39595.71 36599.87 4488.69 34899.32 28695.89 31694.93 33198.62 307
test_vis1_rt95.81 32495.65 32496.32 35199.67 11191.35 37899.49 17496.74 38898.25 11795.24 36698.10 37174.96 38599.90 11699.53 3298.85 19397.70 371
dmvs_testset95.02 33196.12 31391.72 36599.10 27880.43 39399.58 10997.87 37697.47 21095.22 36798.82 35093.99 25295.18 39088.09 38294.91 33299.56 158
Patchmatch-RL test95.84 32395.81 32295.95 35395.61 38390.57 37998.24 37998.39 36695.10 34295.20 36898.67 35694.78 21497.77 37696.28 31090.02 37499.51 173
test_fmvs392.10 34791.77 35093.08 36196.19 37986.25 38399.82 1798.62 36196.65 28095.19 36996.90 38155.05 39695.93 38996.63 30390.92 37197.06 378
ambc93.06 36292.68 39282.36 38798.47 36998.73 35695.09 37097.41 37655.55 39499.10 32496.42 30791.32 36697.71 369
PM-MVS92.96 34592.23 34995.14 35595.61 38389.98 38199.37 22698.21 37094.80 34995.04 37197.69 37465.06 38997.90 37494.30 34489.98 37597.54 375
OpenMVS_ROBcopyleft92.34 2094.38 33993.70 34596.41 35097.38 37093.17 36999.06 30298.75 34886.58 38494.84 37298.26 36781.53 38299.32 28689.01 37897.87 24196.76 379
mvsany_test393.77 34293.45 34694.74 35695.78 38288.01 38299.64 7898.25 36898.28 11394.31 37397.97 37368.89 38898.51 36297.50 25190.37 37297.71 369
EG-PatchMatch MVS95.97 32195.69 32396.81 34597.78 36492.79 37199.16 28198.93 32696.16 31894.08 37499.22 31382.72 37999.47 25395.67 32497.50 26098.17 351
test_f91.90 34891.26 35293.84 35895.52 38685.92 38499.69 5598.53 36595.31 33793.87 37596.37 38455.33 39598.27 36595.70 32190.98 37097.32 377
pmmvs-eth3d95.34 33094.73 33397.15 33395.53 38595.94 32499.35 23599.10 30795.13 33893.55 37697.54 37588.15 35797.91 37394.58 34189.69 37697.61 372
new-patchmatchnet94.48 33894.08 33995.67 35495.08 38892.41 37399.18 27999.28 28194.55 35493.49 37797.37 37887.86 36097.01 38391.57 36988.36 37797.61 372
UnsupCasMVSNet_bld93.53 34392.51 34896.58 34997.38 37093.82 36098.24 37999.48 15591.10 37693.10 37896.66 38274.89 38698.37 36394.03 35087.71 37997.56 374
WB-MVS93.10 34494.10 33890.12 37095.51 38781.88 39099.73 4799.27 28495.05 34393.09 37998.91 34794.70 22391.89 39476.62 39394.02 34796.58 381
SSC-MVS92.73 34693.73 34289.72 37195.02 38981.38 39199.76 3799.23 29094.87 34792.80 38098.93 34394.71 22291.37 39574.49 39593.80 34996.42 382
Gipumacopyleft90.99 35090.15 35593.51 35998.73 33290.12 38093.98 39199.45 19379.32 38992.28 38194.91 38669.61 38797.98 37287.42 38495.67 31492.45 389
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
CMPMVSbinary69.68 2394.13 34094.90 33291.84 36497.24 37480.01 39498.52 36799.48 15589.01 38191.99 38299.67 18085.67 36899.13 31795.44 32897.03 28496.39 383
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
testf190.42 35190.68 35389.65 37297.78 36473.97 40099.13 28798.81 34489.62 37991.80 38398.93 34362.23 39298.80 35486.61 38891.17 36796.19 384
APD_test290.42 35190.68 35389.65 37297.78 36473.97 40099.13 28798.81 34489.62 37991.80 38398.93 34362.23 39298.80 35486.61 38891.17 36796.19 384
PMMVS286.87 35485.37 35891.35 36790.21 39583.80 38698.89 33697.45 38383.13 38891.67 38595.03 38548.49 39894.70 39185.86 39077.62 39095.54 386
LCM-MVSNet86.80 35585.22 35991.53 36687.81 39780.96 39298.23 38198.99 32071.05 39190.13 38696.51 38348.45 39996.88 38490.51 37285.30 38296.76 379
ET-MVSNet_ETH3D96.49 31195.64 32599.05 17899.53 16298.82 18198.84 34197.51 38297.63 19484.77 38799.21 31692.09 30298.91 34998.98 9092.21 36499.41 195
E-PMN80.61 35979.88 36182.81 37790.75 39476.38 39897.69 38695.76 39266.44 39583.52 38892.25 39062.54 39187.16 39768.53 39761.40 39484.89 395
FPMVS84.93 35685.65 35782.75 37886.77 39863.39 40498.35 37398.92 32874.11 39083.39 38998.98 33950.85 39792.40 39384.54 39194.97 32992.46 388
EMVS80.02 36079.22 36282.43 37991.19 39376.40 39797.55 38892.49 40266.36 39683.01 39091.27 39264.63 39085.79 39865.82 39860.65 39585.08 394
test_vis3_rt87.04 35385.81 35690.73 36893.99 39181.96 38999.76 3790.23 40392.81 36981.35 39191.56 39140.06 40099.07 32694.27 34688.23 37891.15 391
YYNet195.36 32994.51 33697.92 30697.89 36297.10 27799.10 29799.23 29093.26 36680.77 39299.04 33292.81 27998.02 37094.30 34494.18 34398.64 296
MDA-MVSNet_test_wron95.45 32794.60 33498.01 30098.16 35997.21 27399.11 29599.24 28993.49 36380.73 39398.98 33993.02 27398.18 36694.22 34894.45 33898.64 296
MDA-MVSNet-bldmvs94.96 33393.98 34097.92 30698.24 35897.27 26899.15 28499.33 25793.80 35980.09 39499.03 33388.31 35497.86 37593.49 35594.36 34098.62 307
tmp_tt82.80 35781.52 36086.66 37466.61 40368.44 40392.79 39397.92 37468.96 39280.04 39599.85 5485.77 36796.15 38897.86 21443.89 39795.39 387
MVEpermissive76.82 2176.91 36274.31 36684.70 37585.38 40076.05 39996.88 38993.17 39967.39 39471.28 39689.01 39521.66 40687.69 39671.74 39672.29 39390.35 392
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
ANet_high77.30 36174.86 36584.62 37675.88 40177.61 39697.63 38793.15 40088.81 38264.27 39789.29 39436.51 40183.93 39975.89 39452.31 39692.33 390
PMVScopyleft70.75 2275.98 36374.97 36479.01 38070.98 40255.18 40593.37 39298.21 37065.08 39761.78 39893.83 38821.74 40592.53 39278.59 39291.12 36989.34 393
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
test12339.01 36642.50 36828.53 38239.17 40420.91 40798.75 35019.17 40719.83 40038.57 39966.67 39733.16 40215.42 40137.50 40129.66 39949.26 396
testmvs39.17 36543.78 36725.37 38336.04 40516.84 40898.36 37226.56 40520.06 39938.51 40067.32 39629.64 40315.30 40237.59 40039.90 39843.98 397
wuyk23d40.18 36441.29 36936.84 38186.18 39949.12 40679.73 39422.81 40627.64 39825.46 40128.45 40121.98 40448.89 40055.80 39923.56 40012.51 398
EGC-MVSNET82.80 35777.86 36397.62 32297.91 36196.12 32199.33 24099.28 2818.40 40125.05 40299.27 30784.11 37499.33 28389.20 37798.22 22697.42 376
test_blank0.13 3700.17 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4031.57 4020.00 4070.00 4030.00 4020.00 4010.00 399
uanet_test0.02 3710.03 3740.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.27 4030.00 4070.00 4030.00 4020.00 4010.00 399
DCPMVS0.02 3710.03 3740.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.27 4030.00 4070.00 4030.00 4020.00 4010.00 399
cdsmvs_eth3d_5k24.64 36732.85 3700.00 3840.00 4060.00 4090.00 39599.51 1150.00 4020.00 40399.56 22396.58 1470.00 4030.00 4020.00 4010.00 399
pcd_1.5k_mvsjas8.27 36911.03 3720.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.27 40399.01 180.00 4030.00 4020.00 4010.00 399
sosnet-low-res0.02 3710.03 3740.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.27 4030.00 4070.00 4030.00 4020.00 4010.00 399
sosnet0.02 3710.03 3740.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.27 4030.00 4070.00 4030.00 4020.00 4010.00 399
uncertanet0.02 3710.03 3740.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.27 4030.00 4070.00 4030.00 4020.00 4010.00 399
Regformer0.02 3710.03 3740.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.27 4030.00 4070.00 4030.00 4020.00 4010.00 399
ab-mvs-re8.30 36811.06 3710.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 40399.58 2160.00 4070.00 4030.00 4020.00 4010.00 399
uanet0.02 3710.03 3740.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.27 4030.00 4070.00 4030.00 4020.00 4010.00 399
WAC-MVS97.16 27495.47 327
MSC_two_6792asdad99.87 1199.51 16999.76 3799.33 25799.96 3098.87 10599.84 7799.89 20
No_MVS99.87 1199.51 16999.76 3799.33 25799.96 3098.87 10599.84 7799.89 20
eth-test20.00 406
eth-test0.00 406
OPU-MVS99.64 7899.56 15599.72 4299.60 9599.70 15899.27 599.42 26598.24 18599.80 9799.79 74
save fliter99.76 6599.59 7099.14 28699.40 22099.00 43
test_0728_SECOND99.91 299.84 3299.89 499.57 11699.51 11599.96 3098.93 9699.86 6299.88 26
GSMVS99.52 167
sam_mvs194.86 20899.52 167
sam_mvs94.72 221
MTGPAbinary99.47 173
test_post199.23 27165.14 39994.18 24799.71 21297.58 241
test_post65.99 39894.65 22799.73 202
patchmatchnet-post98.70 35594.79 21399.74 196
MTMP99.54 13998.88 336
gm-plane-assit98.54 35192.96 37094.65 35299.15 32199.64 23697.56 246
test9_res97.49 25299.72 11899.75 88
agg_prior297.21 26899.73 11799.75 88
test_prior499.56 7598.99 319
test_prior99.68 6899.67 11199.48 8999.56 6999.83 16299.74 92
新几何299.01 317
旧先验199.74 8099.59 7099.54 8599.69 16898.47 8099.68 12699.73 97
无先验98.99 31999.51 11596.89 26699.93 8497.53 24999.72 103
原ACMM298.95 329
testdata299.95 5996.67 300
segment_acmp98.96 24
testdata198.85 34098.32 111
plane_prior799.29 23697.03 287
plane_prior699.27 24196.98 29192.71 285
plane_prior599.47 17399.69 22397.78 22197.63 24698.67 284
plane_prior499.61 207
plane_prior299.39 21998.97 51
plane_prior199.26 243
plane_prior96.97 29299.21 27798.45 9697.60 249
n20.00 408
nn0.00 408
door-mid98.05 373
test1199.35 246
door97.92 374
HQP5-MVS96.83 297
BP-MVS97.19 272
HQP3-MVS99.39 22397.58 251
HQP2-MVS92.47 294
NP-MVS99.23 24996.92 29599.40 272
ACMMP++_ref97.19 281
ACMMP++97.43 270
Test By Simon98.75 55