This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted by
test_cas_vis1_n_192099.16 8399.01 9599.61 8499.81 4698.86 17799.65 7699.64 3699.39 1099.97 1399.94 693.20 27399.98 1399.55 2999.91 3299.99 1
fmvsm_s_conf0.1_n_a99.26 6999.06 8299.85 2899.52 16799.62 6599.54 14099.62 4198.69 7999.99 299.96 194.47 23799.94 6999.88 1499.92 2599.98 2
test_vis1_n_192098.63 16098.40 16799.31 14799.86 2097.94 25099.67 6599.62 4199.43 799.99 299.91 2087.29 367100.00 199.92 1299.92 2599.98 2
fmvsm_s_conf0.1_n99.29 6399.10 7699.86 2199.70 10199.65 5799.53 14899.62 4198.74 7599.99 299.95 394.53 23599.94 6999.89 1399.96 1299.97 4
test_fmvsmconf0.1_n99.55 1499.45 2199.86 2199.44 19699.65 5799.50 16499.61 4899.45 599.87 2599.92 1497.31 12199.97 2199.95 899.99 199.97 4
test_vis1_n97.92 23397.44 26899.34 14099.53 16398.08 23899.74 4599.49 14399.15 20100.00 199.94 679.51 39399.98 1399.88 1499.76 11199.97 4
test_fmvsmconf_n99.70 399.64 499.87 1199.80 5299.66 5399.48 17999.64 3699.45 599.92 1599.92 1498.62 7099.99 499.96 799.99 199.96 7
test_fmvs1_n98.41 17298.14 18399.21 16799.82 4297.71 26299.74 4599.49 14399.32 1499.99 299.95 385.32 37699.97 2199.82 1699.84 7899.96 7
fmvsm_s_conf0.5_n_a99.56 1399.47 1799.85 2899.83 3999.64 6399.52 14999.65 3399.10 2799.98 699.92 1497.35 12099.96 3099.94 1099.92 2599.95 9
fmvsm_s_conf0.5_n99.51 1899.40 2599.85 2899.84 3299.65 5799.51 15799.67 2399.13 2299.98 699.92 1496.60 14899.96 3099.95 899.96 1299.95 9
fmvsm_l_conf0.5_n_a99.71 199.67 199.85 2899.86 2099.61 6799.56 12399.63 3999.48 399.98 699.83 6798.75 5599.99 499.97 199.96 1299.94 11
fmvsm_l_conf0.5_n99.71 199.67 199.85 2899.84 3299.63 6499.56 12399.63 3999.47 499.98 699.82 7598.75 5599.99 499.97 199.97 799.94 11
MM99.40 5099.28 5599.74 6199.67 11199.31 10899.52 14998.87 34299.55 199.74 6099.80 10296.47 15399.98 1399.97 199.97 799.94 11
test_fmvsmconf0.01_n99.22 7699.03 8799.79 4998.42 36599.48 8999.55 13599.51 11599.39 1099.78 4799.93 994.80 21399.95 5999.93 1199.95 1699.94 11
test_fmvsmvis_n_192099.65 699.61 699.77 5599.38 21399.37 10099.58 11099.62 4199.41 999.87 2599.92 1498.81 44100.00 199.97 199.93 2399.94 11
MVS_030499.42 4299.32 4099.72 6599.70 10199.27 11499.52 14997.57 38999.51 299.82 3599.78 12098.09 10099.96 3099.97 199.97 799.94 11
test_fmvsm_n_192099.69 499.66 399.78 5299.84 3299.44 9499.58 11099.69 1899.43 799.98 699.91 2098.62 70100.00 199.97 199.95 1699.90 17
test_fmvs198.88 12698.79 12899.16 17299.69 10697.61 26599.55 13599.49 14399.32 1499.98 699.91 2091.41 32099.96 3099.82 1699.92 2599.90 17
APDe-MVScopyleft99.66 599.57 899.92 199.77 6299.89 499.75 4299.56 6999.02 3899.88 2099.85 5399.18 1099.96 3099.22 7099.92 2599.90 17
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
patch_mono-299.26 6999.62 598.16 29899.81 4694.59 36199.52 14999.64 3699.33 1399.73 6299.90 2699.00 2299.99 499.69 1999.98 499.89 20
MSC_two_6792asdad99.87 1199.51 17099.76 3799.33 25799.96 3098.87 10799.84 7899.89 20
No_MVS99.87 1199.51 17099.76 3799.33 25799.96 3098.87 10799.84 7899.89 20
IU-MVS99.84 3299.88 899.32 26798.30 11699.84 2998.86 11299.85 7099.89 20
UA-Net99.42 4299.29 5399.80 4699.62 13799.55 7799.50 16499.70 1598.79 7099.77 5199.96 197.45 11599.96 3098.92 10099.90 4099.89 20
CHOSEN 1792x268899.19 7799.10 7699.45 12599.89 898.52 21199.39 22099.94 198.73 7699.11 21999.89 3095.50 18899.94 6999.50 3699.97 799.89 20
test_241102_TWO99.48 15599.08 3399.88 2099.81 8998.94 2999.96 3098.91 10199.84 7899.88 26
test_0728_THIRD98.99 4599.81 3799.80 10299.09 1499.96 3098.85 11499.90 4099.88 26
test_0728_SECOND99.91 299.84 3299.89 499.57 11799.51 11599.96 3098.93 9899.86 6399.88 26
DPE-MVScopyleft99.46 3199.32 4099.91 299.78 5699.88 899.36 23199.51 11598.73 7699.88 2099.84 6398.72 6199.96 3098.16 19599.87 5599.88 26
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MSP-MVS99.42 4299.27 5899.88 599.89 899.80 2799.67 6599.50 13598.70 7899.77 5199.49 24698.21 9499.95 5998.46 17199.77 10899.88 26
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
dcpmvs_299.23 7599.58 798.16 29899.83 3994.68 35999.76 3899.52 10199.07 3599.98 699.88 3698.56 7499.93 8499.67 2199.98 499.87 31
DP-MVS99.16 8398.95 10599.78 5299.77 6299.53 8299.41 20899.50 13597.03 26599.04 23599.88 3697.39 11699.92 9598.66 14199.90 4099.87 31
EI-MVSNet-UG-set99.58 999.57 899.64 7899.78 5699.14 13399.60 9699.45 19599.01 4099.90 1899.83 6798.98 2399.93 8499.59 2599.95 1699.86 33
Test_1112_low_res98.89 12598.66 14199.57 9299.69 10698.95 16499.03 31699.47 17596.98 26799.15 21399.23 31296.77 14399.89 12798.83 12098.78 20099.86 33
HyFIR lowres test99.11 9998.92 10799.65 7399.90 499.37 10099.02 31999.91 397.67 19899.59 11099.75 13695.90 17599.73 21199.53 3299.02 18399.86 33
EI-MVSNet-Vis-set99.58 999.56 1099.64 7899.78 5699.15 13299.61 9599.45 19599.01 4099.89 1999.82 7599.01 1899.92 9599.56 2899.95 1699.85 36
CVMVSNet98.57 16298.67 13898.30 28899.35 22295.59 33999.50 16499.55 7798.60 8699.39 15799.83 6794.48 23699.45 26598.75 12898.56 21199.85 36
HPM-MVS_fast99.51 1899.40 2599.85 2899.91 199.79 3099.76 3899.56 6997.72 19099.76 5699.75 13699.13 1299.92 9599.07 8399.92 2599.85 36
MG-MVS99.13 8999.02 9199.45 12599.57 15298.63 19899.07 30699.34 25098.99 4599.61 10499.82 7597.98 10499.87 13897.00 28999.80 9899.85 36
ACMMP_NAP99.47 2999.34 3699.88 599.87 1599.86 1399.47 18599.48 15598.05 15699.76 5699.86 4898.82 4399.93 8498.82 12499.91 3299.84 40
HFP-MVS99.49 2299.37 3099.86 2199.87 1599.80 2799.66 7099.67 2398.15 13699.68 7499.69 16699.06 1699.96 3098.69 13799.87 5599.84 40
region2R99.48 2699.35 3499.87 1199.88 1199.80 2799.65 7699.66 2898.13 14099.66 8399.68 17298.96 2499.96 3098.62 14599.87 5599.84 40
XVS99.53 1699.42 2299.87 1199.85 2699.83 1699.69 5699.68 2098.98 4899.37 16199.74 14198.81 4499.94 6998.79 12599.86 6399.84 40
X-MVStestdata96.55 31995.45 33799.87 1199.85 2699.83 1699.69 5699.68 2098.98 4899.37 16164.01 40998.81 4499.94 6998.79 12599.86 6399.84 40
ACMMPR99.49 2299.36 3299.86 2199.87 1599.79 3099.66 7099.67 2398.15 13699.67 7899.69 16698.95 2799.96 3098.69 13799.87 5599.84 40
HPM-MVScopyleft99.42 4299.28 5599.83 4099.90 499.72 4299.81 2199.54 8597.59 20399.68 7499.63 19698.91 3499.94 6998.58 15499.91 3299.84 40
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
SteuartSystems-ACMMP99.54 1599.42 2299.87 1199.82 4299.81 2599.59 10299.51 11598.62 8499.79 4299.83 6799.28 499.97 2198.48 16799.90 4099.84 40
Skip Steuart: Steuart Systems R&D Blog.
1112_ss98.98 11898.77 12999.59 8799.68 11099.02 15099.25 27399.48 15597.23 24499.13 21599.58 21496.93 13999.90 11698.87 10798.78 20099.84 40
MP-MVS-pluss99.37 5499.20 6799.88 599.90 499.87 1299.30 24799.52 10197.18 24799.60 10799.79 11498.79 4799.95 5998.83 12099.91 3299.83 49
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MTAPA99.52 1799.39 2799.89 499.90 499.86 1399.66 7099.47 17598.79 7099.68 7499.81 8998.43 8399.97 2198.88 10499.90 4099.83 49
PGM-MVS99.45 3399.31 4799.86 2199.87 1599.78 3699.58 11099.65 3397.84 17599.71 6899.80 10299.12 1399.97 2198.33 18299.87 5599.83 49
mPP-MVS99.44 3799.30 4999.86 2199.88 1199.79 3099.69 5699.48 15598.12 14199.50 12799.75 13698.78 4899.97 2198.57 15799.89 4999.83 49
CP-MVS99.45 3399.32 4099.85 2899.83 3999.75 3999.69 5699.52 10198.07 15199.53 12299.63 19698.93 3399.97 2198.74 12999.91 3299.83 49
mvsany_test199.50 2099.46 2099.62 8399.61 14199.09 13998.94 34099.48 15599.10 2799.96 1499.91 2098.85 3999.96 3099.72 1899.58 13899.82 54
test111198.04 21398.11 18797.83 32199.74 8093.82 36999.58 11095.40 40299.12 2599.65 8999.93 990.73 32999.84 15599.43 4699.38 15099.82 54
ZNCC-MVS99.47 2999.33 3899.87 1199.87 1599.81 2599.64 7999.67 2398.08 15099.55 11999.64 19098.91 3499.96 3098.72 13299.90 4099.82 54
TSAR-MVS + MP.99.58 999.50 1399.81 4499.91 199.66 5399.63 8399.39 22398.91 5899.78 4799.85 5399.36 299.94 6998.84 11799.88 5299.82 54
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
MP-MVScopyleft99.33 5899.15 7199.87 1199.88 1199.82 2299.66 7099.46 18498.09 14699.48 13199.74 14198.29 9199.96 3097.93 21399.87 5599.82 54
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MCST-MVS99.43 4099.30 4999.82 4199.79 5499.74 4199.29 25299.40 22098.79 7099.52 12499.62 20198.91 3499.90 11698.64 14399.75 11399.82 54
DeepC-MVS_fast98.69 199.49 2299.39 2799.77 5599.63 13199.59 7099.36 23199.46 18499.07 3599.79 4299.82 7598.85 3999.92 9598.68 13999.87 5599.82 54
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DVP-MVS++99.59 899.50 1399.88 599.51 17099.88 899.87 999.51 11598.99 4599.88 2099.81 8999.27 599.96 3098.85 11499.80 9899.81 61
PC_three_145298.18 13499.84 2999.70 15699.31 398.52 37098.30 18699.80 9899.81 61
DVP-MVScopyleft99.57 1299.47 1799.88 599.85 2699.89 499.57 11799.37 23999.10 2799.81 3799.80 10298.94 2999.96 3098.93 9899.86 6399.81 61
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
GST-MVS99.40 5099.24 6399.85 2899.86 2099.79 3099.60 9699.67 2397.97 16299.63 9699.68 17298.52 7799.95 5998.38 17699.86 6399.81 61
SMA-MVScopyleft99.44 3799.30 4999.85 2899.73 8799.83 1699.56 12399.47 17597.45 22299.78 4799.82 7599.18 1099.91 10598.79 12599.89 4999.81 61
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
CPTT-MVS99.11 9998.90 11099.74 6199.80 5299.46 9299.59 10299.49 14397.03 26599.63 9699.69 16697.27 12499.96 3097.82 22499.84 7899.81 61
ACMMPcopyleft99.45 3399.32 4099.82 4199.89 899.67 5199.62 8899.69 1898.12 14199.63 9699.84 6398.73 6099.96 3098.55 16399.83 8799.81 61
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DeepPCF-MVS98.18 398.81 14199.37 3097.12 34599.60 14691.75 38598.61 37099.44 20399.35 1299.83 3499.85 5398.70 6399.81 18099.02 8799.91 3299.81 61
3Dnovator+97.12 1399.18 7998.97 10199.82 4199.17 27499.68 4899.81 2199.51 11599.20 1898.72 27999.89 3095.68 18399.97 2198.86 11299.86 6399.81 61
test250696.81 31696.65 31297.29 34199.74 8092.21 38499.60 9685.06 41399.13 2299.77 5199.93 987.82 36599.85 14899.38 4899.38 15099.80 70
ECVR-MVScopyleft98.04 21398.05 19698.00 31099.74 8094.37 36499.59 10294.98 40399.13 2299.66 8399.93 990.67 33099.84 15599.40 4799.38 15099.80 70
APD-MVScopyleft99.27 6799.08 8099.84 3999.75 7399.79 3099.50 16499.50 13597.16 24999.77 5199.82 7598.78 4899.94 6997.56 25299.86 6399.80 70
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
NCCC99.34 5799.19 6899.79 4999.61 14199.65 5799.30 24799.48 15598.86 6099.21 20099.63 19698.72 6199.90 11698.25 18799.63 13499.80 70
SED-MVS99.61 799.52 1199.88 599.84 3299.90 299.60 9699.48 15599.08 3399.91 1699.81 8999.20 799.96 3098.91 10199.85 7099.79 74
OPU-MVS99.64 7899.56 15699.72 4299.60 9699.70 15699.27 599.42 27598.24 18899.80 9899.79 74
SR-MVS99.43 4099.29 5399.86 2199.75 7399.83 1699.59 10299.62 4198.21 12899.73 6299.79 11498.68 6499.96 3098.44 17399.77 10899.79 74
HPM-MVS++copyleft99.39 5299.23 6599.87 1199.75 7399.84 1599.43 19999.51 11598.68 8199.27 18699.53 23398.64 6999.96 3098.44 17399.80 9899.79 74
PVSNet_Blended_VisFu99.36 5599.28 5599.61 8499.86 2099.07 14599.47 18599.93 297.66 19999.71 6899.86 4897.73 11099.96 3099.47 4399.82 9199.79 74
3Dnovator97.25 999.24 7499.05 8399.81 4499.12 28299.66 5399.84 1399.74 1099.09 3298.92 25399.90 2695.94 17299.98 1398.95 9599.92 2599.79 74
APD-MVS_3200maxsize99.48 2699.35 3499.85 2899.76 6599.83 1699.63 8399.54 8598.36 11099.79 4299.82 7598.86 3899.95 5998.62 14599.81 9499.78 80
CDPH-MVS99.13 8998.91 10999.80 4699.75 7399.71 4499.15 29099.41 21496.60 29699.60 10799.55 22498.83 4299.90 11697.48 25999.83 8799.78 80
SR-MVS-dyc-post99.45 3399.31 4799.85 2899.76 6599.82 2299.63 8399.52 10198.38 10699.76 5699.82 7598.53 7699.95 5998.61 14899.81 9499.77 82
RE-MVS-def99.34 3699.76 6599.82 2299.63 8399.52 10198.38 10699.76 5699.82 7598.75 5598.61 14899.81 9499.77 82
SD-MVS99.41 4799.52 1199.05 18499.74 8099.68 4899.46 18899.52 10199.11 2699.88 2099.91 2099.43 197.70 38798.72 13299.93 2399.77 82
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
CNVR-MVS99.42 4299.30 4999.78 5299.62 13799.71 4499.26 27199.52 10198.82 6599.39 15799.71 15298.96 2499.85 14898.59 15399.80 9899.77 82
MVS_111021_HR99.41 4799.32 4099.66 6999.72 9199.47 9198.95 33899.85 698.82 6599.54 12099.73 14798.51 7899.74 20598.91 10199.88 5299.77 82
QAPM98.67 15698.30 17499.80 4699.20 26099.67 5199.77 3599.72 1194.74 35998.73 27899.90 2695.78 17999.98 1396.96 29399.88 5299.76 87
GeoE98.85 13798.62 14999.53 10599.61 14199.08 14399.80 2699.51 11597.10 25799.31 17499.78 12095.23 20099.77 19698.21 18999.03 18199.75 88
test9_res97.49 25899.72 11999.75 88
train_agg99.02 11298.77 12999.77 5599.67 11199.65 5799.05 31199.41 21496.28 31698.95 24899.49 24698.76 5299.91 10597.63 24399.72 11999.75 88
agg_prior297.21 27699.73 11899.75 88
SF-MVS99.38 5399.24 6399.79 4999.79 5499.68 4899.57 11799.54 8597.82 18099.71 6899.80 10298.95 2799.93 8498.19 19199.84 7899.74 92
test_prior99.68 6899.67 11199.48 8999.56 6999.83 16899.74 92
test1299.75 5899.64 12899.61 6799.29 27999.21 20098.38 8799.89 12799.74 11699.74 92
114514_t98.93 12298.67 13899.72 6599.85 2699.53 8299.62 8899.59 5792.65 37999.71 6899.78 12098.06 10299.90 11698.84 11799.91 3299.74 92
Vis-MVSNetpermissive99.12 9598.97 10199.56 9499.78 5699.10 13899.68 6299.66 2898.49 9799.86 2799.87 4494.77 21899.84 15599.19 7299.41 14999.74 92
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
旧先验199.74 8099.59 7099.54 8599.69 16698.47 8099.68 12799.73 97
casdiffmvs_mvgpermissive99.15 8599.02 9199.55 9699.66 12099.09 13999.64 7999.56 6998.26 12099.45 13599.87 4496.03 16799.81 18099.54 3099.15 16999.73 97
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
EPNet98.86 13098.71 13499.30 15297.20 38598.18 23299.62 8898.91 33599.28 1698.63 29799.81 8995.96 16999.99 499.24 6999.72 11999.73 97
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
IS-MVSNet99.05 10898.87 11599.57 9299.73 8799.32 10499.75 4299.20 29698.02 16099.56 11599.86 4896.54 15199.67 23598.09 19899.13 17199.73 97
F-COLMAP99.19 7799.04 8599.64 7899.78 5699.27 11499.42 20699.54 8597.29 23899.41 14899.59 21098.42 8599.93 8498.19 19199.69 12499.73 97
DeepC-MVS98.35 299.30 6199.19 6899.64 7899.82 4299.23 12099.62 8899.55 7798.94 5499.63 9699.95 395.82 17899.94 6999.37 5099.97 799.73 97
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SDMVSNet99.11 9998.90 11099.75 5899.81 4699.59 7099.81 2199.65 3398.78 7399.64 9399.88 3694.56 23199.93 8499.67 2198.26 22799.72 103
sd_testset98.75 14898.57 15699.29 15599.81 4698.26 22999.56 12399.62 4198.78 7399.64 9399.88 3692.02 30499.88 13399.54 3098.26 22799.72 103
新几何199.75 5899.75 7399.59 7099.54 8596.76 28199.29 18099.64 19098.43 8399.94 6996.92 29899.66 12999.72 103
无先验98.99 32799.51 11596.89 27599.93 8497.53 25599.72 103
test22299.75 7399.49 8798.91 34499.49 14396.42 31099.34 17199.65 18498.28 9299.69 12499.72 103
testdata99.54 9799.75 7398.95 16499.51 11597.07 25999.43 14199.70 15698.87 3799.94 6997.76 23199.64 13299.72 103
VNet99.11 9998.90 11099.73 6499.52 16799.56 7599.41 20899.39 22399.01 4099.74 6099.78 12095.56 18699.92 9599.52 3498.18 23499.72 103
WTY-MVS99.06 10798.88 11499.61 8499.62 13799.16 12799.37 22799.56 6998.04 15799.53 12299.62 20196.84 14099.94 6998.85 11498.49 21699.72 103
CSCG99.32 5999.32 4099.32 14699.85 2698.29 22799.71 5299.66 2898.11 14399.41 14899.80 10298.37 8899.96 3098.99 9199.96 1299.72 103
原ACMM199.65 7399.73 8799.33 10399.47 17597.46 21999.12 21799.66 18398.67 6699.91 10597.70 24099.69 12499.71 112
Anonymous20240521198.30 18397.98 20499.26 16199.57 15298.16 23399.41 20898.55 36996.03 33799.19 20699.74 14191.87 30799.92 9599.16 7698.29 22699.70 113
casdiffmvspermissive99.13 8998.98 10099.56 9499.65 12699.16 12799.56 12399.50 13598.33 11499.41 14899.86 4895.92 17399.83 16899.45 4599.16 16699.70 113
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
LFMVS97.90 23697.35 28099.54 9799.52 16799.01 15299.39 22098.24 37697.10 25799.65 8999.79 11484.79 37999.91 10599.28 6398.38 21899.69 115
EPNet_dtu98.03 21597.96 20698.23 29498.27 36795.54 34299.23 27698.75 35399.02 3897.82 34399.71 15296.11 16499.48 26293.04 36899.65 13199.69 115
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PAPM_NR99.04 10998.84 12299.66 6999.74 8099.44 9499.39 22099.38 23197.70 19499.28 18199.28 30498.34 8999.85 14896.96 29399.45 14699.69 115
EPP-MVSNet99.13 8998.99 9799.53 10599.65 12699.06 14699.81 2199.33 25797.43 22599.60 10799.88 3697.14 12699.84 15599.13 7798.94 18699.69 115
sss99.17 8199.05 8399.53 10599.62 13798.97 15799.36 23199.62 4197.83 17699.67 7899.65 18497.37 11999.95 5999.19 7299.19 16599.68 119
PHI-MVS99.30 6199.17 7099.70 6799.56 15699.52 8599.58 11099.80 897.12 25399.62 10199.73 14798.58 7299.90 11698.61 14899.91 3299.68 119
PVSNet_094.43 1996.09 33095.47 33697.94 31399.31 23594.34 36697.81 39499.70 1597.12 25397.46 34998.75 35889.71 34099.79 18997.69 24181.69 39699.68 119
diffmvspermissive99.14 8799.02 9199.51 11399.61 14198.96 16199.28 25799.49 14398.46 9999.72 6799.71 15296.50 15299.88 13399.31 5899.11 17299.67 122
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline99.15 8599.02 9199.53 10599.66 12099.14 13399.72 5099.48 15598.35 11199.42 14499.84 6396.07 16599.79 18999.51 3599.14 17099.67 122
TAMVS99.12 9599.08 8099.24 16499.46 19098.55 20599.51 15799.46 18498.09 14699.45 13599.82 7598.34 8999.51 26198.70 13498.93 18799.67 122
Anonymous2024052998.09 20397.68 23999.34 14099.66 12098.44 22199.40 21699.43 20993.67 36999.22 19799.89 3090.23 33699.93 8499.26 6898.33 22199.66 125
CHOSEN 280x42099.12 9599.13 7399.08 17999.66 12097.89 25198.43 38099.71 1398.88 5999.62 10199.76 13396.63 14799.70 22799.46 4499.99 199.66 125
CDS-MVSNet99.09 10499.03 8799.25 16299.42 19998.73 19099.45 18999.46 18498.11 14399.46 13499.77 12898.01 10399.37 28298.70 13498.92 18999.66 125
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
PAPR98.63 16098.34 17099.51 11399.40 20999.03 14998.80 35499.36 24096.33 31399.00 24299.12 32698.46 8199.84 15595.23 34299.37 15799.66 125
h-mvs3397.70 27097.28 29198.97 19499.70 10197.27 27399.36 23199.45 19598.94 5499.66 8399.64 19094.93 20599.99 499.48 4184.36 39299.65 129
CANet99.25 7399.14 7299.59 8799.41 20499.16 12799.35 23699.57 6498.82 6599.51 12699.61 20596.46 15499.95 5999.59 2599.98 499.65 129
TSAR-MVS + GP.99.36 5599.36 3299.36 13999.67 11198.61 20199.07 30699.33 25799.00 4399.82 3599.81 8999.06 1699.84 15599.09 8199.42 14899.65 129
MVSFormer99.17 8199.12 7499.29 15599.51 17098.94 16799.88 499.46 18497.55 20999.80 4099.65 18497.39 11699.28 30099.03 8599.85 7099.65 129
jason99.13 8999.03 8799.45 12599.46 19098.87 17499.12 29699.26 28598.03 15999.79 4299.65 18497.02 13499.85 14899.02 8799.90 4099.65 129
jason: jason.
PLCcopyleft97.94 499.02 11298.85 12099.53 10599.66 12099.01 15299.24 27599.52 10196.85 27799.27 18699.48 25198.25 9399.91 10597.76 23199.62 13599.65 129
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
TAPA-MVS97.07 1597.74 26397.34 28398.94 19899.70 10197.53 26699.25 27399.51 11591.90 38199.30 17799.63 19698.78 4899.64 24688.09 39199.87 5599.65 129
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
dmvs_re98.08 20598.16 18097.85 31899.55 16094.67 36099.70 5398.92 33198.15 13699.06 23299.35 28693.67 26599.25 30597.77 23097.25 28799.64 136
LCM-MVSNet-Re97.83 24798.15 18296.87 35399.30 23692.25 38399.59 10298.26 37497.43 22596.20 36999.13 32396.27 16198.73 36698.17 19498.99 18499.64 136
BH-RMVSNet98.41 17298.08 19299.40 13399.41 20498.83 18299.30 24798.77 35297.70 19498.94 25099.65 18492.91 27999.74 20596.52 31299.55 14199.64 136
MVS_111021_LR99.41 4799.33 3899.65 7399.77 6299.51 8698.94 34099.85 698.82 6599.65 8999.74 14198.51 7899.80 18698.83 12099.89 4999.64 136
MVS97.28 30296.55 31499.48 11998.78 33598.95 16499.27 26299.39 22383.53 39698.08 33199.54 22996.97 13799.87 13894.23 35599.16 16699.63 140
MSLP-MVS++99.46 3199.47 1799.44 12999.60 14699.16 12799.41 20899.71 1398.98 4899.45 13599.78 12099.19 999.54 26099.28 6399.84 7899.63 140
GA-MVS97.85 24297.47 26099.00 19099.38 21397.99 24398.57 37399.15 30297.04 26498.90 25699.30 30089.83 33999.38 27896.70 30698.33 22199.62 142
Vis-MVSNet (Re-imp)98.87 12798.72 13299.31 14799.71 9698.88 17399.80 2699.44 20397.91 16799.36 16599.78 12095.49 18999.43 27497.91 21499.11 17299.62 142
DPM-MVS98.95 12198.71 13499.66 6999.63 13199.55 7798.64 36999.10 30797.93 16599.42 14499.55 22498.67 6699.80 18695.80 32799.68 12799.61 144
baseline198.31 18197.95 20899.38 13899.50 17998.74 18999.59 10298.93 32898.41 10499.14 21499.60 20894.59 22999.79 18998.48 16793.29 36399.61 144
VDD-MVS97.73 26497.35 28098.88 21399.47 18997.12 28199.34 23998.85 34498.19 13199.67 7899.85 5382.98 38699.92 9599.49 4098.32 22599.60 146
DELS-MVS99.48 2699.42 2299.65 7399.72 9199.40 9999.05 31199.66 2899.14 2199.57 11499.80 10298.46 8199.94 6999.57 2799.84 7899.60 146
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PVSNet_Blended99.08 10598.97 10199.42 13099.76 6598.79 18698.78 35699.91 396.74 28299.67 7899.49 24697.53 11399.88 13398.98 9299.85 7099.60 146
OMC-MVS99.08 10599.04 8599.20 16899.67 11198.22 23199.28 25799.52 10198.07 15199.66 8399.81 8997.79 10899.78 19497.79 22699.81 9499.60 146
test_yl98.86 13098.63 14499.54 9799.49 18199.18 12499.50 16499.07 31398.22 12699.61 10499.51 23995.37 19299.84 15598.60 15198.33 22199.59 150
DCV-MVSNet98.86 13098.63 14499.54 9799.49 18199.18 12499.50 16499.07 31398.22 12699.61 10499.51 23995.37 19299.84 15598.60 15198.33 22199.59 150
AllTest98.87 12798.72 13299.31 14799.86 2098.48 21799.56 12399.61 4897.85 17399.36 16599.85 5395.95 17099.85 14896.66 30999.83 8799.59 150
TestCases99.31 14799.86 2098.48 21799.61 4897.85 17399.36 16599.85 5395.95 17099.85 14896.66 30999.83 8799.59 150
testing397.28 30296.76 31198.82 22899.37 21698.07 23999.45 18999.36 24097.56 20897.89 34098.95 34383.70 38498.82 36196.03 32198.56 21199.58 154
lupinMVS99.13 8999.01 9599.46 12499.51 17098.94 16799.05 31199.16 30197.86 17099.80 4099.56 22197.39 11699.86 14298.94 9699.85 7099.58 154
tttt051798.42 17098.14 18399.28 15999.66 12098.38 22599.74 4596.85 39397.68 19699.79 4299.74 14191.39 32199.89 12798.83 12099.56 13999.57 156
RPSCF98.22 18898.62 14996.99 34799.82 4291.58 38699.72 5099.44 20396.61 29499.66 8399.89 3095.92 17399.82 17597.46 26299.10 17599.57 156
dmvs_testset95.02 34196.12 32391.72 37499.10 28780.43 40299.58 11097.87 38497.47 21895.22 37698.82 35293.99 25395.18 39988.09 39194.91 34199.56 158
DSMNet-mixed97.25 30497.35 28096.95 35097.84 37393.61 37599.57 11796.63 39796.13 33198.87 26298.61 36394.59 22997.70 38795.08 34498.86 19399.55 159
AdaColmapbinary99.01 11698.80 12599.66 6999.56 15699.54 7999.18 28599.70 1598.18 13499.35 16899.63 19696.32 15999.90 11697.48 25999.77 10899.55 159
alignmvs98.81 14198.56 15899.58 9099.43 19799.42 9699.51 15798.96 32598.61 8599.35 16898.92 34894.78 21599.77 19699.35 5198.11 23999.54 161
EC-MVSNet99.44 3799.39 2799.58 9099.56 15699.49 8799.88 499.58 6198.38 10699.73 6299.69 16698.20 9599.70 22799.64 2499.82 9199.54 161
PatchmatchNetpermissive98.31 18198.36 16898.19 29699.16 27695.32 34899.27 26298.92 33197.37 23199.37 16199.58 21494.90 20899.70 22797.43 26599.21 16399.54 161
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
PVSNet96.02 1798.85 13798.84 12298.89 21199.73 8797.28 27298.32 38699.60 5497.86 17099.50 12799.57 21896.75 14499.86 14298.56 16099.70 12399.54 161
MSDG98.98 11898.80 12599.53 10599.76 6599.19 12298.75 35999.55 7797.25 24199.47 13299.77 12897.82 10799.87 13896.93 29699.90 4099.54 161
UGNet98.87 12798.69 13699.40 13399.22 25798.72 19199.44 19599.68 2099.24 1799.18 21099.42 26592.74 28399.96 3099.34 5599.94 2299.53 166
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
GSMVS99.52 167
sam_mvs194.86 21099.52 167
SCA98.19 19298.16 18098.27 29399.30 23695.55 34099.07 30698.97 32397.57 20699.43 14199.57 21892.72 28499.74 20597.58 24799.20 16499.52 167
Patchmatch-test97.93 23097.65 24298.77 23699.18 26697.07 28699.03 31699.14 30496.16 32798.74 27799.57 21894.56 23199.72 21593.36 36499.11 17299.52 167
PMMVS98.80 14498.62 14999.34 14099.27 24598.70 19298.76 35899.31 27197.34 23399.21 20099.07 32897.20 12599.82 17598.56 16098.87 19299.52 167
LS3D99.27 6799.12 7499.74 6199.18 26699.75 3999.56 12399.57 6498.45 10099.49 13099.85 5397.77 10999.94 6998.33 18299.84 7899.52 167
Effi-MVS+98.81 14198.59 15599.48 11999.46 19099.12 13798.08 39299.50 13597.50 21799.38 15999.41 26996.37 15899.81 18099.11 7998.54 21399.51 173
Patchmatch-RL test95.84 33395.81 33295.95 36295.61 39390.57 38898.24 38898.39 37295.10 35195.20 37798.67 36094.78 21597.77 38596.28 31890.02 38399.51 173
mvs_anonymous99.03 11198.99 9799.16 17299.38 21398.52 21199.51 15799.38 23197.79 18199.38 15999.81 8997.30 12299.45 26599.35 5198.99 18499.51 173
UniMVSNet_ETH3D97.32 30196.81 30998.87 21799.40 20997.46 26899.51 15799.53 9695.86 34098.54 30699.77 12882.44 38999.66 23898.68 13997.52 26799.50 176
ab-mvs98.86 13098.63 14499.54 9799.64 12899.19 12299.44 19599.54 8597.77 18499.30 17799.81 8994.20 24599.93 8499.17 7598.82 19799.49 177
thisisatest053098.35 17898.03 19899.31 14799.63 13198.56 20499.54 14096.75 39597.53 21399.73 6299.65 18491.25 32499.89 12798.62 14599.56 13999.48 178
CS-MVS-test99.49 2299.48 1599.54 9799.78 5699.30 11099.89 299.58 6198.56 8999.73 6299.69 16698.55 7599.82 17599.69 1999.85 7099.48 178
ADS-MVSNet298.02 21798.07 19597.87 31799.33 22895.19 35199.23 27699.08 31096.24 32099.10 22299.67 17894.11 24998.93 35796.81 30199.05 17999.48 178
ADS-MVSNet98.20 19198.08 19298.56 25699.33 22896.48 31999.23 27699.15 30296.24 32099.10 22299.67 17894.11 24999.71 22196.81 30199.05 17999.48 178
tpm97.67 27697.55 25098.03 30599.02 30395.01 35499.43 19998.54 37096.44 30899.12 21799.34 29091.83 30999.60 25497.75 23396.46 30299.48 178
CNLPA99.14 8798.99 9799.59 8799.58 15099.41 9899.16 28799.44 20398.45 10099.19 20699.49 24698.08 10199.89 12797.73 23599.75 11399.48 178
MGCFI-Net99.01 11698.85 12099.50 11899.42 19999.26 11699.82 1799.48 15598.60 8699.28 18198.81 35397.04 13399.76 20099.29 6297.87 24899.47 184
sasdasda99.02 11298.86 11899.51 11399.42 19999.32 10499.80 2699.48 15598.63 8299.31 17498.81 35397.09 12999.75 20399.27 6697.90 24599.47 184
canonicalmvs99.02 11298.86 11899.51 11399.42 19999.32 10499.80 2699.48 15598.63 8299.31 17498.81 35397.09 12999.75 20399.27 6697.90 24599.47 184
MIMVSNet97.73 26497.45 26398.57 25399.45 19597.50 26799.02 31998.98 32296.11 33299.41 14899.14 32290.28 33298.74 36595.74 32898.93 18799.47 184
MVS_Test99.10 10398.97 10199.48 11999.49 18199.14 13399.67 6599.34 25097.31 23699.58 11199.76 13397.65 11299.82 17598.87 10799.07 17899.46 188
MDTV_nov1_ep13_2view95.18 35299.35 23696.84 27899.58 11195.19 20197.82 22499.46 188
MVS-HIRNet95.75 33595.16 34097.51 33599.30 23693.69 37398.88 34695.78 40085.09 39598.78 27492.65 39891.29 32399.37 28294.85 34799.85 7099.46 188
Syy-MVS97.09 31197.14 29796.95 35099.00 30592.73 38199.29 25299.39 22397.06 26197.41 35098.15 37593.92 25798.68 36791.71 37798.34 21999.45 191
myMVS_eth3d96.89 31396.37 31898.43 27699.00 30597.16 27999.29 25299.39 22397.06 26197.41 35098.15 37583.46 38598.68 36795.27 34198.34 21999.45 191
DP-MVS Recon99.12 9598.95 10599.65 7399.74 8099.70 4699.27 26299.57 6496.40 31299.42 14499.68 17298.75 5599.80 18697.98 21099.72 11999.44 193
PatchMatch-RL98.84 14098.62 14999.52 11199.71 9699.28 11299.06 30999.77 997.74 18999.50 12799.53 23395.41 19099.84 15597.17 28399.64 13299.44 193
VDDNet97.55 28497.02 30399.16 17299.49 18198.12 23799.38 22599.30 27595.35 34599.68 7499.90 2682.62 38899.93 8499.31 5898.13 23899.42 195
PCF-MVS97.08 1497.66 27797.06 30299.47 12299.61 14199.09 13998.04 39399.25 28791.24 38498.51 30799.70 15694.55 23399.91 10592.76 37399.85 7099.42 195
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
ET-MVSNet_ETH3D96.49 32195.64 33599.05 18499.53 16398.82 18398.84 35097.51 39097.63 20184.77 39699.21 31692.09 30398.91 35898.98 9292.21 37399.41 197
CS-MVS99.50 2099.48 1599.54 9799.76 6599.42 9699.90 199.55 7798.56 8999.78 4799.70 15698.65 6899.79 18999.65 2399.78 10599.41 197
HY-MVS97.30 798.85 13798.64 14399.47 12299.42 19999.08 14399.62 8899.36 24097.39 23099.28 18199.68 17296.44 15699.92 9598.37 17898.22 22999.40 199
testing9197.44 29697.02 30398.71 24199.18 26696.89 30399.19 28399.04 31697.78 18398.31 31898.29 37285.41 37599.85 14898.01 20897.95 24399.39 200
ETVMVS97.50 28996.90 30799.29 15599.23 25398.78 18899.32 24298.90 33797.52 21598.56 30498.09 38084.72 38099.69 23297.86 21997.88 24799.39 200
tt080597.97 22797.77 22898.57 25399.59 14896.61 31599.45 18999.08 31098.21 12898.88 25999.80 10288.66 35399.70 22798.58 15497.72 25399.39 200
Fast-Effi-MVS+98.70 15298.43 16499.51 11399.51 17099.28 11299.52 14999.47 17596.11 33299.01 23899.34 29096.20 16399.84 15597.88 21698.82 19799.39 200
testing1197.50 28997.10 30098.71 24199.20 26096.91 30199.29 25298.82 34797.89 16898.21 32698.40 36885.63 37399.83 16898.45 17298.04 24199.37 204
CANet_DTU98.97 12098.87 11599.25 16299.33 22898.42 22499.08 30599.30 27599.16 1999.43 14199.75 13695.27 19699.97 2198.56 16099.95 1699.36 205
testing9997.36 29996.94 30698.63 24699.18 26696.70 30999.30 24798.93 32897.71 19198.23 32398.26 37384.92 37899.84 15598.04 20797.85 25099.35 206
EIA-MVS99.18 7999.09 7999.45 12599.49 18199.18 12499.67 6599.53 9697.66 19999.40 15399.44 26198.10 9999.81 18098.94 9699.62 13599.35 206
EPMVS97.82 25097.65 24298.35 28398.88 32195.98 33299.49 17594.71 40597.57 20699.26 19099.48 25192.46 29899.71 22197.87 21899.08 17799.35 206
CostFormer97.72 26697.73 23597.71 32899.15 28094.02 36899.54 14099.02 31894.67 36099.04 23599.35 28692.35 30199.77 19698.50 16697.94 24499.34 209
BH-untuned98.42 17098.36 16898.59 24999.49 18196.70 30999.27 26299.13 30597.24 24398.80 27199.38 27795.75 18099.74 20597.07 28799.16 16699.33 210
FE-MVS98.48 16598.17 17999.40 13399.54 16298.96 16199.68 6298.81 34995.54 34399.62 10199.70 15693.82 26099.93 8497.35 27099.46 14599.32 211
PAPM97.59 28297.09 30199.07 18199.06 29798.26 22998.30 38799.10 30794.88 35598.08 33199.34 29096.27 16199.64 24689.87 38498.92 18999.31 212
tpm297.44 29697.34 28397.74 32799.15 28094.36 36599.45 18998.94 32693.45 37498.90 25699.44 26191.35 32299.59 25597.31 27198.07 24099.29 213
UWE-MVS97.58 28397.29 29098.48 26499.09 29096.25 32799.01 32496.61 39897.86 17099.19 20699.01 33688.72 35099.90 11697.38 26898.69 20399.28 214
FA-MVS(test-final)98.75 14898.53 16099.41 13199.55 16099.05 14899.80 2699.01 31996.59 29899.58 11199.59 21095.39 19199.90 11697.78 22799.49 14499.28 214
JIA-IIPM97.50 28997.02 30398.93 20098.73 34297.80 25699.30 24798.97 32391.73 38298.91 25494.86 39695.10 20299.71 22197.58 24797.98 24299.28 214
dp97.75 26197.80 22297.59 33399.10 28793.71 37299.32 24298.88 34096.48 30599.08 22699.55 22492.67 28999.82 17596.52 31298.58 20899.24 217
iter_conf05_1198.35 17897.99 20299.41 13199.37 21699.13 13698.96 33498.23 37798.50 9699.63 9699.46 25888.83 34999.87 13899.00 8999.95 1699.23 218
bld_raw_dy_0_6498.26 18797.88 21899.40 13399.37 21699.09 13999.62 8898.94 32698.53 9299.40 15399.51 23988.93 34799.89 12799.00 8997.64 25699.23 218
thisisatest051598.14 19897.79 22399.19 16999.50 17998.50 21498.61 37096.82 39496.95 27199.54 12099.43 26391.66 31699.86 14298.08 20299.51 14399.22 220
TESTMET0.1,197.55 28497.27 29498.40 27998.93 31696.53 31798.67 36597.61 38896.96 26998.64 29699.28 30488.63 35599.45 26597.30 27299.38 15099.21 221
testing22297.16 30796.50 31599.16 17299.16 27698.47 21999.27 26298.66 36597.71 19198.23 32398.15 37582.28 39099.84 15597.36 26997.66 25599.18 222
CR-MVSNet98.17 19597.93 21198.87 21799.18 26698.49 21599.22 28099.33 25796.96 26999.56 11599.38 27794.33 24199.00 34594.83 34898.58 20899.14 223
RPMNet96.72 31795.90 32999.19 16999.18 26698.49 21599.22 28099.52 10188.72 39299.56 11597.38 38694.08 25199.95 5986.87 39698.58 20899.14 223
testgi97.65 27897.50 25798.13 30299.36 22196.45 32099.42 20699.48 15597.76 18597.87 34199.45 26091.09 32598.81 36294.53 35098.52 21499.13 225
test-LLR98.06 20797.90 21398.55 25898.79 33297.10 28298.67 36597.75 38597.34 23398.61 30098.85 35094.45 23899.45 26597.25 27499.38 15099.10 226
test-mter97.49 29497.13 29998.55 25898.79 33297.10 28298.67 36597.75 38596.65 28998.61 30098.85 35088.23 35999.45 26597.25 27499.38 15099.10 226
IB-MVS95.67 1896.22 32595.44 33898.57 25399.21 25896.70 30998.65 36897.74 38796.71 28497.27 35598.54 36486.03 37099.92 9598.47 17086.30 39099.10 226
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
MAR-MVS98.86 13098.63 14499.54 9799.37 21699.66 5399.45 18999.54 8596.61 29499.01 23899.40 27297.09 12999.86 14297.68 24299.53 14299.10 226
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
tpmrst98.33 18098.48 16297.90 31699.16 27694.78 35799.31 24599.11 30697.27 23999.45 13599.59 21095.33 19499.84 15598.48 16798.61 20599.09 230
hse-mvs297.50 28997.14 29798.59 24999.49 18197.05 28899.28 25799.22 29298.94 5499.66 8399.42 26594.93 20599.65 24399.48 4183.80 39499.08 231
xiu_mvs_v1_base_debu99.29 6399.27 5899.34 14099.63 13198.97 15799.12 29699.51 11598.86 6099.84 2999.47 25498.18 9699.99 499.50 3699.31 15899.08 231
xiu_mvs_v1_base99.29 6399.27 5899.34 14099.63 13198.97 15799.12 29699.51 11598.86 6099.84 2999.47 25498.18 9699.99 499.50 3699.31 15899.08 231
xiu_mvs_v1_base_debi99.29 6399.27 5899.34 14099.63 13198.97 15799.12 29699.51 11598.86 6099.84 2999.47 25498.18 9699.99 499.50 3699.31 15899.08 231
COLMAP_ROBcopyleft97.56 698.86 13098.75 13199.17 17199.88 1198.53 20799.34 23999.59 5797.55 20998.70 28699.89 3095.83 17799.90 11698.10 19799.90 4099.08 231
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
AUN-MVS96.88 31496.31 32098.59 24999.48 18897.04 29199.27 26299.22 29297.44 22498.51 30799.41 26991.97 30599.66 23897.71 23883.83 39399.07 236
OpenMVScopyleft96.50 1698.47 16698.12 18699.52 11199.04 30199.53 8299.82 1799.72 1194.56 36298.08 33199.88 3694.73 22199.98 1397.47 26199.76 11199.06 237
ETV-MVS99.26 6999.21 6699.40 13399.46 19099.30 11099.56 12399.52 10198.52 9499.44 14099.27 30798.41 8699.86 14299.10 8099.59 13799.04 238
PatchT97.03 31296.44 31798.79 23498.99 30898.34 22699.16 28799.07 31392.13 38099.52 12497.31 38994.54 23498.98 34788.54 38998.73 20299.03 239
BH-w/o98.00 22297.89 21798.32 28699.35 22296.20 32999.01 32498.90 33796.42 31098.38 31499.00 33795.26 19899.72 21596.06 32098.61 20599.03 239
Fast-Effi-MVS+-dtu98.77 14798.83 12498.60 24899.41 20496.99 29599.52 14999.49 14398.11 14399.24 19299.34 29096.96 13899.79 18997.95 21299.45 14699.02 241
XVG-OURS-SEG-HR98.69 15498.62 14998.89 21199.71 9697.74 25799.12 29699.54 8598.44 10399.42 14499.71 15294.20 24599.92 9598.54 16498.90 19199.00 242
XVG-OURS98.73 15198.68 13798.88 21399.70 10197.73 25898.92 34299.55 7798.52 9499.45 13599.84 6395.27 19699.91 10598.08 20298.84 19599.00 242
tpm cat197.39 29897.36 27897.50 33699.17 27493.73 37199.43 19999.31 27191.27 38398.71 28099.08 32794.31 24399.77 19696.41 31698.50 21599.00 242
xiu_mvs_v2_base99.26 6999.25 6299.29 15599.53 16398.91 17199.02 31999.45 19598.80 6999.71 6899.26 30998.94 2999.98 1399.34 5599.23 16298.98 245
PS-MVSNAJ99.32 5999.32 4099.30 15299.57 15298.94 16798.97 33399.46 18498.92 5799.71 6899.24 31199.01 1899.98 1399.35 5199.66 12998.97 246
tpmvs97.98 22498.02 20097.84 32099.04 30194.73 35899.31 24599.20 29696.10 33698.76 27699.42 26594.94 20499.81 18096.97 29298.45 21798.97 246
thres600view797.86 24197.51 25698.92 20299.72 9197.95 24899.59 10298.74 35697.94 16499.27 18698.62 36191.75 31099.86 14293.73 36098.19 23398.96 248
thres40097.77 25697.38 27698.92 20299.69 10697.96 24699.50 16498.73 36197.83 17699.17 21198.45 36691.67 31499.83 16893.22 36598.18 23498.96 248
TR-MVS97.76 25797.41 27498.82 22899.06 29797.87 25298.87 34898.56 36896.63 29398.68 28899.22 31392.49 29499.65 24395.40 33897.79 25198.95 250
test0.0.03 197.71 26997.42 27398.56 25698.41 36697.82 25598.78 35698.63 36697.34 23398.05 33598.98 34094.45 23898.98 34795.04 34597.15 29298.89 251
baseline297.87 23997.55 25098.82 22899.18 26698.02 24199.41 20896.58 39996.97 26896.51 36699.17 31893.43 26799.57 25697.71 23899.03 18198.86 252
cascas97.69 27197.43 27298.48 26498.60 35797.30 27198.18 39199.39 22392.96 37798.41 31298.78 35793.77 26299.27 30398.16 19598.61 20598.86 252
131498.68 15598.54 15999.11 17898.89 32098.65 19699.27 26299.49 14396.89 27597.99 33699.56 22197.72 11199.83 16897.74 23499.27 16198.84 254
PS-MVSNAJss98.92 12398.92 10798.90 20898.78 33598.53 20799.78 3399.54 8598.07 15199.00 24299.76 13399.01 1899.37 28299.13 7797.23 28898.81 255
RRT_MVS98.70 15298.66 14198.83 22798.90 31898.45 22099.89 299.28 28197.76 18598.94 25099.92 1496.98 13699.25 30599.28 6397.00 29498.80 256
FC-MVSNet-test98.75 14898.62 14999.15 17699.08 29399.45 9399.86 1299.60 5498.23 12598.70 28699.82 7596.80 14199.22 31299.07 8396.38 30498.79 257
nrg03098.64 15998.42 16599.28 15999.05 30099.69 4799.81 2199.46 18498.04 15799.01 23899.82 7596.69 14699.38 27899.34 5594.59 34598.78 258
FIs98.78 14598.63 14499.23 16699.18 26699.54 7999.83 1699.59 5798.28 11798.79 27399.81 8996.75 14499.37 28299.08 8296.38 30498.78 258
EU-MVSNet97.98 22498.03 19897.81 32498.72 34496.65 31399.66 7099.66 2898.09 14698.35 31699.82 7595.25 19998.01 38097.41 26695.30 33198.78 258
jajsoiax98.43 16998.28 17598.88 21398.60 35798.43 22299.82 1799.53 9698.19 13198.63 29799.80 10293.22 27299.44 27099.22 7097.50 27098.77 261
mvs_tets98.40 17598.23 17798.91 20698.67 35098.51 21399.66 7099.53 9698.19 13198.65 29599.81 8992.75 28199.44 27099.31 5897.48 27498.77 261
Anonymous2023121197.88 23797.54 25398.90 20899.71 9698.53 20799.48 17999.57 6494.16 36598.81 26999.68 17293.23 27099.42 27598.84 11794.42 34898.76 263
XXY-MVS98.38 17698.09 19199.24 16499.26 24799.32 10499.56 12399.55 7797.45 22298.71 28099.83 6793.23 27099.63 25198.88 10496.32 30698.76 263
v7n97.87 23997.52 25498.92 20298.76 34098.58 20399.84 1399.46 18496.20 32398.91 25499.70 15694.89 20999.44 27096.03 32193.89 35798.75 265
PS-CasMVS97.93 23097.59 24998.95 19798.99 30899.06 14699.68 6299.52 10197.13 25198.31 31899.68 17292.44 29999.05 33798.51 16594.08 35498.75 265
test_djsdf98.67 15698.57 15698.98 19298.70 34798.91 17199.88 499.46 18497.55 20999.22 19799.88 3695.73 18199.28 30099.03 8597.62 25998.75 265
Effi-MVS+-dtu98.78 14598.89 11398.47 26999.33 22896.91 30199.57 11799.30 27598.47 9899.41 14898.99 33896.78 14299.74 20598.73 13199.38 15098.74 268
CP-MVSNet98.09 20397.78 22699.01 18898.97 31399.24 11999.67 6599.46 18497.25 24198.48 31099.64 19093.79 26199.06 33698.63 14494.10 35398.74 268
mvsmamba98.92 12398.87 11599.08 17999.07 29499.16 12799.88 499.51 11598.15 13699.40 15399.89 3097.12 12799.33 29299.38 4897.40 28298.73 270
VPA-MVSNet98.29 18497.95 20899.30 15299.16 27699.54 7999.50 16499.58 6198.27 11999.35 16899.37 28092.53 29399.65 24399.35 5194.46 34698.72 271
PEN-MVS97.76 25797.44 26898.72 23998.77 33998.54 20699.78 3399.51 11597.06 26198.29 32199.64 19092.63 29098.89 36098.09 19893.16 36598.72 271
VPNet97.84 24597.44 26899.01 18899.21 25898.94 16799.48 17999.57 6498.38 10699.28 18199.73 14788.89 34899.39 27799.19 7293.27 36498.71 273
EI-MVSNet98.67 15698.67 13898.68 24499.35 22297.97 24499.50 16499.38 23196.93 27499.20 20399.83 6797.87 10599.36 28698.38 17697.56 26498.71 273
WR-MVS98.06 20797.73 23599.06 18298.86 32799.25 11899.19 28399.35 24697.30 23798.66 28999.43 26393.94 25599.21 31798.58 15494.28 35098.71 273
IterMVS-LS98.46 16798.42 16598.58 25299.59 14898.00 24299.37 22799.43 20996.94 27399.07 22799.59 21097.87 10599.03 34098.32 18495.62 32498.71 273
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v14419297.92 23397.60 24898.87 21798.83 33098.65 19699.55 13599.34 25096.20 32399.32 17399.40 27294.36 24099.26 30496.37 31795.03 33798.70 277
v124097.69 27197.32 28698.79 23498.85 32898.43 22299.48 17999.36 24096.11 33299.27 18699.36 28393.76 26399.24 30894.46 35195.23 33298.70 277
DTE-MVSNet97.51 28897.19 29698.46 27098.63 35398.13 23699.84 1399.48 15596.68 28697.97 33899.67 17892.92 27798.56 36996.88 30092.60 37298.70 277
TranMVSNet+NR-MVSNet97.93 23097.66 24198.76 23798.78 33598.62 19999.65 7699.49 14397.76 18598.49 30999.60 20894.23 24498.97 35498.00 20992.90 36798.70 277
v192192097.80 25497.45 26398.84 22598.80 33198.53 20799.52 14999.34 25096.15 32999.24 19299.47 25493.98 25499.29 29995.40 33895.13 33598.69 281
v119297.81 25297.44 26898.91 20698.88 32198.68 19399.51 15799.34 25096.18 32599.20 20399.34 29094.03 25299.36 28695.32 34095.18 33398.69 281
v2v48298.06 20797.77 22898.92 20298.90 31898.82 18399.57 11799.36 24096.65 28999.19 20699.35 28694.20 24599.25 30597.72 23794.97 33898.69 281
UniMVSNet_NR-MVSNet98.22 18897.97 20598.96 19598.92 31798.98 15499.48 17999.53 9697.76 18598.71 28099.46 25896.43 15799.22 31298.57 15792.87 36998.69 281
OurMVSNet-221017-097.88 23797.77 22898.19 29698.71 34696.53 31799.88 499.00 32097.79 18198.78 27499.94 691.68 31399.35 28997.21 27696.99 29598.69 281
gg-mvs-nofinetune96.17 32895.32 33998.73 23898.79 33298.14 23599.38 22594.09 40691.07 38698.07 33491.04 40289.62 34399.35 28996.75 30399.09 17698.68 286
v114497.98 22497.69 23898.85 22498.87 32498.66 19599.54 14099.35 24696.27 31899.23 19699.35 28694.67 22699.23 30996.73 30495.16 33498.68 286
DU-MVS98.08 20597.79 22398.96 19598.87 32498.98 15499.41 20899.45 19597.87 16998.71 28099.50 24394.82 21199.22 31298.57 15792.87 36998.68 286
NR-MVSNet97.97 22797.61 24799.02 18798.87 32499.26 11699.47 18599.42 21197.63 20197.08 36199.50 24395.07 20399.13 32697.86 21993.59 36098.68 286
LPG-MVS_test98.22 18898.13 18598.49 26299.33 22897.05 28899.58 11099.55 7797.46 21999.24 19299.83 6792.58 29199.72 21598.09 19897.51 26898.68 286
LGP-MVS_train98.49 26299.33 22897.05 28899.55 7797.46 21999.24 19299.83 6792.58 29199.72 21598.09 19897.51 26898.68 286
LTVRE_ROB97.16 1298.02 21797.90 21398.40 27999.23 25396.80 30799.70 5399.60 5497.12 25398.18 32899.70 15691.73 31299.72 21598.39 17597.45 27698.68 286
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
IterMVS-SCA-FT97.82 25097.75 23398.06 30499.57 15296.36 32399.02 31999.49 14397.18 24798.71 28099.72 15192.72 28499.14 32397.44 26495.86 31898.67 293
pm-mvs197.68 27397.28 29198.88 21399.06 29798.62 19999.50 16499.45 19596.32 31497.87 34199.79 11492.47 29599.35 28997.54 25493.54 36198.67 293
v1097.85 24297.52 25498.86 22198.99 30898.67 19499.75 4299.41 21495.70 34198.98 24499.41 26994.75 22099.23 30996.01 32394.63 34498.67 293
HQP_MVS98.27 18698.22 17898.44 27499.29 24096.97 29799.39 22099.47 17598.97 5199.11 21999.61 20592.71 28699.69 23297.78 22797.63 25798.67 293
plane_prior599.47 17599.69 23297.78 22797.63 25798.67 293
SixPastTwentyTwo97.50 28997.33 28598.03 30598.65 35196.23 32899.77 3598.68 36497.14 25097.90 33999.93 990.45 33199.18 32097.00 28996.43 30398.67 293
IterMVS97.83 24797.77 22898.02 30799.58 15096.27 32699.02 31999.48 15597.22 24598.71 28099.70 15692.75 28199.13 32697.46 26296.00 31298.67 293
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
ACMH97.28 898.10 20297.99 20298.44 27499.41 20496.96 29999.60 9699.56 6998.09 14698.15 32999.91 2090.87 32899.70 22798.88 10497.45 27698.67 293
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
v897.95 22997.63 24698.93 20098.95 31598.81 18599.80 2699.41 21496.03 33799.10 22299.42 26594.92 20799.30 29896.94 29594.08 35498.66 301
UniMVSNet (Re)98.29 18498.00 20199.13 17799.00 30599.36 10299.49 17599.51 11597.95 16398.97 24699.13 32396.30 16099.38 27898.36 18093.34 36298.66 301
pmmvs696.53 32096.09 32597.82 32398.69 34895.47 34499.37 22799.47 17593.46 37397.41 35099.78 12087.06 36899.33 29296.92 29892.70 37198.65 303
K. test v397.10 31096.79 31098.01 30898.72 34496.33 32499.87 997.05 39297.59 20396.16 37099.80 10288.71 35199.04 33896.69 30796.55 30198.65 303
our_test_397.65 27897.68 23997.55 33498.62 35494.97 35598.84 35099.30 27596.83 28098.19 32799.34 29097.01 13599.02 34295.00 34696.01 31198.64 305
YYNet195.36 33994.51 34697.92 31497.89 37297.10 28299.10 30499.23 29093.26 37580.77 40199.04 33292.81 28098.02 37994.30 35294.18 35298.64 305
MDA-MVSNet_test_wron95.45 33794.60 34498.01 30898.16 36997.21 27899.11 30299.24 28993.49 37280.73 40298.98 34093.02 27498.18 37594.22 35694.45 34798.64 305
Baseline_NR-MVSNet97.76 25797.45 26398.68 24499.09 29098.29 22799.41 20898.85 34495.65 34298.63 29799.67 17894.82 21199.10 33398.07 20592.89 36898.64 305
HQP4-MVS98.66 28999.64 24698.64 305
HQP-MVS98.02 21797.90 21398.37 28299.19 26396.83 30498.98 33099.39 22398.24 12298.66 28999.40 27292.47 29599.64 24697.19 28097.58 26298.64 305
ACMM97.58 598.37 17798.34 17098.48 26499.41 20497.10 28299.56 12399.45 19598.53 9299.04 23599.85 5393.00 27599.71 22198.74 12997.45 27698.64 305
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
pmmvs597.52 28697.30 28898.16 29898.57 35996.73 30899.27 26298.90 33796.14 33098.37 31599.53 23391.54 31999.14 32397.51 25695.87 31798.63 312
v14897.79 25597.55 25098.50 26198.74 34197.72 25999.54 14099.33 25796.26 31998.90 25699.51 23994.68 22599.14 32397.83 22393.15 36698.63 312
iter_conf0598.55 16398.44 16398.87 21799.34 22698.60 20299.55 13599.42 21198.21 12899.37 16199.77 12893.55 26699.38 27899.30 6197.48 27498.63 312
MDA-MVSNet-bldmvs94.96 34393.98 35097.92 31498.24 36897.27 27399.15 29099.33 25793.80 36880.09 40399.03 33388.31 35897.86 38493.49 36394.36 34998.62 315
TransMVSNet (Re)97.15 30896.58 31398.86 22199.12 28298.85 17899.49 17598.91 33595.48 34497.16 35999.80 10293.38 26899.11 33194.16 35791.73 37498.62 315
lessismore_v097.79 32598.69 34895.44 34694.75 40495.71 37499.87 4488.69 35299.32 29595.89 32494.93 34098.62 315
MVSTER98.49 16498.32 17299.00 19099.35 22299.02 15099.54 14099.38 23197.41 22899.20 20399.73 14793.86 25999.36 28698.87 10797.56 26498.62 315
GBi-Net97.68 27397.48 25898.29 28999.51 17097.26 27599.43 19999.48 15596.49 30299.07 22799.32 29790.26 33398.98 34797.10 28496.65 29798.62 315
test197.68 27397.48 25898.29 28999.51 17097.26 27599.43 19999.48 15596.49 30299.07 22799.32 29790.26 33398.98 34797.10 28496.65 29798.62 315
FMVSNet196.84 31596.36 31998.29 28999.32 23497.26 27599.43 19999.48 15595.11 34998.55 30599.32 29783.95 38398.98 34795.81 32696.26 30798.62 315
ACMP97.20 1198.06 20797.94 21098.45 27199.37 21697.01 29399.44 19599.49 14397.54 21298.45 31199.79 11491.95 30699.72 21597.91 21497.49 27398.62 315
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ACMH+97.24 1097.92 23397.78 22698.32 28699.46 19096.68 31299.56 12399.54 8598.41 10497.79 34599.87 4490.18 33799.66 23898.05 20697.18 29198.62 315
ppachtmachnet_test97.49 29497.45 26397.61 33298.62 35495.24 34998.80 35499.46 18496.11 33298.22 32599.62 20196.45 15598.97 35493.77 35995.97 31698.61 324
OPM-MVS98.19 19298.10 18898.45 27198.88 32197.07 28699.28 25799.38 23198.57 8899.22 19799.81 8992.12 30299.66 23898.08 20297.54 26698.61 324
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
WR-MVS_H98.13 19997.87 21998.90 20899.02 30398.84 17999.70 5399.59 5797.27 23998.40 31399.19 31795.53 18799.23 30998.34 18193.78 35998.61 324
MIMVSNet195.51 33695.04 34196.92 35297.38 38095.60 33899.52 14999.50 13593.65 37096.97 36499.17 31885.28 37796.56 39588.36 39095.55 32698.60 327
N_pmnet94.95 34495.83 33192.31 37298.47 36379.33 40499.12 29692.81 41093.87 36797.68 34699.13 32393.87 25899.01 34491.38 37996.19 30898.59 328
FMVSNet297.72 26697.36 27898.80 23399.51 17098.84 17999.45 18999.42 21196.49 30298.86 26699.29 30290.26 33398.98 34796.44 31496.56 30098.58 329
anonymousdsp98.44 16898.28 17598.94 19898.50 36298.96 16199.77 3599.50 13597.07 25998.87 26299.77 12894.76 21999.28 30098.66 14197.60 26098.57 330
FMVSNet398.03 21597.76 23298.84 22599.39 21298.98 15499.40 21699.38 23196.67 28799.07 22799.28 30492.93 27698.98 34797.10 28496.65 29798.56 331
XVG-ACMP-BASELINE97.83 24797.71 23798.20 29599.11 28496.33 32499.41 20899.52 10198.06 15599.05 23499.50 24389.64 34299.73 21197.73 23597.38 28498.53 332
Patchmtry97.75 26197.40 27598.81 23199.10 28798.87 17499.11 30299.33 25794.83 35798.81 26999.38 27794.33 24199.02 34296.10 31995.57 32598.53 332
miper_lstm_enhance98.00 22297.91 21298.28 29299.34 22697.43 26998.88 34699.36 24096.48 30598.80 27199.55 22495.98 16898.91 35897.27 27395.50 32898.51 334
USDC97.34 30097.20 29597.75 32699.07 29495.20 35098.51 37799.04 31697.99 16198.31 31899.86 4889.02 34599.55 25995.67 33297.36 28598.49 335
c3_l98.12 20198.04 19798.38 28199.30 23697.69 26398.81 35399.33 25796.67 28798.83 26799.34 29097.11 12898.99 34697.58 24795.34 33098.48 336
CLD-MVS98.16 19698.10 18898.33 28499.29 24096.82 30698.75 35999.44 20397.83 17699.13 21599.55 22492.92 27799.67 23598.32 18497.69 25498.48 336
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
eth_miper_zixun_eth98.05 21297.96 20698.33 28499.26 24797.38 27098.56 37599.31 27196.65 28998.88 25999.52 23696.58 14999.12 33097.39 26795.53 32798.47 338
Anonymous2023120696.22 32596.03 32696.79 35597.31 38394.14 36799.63 8399.08 31096.17 32697.04 36299.06 33093.94 25597.76 38686.96 39595.06 33698.47 338
FMVSNet596.43 32396.19 32297.15 34299.11 28495.89 33499.32 24299.52 10194.47 36498.34 31799.07 32887.54 36697.07 39192.61 37495.72 32298.47 338
cl____98.01 22097.84 22198.55 25899.25 25197.97 24498.71 36399.34 25096.47 30798.59 30399.54 22995.65 18499.21 31797.21 27695.77 31998.46 341
DIV-MVS_self_test98.01 22097.85 22098.48 26499.24 25297.95 24898.71 36399.35 24696.50 30198.60 30299.54 22995.72 18299.03 34097.21 27695.77 31998.46 341
pmmvs498.13 19997.90 21398.81 23198.61 35698.87 17498.99 32799.21 29596.44 30899.06 23299.58 21495.90 17599.11 33197.18 28296.11 31098.46 341
cl2297.85 24297.64 24598.48 26499.09 29097.87 25298.60 37299.33 25797.11 25698.87 26299.22 31392.38 30099.17 32198.21 18995.99 31398.42 344
V4298.06 20797.79 22398.86 22198.98 31198.84 17999.69 5699.34 25096.53 30099.30 17799.37 28094.67 22699.32 29597.57 25194.66 34398.42 344
PVSNet_BlendedMVS98.86 13098.80 12599.03 18699.76 6598.79 18699.28 25799.91 397.42 22799.67 7899.37 28097.53 11399.88 13398.98 9297.29 28698.42 344
UnsupCasMVSNet_eth96.44 32296.12 32397.40 33898.65 35195.65 33799.36 23199.51 11597.13 25196.04 37298.99 33888.40 35798.17 37696.71 30590.27 38298.40 347
TinyColmap97.12 30996.89 30897.83 32199.07 29495.52 34398.57 37398.74 35697.58 20597.81 34499.79 11488.16 36099.56 25795.10 34397.21 28998.39 348
miper_ehance_all_eth98.18 19498.10 18898.41 27799.23 25397.72 25998.72 36299.31 27196.60 29698.88 25999.29 30297.29 12399.13 32697.60 24595.99 31398.38 349
thres100view90097.76 25797.45 26398.69 24399.72 9197.86 25499.59 10298.74 35697.93 16599.26 19098.62 36191.75 31099.83 16893.22 36598.18 23498.37 350
tfpn200view997.72 26697.38 27698.72 23999.69 10697.96 24699.50 16498.73 36197.83 17699.17 21198.45 36691.67 31499.83 16893.22 36598.18 23498.37 350
test_fmvs297.25 30497.30 28897.09 34699.43 19793.31 37799.73 4898.87 34298.83 6499.28 18199.80 10284.45 38199.66 23897.88 21697.45 27698.30 352
miper_enhance_ethall98.16 19698.08 19298.41 27798.96 31497.72 25998.45 37999.32 26796.95 27198.97 24699.17 31897.06 13299.22 31297.86 21995.99 31398.29 353
tfpnnormal97.84 24597.47 26098.98 19299.20 26099.22 12199.64 7999.61 4896.32 31498.27 32299.70 15693.35 26999.44 27095.69 33095.40 32998.27 354
test20.0396.12 32995.96 32896.63 35697.44 37995.45 34599.51 15799.38 23196.55 29996.16 37099.25 31093.76 26396.17 39687.35 39494.22 35198.27 354
test_method91.10 35991.36 36190.31 37895.85 39173.72 41194.89 39999.25 28768.39 40295.82 37399.02 33580.50 39298.95 35693.64 36194.89 34298.25 356
ITE_SJBPF98.08 30399.29 24096.37 32298.92 33198.34 11298.83 26799.75 13691.09 32599.62 25295.82 32597.40 28298.25 356
KD-MVS_self_test95.00 34294.34 34796.96 34997.07 38895.39 34799.56 12399.44 20395.11 34997.13 36097.32 38891.86 30897.27 39090.35 38381.23 39798.23 358
EG-PatchMatch MVS95.97 33195.69 33396.81 35497.78 37492.79 38099.16 28798.93 32896.16 32794.08 38399.22 31382.72 38799.47 26395.67 33297.50 27098.17 359
D2MVS98.41 17298.50 16198.15 30199.26 24796.62 31499.40 21699.61 4897.71 19198.98 24499.36 28396.04 16699.67 23598.70 13497.41 28198.15 360
APD_test195.87 33296.49 31694.00 36699.53 16384.01 39499.54 14099.32 26795.91 33997.99 33699.85 5385.49 37499.88 13391.96 37698.84 19598.12 361
TDRefinement95.42 33894.57 34597.97 31289.83 40696.11 33199.48 17998.75 35396.74 28296.68 36599.88 3688.65 35499.71 22198.37 17882.74 39598.09 362
Anonymous2024052196.20 32795.89 33097.13 34497.72 37794.96 35699.79 3299.29 27993.01 37697.20 35899.03 33389.69 34198.36 37391.16 38096.13 30998.07 363
API-MVS99.04 10999.03 8799.06 18299.40 20999.31 10899.55 13599.56 6998.54 9199.33 17299.39 27698.76 5299.78 19496.98 29199.78 10598.07 363
new_pmnet96.38 32496.03 32697.41 33798.13 37095.16 35399.05 31199.20 29693.94 36697.39 35398.79 35691.61 31899.04 33890.43 38295.77 31998.05 365
thres20097.61 28197.28 29198.62 24799.64 12898.03 24099.26 27198.74 35697.68 19699.09 22598.32 37191.66 31699.81 18092.88 37098.22 22998.03 366
KD-MVS_2432*160094.62 34593.72 35397.31 33997.19 38695.82 33598.34 38399.20 29695.00 35397.57 34798.35 36987.95 36298.10 37792.87 37177.00 40098.01 367
miper_refine_blended94.62 34593.72 35397.31 33997.19 38695.82 33598.34 38399.20 29695.00 35397.57 34798.35 36987.95 36298.10 37792.87 37177.00 40098.01 367
DeepMVS_CXcopyleft93.34 36999.29 24082.27 39799.22 29285.15 39496.33 36899.05 33190.97 32799.73 21193.57 36297.77 25298.01 367
CL-MVSNet_self_test94.49 34793.97 35196.08 36196.16 39093.67 37498.33 38599.38 23195.13 34797.33 35498.15 37592.69 28896.57 39488.67 38879.87 39897.99 370
GG-mvs-BLEND98.45 27198.55 36098.16 23399.43 19993.68 40797.23 35698.46 36589.30 34499.22 31295.43 33798.22 22997.98 371
pmmvs394.09 35193.25 35796.60 35794.76 40094.49 36298.92 34298.18 38089.66 38796.48 36798.06 38186.28 36997.33 38989.68 38587.20 38997.97 372
LF4IMVS97.52 28697.46 26297.70 32998.98 31195.55 34099.29 25298.82 34798.07 15198.66 28999.64 19089.97 33899.61 25397.01 28896.68 29697.94 373
test_040296.64 31896.24 32197.85 31898.85 32896.43 32199.44 19599.26 28593.52 37196.98 36399.52 23688.52 35699.20 31992.58 37597.50 27097.93 374
MVP-Stereo97.81 25297.75 23397.99 31197.53 37896.60 31698.96 33498.85 34497.22 24597.23 35699.36 28395.28 19599.46 26495.51 33499.78 10597.92 375
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
MS-PatchMatch97.24 30697.32 28696.99 34798.45 36493.51 37698.82 35299.32 26797.41 22898.13 33099.30 30088.99 34699.56 25795.68 33199.80 9897.90 376
mvsany_test393.77 35293.45 35694.74 36595.78 39288.01 39199.64 7998.25 37598.28 11794.31 38297.97 38268.89 39798.51 37197.50 25790.37 38197.71 377
ambc93.06 37192.68 40282.36 39698.47 37898.73 36195.09 37997.41 38555.55 40399.10 33396.42 31591.32 37597.71 377
test_vis1_rt95.81 33495.65 33496.32 36099.67 11191.35 38799.49 17596.74 39698.25 12195.24 37598.10 37974.96 39499.90 11699.53 3298.85 19497.70 379
new-patchmatchnet94.48 34894.08 34995.67 36395.08 39892.41 38299.18 28599.28 28194.55 36393.49 38697.37 38787.86 36497.01 39291.57 37888.36 38697.61 380
pmmvs-eth3d95.34 34094.73 34397.15 34295.53 39595.94 33399.35 23699.10 30795.13 34793.55 38597.54 38488.15 36197.91 38294.58 34989.69 38597.61 380
UnsupCasMVSNet_bld93.53 35392.51 35896.58 35897.38 38093.82 36998.24 38899.48 15591.10 38593.10 38796.66 39174.89 39598.37 37294.03 35887.71 38897.56 382
PM-MVS92.96 35592.23 35995.14 36495.61 39389.98 39099.37 22798.21 37894.80 35895.04 38097.69 38365.06 39897.90 38394.30 35289.98 38497.54 383
EGC-MVSNET82.80 36777.86 37397.62 33197.91 37196.12 33099.33 24199.28 2818.40 41025.05 41199.27 30784.11 38299.33 29289.20 38698.22 22997.42 384
test_f91.90 35891.26 36293.84 36795.52 39685.92 39399.69 5698.53 37195.31 34693.87 38496.37 39355.33 40498.27 37495.70 32990.98 37997.32 385
test_fmvs392.10 35791.77 36093.08 37096.19 38986.25 39299.82 1798.62 36796.65 28995.19 37896.90 39055.05 40595.93 39896.63 31190.92 38097.06 386
LCM-MVSNet86.80 36585.22 36991.53 37587.81 40780.96 40198.23 39098.99 32171.05 40090.13 39596.51 39248.45 40896.88 39390.51 38185.30 39196.76 387
OpenMVS_ROBcopyleft92.34 2094.38 34993.70 35596.41 35997.38 38093.17 37899.06 30998.75 35386.58 39394.84 38198.26 37381.53 39199.32 29589.01 38797.87 24896.76 387
WB-MVS93.10 35494.10 34890.12 37995.51 39781.88 39999.73 4899.27 28495.05 35293.09 38898.91 34994.70 22491.89 40376.62 40294.02 35696.58 389
SSC-MVS92.73 35693.73 35289.72 38095.02 39981.38 40099.76 3899.23 29094.87 35692.80 38998.93 34594.71 22391.37 40474.49 40493.80 35896.42 390
CMPMVSbinary69.68 2394.13 35094.90 34291.84 37397.24 38480.01 40398.52 37699.48 15589.01 39091.99 39199.67 17885.67 37299.13 32695.44 33697.03 29396.39 391
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
testf190.42 36190.68 36389.65 38197.78 37473.97 40999.13 29398.81 34989.62 38891.80 39298.93 34562.23 40198.80 36386.61 39791.17 37696.19 392
APD_test290.42 36190.68 36389.65 38197.78 37473.97 40999.13 29398.81 34989.62 38891.80 39298.93 34562.23 40198.80 36386.61 39791.17 37696.19 392
WB-MVSnew97.65 27897.65 24297.63 33098.78 33597.62 26499.13 29398.33 37397.36 23299.07 22798.94 34495.64 18599.15 32292.95 36998.68 20496.12 394
PMMVS286.87 36485.37 36891.35 37690.21 40583.80 39598.89 34597.45 39183.13 39791.67 39495.03 39448.49 40794.70 40085.86 39977.62 39995.54 395
tmp_tt82.80 36781.52 37086.66 38366.61 41368.44 41292.79 40297.92 38268.96 40180.04 40499.85 5385.77 37196.15 39797.86 21943.89 40695.39 396
FPMVS84.93 36685.65 36782.75 38786.77 40863.39 41398.35 38298.92 33174.11 39983.39 39898.98 34050.85 40692.40 40284.54 40094.97 33892.46 397
Gipumacopyleft90.99 36090.15 36593.51 36898.73 34290.12 38993.98 40099.45 19579.32 39892.28 39094.91 39569.61 39697.98 38187.42 39395.67 32392.45 398
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
ANet_high77.30 37174.86 37584.62 38575.88 41177.61 40597.63 39693.15 40988.81 39164.27 40689.29 40336.51 41083.93 40875.89 40352.31 40592.33 399
test_vis3_rt87.04 36385.81 36690.73 37793.99 40181.96 39899.76 3890.23 41292.81 37881.35 40091.56 40040.06 40999.07 33594.27 35488.23 38791.15 400
MVEpermissive76.82 2176.91 37274.31 37684.70 38485.38 41076.05 40896.88 39893.17 40867.39 40371.28 40589.01 40421.66 41587.69 40571.74 40572.29 40290.35 401
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMVScopyleft70.75 2275.98 37374.97 37479.01 38970.98 41255.18 41493.37 40198.21 37865.08 40661.78 40793.83 39721.74 41492.53 40178.59 40191.12 37889.34 402
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
EMVS80.02 37079.22 37282.43 38891.19 40376.40 40697.55 39792.49 41166.36 40583.01 39991.27 40164.63 39985.79 40765.82 40760.65 40485.08 403
E-PMN80.61 36979.88 37182.81 38690.75 40476.38 40797.69 39595.76 40166.44 40483.52 39792.25 39962.54 40087.16 40668.53 40661.40 40384.89 404
test12339.01 37642.50 37828.53 39139.17 41420.91 41698.75 35919.17 41619.83 40938.57 40866.67 40633.16 41115.42 41037.50 41029.66 40849.26 405
testmvs39.17 37543.78 37725.37 39236.04 41516.84 41798.36 38126.56 41420.06 40838.51 40967.32 40529.64 41215.30 41137.59 40939.90 40743.98 406
wuyk23d40.18 37441.29 37936.84 39086.18 40949.12 41579.73 40322.81 41527.64 40725.46 41028.45 41021.98 41348.89 40955.80 40823.56 40912.51 407
test_blank0.13 3800.17 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4121.57 4110.00 4160.00 4120.00 4110.00 4100.00 408
uanet_test0.02 3810.03 3840.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.27 4120.00 4160.00 4120.00 4110.00 4100.00 408
DCPMVS0.02 3810.03 3840.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.27 4120.00 4160.00 4120.00 4110.00 4100.00 408
cdsmvs_eth3d_5k24.64 37732.85 3800.00 3930.00 4160.00 4180.00 40499.51 1150.00 4110.00 41299.56 22196.58 1490.00 4120.00 4110.00 4100.00 408
pcd_1.5k_mvsjas8.27 37911.03 3820.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.27 41299.01 180.00 4120.00 4110.00 4100.00 408
sosnet-low-res0.02 3810.03 3840.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.27 4120.00 4160.00 4120.00 4110.00 4100.00 408
sosnet0.02 3810.03 3840.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.27 4120.00 4160.00 4120.00 4110.00 4100.00 408
uncertanet0.02 3810.03 3840.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.27 4120.00 4160.00 4120.00 4110.00 4100.00 408
Regformer0.02 3810.03 3840.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.27 4120.00 4160.00 4120.00 4110.00 4100.00 408
ab-mvs-re8.30 37811.06 3810.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 41299.58 2140.00 4160.00 4120.00 4110.00 4100.00 408
uanet0.02 3810.03 3840.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.27 4120.00 4160.00 4120.00 4110.00 4100.00 408
WAC-MVS97.16 27995.47 335
FOURS199.91 199.93 199.87 999.56 6999.10 2799.81 37
test_one_060199.81 4699.88 899.49 14398.97 5199.65 8999.81 8999.09 14
eth-test20.00 416
eth-test0.00 416
ZD-MVS99.71 9699.79 3099.61 4896.84 27899.56 11599.54 22998.58 7299.96 3096.93 29699.75 113
test_241102_ONE99.84 3299.90 299.48 15599.07 3599.91 1699.74 14199.20 799.76 200
9.1499.10 7699.72 9199.40 21699.51 11597.53 21399.64 9399.78 12098.84 4199.91 10597.63 24399.82 91
save fliter99.76 6599.59 7099.14 29299.40 22099.00 43
test072699.85 2699.89 499.62 8899.50 13599.10 2799.86 2799.82 7598.94 29
test_part299.81 4699.83 1699.77 51
sam_mvs94.72 222
MTGPAbinary99.47 175
test_post199.23 27665.14 40894.18 24899.71 22197.58 247
test_post65.99 40794.65 22899.73 211
patchmatchnet-post98.70 35994.79 21499.74 205
MTMP99.54 14098.88 340
gm-plane-assit98.54 36192.96 37994.65 36199.15 32199.64 24697.56 252
TEST999.67 11199.65 5799.05 31199.41 21496.22 32298.95 24899.49 24698.77 5199.91 105
test_899.67 11199.61 6799.03 31699.41 21496.28 31698.93 25299.48 25198.76 5299.91 105
agg_prior99.67 11199.62 6599.40 22098.87 26299.91 105
test_prior499.56 7598.99 327
test_prior298.96 33498.34 11299.01 23899.52 23698.68 6497.96 21199.74 116
旧先验298.96 33496.70 28599.47 13299.94 6998.19 191
新几何299.01 324
原ACMM298.95 338
testdata299.95 5996.67 308
segment_acmp98.96 24
testdata198.85 34998.32 115
plane_prior799.29 24097.03 292
plane_prior699.27 24596.98 29692.71 286
plane_prior499.61 205
plane_prior397.00 29498.69 7999.11 219
plane_prior299.39 22098.97 51
plane_prior199.26 247
plane_prior96.97 29799.21 28298.45 10097.60 260
n20.00 417
nn0.00 417
door-mid98.05 381
test1199.35 246
door97.92 382
HQP5-MVS96.83 304
HQP-NCC99.19 26398.98 33098.24 12298.66 289
ACMP_Plane99.19 26398.98 33098.24 12298.66 289
BP-MVS97.19 280
HQP3-MVS99.39 22397.58 262
HQP2-MVS92.47 295
NP-MVS99.23 25396.92 30099.40 272
MDTV_nov1_ep1398.32 17299.11 28494.44 36399.27 26298.74 35697.51 21699.40 15399.62 20194.78 21599.76 20097.59 24698.81 199
ACMMP++_ref97.19 290
ACMMP++97.43 280
Test By Simon98.75 55