This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort by
PC_three_145282.47 23797.09 1097.07 5192.72 198.04 16392.70 5599.02 1298.86 11
DVP-MVS++95.98 196.36 194.82 3197.78 5186.00 5098.29 197.49 690.75 1997.62 598.06 1192.59 299.61 495.64 1999.02 1298.86 11
OPU-MVS96.21 398.00 4290.85 397.13 1497.08 4992.59 298.94 7892.25 6598.99 1498.84 14
SED-MVS95.91 296.28 294.80 3398.77 585.99 5297.13 1497.44 1590.31 2897.71 198.07 992.31 499.58 1095.66 1799.13 398.84 14
test_241102_ONE98.77 585.99 5297.44 1590.26 3397.71 197.96 1792.31 499.38 31
test_0728_THIRD90.75 1997.04 1198.05 1392.09 699.55 1695.64 1999.13 399.13 2
DPE-MVScopyleft95.57 495.67 495.25 1098.36 2587.28 1895.56 9697.51 589.13 6597.14 997.91 1891.64 799.62 294.61 2799.17 298.86 11
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
DVP-MVScopyleft95.67 396.02 394.64 3998.78 385.93 5597.09 1696.73 7990.27 3197.04 1198.05 1391.47 899.55 1695.62 2199.08 798.45 36
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072698.78 385.93 5597.19 1197.47 1190.27 3197.64 498.13 391.47 8
test_241102_TWO97.44 1590.31 2897.62 598.07 991.46 1099.58 1095.66 1799.12 698.98 10
test_one_060198.58 1185.83 6197.44 1591.05 1496.78 1598.06 1191.45 11
MSP-MVS95.42 695.56 694.98 1998.49 1786.52 3696.91 2597.47 1191.73 1096.10 2096.69 6689.90 1299.30 4094.70 2598.04 6799.13 2
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
DeepPCF-MVS89.96 194.20 3494.77 1792.49 11696.52 8780.00 22194.00 19597.08 4490.05 3595.65 2997.29 3789.66 1398.97 7593.95 3398.71 3398.50 27
SD-MVS94.96 1395.33 893.88 5997.25 6986.69 2896.19 5197.11 4390.42 2796.95 1397.27 3889.53 1496.91 25494.38 2998.85 1998.03 72
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
CNVR-MVS95.40 795.37 795.50 898.11 3688.51 795.29 10796.96 5292.09 695.32 3197.08 4989.49 1599.33 3795.10 2498.85 1998.66 20
APDe-MVScopyleft95.46 595.64 594.91 2198.26 2886.29 4697.46 697.40 2089.03 6996.20 1998.10 789.39 1699.34 3495.88 1699.03 1199.10 4
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
MCST-MVS94.45 2294.20 3595.19 1398.46 1987.50 1595.00 12697.12 4187.13 12492.51 8596.30 8389.24 1799.34 3493.46 3998.62 4598.73 17
TSAR-MVS + MP.94.85 1494.94 1294.58 4298.25 2986.33 4296.11 6196.62 8888.14 10096.10 2096.96 5589.09 1898.94 7894.48 2898.68 3898.48 30
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SteuartSystems-ACMMP95.20 895.32 994.85 2596.99 7286.33 4297.33 797.30 2991.38 1295.39 3097.46 3088.98 1999.40 3094.12 3198.89 1898.82 16
Skip Steuart: Steuart Systems R&D Blog.
SMA-MVScopyleft95.20 895.07 1195.59 698.14 3588.48 896.26 4897.28 3185.90 15797.67 398.10 788.41 2099.56 1294.66 2699.19 198.71 19
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
patch_mono-293.74 4794.32 2692.01 13497.54 5778.37 25993.40 21997.19 3588.02 10394.99 3597.21 4288.35 2198.44 12494.07 3298.09 6499.23 1
9.1494.47 2097.79 4996.08 6297.44 1586.13 15595.10 3397.40 3388.34 2299.22 4493.25 4498.70 35
SF-MVS94.97 1294.90 1595.20 1297.84 4787.76 1096.65 3597.48 1087.76 11395.71 2797.70 2588.28 2399.35 3393.89 3598.78 2598.48 30
HPM-MVS++copyleft95.14 1094.91 1395.83 498.25 2989.65 495.92 7596.96 5291.75 994.02 4796.83 6188.12 2499.55 1693.41 4298.94 1698.28 50
dcpmvs_293.49 5294.19 3691.38 16897.69 5476.78 29194.25 17496.29 10788.33 9094.46 3896.88 5888.07 2598.64 10093.62 3898.09 6498.73 17
CSCG93.23 6493.05 6393.76 6698.04 4084.07 9896.22 5097.37 2184.15 19790.05 13195.66 11287.77 2699.15 5089.91 11098.27 5798.07 68
NCCC94.81 1594.69 1895.17 1497.83 4887.46 1795.66 8996.93 5692.34 493.94 4896.58 7687.74 2799.44 2992.83 5098.40 5398.62 21
TEST997.53 5886.49 3794.07 18796.78 7281.61 26392.77 7696.20 8787.71 2899.12 51
train_agg93.44 5593.08 6294.52 4497.53 5886.49 3794.07 18796.78 7281.86 25492.77 7696.20 8787.63 2999.12 5192.14 7098.69 3697.94 76
test_897.49 6086.30 4594.02 19296.76 7581.86 25492.70 8096.20 8787.63 2999.02 61
ZD-MVS98.15 3486.62 3397.07 4583.63 20994.19 4296.91 5787.57 3199.26 4291.99 7698.44 52
fmvsm_l_conf0.5_n94.29 2894.46 2193.79 6595.28 13685.43 6895.68 8696.43 9786.56 13996.84 1497.81 2387.56 3298.77 9297.14 696.82 9797.16 114
fmvsm_l_conf0.5_n_a94.20 3494.40 2393.60 6995.29 13584.98 7395.61 9396.28 11086.31 14596.75 1697.86 2187.40 3398.74 9597.07 897.02 9097.07 116
TSAR-MVS + GP.93.66 4993.41 5694.41 4996.59 8286.78 2694.40 16493.93 25289.77 4794.21 4195.59 11587.35 3498.61 10592.72 5396.15 11097.83 85
APD-MVScopyleft94.24 3094.07 3994.75 3698.06 3986.90 2395.88 7696.94 5585.68 16395.05 3497.18 4587.31 3599.07 5391.90 8298.61 4798.28 50
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
segment_acmp87.16 36
旧先验196.79 7681.81 16595.67 16296.81 6386.69 3797.66 8096.97 126
test_prior294.12 18187.67 11692.63 8196.39 8286.62 3891.50 8798.67 40
CDPH-MVS92.83 7192.30 7794.44 4597.79 4986.11 4994.06 18996.66 8580.09 28392.77 7696.63 7386.62 3899.04 5787.40 13898.66 4198.17 62
DPM-MVS92.58 7591.74 8395.08 1596.19 9589.31 592.66 25096.56 9383.44 21591.68 10995.04 13486.60 4098.99 7085.60 16297.92 7196.93 128
test_fmvsmconf_n94.60 1894.81 1693.98 5594.62 17384.96 7496.15 5697.35 2289.37 5696.03 2398.11 586.36 4199.01 6397.45 397.83 7497.96 75
DELS-MVS93.43 5893.25 5993.97 5695.42 13185.04 7293.06 23897.13 4090.74 2191.84 10395.09 13386.32 4299.21 4591.22 9098.45 5197.65 91
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
test_fmvsm_n_192094.71 1795.11 1093.50 7195.79 11584.62 8096.15 5697.64 289.85 4297.19 897.89 1986.28 4398.71 9797.11 798.08 6697.17 110
ZNCC-MVS94.47 2194.28 3095.03 1698.52 1586.96 2096.85 2897.32 2788.24 9493.15 6397.04 5286.17 4499.62 292.40 5998.81 2298.52 26
HFP-MVS94.52 2094.40 2394.86 2498.61 1086.81 2596.94 2097.34 2388.63 8293.65 5397.21 4286.10 4599.49 2692.35 6298.77 2798.30 47
MVS_111021_HR93.45 5493.31 5793.84 6196.99 7284.84 7593.24 23197.24 3288.76 7791.60 11095.85 10386.07 4698.66 9891.91 8098.16 6098.03 72
ACMMP_NAP94.74 1694.56 1995.28 998.02 4187.70 1195.68 8697.34 2388.28 9395.30 3297.67 2685.90 4799.54 2093.91 3498.95 1598.60 23
CS-MVS94.12 3794.44 2293.17 7896.55 8483.08 13197.63 396.95 5491.71 1193.50 5996.21 8685.61 4898.24 14093.64 3798.17 5998.19 60
PHI-MVS93.89 4393.65 5494.62 4196.84 7586.43 3996.69 3297.49 685.15 17793.56 5796.28 8485.60 4999.31 3992.45 5698.79 2398.12 66
MP-MVS-pluss94.21 3294.00 4294.85 2598.17 3386.65 3194.82 13797.17 3986.26 14792.83 7397.87 2085.57 5099.56 1294.37 3098.92 1798.34 42
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
GST-MVS94.21 3293.97 4394.90 2398.41 2286.82 2496.54 3797.19 3588.24 9493.26 6096.83 6185.48 5199.59 891.43 8998.40 5398.30 47
MP-MVScopyleft94.25 2994.07 3994.77 3598.47 1886.31 4496.71 3196.98 4989.04 6891.98 9697.19 4485.43 5299.56 1292.06 7598.79 2398.44 37
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
DeepC-MVS_fast89.43 294.04 3893.79 4694.80 3397.48 6186.78 2695.65 9196.89 6089.40 5592.81 7496.97 5485.37 5399.24 4390.87 9998.69 3698.38 41
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
region2R94.43 2494.27 3294.92 2098.65 886.67 3096.92 2497.23 3488.60 8493.58 5597.27 3885.22 5499.54 2092.21 6698.74 3198.56 25
CP-MVS94.34 2794.21 3494.74 3798.39 2386.64 3297.60 497.24 3288.53 8692.73 7997.23 4185.20 5599.32 3892.15 6998.83 2198.25 57
test_fmvsmconf0.1_n94.20 3494.31 2893.88 5992.46 25784.80 7796.18 5396.82 6889.29 5995.68 2898.11 585.10 5698.99 7097.38 497.75 7897.86 82
test1294.34 5097.13 7086.15 4896.29 10791.04 11885.08 5799.01 6398.13 6297.86 82
ACMMPR94.43 2494.28 3094.91 2198.63 986.69 2896.94 2097.32 2788.63 8293.53 5897.26 4085.04 5899.54 2092.35 6298.78 2598.50 27
CS-MVS-test94.02 3994.29 2993.24 7596.69 7883.24 12197.49 596.92 5792.14 592.90 6995.77 10885.02 5998.33 13593.03 4798.62 4598.13 64
XVS94.45 2294.32 2694.85 2598.54 1386.60 3496.93 2297.19 3590.66 2492.85 7197.16 4785.02 5999.49 2691.99 7698.56 4998.47 33
X-MVStestdata88.31 17786.13 22394.85 2598.54 1386.60 3496.93 2297.19 3590.66 2492.85 7123.41 40585.02 5999.49 2691.99 7698.56 4998.47 33
MSLP-MVS++93.72 4894.08 3892.65 10897.31 6583.43 11695.79 8197.33 2590.03 3693.58 5596.96 5584.87 6297.76 17892.19 6898.66 4196.76 136
HPM-MVScopyleft94.02 3993.88 4494.43 4798.39 2385.78 6397.25 1097.07 4586.90 13292.62 8296.80 6584.85 6399.17 4792.43 5798.65 4398.33 43
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
SR-MVS94.23 3194.17 3794.43 4798.21 3285.78 6396.40 4196.90 5988.20 9894.33 4097.40 3384.75 6499.03 5893.35 4397.99 6898.48 30
PGM-MVS93.96 4293.72 5094.68 3898.43 2086.22 4795.30 10597.78 187.45 12093.26 6097.33 3684.62 6599.51 2490.75 10198.57 4898.32 46
EI-MVSNet-Vis-set93.01 6992.92 6693.29 7395.01 15083.51 11594.48 15695.77 15390.87 1592.52 8496.67 6884.50 6699.00 6891.99 7694.44 14597.36 102
MTAPA94.42 2694.22 3395.00 1898.42 2186.95 2194.36 17196.97 5091.07 1393.14 6497.56 2784.30 6799.56 1293.43 4098.75 3098.47 33
SR-MVS-dyc-post93.82 4493.82 4593.82 6297.92 4384.57 8296.28 4696.76 7587.46 11893.75 5197.43 3184.24 6899.01 6392.73 5197.80 7597.88 80
ETV-MVS92.74 7392.66 7192.97 9095.20 14284.04 10095.07 12296.51 9490.73 2292.96 6891.19 27584.06 6998.34 13391.72 8496.54 10296.54 147
EI-MVSNet-UG-set92.74 7392.62 7393.12 8094.86 16183.20 12394.40 16495.74 15690.71 2392.05 9496.60 7584.00 7098.99 7091.55 8693.63 15597.17 110
mPP-MVS93.99 4193.78 4794.63 4098.50 1685.90 6096.87 2696.91 5888.70 8091.83 10597.17 4683.96 7199.55 1691.44 8898.64 4498.43 38
APD-MVS_3200maxsize93.78 4593.77 4893.80 6497.92 4384.19 9696.30 4496.87 6286.96 12893.92 4997.47 2983.88 7298.96 7792.71 5497.87 7298.26 56
EIA-MVS91.95 8291.94 8091.98 13895.16 14380.01 22095.36 10096.73 7988.44 8789.34 13992.16 24183.82 7398.45 12289.35 11497.06 8897.48 99
MVS_030494.60 1894.38 2595.23 1195.41 13287.49 1696.53 3892.75 27993.82 293.07 6797.84 2283.66 7499.59 897.61 298.76 2898.61 22
fmvsm_s_conf0.5_n93.76 4694.06 4192.86 9695.62 12483.17 12496.14 5896.12 12588.13 10195.82 2698.04 1683.43 7598.48 11496.97 996.23 10896.92 129
casdiffmvs_mvgpermissive92.96 7092.83 6893.35 7294.59 17483.40 11895.00 12696.34 10490.30 3092.05 9496.05 9583.43 7598.15 14792.07 7295.67 11498.49 29
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
EPP-MVSNet91.70 8891.56 8592.13 13395.88 11280.50 20497.33 795.25 19286.15 15289.76 13495.60 11483.42 7798.32 13787.37 14093.25 16797.56 97
test_fmvsmvis_n_192093.44 5593.55 5593.10 8193.67 22284.26 9595.83 7996.14 12289.00 7292.43 8897.50 2883.37 7898.72 9696.61 1297.44 8296.32 151
UA-Net92.83 7192.54 7493.68 6896.10 10084.71 7995.66 8996.39 10191.92 793.22 6296.49 7983.16 7998.87 8284.47 17695.47 12097.45 101
UniMVSNet_NR-MVSNet89.92 12689.29 12991.81 15393.39 23083.72 10694.43 16297.12 4189.80 4386.46 19493.32 20283.16 7997.23 23384.92 16881.02 32794.49 234
EC-MVSNet93.44 5593.71 5192.63 10995.21 14182.43 15197.27 996.71 8290.57 2692.88 7095.80 10683.16 7998.16 14693.68 3698.14 6197.31 103
fmvsm_s_conf0.5_n_a93.57 5093.76 4993.00 8895.02 14983.67 10896.19 5196.10 12787.27 12295.98 2498.05 1383.07 8298.45 12296.68 1195.51 11796.88 132
MM95.10 1194.91 1395.68 596.09 10188.34 996.68 3394.37 23695.08 194.68 3697.72 2482.94 8399.64 197.85 198.76 2899.06 7
RE-MVS-def93.68 5297.92 4384.57 8296.28 4696.76 7587.46 11893.75 5197.43 3182.94 8392.73 5197.80 7597.88 80
新几何193.10 8197.30 6684.35 9495.56 17071.09 37591.26 11696.24 8582.87 8598.86 8479.19 26398.10 6396.07 165
fmvsm_s_conf0.1_n93.46 5393.66 5392.85 9793.75 21883.13 12696.02 6995.74 15687.68 11595.89 2598.17 282.78 8698.46 11896.71 1096.17 10996.98 125
原ACMM192.01 13497.34 6481.05 18896.81 7078.89 29990.45 12395.92 10082.65 8798.84 8880.68 24298.26 5896.14 159
casdiffmvspermissive92.51 7692.43 7692.74 10394.41 18781.98 16194.54 15496.23 11689.57 5191.96 9896.17 9182.58 8898.01 16590.95 9795.45 12298.23 58
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
DeepC-MVS88.79 393.31 6092.99 6594.26 5296.07 10385.83 6194.89 13296.99 4889.02 7189.56 13597.37 3582.51 8999.38 3192.20 6798.30 5697.57 96
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
HPM-MVS_fast93.40 5993.22 6093.94 5898.36 2584.83 7697.15 1396.80 7185.77 16092.47 8797.13 4882.38 9099.07 5390.51 10598.40 5397.92 79
baseline92.39 7992.29 7892.69 10794.46 18381.77 16694.14 18096.27 11189.22 6191.88 10196.00 9682.35 9197.99 16791.05 9295.27 12898.30 47
sasdasda93.27 6192.75 6994.85 2595.70 12087.66 1296.33 4296.41 9990.00 3794.09 4494.60 15582.33 9298.62 10392.40 5992.86 17498.27 52
canonicalmvs93.27 6192.75 6994.85 2595.70 12087.66 1296.33 4296.41 9990.00 3794.09 4494.60 15582.33 9298.62 10392.40 5992.86 17498.27 52
fmvsm_s_conf0.1_n_a93.19 6593.26 5892.97 9092.49 25583.62 11196.02 6995.72 15986.78 13496.04 2298.19 182.30 9498.43 12796.38 1395.42 12396.86 133
DP-MVS Recon91.95 8291.28 8893.96 5798.33 2785.92 5794.66 14896.66 8582.69 23590.03 13295.82 10582.30 9499.03 5884.57 17496.48 10596.91 130
PAPR90.02 12089.27 13192.29 12895.78 11680.95 19292.68 24996.22 11781.91 25186.66 19193.75 19482.23 9698.44 12479.40 26294.79 13397.48 99
MVS_Test91.31 9491.11 9191.93 14294.37 18880.14 21293.46 21895.80 15186.46 14291.35 11593.77 19282.21 9798.09 15887.57 13694.95 13197.55 98
nrg03091.08 9990.39 10193.17 7893.07 23886.91 2296.41 3996.26 11288.30 9288.37 15594.85 14282.19 9897.64 18991.09 9182.95 29894.96 207
MGCFI-Net93.03 6892.63 7294.23 5395.62 12485.92 5796.08 6296.33 10589.86 4193.89 5094.66 15282.11 9998.50 11292.33 6492.82 17798.27 52
UniMVSNet (Re)89.80 13089.07 13392.01 13493.60 22484.52 8594.78 14097.47 1189.26 6086.44 19792.32 23682.10 10097.39 22084.81 17180.84 33194.12 248
testdata90.49 20596.40 8977.89 27195.37 18872.51 36793.63 5496.69 6682.08 10197.65 18683.08 19297.39 8395.94 170
PAPM_NR91.22 9690.78 9992.52 11597.60 5681.46 17694.37 17096.24 11586.39 14487.41 17294.80 14582.06 10298.48 11482.80 20095.37 12497.61 93
MG-MVS91.77 8591.70 8492.00 13797.08 7180.03 21993.60 21395.18 19687.85 11190.89 11996.47 8082.06 10298.36 13085.07 16697.04 8997.62 92
CANet93.54 5193.20 6194.55 4395.65 12285.73 6594.94 12996.69 8491.89 890.69 12195.88 10281.99 10499.54 2093.14 4697.95 7098.39 39
FC-MVSNet-test90.27 11490.18 10690.53 20193.71 21979.85 22695.77 8297.59 389.31 5886.27 20194.67 15181.93 10597.01 24884.26 17888.09 24994.71 218
FIs90.51 11290.35 10290.99 18993.99 20880.98 19095.73 8397.54 489.15 6486.72 19094.68 15081.83 10697.24 23285.18 16588.31 24694.76 217
ACMMPcopyleft93.24 6392.88 6794.30 5198.09 3885.33 7096.86 2797.45 1488.33 9090.15 13097.03 5381.44 10799.51 2490.85 10095.74 11398.04 71
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
Effi-MVS+91.59 9091.11 9193.01 8794.35 19283.39 11994.60 15095.10 20087.10 12590.57 12293.10 21381.43 10898.07 16189.29 11694.48 14397.59 95
MVS_111021_LR92.47 7792.29 7892.98 8995.99 10984.43 9193.08 23696.09 12888.20 9891.12 11795.72 11181.33 10997.76 17891.74 8397.37 8496.75 137
mvs_anonymous89.37 14689.32 12889.51 25393.47 22774.22 32291.65 28294.83 21882.91 23085.45 22593.79 19081.23 11096.36 28786.47 15294.09 14897.94 76
PVSNet_BlendedMVS89.98 12189.70 11790.82 19496.12 9781.25 18193.92 20096.83 6683.49 21489.10 14292.26 23981.04 11198.85 8686.72 15087.86 25392.35 323
PVSNet_Blended90.73 10490.32 10391.98 13896.12 9781.25 18192.55 25496.83 6682.04 24789.10 14292.56 22981.04 11198.85 8686.72 15095.91 11195.84 175
alignmvs93.08 6792.50 7594.81 3295.62 12487.61 1495.99 7196.07 13089.77 4794.12 4394.87 13980.56 11398.66 9892.42 5893.10 17098.15 63
API-MVS90.66 10790.07 10992.45 11896.36 9184.57 8296.06 6695.22 19582.39 23889.13 14194.27 16980.32 11498.46 11880.16 25096.71 9994.33 240
PVSNet_Blended_VisFu91.38 9290.91 9692.80 9996.39 9083.17 12494.87 13496.66 8583.29 22089.27 14094.46 16080.29 11599.17 4787.57 13695.37 12496.05 168
test22296.55 8481.70 16792.22 26695.01 20368.36 38190.20 12796.14 9280.26 11697.80 7596.05 168
diffmvspermissive91.37 9391.23 8991.77 15493.09 23780.27 20892.36 25995.52 17587.03 12791.40 11494.93 13680.08 11797.44 20892.13 7194.56 14097.61 93
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Test By Simon80.02 118
IterMVS-LS88.36 17687.91 16989.70 24493.80 21578.29 26293.73 20795.08 20285.73 16184.75 24591.90 25579.88 11996.92 25383.83 18482.51 30493.89 258
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EI-MVSNet89.10 15088.86 14289.80 24091.84 27778.30 26193.70 21095.01 20385.73 16187.15 17795.28 12279.87 12097.21 23583.81 18587.36 26193.88 260
TAPA-MVS84.62 688.16 18187.01 19191.62 15896.64 8080.65 19994.39 16696.21 12076.38 32886.19 20495.44 11779.75 12198.08 16062.75 37295.29 12696.13 160
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
Fast-Effi-MVS+89.41 14288.64 14591.71 15694.74 16580.81 19693.54 21495.10 20083.11 22486.82 18990.67 29479.74 12297.75 18180.51 24593.55 15796.57 145
pcd_1.5k_mvsjas6.64 3798.86 3820.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 41179.70 1230.00 4120.00 4110.00 4100.00 408
PS-MVSNAJss89.97 12289.62 11891.02 18691.90 27580.85 19595.26 11095.98 13686.26 14786.21 20394.29 16679.70 12397.65 18688.87 12288.10 24794.57 224
PS-MVSNAJ91.18 9790.92 9591.96 14095.26 13982.60 15092.09 27195.70 16086.27 14691.84 10392.46 23179.70 12398.99 7089.08 11895.86 11294.29 242
xiu_mvs_v2_base91.13 9890.89 9791.86 14894.97 15382.42 15292.24 26595.64 16786.11 15691.74 10893.14 21179.67 12698.89 8189.06 11995.46 12194.28 243
WR-MVS_H87.80 19087.37 18189.10 26293.23 23378.12 26595.61 9397.30 2987.90 10783.72 27392.01 25279.65 12796.01 30176.36 28980.54 33593.16 296
EPNet91.79 8491.02 9494.10 5490.10 33885.25 7196.03 6892.05 30092.83 387.39 17595.78 10779.39 12899.01 6388.13 12997.48 8198.05 70
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
miper_ehance_all_eth87.22 22086.62 20589.02 26592.13 26677.40 28490.91 30094.81 22081.28 26984.32 26190.08 30979.26 12996.62 26483.81 18582.94 29993.04 301
test_fmvsmconf0.01_n93.19 6593.02 6493.71 6789.25 35084.42 9396.06 6696.29 10789.06 6694.68 3698.13 379.22 13098.98 7497.22 597.24 8597.74 89
miper_enhance_ethall86.90 23286.18 22189.06 26391.66 28677.58 28290.22 31494.82 21979.16 29584.48 25289.10 32579.19 13196.66 26284.06 18082.94 29992.94 304
NR-MVSNet88.58 17287.47 17991.93 14293.04 24184.16 9794.77 14196.25 11489.05 6780.04 32593.29 20579.02 13297.05 24681.71 22680.05 34194.59 222
TAMVS89.21 14888.29 15991.96 14093.71 21982.62 14993.30 22694.19 24382.22 24287.78 16693.94 18278.83 13396.95 25177.70 27692.98 17296.32 151
c3_l87.14 22586.50 21089.04 26492.20 26377.26 28591.22 29494.70 22682.01 24884.34 26090.43 29878.81 13496.61 26783.70 18781.09 32493.25 291
1112_ss88.42 17387.33 18291.72 15594.92 15780.98 19092.97 24194.54 22978.16 31583.82 27193.88 18778.78 13597.91 17379.45 25889.41 22496.26 155
CDS-MVSNet89.45 14088.51 15092.29 12893.62 22383.61 11393.01 23994.68 22781.95 24987.82 16593.24 20778.69 13696.99 24980.34 24793.23 16896.28 154
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
WTY-MVS89.60 13488.92 13891.67 15795.47 13081.15 18692.38 25894.78 22283.11 22489.06 14594.32 16478.67 13796.61 26781.57 22790.89 20097.24 106
CPTT-MVS91.99 8191.80 8292.55 11398.24 3181.98 16196.76 3096.49 9581.89 25390.24 12696.44 8178.59 13898.61 10589.68 11197.85 7397.06 117
IS-MVSNet91.43 9191.09 9392.46 11795.87 11481.38 17996.95 1993.69 26289.72 4989.50 13795.98 9878.57 13997.77 17783.02 19496.50 10498.22 59
OMC-MVS91.23 9590.62 10093.08 8396.27 9384.07 9893.52 21595.93 14086.95 12989.51 13696.13 9378.50 14098.35 13285.84 16092.90 17396.83 135
PCF-MVS84.11 1087.74 19286.08 22792.70 10694.02 20384.43 9189.27 33195.87 14773.62 35784.43 25594.33 16378.48 14198.86 8470.27 33094.45 14494.81 215
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
LCM-MVSNet-Re88.30 17888.32 15888.27 28394.71 16872.41 34493.15 23290.98 33187.77 11279.25 33491.96 25378.35 14295.75 31483.04 19395.62 11596.65 141
HY-MVS83.01 1289.03 15687.94 16892.29 12894.86 16182.77 13992.08 27294.49 23081.52 26586.93 18192.79 22478.32 14398.23 14179.93 25290.55 20395.88 173
GeoE90.05 11989.43 12491.90 14795.16 14380.37 20795.80 8094.65 22883.90 20287.55 17194.75 14778.18 14497.62 19181.28 23093.63 15597.71 90
MVS87.44 20886.10 22691.44 16692.61 25483.62 11192.63 25195.66 16467.26 38281.47 30492.15 24277.95 14598.22 14379.71 25495.48 11992.47 317
MVSFormer91.68 8991.30 8792.80 9993.86 21283.88 10395.96 7395.90 14484.66 19191.76 10694.91 13777.92 14697.30 22489.64 11297.11 8697.24 106
lupinMVS90.92 10090.21 10493.03 8693.86 21283.88 10392.81 24793.86 25679.84 28691.76 10694.29 16677.92 14698.04 16390.48 10897.11 8697.17 110
Test_1112_low_res87.65 19586.51 20991.08 18294.94 15679.28 24291.77 27794.30 23976.04 33383.51 28092.37 23477.86 14897.73 18278.69 26689.13 23196.22 156
VNet92.24 8091.91 8193.24 7596.59 8283.43 11694.84 13696.44 9689.19 6394.08 4695.90 10177.85 14998.17 14588.90 12093.38 16498.13 64
mvsany_test185.42 26685.30 25385.77 33387.95 36775.41 31087.61 35780.97 39176.82 32588.68 14995.83 10477.44 15090.82 37985.90 15886.51 26991.08 352
DU-MVS89.34 14788.50 15191.85 15093.04 24183.72 10694.47 15996.59 9089.50 5286.46 19493.29 20577.25 15197.23 23384.92 16881.02 32794.59 222
Baseline_NR-MVSNet87.07 22786.63 20488.40 27991.44 29077.87 27294.23 17792.57 28484.12 19885.74 21292.08 24877.25 15196.04 29882.29 20979.94 34291.30 344
jason90.80 10190.10 10892.90 9493.04 24183.53 11493.08 23694.15 24580.22 28091.41 11394.91 13776.87 15397.93 17290.28 10996.90 9397.24 106
jason: jason.
PAPM86.68 24085.39 24990.53 20193.05 24079.33 24189.79 32294.77 22378.82 30181.95 30093.24 20776.81 15497.30 22466.94 35493.16 16994.95 210
Vis-MVSNet (Re-imp)89.59 13589.44 12390.03 22795.74 11775.85 30595.61 9390.80 33787.66 11787.83 16495.40 12076.79 15596.46 28078.37 26796.73 9897.80 86
baseline188.10 18287.28 18490.57 19994.96 15480.07 21594.27 17391.29 32386.74 13587.41 17294.00 17876.77 15696.20 29380.77 23979.31 34995.44 189
114514_t89.51 13788.50 15192.54 11498.11 3681.99 16095.16 11896.36 10370.19 37885.81 20995.25 12476.70 15798.63 10282.07 21596.86 9697.00 122
PLCcopyleft84.53 789.06 15588.03 16592.15 13297.27 6882.69 14694.29 17295.44 18279.71 28884.01 26894.18 17176.68 15898.75 9377.28 28093.41 16395.02 203
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
TranMVSNet+NR-MVSNet88.84 16287.95 16791.49 16392.68 25383.01 13494.92 13196.31 10689.88 4085.53 21893.85 18976.63 15996.96 25081.91 21979.87 34494.50 232
MAR-MVS90.30 11389.37 12693.07 8596.61 8184.48 8795.68 8695.67 16282.36 24087.85 16392.85 21876.63 15998.80 9080.01 25196.68 10095.91 171
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
WR-MVS88.38 17487.67 17490.52 20393.30 23280.18 21093.26 22995.96 13988.57 8585.47 22492.81 22276.12 16196.91 25481.24 23182.29 30794.47 237
v887.50 20786.71 19989.89 23491.37 29579.40 23594.50 15595.38 18684.81 18683.60 27891.33 27076.05 16297.42 21082.84 19880.51 33892.84 308
v14887.04 22886.32 21689.21 25890.94 31477.26 28593.71 20994.43 23284.84 18584.36 25990.80 29076.04 16397.05 24682.12 21279.60 34693.31 288
eth_miper_zixun_eth86.50 24785.77 24088.68 27491.94 27275.81 30690.47 30694.89 21282.05 24584.05 26690.46 29775.96 16496.77 25882.76 20179.36 34893.46 285
3Dnovator+87.14 492.42 7891.37 8695.55 795.63 12388.73 697.07 1896.77 7490.84 1684.02 26796.62 7475.95 16599.34 3487.77 13397.68 7998.59 24
h-mvs3390.80 10190.15 10792.75 10296.01 10582.66 14795.43 9995.53 17489.80 4393.08 6595.64 11375.77 16699.00 6892.07 7278.05 35396.60 142
hse-mvs289.88 12889.34 12791.51 16294.83 16381.12 18793.94 19893.91 25589.80 4393.08 6593.60 19675.77 16697.66 18592.07 7277.07 36095.74 180
BH-untuned88.60 17088.13 16390.01 23095.24 14078.50 25593.29 22794.15 24584.75 18884.46 25393.40 19975.76 16897.40 21777.59 27794.52 14294.12 248
DIV-MVS_self_test86.53 24585.78 23888.75 27192.02 27176.45 29790.74 30294.30 23981.83 25683.34 28490.82 28975.75 16996.57 27081.73 22581.52 31993.24 292
BH-w/o87.57 20387.05 18989.12 26194.90 15977.90 27092.41 25693.51 26482.89 23183.70 27491.34 26975.75 16997.07 24475.49 29693.49 16092.39 321
cl____86.52 24685.78 23888.75 27192.03 27076.46 29690.74 30294.30 23981.83 25683.34 28490.78 29175.74 17196.57 27081.74 22481.54 31893.22 293
cdsmvs_eth3d_5k22.14 37429.52 3770.00 3930.00 4160.00 4180.00 40495.76 1540.00 4110.00 41294.29 16675.66 1720.00 4120.00 4110.00 4100.00 408
CNLPA89.07 15487.98 16692.34 12496.87 7484.78 7894.08 18693.24 26781.41 26684.46 25395.13 13275.57 17396.62 26477.21 28193.84 15395.61 187
CHOSEN 1792x268888.84 16287.69 17392.30 12796.14 9681.42 17890.01 31995.86 14874.52 34887.41 17293.94 18275.46 17498.36 13080.36 24695.53 11697.12 115
CP-MVSNet87.63 19887.26 18688.74 27393.12 23676.59 29595.29 10796.58 9188.43 8883.49 28192.98 21675.28 17595.83 30978.97 26481.15 32393.79 266
v1087.25 21786.38 21289.85 23591.19 30179.50 23294.48 15695.45 18083.79 20683.62 27791.19 27575.13 17697.42 21081.94 21880.60 33392.63 313
Vis-MVSNetpermissive91.75 8691.23 8993.29 7395.32 13483.78 10596.14 5895.98 13689.89 3990.45 12396.58 7675.09 17798.31 13884.75 17296.90 9397.78 88
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
sss88.93 15988.26 16190.94 19294.05 20280.78 19791.71 27995.38 18681.55 26488.63 15093.91 18675.04 17895.47 32682.47 20491.61 18896.57 145
v114487.61 20186.79 19790.06 22691.01 30979.34 23893.95 19795.42 18583.36 21985.66 21491.31 27374.98 17997.42 21083.37 18982.06 30993.42 286
miper_lstm_enhance85.27 27184.59 26987.31 30491.28 29974.63 31787.69 35494.09 24981.20 27381.36 30789.85 31574.97 18094.30 34181.03 23579.84 34593.01 302
test_yl90.69 10590.02 11392.71 10495.72 11882.41 15494.11 18295.12 19885.63 16491.49 11194.70 14874.75 18198.42 12886.13 15592.53 18197.31 103
DCV-MVSNet90.69 10590.02 11392.71 10495.72 11882.41 15494.11 18295.12 19885.63 16491.49 11194.70 14874.75 18198.42 12886.13 15592.53 18197.31 103
V4287.68 19386.86 19390.15 22190.58 32980.14 21294.24 17695.28 19183.66 20885.67 21391.33 27074.73 18397.41 21584.43 17781.83 31392.89 306
FA-MVS(test-final)89.66 13288.91 13991.93 14294.57 17780.27 20891.36 28794.74 22484.87 18389.82 13392.61 22874.72 18498.47 11783.97 18293.53 15897.04 119
XVG-OURS-SEG-HR89.95 12489.45 12291.47 16594.00 20781.21 18491.87 27596.06 13285.78 15988.55 15195.73 11074.67 18597.27 22888.71 12389.64 22195.91 171
v2v48287.84 18887.06 18890.17 21990.99 31079.23 24594.00 19595.13 19784.87 18385.53 21892.07 25074.45 18697.45 20584.71 17381.75 31593.85 264
CLD-MVS89.47 13988.90 14091.18 17694.22 19682.07 15992.13 26996.09 12887.90 10785.37 23492.45 23274.38 18797.56 19487.15 14390.43 20593.93 257
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
XXY-MVS87.65 19586.85 19490.03 22792.14 26580.60 20293.76 20695.23 19382.94 22984.60 24894.02 17674.27 18895.49 32581.04 23383.68 29194.01 256
HQP_MVS90.60 11190.19 10591.82 15194.70 16982.73 14395.85 7796.22 11790.81 1786.91 18394.86 14074.23 18998.12 14888.15 12789.99 21094.63 219
plane_prior694.52 17982.75 14074.23 189
v14419287.19 22386.35 21489.74 24190.64 32778.24 26393.92 20095.43 18381.93 25085.51 22091.05 28374.21 19197.45 20582.86 19781.56 31793.53 280
VPA-MVSNet89.62 13388.96 13691.60 15993.86 21282.89 13895.46 9897.33 2587.91 10688.43 15493.31 20374.17 19297.40 21787.32 14182.86 30394.52 227
ab-mvs89.41 14288.35 15592.60 11095.15 14582.65 14892.20 26795.60 16983.97 20188.55 15193.70 19574.16 19398.21 14482.46 20589.37 22596.94 127
131487.51 20586.57 20790.34 21692.42 25979.74 22892.63 25195.35 19078.35 31080.14 32291.62 26474.05 19497.15 23781.05 23293.53 15894.12 248
test_djsdf89.03 15688.64 14590.21 21890.74 32479.28 24295.96 7395.90 14484.66 19185.33 23692.94 21774.02 19597.30 22489.64 11288.53 23994.05 254
cl2286.78 23585.98 23189.18 26092.34 26077.62 28190.84 30194.13 24781.33 26883.97 26990.15 30673.96 19696.60 26984.19 17982.94 29993.33 287
AdaColmapbinary89.89 12789.07 13392.37 12397.41 6283.03 13294.42 16395.92 14182.81 23286.34 20094.65 15373.89 19799.02 6180.69 24195.51 11795.05 202
HyFIR lowres test88.09 18386.81 19591.93 14296.00 10680.63 20090.01 31995.79 15273.42 35987.68 16892.10 24773.86 19897.96 16980.75 24091.70 18797.19 109
HQP2-MVS73.83 199
HQP-MVS89.80 13089.28 13091.34 17094.17 19781.56 17094.39 16696.04 13388.81 7485.43 22893.97 18073.83 19997.96 16987.11 14589.77 21994.50 232
3Dnovator86.66 591.73 8790.82 9894.44 4594.59 17486.37 4197.18 1297.02 4789.20 6284.31 26396.66 6973.74 20199.17 4786.74 14897.96 6997.79 87
EPNet_dtu86.49 24985.94 23488.14 28890.24 33672.82 33494.11 18292.20 29586.66 13879.42 33392.36 23573.52 20295.81 31171.26 32293.66 15495.80 178
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
TransMVSNet (Re)84.43 28483.06 29188.54 27791.72 28278.44 25695.18 11592.82 27782.73 23479.67 33092.12 24473.49 20395.96 30371.10 32768.73 38291.21 346
Effi-MVS+-dtu88.65 16888.35 15589.54 25093.33 23176.39 29894.47 15994.36 23787.70 11485.43 22889.56 32073.45 20497.26 23085.57 16391.28 19294.97 204
baseline286.50 24785.39 24989.84 23691.12 30676.70 29391.88 27488.58 36382.35 24179.95 32690.95 28573.42 20597.63 19080.27 24989.95 21395.19 198
PEN-MVS86.80 23486.27 21988.40 27992.32 26175.71 30795.18 11596.38 10287.97 10482.82 29093.15 21073.39 20695.92 30476.15 29379.03 35193.59 278
v119287.25 21786.33 21590.00 23190.76 32379.04 24693.80 20495.48 17682.57 23685.48 22391.18 27773.38 20797.42 21082.30 20882.06 30993.53 280
QAPM89.51 13788.15 16293.59 7094.92 15784.58 8196.82 2996.70 8378.43 30983.41 28296.19 9073.18 20899.30 4077.11 28396.54 10296.89 131
mvsmamba89.96 12389.50 12191.33 17192.90 24881.82 16496.68 3392.37 28889.03 6987.00 17994.85 14273.05 20997.65 18691.03 9388.63 23794.51 229
tpmrst85.35 26884.99 25886.43 32590.88 31967.88 37288.71 34091.43 32080.13 28286.08 20688.80 33273.05 20996.02 30082.48 20383.40 29795.40 191
PS-CasMVS87.32 21486.88 19288.63 27692.99 24476.33 30095.33 10296.61 8988.22 9683.30 28693.07 21473.03 21195.79 31378.36 26881.00 32993.75 273
DTE-MVSNet86.11 25485.48 24787.98 29191.65 28774.92 31494.93 13095.75 15587.36 12182.26 29593.04 21572.85 21295.82 31074.04 30977.46 35793.20 294
MVSTER88.84 16288.29 15990.51 20492.95 24680.44 20593.73 20795.01 20384.66 19187.15 17793.12 21272.79 21397.21 23587.86 13287.36 26193.87 261
v192192086.97 23086.06 22889.69 24590.53 33278.11 26693.80 20495.43 18381.90 25285.33 23691.05 28372.66 21497.41 21582.05 21681.80 31493.53 280
DP-MVS87.25 21785.36 25192.90 9497.65 5583.24 12194.81 13892.00 30274.99 34381.92 30195.00 13572.66 21499.05 5566.92 35692.33 18496.40 149
v7n86.81 23385.76 24189.95 23290.72 32579.25 24495.07 12295.92 14184.45 19482.29 29490.86 28672.60 21697.53 19779.42 26180.52 33793.08 300
OPM-MVS90.12 11789.56 12091.82 15193.14 23583.90 10294.16 17995.74 15688.96 7387.86 16295.43 11972.48 21797.91 17388.10 13190.18 20993.65 277
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
LS3D87.89 18786.32 21692.59 11196.07 10382.92 13795.23 11194.92 21175.66 33582.89 28995.98 9872.48 21799.21 4568.43 34495.23 12995.64 184
pm-mvs186.61 24185.54 24589.82 23791.44 29080.18 21095.28 10994.85 21683.84 20481.66 30292.62 22772.45 21996.48 27779.67 25578.06 35292.82 309
PMMVS85.71 26284.96 26087.95 29288.90 35477.09 28788.68 34190.06 34972.32 36986.47 19390.76 29272.15 22094.40 33881.78 22393.49 16092.36 322
SDMVSNet90.19 11689.61 11991.93 14296.00 10683.09 13092.89 24395.98 13688.73 7886.85 18795.20 12872.09 22197.08 24288.90 12089.85 21695.63 185
PatchmatchNetpermissive85.85 25984.70 26689.29 25791.76 28175.54 30888.49 34391.30 32281.63 26285.05 24088.70 33471.71 22296.24 29274.61 30789.05 23296.08 164
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
sam_mvs171.70 22396.12 161
patchmatchnet-post83.76 37471.53 22496.48 277
v124086.78 23585.85 23689.56 24990.45 33377.79 27693.61 21295.37 18881.65 26085.43 22891.15 27971.50 22597.43 20981.47 22982.05 31193.47 284
anonymousdsp87.84 18887.09 18790.12 22389.13 35180.54 20394.67 14795.55 17182.05 24583.82 27192.12 24471.47 22697.15 23787.15 14387.80 25692.67 311
Patchmatch-test81.37 31779.30 32587.58 29890.92 31674.16 32480.99 38987.68 37070.52 37776.63 35288.81 33071.21 22792.76 36360.01 38086.93 26795.83 176
F-COLMAP87.95 18686.80 19691.40 16796.35 9280.88 19494.73 14395.45 18079.65 28982.04 29994.61 15471.13 22898.50 11276.24 29291.05 19894.80 216
pmmvs485.43 26583.86 27890.16 22090.02 34182.97 13690.27 30892.67 28275.93 33480.73 31391.74 25971.05 22995.73 31678.85 26583.46 29591.78 333
CR-MVSNet85.35 26883.76 27990.12 22390.58 32979.34 23885.24 37391.96 30678.27 31285.55 21687.87 34771.03 23095.61 31873.96 31189.36 22695.40 191
Patchmtry82.71 30180.93 30788.06 28990.05 34076.37 29984.74 37891.96 30672.28 37081.32 30887.87 34771.03 23095.50 32468.97 34080.15 34092.32 324
CL-MVSNet_self_test81.74 31080.53 30885.36 33785.96 37672.45 34390.25 31093.07 27181.24 27179.85 32987.29 35370.93 23292.52 36466.95 35369.23 37891.11 350
RPMNet83.95 29181.53 30291.21 17490.58 32979.34 23885.24 37396.76 7571.44 37385.55 21682.97 38070.87 23398.91 8061.01 37689.36 22695.40 191
Patchmatch-RL test81.67 31179.96 31786.81 32185.42 38171.23 35382.17 38787.50 37178.47 30777.19 34882.50 38270.81 23493.48 35482.66 20272.89 37095.71 183
CostFormer85.77 26184.94 26188.26 28491.16 30472.58 34289.47 32991.04 33076.26 33186.45 19689.97 31270.74 23596.86 25782.35 20787.07 26695.34 195
sam_mvs70.60 236
xiu_mvs_v1_base_debu90.64 10890.05 11092.40 12093.97 20984.46 8893.32 22295.46 17785.17 17492.25 8994.03 17370.59 23798.57 10990.97 9494.67 13594.18 244
xiu_mvs_v1_base90.64 10890.05 11092.40 12093.97 20984.46 8893.32 22295.46 17785.17 17492.25 8994.03 17370.59 23798.57 10990.97 9494.67 13594.18 244
xiu_mvs_v1_base_debi90.64 10890.05 11092.40 12093.97 20984.46 8893.32 22295.46 17785.17 17492.25 8994.03 17370.59 23798.57 10990.97 9494.67 13594.18 244
test_post10.29 40670.57 24095.91 306
CANet_DTU90.26 11589.41 12592.81 9893.46 22883.01 13493.48 21694.47 23189.43 5487.76 16794.23 17070.54 24199.03 5884.97 16796.39 10696.38 150
BH-RMVSNet88.37 17587.48 17891.02 18695.28 13679.45 23492.89 24393.07 27185.45 16986.91 18394.84 14470.35 24297.76 17873.97 31094.59 13995.85 174
Fast-Effi-MVS+-dtu87.44 20886.72 19889.63 24892.04 26977.68 28094.03 19193.94 25185.81 15882.42 29391.32 27270.33 24397.06 24580.33 24890.23 20894.14 247
MDTV_nov1_ep13_2view55.91 40287.62 35673.32 36084.59 24970.33 24374.65 30695.50 188
ACMM84.12 989.14 14988.48 15491.12 17894.65 17281.22 18395.31 10396.12 12585.31 17285.92 20894.34 16270.19 24598.06 16285.65 16188.86 23594.08 252
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ET-MVSNet_ETH3D87.51 20585.91 23592.32 12593.70 22183.93 10192.33 26290.94 33384.16 19672.09 37492.52 23069.90 24695.85 30889.20 11788.36 24597.17 110
LPG-MVS_test89.45 14088.90 14091.12 17894.47 18181.49 17495.30 10596.14 12286.73 13685.45 22595.16 13069.89 24798.10 15087.70 13489.23 22993.77 271
LGP-MVS_train91.12 17894.47 18181.49 17496.14 12286.73 13685.45 22595.16 13069.89 24798.10 15087.70 13489.23 22993.77 271
CHOSEN 280x42085.15 27383.99 27688.65 27592.47 25678.40 25879.68 39392.76 27874.90 34581.41 30689.59 31869.85 24995.51 32279.92 25395.29 12692.03 329
LTVRE_ROB82.13 1386.26 25384.90 26290.34 21694.44 18581.50 17292.31 26494.89 21283.03 22679.63 33192.67 22569.69 25097.79 17671.20 32386.26 27191.72 334
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
OpenMVScopyleft83.78 1188.74 16687.29 18393.08 8392.70 25285.39 6996.57 3696.43 9778.74 30480.85 31296.07 9469.64 25199.01 6378.01 27496.65 10194.83 214
MDTV_nov1_ep1383.56 28291.69 28569.93 36587.75 35391.54 31678.60 30684.86 24388.90 32969.54 25296.03 29970.25 33188.93 234
AUN-MVS87.78 19186.54 20891.48 16494.82 16481.05 18893.91 20293.93 25283.00 22786.93 18193.53 19769.50 25397.67 18386.14 15377.12 35995.73 182
PatchT82.68 30281.27 30486.89 31990.09 33970.94 35984.06 38090.15 34674.91 34485.63 21583.57 37569.37 25494.87 33565.19 36188.50 24194.84 213
RRT_MVS89.09 15288.62 14890.49 20592.85 24979.65 23096.41 3994.41 23488.22 9685.50 22194.77 14669.36 25597.31 22389.33 11586.73 26894.51 229
VPNet88.20 18087.47 17990.39 21293.56 22579.46 23394.04 19095.54 17388.67 8186.96 18094.58 15869.33 25697.15 23784.05 18180.53 33694.56 225
ACMP84.23 889.01 15888.35 15590.99 18994.73 16681.27 18095.07 12295.89 14686.48 14083.67 27594.30 16569.33 25697.99 16787.10 14788.55 23893.72 275
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
test_post188.00 3499.81 40769.31 25895.53 32076.65 286
tpmvs83.35 29982.07 29887.20 31191.07 30871.00 35888.31 34691.70 31078.91 29780.49 31887.18 35669.30 25997.08 24268.12 34883.56 29393.51 283
thres20087.21 22186.24 22090.12 22395.36 13378.53 25393.26 22992.10 29886.42 14388.00 16191.11 28169.24 26098.00 16669.58 33891.04 19993.83 265
tfpn200view987.58 20286.64 20290.41 21195.99 10978.64 25094.58 15191.98 30486.94 13088.09 15691.77 25769.18 26198.10 15070.13 33491.10 19394.48 235
thres40087.62 20086.64 20290.57 19995.99 10978.64 25094.58 15191.98 30486.94 13088.09 15691.77 25769.18 26198.10 15070.13 33491.10 19394.96 207
WB-MVSnew83.77 29483.28 28585.26 34091.48 28971.03 35691.89 27387.98 36678.91 29784.78 24490.22 30269.11 26394.02 34564.70 36590.44 20490.71 354
tfpnnormal84.72 28183.23 28789.20 25992.79 25180.05 21794.48 15695.81 15082.38 23981.08 31091.21 27469.01 26496.95 25161.69 37480.59 33490.58 359
thres100view90087.63 19886.71 19990.38 21496.12 9778.55 25295.03 12591.58 31487.15 12388.06 15992.29 23868.91 26598.10 15070.13 33491.10 19394.48 235
thres600view787.65 19586.67 20190.59 19896.08 10278.72 24894.88 13391.58 31487.06 12688.08 15892.30 23768.91 26598.10 15070.05 33791.10 19394.96 207
PatchMatch-RL86.77 23885.54 24590.47 21095.88 11282.71 14590.54 30592.31 29179.82 28784.32 26191.57 26868.77 26796.39 28473.16 31593.48 16292.32 324
XVG-OURS89.40 14488.70 14491.52 16194.06 20181.46 17691.27 29196.07 13086.14 15388.89 14795.77 10868.73 26897.26 23087.39 13989.96 21295.83 176
TR-MVS86.78 23585.76 24189.82 23794.37 18878.41 25792.47 25592.83 27681.11 27486.36 19892.40 23368.73 26897.48 20173.75 31389.85 21693.57 279
tpm84.73 28084.02 27586.87 32090.33 33468.90 36889.06 33689.94 35280.85 27685.75 21189.86 31468.54 27095.97 30277.76 27584.05 28795.75 179
FMVSNet387.40 21086.11 22591.30 17293.79 21783.64 11094.20 17894.81 22083.89 20384.37 25691.87 25668.45 27196.56 27278.23 27185.36 27693.70 276
MVP-Stereo85.97 25684.86 26389.32 25690.92 31682.19 15792.11 27094.19 24378.76 30378.77 33991.63 26368.38 27296.56 27275.01 30393.95 15089.20 369
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
tpm cat181.96 30680.27 31287.01 31491.09 30771.02 35787.38 35891.53 31766.25 38380.17 32086.35 36268.22 27396.15 29669.16 33982.29 30793.86 263
dmvs_testset74.57 35075.81 34970.86 37587.72 36940.47 40887.05 36177.90 40082.75 23371.15 37985.47 36867.98 27484.12 39745.26 39476.98 36188.00 378
sd_testset88.59 17187.85 17090.83 19396.00 10680.42 20692.35 26094.71 22588.73 7886.85 18795.20 12867.31 27596.43 28279.64 25689.85 21695.63 185
tpm284.08 28882.94 29287.48 30291.39 29471.27 35289.23 33390.37 34271.95 37184.64 24789.33 32267.30 27696.55 27475.17 30087.09 26594.63 219
test-LLR85.87 25885.41 24887.25 30790.95 31271.67 35089.55 32589.88 35583.41 21684.54 25087.95 34467.25 27795.11 33181.82 22193.37 16594.97 204
test0.0.03 182.41 30481.69 30084.59 34488.23 36272.89 33390.24 31287.83 36883.41 21679.86 32889.78 31667.25 27788.99 38765.18 36283.42 29691.90 332
CVMVSNet84.69 28284.79 26584.37 34691.84 27764.92 38293.70 21091.47 31966.19 38486.16 20595.28 12267.18 27993.33 35680.89 23890.42 20694.88 212
thisisatest051587.33 21385.99 23091.37 16993.49 22679.55 23190.63 30489.56 36080.17 28187.56 17090.86 28667.07 28098.28 13981.50 22893.02 17196.29 153
tttt051788.61 16987.78 17191.11 18194.96 15477.81 27495.35 10189.69 35785.09 17988.05 16094.59 15766.93 28198.48 11483.27 19192.13 18697.03 120
our_test_381.93 30780.46 31086.33 32788.46 35973.48 32988.46 34491.11 32676.46 32676.69 35188.25 34066.89 28294.36 33968.75 34179.08 35091.14 348
thisisatest053088.67 16787.61 17591.86 14894.87 16080.07 21594.63 14989.90 35484.00 20088.46 15393.78 19166.88 28398.46 11883.30 19092.65 17897.06 117
IterMVS-SCA-FT85.45 26484.53 27088.18 28791.71 28376.87 29090.19 31592.65 28385.40 17081.44 30590.54 29566.79 28495.00 33481.04 23381.05 32592.66 312
SCA86.32 25285.18 25589.73 24392.15 26476.60 29491.12 29591.69 31183.53 21385.50 22188.81 33066.79 28496.48 27776.65 28690.35 20796.12 161
D2MVS85.90 25785.09 25788.35 28190.79 32177.42 28391.83 27695.70 16080.77 27780.08 32490.02 31066.74 28696.37 28581.88 22087.97 25191.26 345
IterMVS84.88 27783.98 27787.60 29791.44 29076.03 30290.18 31692.41 28783.24 22281.06 31190.42 29966.60 28794.28 34279.46 25780.98 33092.48 316
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
GBi-Net87.26 21585.98 23191.08 18294.01 20483.10 12795.14 11994.94 20683.57 21084.37 25691.64 26066.59 28896.34 28878.23 27185.36 27693.79 266
test187.26 21585.98 23191.08 18294.01 20483.10 12795.14 11994.94 20683.57 21084.37 25691.64 26066.59 28896.34 28878.23 27185.36 27693.79 266
FMVSNet287.19 22385.82 23791.30 17294.01 20483.67 10894.79 13994.94 20683.57 21083.88 27092.05 25166.59 28896.51 27577.56 27885.01 27993.73 274
EPMVS83.90 29382.70 29787.51 29990.23 33772.67 33788.62 34281.96 38981.37 26785.01 24188.34 33866.31 29194.45 33675.30 29987.12 26495.43 190
Syy-MVS80.07 32979.78 31880.94 36191.92 27359.93 39289.75 32387.40 37281.72 25878.82 33687.20 35466.29 29291.29 37547.06 39387.84 25491.60 337
ppachtmachnet_test81.84 30880.07 31687.15 31288.46 35974.43 32189.04 33792.16 29675.33 33977.75 34488.99 32766.20 29395.37 32765.12 36377.60 35591.65 335
MDA-MVSNet_test_wron79.21 33877.19 34085.29 33888.22 36372.77 33585.87 36790.06 34974.34 34962.62 38987.56 35066.14 29491.99 37066.90 35773.01 36891.10 351
YYNet179.22 33777.20 33985.28 33988.20 36472.66 33885.87 36790.05 35174.33 35062.70 38787.61 34966.09 29592.03 36866.94 35472.97 36991.15 347
JIA-IIPM81.04 32078.98 33287.25 30788.64 35573.48 32981.75 38889.61 35973.19 36182.05 29873.71 39266.07 29695.87 30771.18 32584.60 28292.41 320
MSDG84.86 27883.09 28990.14 22293.80 21580.05 21789.18 33493.09 27078.89 29978.19 34091.91 25465.86 29797.27 22868.47 34388.45 24293.11 298
FE-MVS87.40 21086.02 22991.57 16094.56 17879.69 22990.27 30893.72 26180.57 27888.80 14891.62 26465.32 29898.59 10874.97 30494.33 14796.44 148
jajsoiax88.24 17987.50 17790.48 20790.89 31880.14 21295.31 10395.65 16684.97 18184.24 26494.02 17665.31 29997.42 21088.56 12488.52 24093.89 258
cascas86.43 25184.98 25990.80 19592.10 26880.92 19390.24 31295.91 14373.10 36283.57 27988.39 33765.15 30097.46 20484.90 17091.43 19094.03 255
ADS-MVSNet281.66 31279.71 32187.50 30091.35 29674.19 32383.33 38388.48 36472.90 36482.24 29685.77 36664.98 30193.20 35964.57 36683.74 28995.12 200
ADS-MVSNet81.56 31479.78 31886.90 31891.35 29671.82 34783.33 38389.16 36272.90 36482.24 29685.77 36664.98 30193.76 35064.57 36683.74 28995.12 200
pmmvs584.21 28682.84 29688.34 28288.95 35376.94 28992.41 25691.91 30875.63 33680.28 31991.18 27764.59 30395.57 31977.09 28483.47 29492.53 315
PVSNet78.82 1885.55 26384.65 26788.23 28694.72 16771.93 34587.12 36092.75 27978.80 30284.95 24290.53 29664.43 30496.71 26174.74 30593.86 15296.06 167
dmvs_re84.20 28783.22 28887.14 31391.83 27977.81 27490.04 31890.19 34584.70 19081.49 30389.17 32464.37 30591.13 37771.58 32185.65 27592.46 318
UGNet89.95 12488.95 13792.95 9294.51 18083.31 12095.70 8595.23 19389.37 5687.58 16993.94 18264.00 30698.78 9183.92 18396.31 10796.74 138
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
WB-MVS67.92 35767.49 35969.21 37981.09 39041.17 40788.03 34878.00 39973.50 35862.63 38883.11 37963.94 30786.52 39125.66 40451.45 39779.94 390
RPSCF85.07 27484.27 27187.48 30292.91 24770.62 36191.69 28192.46 28576.20 33282.67 29295.22 12563.94 30797.29 22777.51 27985.80 27394.53 226
iter_conf0588.85 16188.08 16491.17 17794.27 19481.64 16895.18 11592.15 29786.23 14987.28 17694.07 17263.89 30997.55 19590.63 10289.00 23394.32 241
mvs_tets88.06 18587.28 18490.38 21490.94 31479.88 22495.22 11295.66 16485.10 17884.21 26593.94 18263.53 31097.40 21788.50 12588.40 24493.87 261
SSC-MVS67.06 35866.56 36068.56 38180.54 39140.06 40987.77 35277.37 40272.38 36861.75 39082.66 38163.37 31186.45 39224.48 40548.69 40079.16 392
test111189.10 15088.64 14590.48 20795.53 12974.97 31396.08 6284.89 38188.13 10190.16 12996.65 7063.29 31298.10 15086.14 15396.90 9398.39 39
Anonymous2023121186.59 24385.13 25690.98 19196.52 8781.50 17296.14 5896.16 12173.78 35583.65 27692.15 24263.26 31397.37 22182.82 19981.74 31694.06 253
ECVR-MVScopyleft89.09 15288.53 14990.77 19695.62 12475.89 30496.16 5484.22 38387.89 10990.20 12796.65 7063.19 31498.10 15085.90 15896.94 9198.33 43
dp81.47 31680.23 31385.17 34189.92 34365.49 37986.74 36290.10 34876.30 33081.10 30987.12 35762.81 31595.92 30468.13 34779.88 34394.09 251
LFMVS90.08 11889.13 13292.95 9296.71 7782.32 15696.08 6289.91 35386.79 13392.15 9396.81 6362.60 31698.34 13387.18 14293.90 15198.19 60
Anonymous2023120681.03 32179.77 32084.82 34387.85 36870.26 36391.42 28692.08 29973.67 35677.75 34489.25 32362.43 31793.08 36061.50 37582.00 31291.12 349
VDD-MVS90.74 10389.92 11593.20 7796.27 9383.02 13395.73 8393.86 25688.42 8992.53 8396.84 6062.09 31898.64 10090.95 9792.62 17997.93 78
MS-PatchMatch85.05 27584.16 27287.73 29591.42 29378.51 25491.25 29293.53 26377.50 31880.15 32191.58 26661.99 31995.51 32275.69 29594.35 14689.16 370
OurMVSNet-221017-085.35 26884.64 26887.49 30190.77 32272.59 34194.01 19394.40 23584.72 18979.62 33293.17 20961.91 32096.72 25981.99 21781.16 32193.16 296
test_vis1_n_192089.39 14589.84 11688.04 29092.97 24572.64 33994.71 14596.03 13586.18 15191.94 10096.56 7861.63 32195.74 31593.42 4195.11 13095.74 180
test20.0379.95 33179.08 33082.55 35685.79 37867.74 37391.09 29691.08 32781.23 27274.48 36689.96 31361.63 32190.15 38160.08 37876.38 36289.76 362
DSMNet-mixed76.94 34676.29 34578.89 36583.10 38756.11 40187.78 35179.77 39360.65 39075.64 35888.71 33361.56 32388.34 38860.07 37989.29 22892.21 327
Anonymous2024052988.09 18386.59 20692.58 11296.53 8681.92 16395.99 7195.84 14974.11 35289.06 14595.21 12761.44 32498.81 8983.67 18887.47 25897.01 121
IB-MVS80.51 1585.24 27283.26 28691.19 17592.13 26679.86 22591.75 27891.29 32383.28 22180.66 31588.49 33661.28 32598.46 11880.99 23679.46 34795.25 197
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
GA-MVS86.61 24185.27 25490.66 19791.33 29878.71 24990.40 30793.81 25985.34 17185.12 23889.57 31961.25 32697.11 24180.99 23689.59 22296.15 158
N_pmnet68.89 35668.44 35870.23 37689.07 35228.79 41388.06 34719.50 41369.47 37971.86 37684.93 36961.24 32791.75 37254.70 38877.15 35890.15 360
EU-MVSNet81.32 31880.95 30682.42 35888.50 35863.67 38693.32 22291.33 32164.02 38780.57 31792.83 22061.21 32892.27 36776.34 29080.38 33991.32 343
testing9187.11 22686.18 22189.92 23394.43 18675.38 31291.53 28492.27 29386.48 14086.50 19290.24 30161.19 32997.53 19782.10 21390.88 20196.84 134
test_cas_vis1_n_192088.83 16588.85 14388.78 26991.15 30576.72 29293.85 20394.93 21083.23 22392.81 7496.00 9661.17 33094.45 33691.67 8594.84 13295.17 199
VDDNet89.56 13688.49 15392.76 10195.07 14882.09 15896.30 4493.19 26981.05 27591.88 10196.86 5961.16 33198.33 13588.43 12692.49 18397.84 84
PVSNet_073.20 2077.22 34574.83 35184.37 34690.70 32671.10 35583.09 38589.67 35872.81 36673.93 36883.13 37760.79 33293.70 35268.54 34250.84 39888.30 377
SixPastTwentyTwo83.91 29282.90 29486.92 31790.99 31070.67 36093.48 21691.99 30385.54 16777.62 34692.11 24660.59 33396.87 25676.05 29477.75 35493.20 294
gg-mvs-nofinetune81.77 30979.37 32488.99 26690.85 32077.73 27986.29 36579.63 39474.88 34683.19 28769.05 39560.34 33496.11 29775.46 29794.64 13893.11 298
MDA-MVSNet-bldmvs78.85 33976.31 34486.46 32489.76 34573.88 32588.79 33990.42 34179.16 29559.18 39188.33 33960.20 33594.04 34462.00 37368.96 38091.48 341
pmmvs683.42 29781.60 30188.87 26888.01 36577.87 27294.96 12894.24 24274.67 34778.80 33891.09 28260.17 33696.49 27677.06 28575.40 36692.23 326
ACMH80.38 1785.36 26783.68 28090.39 21294.45 18480.63 20094.73 14394.85 21682.09 24477.24 34792.65 22660.01 33797.58 19272.25 31984.87 28092.96 303
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
GG-mvs-BLEND87.94 29389.73 34777.91 26987.80 35078.23 39880.58 31683.86 37359.88 33895.33 32871.20 32392.22 18590.60 358
UniMVSNet_ETH3D87.53 20486.37 21391.00 18892.44 25878.96 24794.74 14295.61 16884.07 19985.36 23594.52 15959.78 33997.34 22282.93 19587.88 25296.71 139
pmmvs-eth3d80.97 32278.72 33487.74 29484.99 38379.97 22390.11 31791.65 31275.36 33873.51 36986.03 36359.45 34093.96 34875.17 30072.21 37189.29 368
testing9986.72 23985.73 24489.69 24594.23 19574.91 31591.35 28890.97 33286.14 15386.36 19890.22 30259.41 34197.48 20182.24 21090.66 20296.69 140
test_040281.30 31979.17 32987.67 29693.19 23478.17 26492.98 24091.71 30975.25 34076.02 35790.31 30059.23 34296.37 28550.22 39183.63 29288.47 376
KD-MVS_self_test80.20 32879.24 32683.07 35385.64 38065.29 38091.01 29893.93 25278.71 30576.32 35386.40 36159.20 34392.93 36272.59 31769.35 37791.00 353
iter_conf05_1189.88 12889.04 13592.41 11995.12 14681.63 16992.87 24592.45 28686.21 15092.48 8693.95 18159.05 34498.60 10790.50 10698.72 3296.99 123
bld_raw_dy_0_6488.86 16087.75 17292.21 13195.12 14681.19 18595.56 9691.29 32385.30 17389.10 14294.38 16159.04 34598.44 12490.50 10689.43 22396.99 123
FMVSNet185.85 25984.11 27391.08 18292.81 25083.10 12795.14 11994.94 20681.64 26182.68 29191.64 26059.01 34696.34 28875.37 29883.78 28893.79 266
testing1186.44 25085.35 25289.69 24594.29 19375.40 31191.30 28990.53 34084.76 18785.06 23990.13 30758.95 34797.45 20582.08 21491.09 19796.21 157
COLMAP_ROBcopyleft80.39 1683.96 29082.04 29989.74 24195.28 13679.75 22794.25 17492.28 29275.17 34178.02 34393.77 19258.60 34897.84 17565.06 36485.92 27291.63 336
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
ACMH+81.04 1485.05 27583.46 28389.82 23794.66 17179.37 23694.44 16194.12 24882.19 24378.04 34292.82 22158.23 34997.54 19673.77 31282.90 30292.54 314
CMPMVSbinary59.16 2180.52 32479.20 32884.48 34583.98 38467.63 37489.95 32193.84 25864.79 38666.81 38591.14 28057.93 35095.17 32976.25 29188.10 24790.65 355
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
tt080586.92 23185.74 24390.48 20792.22 26279.98 22295.63 9294.88 21483.83 20584.74 24692.80 22357.61 35197.67 18385.48 16484.42 28393.79 266
ITE_SJBPF88.24 28591.88 27677.05 28892.92 27385.54 16780.13 32393.30 20457.29 35296.20 29372.46 31884.71 28191.49 340
UWE-MVS83.69 29683.09 28985.48 33593.06 23965.27 38190.92 29986.14 37479.90 28586.26 20290.72 29357.17 35395.81 31171.03 32892.62 17995.35 194
TESTMET0.1,183.74 29582.85 29586.42 32689.96 34271.21 35489.55 32587.88 36777.41 31983.37 28387.31 35256.71 35493.65 35380.62 24392.85 17694.40 238
UnsupCasMVSNet_eth80.07 32978.27 33585.46 33685.24 38272.63 34088.45 34594.87 21582.99 22871.64 37788.07 34356.34 35591.75 37273.48 31463.36 38992.01 330
test_fmvs187.34 21287.56 17686.68 32390.59 32871.80 34894.01 19394.04 25078.30 31191.97 9795.22 12556.28 35693.71 35192.89 4994.71 13494.52 227
K. test v381.59 31380.15 31585.91 33289.89 34469.42 36792.57 25387.71 36985.56 16673.44 37089.71 31755.58 35795.52 32177.17 28269.76 37692.78 310
test-mter84.54 28383.64 28187.25 30790.95 31271.67 35089.55 32589.88 35579.17 29484.54 25087.95 34455.56 35895.11 33181.82 22193.37 16594.97 204
lessismore_v086.04 32888.46 35968.78 36980.59 39273.01 37290.11 30855.39 35996.43 28275.06 30265.06 38692.90 305
ETVMVS84.43 28482.92 29388.97 26794.37 18874.67 31691.23 29388.35 36583.37 21886.06 20789.04 32655.38 36095.67 31767.12 35291.34 19196.58 144
MVS-HIRNet73.70 35172.20 35478.18 36891.81 28056.42 40082.94 38682.58 38755.24 39268.88 38266.48 39655.32 36195.13 33058.12 38388.42 24383.01 385
test250687.21 22186.28 21890.02 22995.62 12473.64 32796.25 4971.38 40587.89 10990.45 12396.65 7055.29 36298.09 15886.03 15796.94 9198.33 43
new-patchmatchnet76.41 34775.17 35080.13 36282.65 38959.61 39387.66 35591.08 32778.23 31469.85 38183.22 37654.76 36391.63 37464.14 36864.89 38789.16 370
Anonymous20240521187.68 19386.13 22392.31 12696.66 7980.74 19894.87 13491.49 31880.47 27989.46 13895.44 11754.72 36498.23 14182.19 21189.89 21497.97 74
XVG-ACMP-BASELINE86.00 25584.84 26489.45 25491.20 30078.00 26791.70 28095.55 17185.05 18082.97 28892.25 24054.49 36597.48 20182.93 19587.45 26092.89 306
USDC82.76 30081.26 30587.26 30691.17 30274.55 31889.27 33193.39 26678.26 31375.30 36092.08 24854.43 36696.63 26371.64 32085.79 27490.61 356
AllTest83.42 29781.39 30389.52 25195.01 15077.79 27693.12 23390.89 33577.41 31976.12 35593.34 20054.08 36797.51 19968.31 34584.27 28593.26 289
TestCases89.52 25195.01 15077.79 27690.89 33577.41 31976.12 35593.34 20054.08 36797.51 19968.31 34584.27 28593.26 289
KD-MVS_2432*160078.50 34076.02 34785.93 33086.22 37474.47 31984.80 37692.33 28979.29 29276.98 34985.92 36453.81 36993.97 34667.39 35057.42 39489.36 365
miper_refine_blended78.50 34076.02 34785.93 33086.22 37474.47 31984.80 37692.33 28979.29 29276.98 34985.92 36453.81 36993.97 34667.39 35057.42 39489.36 365
MIMVSNet82.59 30380.53 30888.76 27091.51 28878.32 26086.57 36490.13 34779.32 29180.70 31488.69 33552.98 37193.07 36166.03 35988.86 23594.90 211
testing22284.84 27983.32 28489.43 25594.15 20075.94 30391.09 29689.41 36184.90 18285.78 21089.44 32152.70 37296.28 29170.80 32991.57 18996.07 165
FMVSNet581.52 31579.60 32287.27 30591.17 30277.95 26891.49 28592.26 29476.87 32476.16 35487.91 34651.67 37392.34 36667.74 34981.16 32191.52 339
testgi80.94 32380.20 31483.18 35287.96 36666.29 37691.28 29090.70 33983.70 20778.12 34192.84 21951.37 37490.82 37963.34 36982.46 30592.43 319
test_fmvs1_n87.03 22987.04 19086.97 31589.74 34671.86 34694.55 15394.43 23278.47 30791.95 9995.50 11651.16 37593.81 34993.02 4894.56 14095.26 196
Anonymous2024052180.44 32679.21 32784.11 34985.75 37967.89 37192.86 24693.23 26875.61 33775.59 35987.47 35150.03 37694.33 34071.14 32681.21 32090.12 361
UnsupCasMVSNet_bld76.23 34873.27 35285.09 34283.79 38572.92 33285.65 37093.47 26571.52 37268.84 38379.08 38749.77 37793.21 35866.81 35860.52 39189.13 372
OpenMVS_ROBcopyleft74.94 1979.51 33577.03 34286.93 31687.00 37176.23 30192.33 26290.74 33868.93 38074.52 36588.23 34149.58 37896.62 26457.64 38484.29 28487.94 379
TDRefinement79.81 33277.34 33787.22 31079.24 39575.48 30993.12 23392.03 30176.45 32775.01 36191.58 26649.19 37996.44 28170.22 33369.18 37989.75 363
test_vis1_n86.56 24486.49 21186.78 32288.51 35672.69 33694.68 14693.78 26079.55 29090.70 12095.31 12148.75 38093.28 35793.15 4593.99 14994.38 239
MIMVSNet179.38 33677.28 33885.69 33486.35 37373.67 32691.61 28392.75 27978.11 31672.64 37388.12 34248.16 38191.97 37160.32 37777.49 35691.43 342
LF4IMVS80.37 32779.07 33184.27 34886.64 37269.87 36689.39 33091.05 32976.38 32874.97 36290.00 31147.85 38294.25 34374.55 30880.82 33288.69 374
EG-PatchMatch MVS82.37 30580.34 31188.46 27890.27 33579.35 23792.80 24894.33 23877.14 32373.26 37190.18 30547.47 38396.72 25970.25 33187.32 26389.30 367
test_fmvs283.98 28984.03 27483.83 35187.16 37067.53 37593.93 19992.89 27477.62 31786.89 18693.53 19747.18 38492.02 36990.54 10386.51 26991.93 331
TinyColmap79.76 33377.69 33685.97 32991.71 28373.12 33189.55 32590.36 34375.03 34272.03 37590.19 30446.22 38596.19 29563.11 37081.03 32688.59 375
myMVS_eth3d79.67 33478.79 33382.32 35991.92 27364.08 38489.75 32387.40 37281.72 25878.82 33687.20 35445.33 38691.29 37559.09 38287.84 25491.60 337
tmp_tt35.64 37339.24 37524.84 38914.87 41323.90 41462.71 39951.51 4126.58 40736.66 40362.08 40044.37 38730.34 40952.40 39022.00 40620.27 404
testing380.46 32579.59 32383.06 35493.44 22964.64 38393.33 22185.47 37884.34 19579.93 32790.84 28844.35 38892.39 36557.06 38687.56 25792.16 328
new_pmnet72.15 35270.13 35678.20 36782.95 38865.68 37783.91 38182.40 38862.94 38964.47 38679.82 38642.85 38986.26 39357.41 38574.44 36782.65 387
test_vis1_rt77.96 34376.46 34382.48 35785.89 37771.74 34990.25 31078.89 39571.03 37671.30 37881.35 38442.49 39091.05 37884.55 17582.37 30684.65 382
EGC-MVSNET61.97 36256.37 36678.77 36689.63 34873.50 32889.12 33582.79 3860.21 4101.24 41184.80 37039.48 39190.04 38244.13 39575.94 36572.79 394
pmmvs371.81 35468.71 35781.11 36075.86 39670.42 36286.74 36283.66 38458.95 39168.64 38480.89 38536.93 39289.52 38463.10 37163.59 38883.39 383
mvsany_test374.95 34973.26 35380.02 36374.61 39763.16 38885.53 37178.42 39674.16 35174.89 36386.46 35936.02 39389.09 38682.39 20666.91 38387.82 380
PM-MVS78.11 34276.12 34684.09 35083.54 38670.08 36488.97 33885.27 38079.93 28474.73 36486.43 36034.70 39493.48 35479.43 26072.06 37288.72 373
ambc83.06 35479.99 39363.51 38777.47 39492.86 27574.34 36784.45 37228.74 39595.06 33373.06 31668.89 38190.61 356
test_method50.52 36948.47 37156.66 38552.26 41118.98 41541.51 40381.40 39010.10 40544.59 40075.01 39128.51 39668.16 40353.54 38949.31 39982.83 386
DeepMVS_CXcopyleft56.31 38674.23 39851.81 40356.67 41144.85 39748.54 39775.16 39027.87 39758.74 40740.92 39952.22 39658.39 400
test_fmvs377.67 34477.16 34179.22 36479.52 39461.14 39092.34 26191.64 31373.98 35378.86 33586.59 35827.38 39887.03 38988.12 13075.97 36489.50 364
test_f71.95 35370.87 35575.21 37174.21 39959.37 39485.07 37585.82 37665.25 38570.42 38083.13 37723.62 39982.93 39978.32 26971.94 37383.33 384
FPMVS64.63 36162.55 36370.88 37470.80 40156.71 39684.42 37984.42 38251.78 39549.57 39581.61 38323.49 40081.48 40040.61 40076.25 36374.46 393
APD_test169.04 35566.26 36177.36 37080.51 39262.79 38985.46 37283.51 38554.11 39459.14 39284.79 37123.40 40189.61 38355.22 38770.24 37579.68 391
ANet_high58.88 36654.22 37072.86 37256.50 41056.67 39780.75 39086.00 37573.09 36337.39 40264.63 39922.17 40279.49 40243.51 39623.96 40482.43 388
EMVS42.07 37241.12 37444.92 38863.45 40835.56 41273.65 39563.48 40833.05 40326.88 40745.45 40421.27 40367.14 40519.80 40723.02 40532.06 403
Gipumacopyleft57.99 36754.91 36967.24 38288.51 35665.59 37852.21 40190.33 34443.58 39842.84 40151.18 40220.29 40485.07 39434.77 40170.45 37451.05 401
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
E-PMN43.23 37142.29 37346.03 38765.58 40637.41 41073.51 39664.62 40733.99 40228.47 40647.87 40319.90 40567.91 40422.23 40624.45 40332.77 402
PMMVS259.60 36356.40 36569.21 37968.83 40446.58 40573.02 39877.48 40155.07 39349.21 39672.95 39417.43 40680.04 40149.32 39244.33 40180.99 389
LCM-MVSNet66.00 35962.16 36477.51 36964.51 40758.29 39583.87 38290.90 33448.17 39654.69 39373.31 39316.83 40786.75 39065.47 36061.67 39087.48 381
test_vis3_rt65.12 36062.60 36272.69 37371.44 40060.71 39187.17 35965.55 40663.80 38853.22 39465.65 39814.54 40889.44 38576.65 28665.38 38567.91 397
testf159.54 36456.11 36769.85 37769.28 40256.61 39880.37 39176.55 40342.58 39945.68 39875.61 38811.26 40984.18 39543.20 39760.44 39268.75 395
APD_test259.54 36456.11 36769.85 37769.28 40256.61 39880.37 39176.55 40342.58 39945.68 39875.61 38811.26 40984.18 39543.20 39760.44 39268.75 395
PMVScopyleft47.18 2252.22 36848.46 37263.48 38345.72 41246.20 40673.41 39778.31 39741.03 40130.06 40465.68 3976.05 41183.43 39830.04 40265.86 38460.80 398
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive39.65 2343.39 37038.59 37657.77 38456.52 40948.77 40455.38 40058.64 41029.33 40428.96 40552.65 4014.68 41264.62 40628.11 40333.07 40259.93 399
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
wuyk23d21.27 37520.48 37823.63 39068.59 40536.41 41149.57 4026.85 4149.37 4067.89 4084.46 4104.03 41331.37 40817.47 40816.07 4073.12 405
test1238.76 37711.22 3801.39 3910.85 4150.97 41685.76 3690.35 4160.54 4092.45 4108.14 4090.60 4140.48 4102.16 4100.17 4092.71 406
testmvs8.92 37611.52 3791.12 3921.06 4140.46 41786.02 3660.65 4150.62 4082.74 4099.52 4080.31 4150.45 4112.38 4090.39 4082.46 407
test_blank0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
uanet_test0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
DCPMVS0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
sosnet-low-res0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
sosnet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
uncertanet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
Regformer0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
ab-mvs-re7.82 37810.43 3810.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 41293.88 1870.00 4160.00 4120.00 4110.00 4100.00 408
uanet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
WAC-MVS64.08 38459.14 381
FOURS198.86 185.54 6798.29 197.49 689.79 4696.29 18
MSC_two_6792asdad96.52 197.78 5190.86 196.85 6399.61 496.03 1499.06 999.07 5
No_MVS96.52 197.78 5190.86 196.85 6399.61 496.03 1499.06 999.07 5
eth-test20.00 416
eth-test0.00 416
IU-MVS98.77 586.00 5096.84 6581.26 27097.26 795.50 2399.13 399.03 8
save fliter97.85 4685.63 6695.21 11396.82 6889.44 53
test_0728_SECOND95.01 1798.79 286.43 3997.09 1697.49 699.61 495.62 2199.08 798.99 9
GSMVS96.12 161
test_part298.55 1287.22 1996.40 17
MTGPAbinary96.97 50
MTMP96.16 5460.64 409
gm-plane-assit89.60 34968.00 37077.28 32288.99 32797.57 19379.44 259
test9_res91.91 8098.71 3398.07 68
agg_prior290.54 10398.68 3898.27 52
agg_prior97.38 6385.92 5796.72 8192.16 9298.97 75
test_prior485.96 5494.11 182
test_prior93.82 6297.29 6784.49 8696.88 6198.87 8298.11 67
旧先验293.36 22071.25 37494.37 3997.13 24086.74 148
新几何293.11 235
无先验93.28 22896.26 11273.95 35499.05 5580.56 24496.59 143
原ACMM292.94 242
testdata298.75 9378.30 270
testdata192.15 26887.94 105
plane_prior794.70 16982.74 142
plane_prior596.22 11798.12 14888.15 12789.99 21094.63 219
plane_prior494.86 140
plane_prior382.75 14090.26 3386.91 183
plane_prior295.85 7790.81 17
plane_prior194.59 174
plane_prior82.73 14395.21 11389.66 5089.88 215
n20.00 417
nn0.00 417
door-mid85.49 377
test1196.57 92
door85.33 379
HQP5-MVS81.56 170
HQP-NCC94.17 19794.39 16688.81 7485.43 228
ACMP_Plane94.17 19794.39 16688.81 7485.43 228
BP-MVS87.11 145
HQP4-MVS85.43 22897.96 16994.51 229
HQP3-MVS96.04 13389.77 219
NP-MVS94.37 18882.42 15293.98 179
ACMMP++_ref87.47 258
ACMMP++88.01 250