This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort by
UA-Net97.96 5297.62 5998.98 5398.86 11897.47 7498.89 9799.08 2296.67 6698.72 6099.54 193.15 9799.81 6794.87 17498.83 12299.65 62
APDe-MVS99.02 498.84 499.55 999.57 3398.96 1699.39 1298.93 3897.38 2699.41 1899.54 196.66 1799.84 5398.86 899.85 599.87 1
patch_mono-298.36 4098.87 396.82 19699.53 3690.68 29998.64 15399.29 897.88 599.19 3099.52 396.80 1599.97 199.11 399.86 199.82 10
SMA-MVScopyleft98.58 1998.25 3699.56 899.51 3999.04 1598.95 8698.80 8293.67 20699.37 2199.52 396.52 2199.89 3698.06 4399.81 1299.76 27
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
mvsany_test197.69 6697.70 5797.66 14798.24 17194.18 22597.53 27197.53 28495.52 11599.66 699.51 594.30 8499.56 13198.38 3198.62 13199.23 124
test072699.72 1299.25 299.06 6298.88 5097.62 1299.56 1199.50 697.42 9
DeepC-MVS95.98 397.88 5697.58 6198.77 6299.25 7596.93 9398.83 11098.75 9596.96 5396.89 15399.50 690.46 15299.87 4597.84 5899.76 3499.52 79
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
dcpmvs_298.08 4998.59 1096.56 22099.57 3390.34 30699.15 4698.38 18096.82 5999.29 2499.49 895.78 4099.57 12898.94 699.86 199.77 21
SED-MVS99.09 198.91 199.63 499.71 1999.24 599.02 7398.87 5797.65 1099.73 299.48 997.53 799.94 398.43 2899.81 1299.70 46
test_241102_TWO98.87 5797.65 1099.53 1499.48 997.34 1199.94 398.43 2899.80 1999.83 7
DVP-MVS++99.08 298.89 299.64 399.17 8899.23 799.69 198.88 5097.32 2999.53 1499.47 1197.81 399.94 398.47 2499.72 4699.74 30
test_one_060199.66 2699.25 298.86 6397.55 1699.20 2899.47 1197.57 6
ACMMP_NAP98.61 1498.30 3399.55 999.62 3098.95 1798.82 11298.81 7495.80 10299.16 3399.47 1195.37 5399.92 2397.89 5399.75 3899.79 13
DVP-MVScopyleft99.03 398.83 599.63 499.72 1299.25 298.97 8298.58 13797.62 1299.45 1699.46 1497.42 999.94 398.47 2499.81 1299.69 49
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD97.32 2999.45 1699.46 1497.88 199.94 398.47 2499.86 199.85 4
DPE-MVScopyleft98.92 598.67 899.65 299.58 3299.20 998.42 18598.91 4497.58 1599.54 1399.46 1497.10 1299.94 397.64 7299.84 1099.83 7
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MP-MVS-pluss98.31 4697.92 5299.49 1299.72 1298.88 1898.43 18398.78 8994.10 17597.69 12199.42 1795.25 6199.92 2398.09 4299.80 1999.67 58
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
SteuartSystems-ACMMP98.90 698.75 699.36 2199.22 8398.43 3399.10 5798.87 5797.38 2699.35 2299.40 1897.78 599.87 4597.77 6299.85 599.78 15
Skip Steuart: Steuart Systems R&D Blog.
test_241102_ONE99.71 1999.24 598.87 5797.62 1299.73 299.39 1997.53 799.74 97
SF-MVS98.59 1798.32 3299.41 1799.54 3598.71 2299.04 6798.81 7495.12 13799.32 2399.39 1996.22 2499.84 5397.72 6599.73 4399.67 58
MTAPA98.58 1998.29 3499.46 1499.76 298.64 2598.90 9398.74 9797.27 3698.02 9799.39 1994.81 7399.96 297.91 5199.79 2399.77 21
VDDNet95.36 18494.53 20197.86 12598.10 18895.13 18098.85 10697.75 26690.46 30698.36 8099.39 1973.27 34999.64 11797.98 4696.58 19298.81 169
SD-MVS98.64 1298.68 798.53 7899.33 5698.36 4098.90 9398.85 6697.28 3299.72 499.39 1996.63 1997.60 32798.17 3899.85 599.64 64
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DeepPCF-MVS96.37 297.93 5598.48 1796.30 24699.00 10689.54 31797.43 27698.87 5798.16 299.26 2699.38 2496.12 2999.64 11798.30 3599.77 2899.72 38
test_vis1_n_192096.71 11496.84 9696.31 24599.11 9789.74 31299.05 6498.58 13798.08 399.87 199.37 2578.48 32099.93 1899.29 199.69 5099.27 120
EI-MVSNet-UG-set98.41 3698.34 2798.61 7099.45 5296.32 12598.28 20098.68 11297.17 4198.74 5799.37 2595.25 6199.79 8498.57 1499.54 7999.73 35
APD-MVS_3200maxsize98.53 2798.33 3199.15 4499.50 4197.92 6099.15 4698.81 7496.24 8399.20 2899.37 2595.30 5799.80 7497.73 6499.67 5299.72 38
LS3D97.16 9896.66 10898.68 6698.53 14797.19 8698.93 9098.90 4592.83 24095.99 18699.37 2592.12 11499.87 4593.67 21799.57 7098.97 158
EI-MVSNet-Vis-set98.47 3298.39 1998.69 6599.46 4996.49 11698.30 19798.69 10997.21 3898.84 5099.36 2995.41 5099.78 8798.62 1399.65 5599.80 12
ACMMPcopyleft98.23 4797.95 5199.09 4899.74 797.62 6999.03 7099.41 695.98 9397.60 12999.36 2994.45 8199.93 1897.14 9598.85 12199.70 46
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
SR-MVS-dyc-post98.54 2698.35 2499.13 4599.49 4597.86 6199.11 5498.80 8296.49 7299.17 3199.35 3195.34 5599.82 6297.72 6599.65 5599.71 42
RE-MVS-def98.34 2799.49 4597.86 6199.11 5498.80 8296.49 7299.17 3199.35 3195.29 5897.72 6599.65 5599.71 42
DP-MVS96.59 11895.93 13598.57 7299.34 5496.19 13198.70 14398.39 17789.45 32494.52 21399.35 3191.85 12099.85 5092.89 24198.88 11899.68 54
VDD-MVS95.82 15795.23 16997.61 15098.84 12193.98 22998.68 14697.40 29695.02 14497.95 10399.34 3474.37 34699.78 8798.64 1296.80 18599.08 149
SR-MVS98.57 2298.35 2499.24 3599.53 3698.18 4999.09 5898.82 6996.58 6999.10 3599.32 3595.39 5199.82 6297.70 6999.63 6099.72 38
PGM-MVS98.49 2998.23 3999.27 3399.72 1298.08 5598.99 7999.49 595.43 11999.03 3699.32 3595.56 4599.94 396.80 11899.77 2899.78 15
TSAR-MVS + MP.98.78 798.62 999.24 3599.69 2498.28 4599.14 4898.66 12096.84 5799.56 1199.31 3796.34 2399.70 10598.32 3499.73 4399.73 35
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
XVG-OURS96.55 12296.41 11596.99 18298.75 12693.76 23597.50 27398.52 14995.67 10996.83 15499.30 3888.95 18899.53 13995.88 14696.26 20697.69 216
9.1498.06 4799.47 4798.71 13998.82 6994.36 16999.16 3399.29 3996.05 3199.81 6797.00 9999.71 48
MSLP-MVS++98.56 2498.57 1198.55 7499.26 7496.80 9898.71 13999.05 2597.28 3298.84 5099.28 4096.47 2299.40 15398.52 2299.70 4999.47 92
DeepC-MVS_fast96.70 198.55 2598.34 2799.18 4099.25 7598.04 5698.50 17498.78 8997.72 798.92 4799.28 4095.27 5999.82 6297.55 8099.77 2899.69 49
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test111195.94 14995.78 14096.41 23898.99 10990.12 30899.04 6792.45 36896.99 5298.03 9599.27 4281.40 29999.48 14896.87 11399.04 10999.63 66
test_fmvs1_n95.90 15295.99 13395.63 27298.67 13688.32 33899.26 2798.22 20696.40 7899.67 599.26 4373.91 34799.70 10599.02 599.50 8298.87 165
test250694.44 24093.91 23796.04 25499.02 10388.99 32799.06 6279.47 38196.96 5398.36 8099.26 4377.21 33299.52 14296.78 11999.04 10999.59 72
ECVR-MVScopyleft95.95 14795.71 14696.65 20699.02 10390.86 29499.03 7091.80 36996.96 5398.10 8999.26 4381.31 30099.51 14396.90 10799.04 10999.59 72
RPSCF94.87 21395.40 15593.26 32498.89 11582.06 36098.33 19098.06 24490.30 31196.56 16699.26 4387.09 22799.49 14493.82 21296.32 20198.24 199
APD-MVScopyleft98.35 4298.00 5099.42 1699.51 3998.72 2198.80 11998.82 6994.52 16499.23 2799.25 4795.54 4799.80 7496.52 12699.77 2899.74 30
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
MP-MVScopyleft98.33 4598.01 4999.28 3199.75 398.18 4999.22 3598.79 8796.13 8897.92 10899.23 4894.54 7699.94 396.74 12199.78 2699.73 35
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
mPP-MVS98.51 2898.26 3599.25 3499.75 398.04 5699.28 2498.81 7496.24 8398.35 8299.23 4895.46 4899.94 397.42 8799.81 1299.77 21
MG-MVS97.81 5997.60 6098.44 8799.12 9695.97 14197.75 25598.78 8996.89 5698.46 7399.22 5093.90 9199.68 11194.81 17899.52 8199.67 58
casdiffmvspermissive97.63 7097.41 7398.28 9898.33 16696.14 13298.82 11298.32 18896.38 8097.95 10399.21 5191.23 13899.23 16598.12 4098.37 14599.48 90
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Vis-MVSNetpermissive97.42 8597.11 8498.34 9598.66 13796.23 12899.22 3599.00 2896.63 6898.04 9499.21 5188.05 20899.35 15696.01 14399.21 10399.45 98
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
test_fmvs196.42 12696.67 10795.66 27198.82 12288.53 33498.80 11998.20 20996.39 7999.64 899.20 5380.35 31099.67 11299.04 499.57 7098.78 173
XVS98.70 1098.49 1599.34 2399.70 2298.35 4199.29 2298.88 5097.40 2398.46 7399.20 5395.90 3899.89 3697.85 5699.74 4199.78 15
LFMVS95.86 15494.98 18298.47 8498.87 11796.32 12598.84 10996.02 33993.40 21798.62 6799.20 5374.99 34299.63 12097.72 6597.20 17999.46 96
HPM-MVS_fast98.38 3898.13 4399.12 4799.75 397.86 6199.44 1198.82 6994.46 16798.94 4299.20 5395.16 6599.74 9797.58 7699.85 599.77 21
casdiffmvs_mvgpermissive97.72 6397.48 6998.44 8798.42 15396.59 11098.92 9198.44 16796.20 8597.76 11399.20 5391.66 12599.23 16598.27 3798.41 14499.49 89
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
ACMMPR98.59 1798.36 2299.29 2899.74 798.15 5299.23 3198.95 3496.10 9098.93 4699.19 5895.70 4299.94 397.62 7399.79 2399.78 15
test_vis1_n95.47 17395.13 17396.49 22997.77 20790.41 30499.27 2698.11 22996.58 6999.66 699.18 5967.00 35799.62 12399.21 299.40 9599.44 99
HFP-MVS98.63 1398.40 1899.32 2799.72 1298.29 4499.23 3198.96 3396.10 9098.94 4299.17 6096.06 3099.92 2397.62 7399.78 2699.75 28
region2R98.61 1498.38 2099.29 2899.74 798.16 5199.23 3198.93 3896.15 8798.94 4299.17 6095.91 3799.94 397.55 8099.79 2399.78 15
baseline97.64 6997.44 7298.25 10298.35 15996.20 12999.00 7798.32 18896.33 8298.03 9599.17 6091.35 13499.16 17298.10 4198.29 15199.39 104
PC_three_145295.08 14299.60 1099.16 6397.86 298.47 25997.52 8399.72 4699.74 30
OPU-MVS99.37 2099.24 8199.05 1499.02 7399.16 6397.81 399.37 15597.24 9299.73 4399.70 46
CNVR-MVS98.78 798.56 1299.45 1599.32 5998.87 1998.47 17798.81 7497.72 798.76 5699.16 6397.05 1399.78 8798.06 4399.66 5499.69 49
3Dnovator94.51 597.46 7996.93 9299.07 4997.78 20697.64 6799.35 1799.06 2397.02 5093.75 25599.16 6389.25 17599.92 2397.22 9499.75 3899.64 64
CS-MVS-test98.49 2998.50 1498.46 8599.20 8697.05 8999.64 498.50 15697.45 2298.88 4899.14 6795.25 6199.15 17598.83 999.56 7699.20 127
CP-MVS98.57 2298.36 2299.19 3899.66 2697.86 6199.34 1898.87 5795.96 9598.60 6999.13 6896.05 3199.94 397.77 6299.86 199.77 21
3Dnovator+94.38 697.43 8496.78 10099.38 1897.83 20498.52 2899.37 1498.71 10597.09 4892.99 28099.13 6889.36 17199.89 3696.97 10199.57 7099.71 42
EPNet97.28 9196.87 9598.51 7994.98 33796.14 13298.90 9397.02 31698.28 195.99 18699.11 7091.36 13399.89 3696.98 10099.19 10599.50 84
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
114514_t96.93 10696.27 12198.92 5799.50 4197.63 6898.85 10698.90 4584.80 35197.77 11299.11 7092.84 9999.66 11494.85 17599.77 2899.47 92
ZNCC-MVS98.49 2998.20 4199.35 2299.73 1198.39 3499.19 4198.86 6395.77 10398.31 8599.10 7295.46 4899.93 1897.57 7999.81 1299.74 30
CS-MVS98.44 3498.49 1598.31 9799.08 9996.73 10299.67 398.47 16297.17 4198.94 4299.10 7295.73 4199.13 17898.71 1199.49 8499.09 145
testdata98.26 10199.20 8695.36 16998.68 11291.89 27098.60 6999.10 7294.44 8299.82 6294.27 19799.44 9199.58 76
PHI-MVS98.34 4398.06 4799.18 4099.15 9498.12 5499.04 6799.09 2193.32 22098.83 5299.10 7296.54 2099.83 5597.70 6999.76 3499.59 72
OMC-MVS97.55 7797.34 7698.20 10599.33 5695.92 14898.28 20098.59 13295.52 11597.97 10299.10 7293.28 9699.49 14495.09 17198.88 11899.19 131
COLMAP_ROBcopyleft93.27 1295.33 18794.87 18896.71 20199.29 6793.24 25898.58 16198.11 22989.92 31693.57 25999.10 7286.37 24199.79 8490.78 28598.10 15597.09 229
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
旧先验199.29 6797.48 7398.70 10899.09 7895.56 4599.47 8799.61 68
XVG-OURS-SEG-HR96.51 12396.34 11797.02 18198.77 12593.76 23597.79 25398.50 15695.45 11896.94 14899.09 7887.87 21399.55 13896.76 12095.83 21597.74 213
CPTT-MVS97.72 6397.32 7798.92 5799.64 2897.10 8899.12 5298.81 7492.34 25698.09 9099.08 8093.01 9899.92 2396.06 14099.77 2899.75 28
EPP-MVSNet97.46 7997.28 7897.99 11998.64 13995.38 16899.33 2198.31 19093.61 21097.19 13799.07 8194.05 8899.23 16596.89 10898.43 14399.37 106
GST-MVS98.43 3598.12 4499.34 2399.72 1298.38 3599.09 5898.82 6995.71 10798.73 5999.06 8295.27 5999.93 1897.07 9899.63 6099.72 38
OpenMVScopyleft93.04 1395.83 15695.00 18098.32 9697.18 25497.32 7799.21 3898.97 3189.96 31591.14 31399.05 8386.64 23599.92 2393.38 22399.47 8797.73 214
EI-MVSNet95.96 14695.83 13896.36 24197.93 19993.70 24198.12 22098.27 19993.70 20195.07 19899.02 8492.23 11098.54 25194.68 18093.46 24996.84 256
CVMVSNet95.43 17796.04 13093.57 31897.93 19983.62 35598.12 22098.59 13295.68 10896.56 16699.02 8487.51 22097.51 33293.56 22197.44 17599.60 70
TSAR-MVS + GP.98.38 3898.24 3898.81 6199.22 8397.25 8498.11 22298.29 19897.19 4098.99 4199.02 8496.22 2499.67 11298.52 2298.56 13599.51 82
QAPM96.29 13395.40 15598.96 5597.85 20397.60 7099.23 3198.93 3889.76 31993.11 27799.02 8489.11 18099.93 1891.99 26499.62 6299.34 107
MVS_111021_LR98.34 4398.23 3998.67 6799.27 7296.90 9597.95 23599.58 397.14 4498.44 7799.01 8895.03 6999.62 12397.91 5199.75 3899.50 84
MVS_111021_HR98.47 3298.34 2798.88 6099.22 8397.32 7797.91 23999.58 397.20 3998.33 8399.00 8995.99 3499.64 11798.05 4599.76 3499.69 49
IS-MVSNet97.22 9396.88 9498.25 10298.85 12096.36 12399.19 4197.97 25295.39 12197.23 13698.99 9091.11 14098.93 21194.60 18598.59 13399.47 92
ZD-MVS99.46 4998.70 2398.79 8793.21 22598.67 6198.97 9195.70 4299.83 5596.07 13799.58 69
Anonymous2024052995.10 19994.22 21697.75 13699.01 10594.26 22198.87 10398.83 6885.79 34796.64 16298.97 9178.73 31899.85 5096.27 13294.89 21999.12 142
原ACMM198.65 6899.32 5996.62 10598.67 11793.27 22497.81 11198.97 9195.18 6499.83 5593.84 21199.46 9099.50 84
HPM-MVScopyleft98.36 4098.10 4699.13 4599.74 797.82 6599.53 898.80 8294.63 16098.61 6898.97 9195.13 6699.77 9297.65 7199.83 1199.79 13
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
DELS-MVS98.40 3798.20 4198.99 5299.00 10697.66 6697.75 25598.89 4797.71 998.33 8398.97 9194.97 7099.88 4498.42 3099.76 3499.42 103
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CANet98.05 5097.76 5598.90 5998.73 12797.27 7998.35 18898.78 8997.37 2897.72 11998.96 9691.53 13199.92 2398.79 1099.65 5599.51 82
test22299.23 8297.17 8797.40 27798.66 12088.68 33198.05 9298.96 9694.14 8799.53 8099.61 68
新几何199.16 4399.34 5498.01 5898.69 10990.06 31498.13 8798.95 9894.60 7599.89 3691.97 26599.47 8799.59 72
DP-MVS Recon97.86 5797.46 7099.06 5099.53 3698.35 4198.33 19098.89 4792.62 24598.05 9298.94 9995.34 5599.65 11596.04 14199.42 9299.19 131
CANet_DTU96.96 10596.55 11198.21 10498.17 18396.07 13497.98 23398.21 20797.24 3797.13 13998.93 10086.88 23299.91 3195.00 17399.37 9898.66 182
NCCC98.61 1498.35 2499.38 1899.28 7198.61 2698.45 17898.76 9397.82 698.45 7698.93 10096.65 1899.83 5597.38 8999.41 9399.71 42
CSCG97.85 5897.74 5698.20 10599.67 2595.16 17799.22 3599.32 793.04 23197.02 14698.92 10295.36 5499.91 3197.43 8699.64 5999.52 79
CHOSEN 1792x268897.12 10096.80 9798.08 11499.30 6594.56 21098.05 22699.71 193.57 21197.09 14098.91 10388.17 20399.89 3696.87 11399.56 7699.81 11
diffmvspermissive97.58 7497.40 7498.13 11098.32 16895.81 15498.06 22598.37 18196.20 8598.74 5798.89 10491.31 13699.25 16298.16 3998.52 13699.34 107
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PVSNet_Blended_VisFu97.70 6597.46 7098.44 8799.27 7295.91 14998.63 15599.16 1894.48 16697.67 12298.88 10592.80 10099.91 3197.11 9699.12 10799.50 84
GeoE96.58 12096.07 12898.10 11398.35 15995.89 15199.34 1898.12 22693.12 22996.09 18298.87 10689.71 16498.97 20192.95 23798.08 15699.43 101
Vis-MVSNet (Re-imp)96.87 10996.55 11197.83 12798.73 12795.46 16699.20 3998.30 19694.96 14796.60 16598.87 10690.05 15898.59 24593.67 21798.60 13299.46 96
CDPH-MVS97.94 5497.49 6799.28 3199.47 4798.44 3197.91 23998.67 11792.57 24898.77 5598.85 10895.93 3699.72 9995.56 15899.69 5099.68 54
VNet97.79 6097.40 7498.96 5598.88 11697.55 7198.63 15598.93 3896.74 6399.02 3798.84 10990.33 15599.83 5598.53 1696.66 18999.50 84
DROMVSNet98.21 4898.11 4598.49 8298.34 16497.26 8399.61 598.43 17196.78 6098.87 4998.84 10993.72 9299.01 19998.91 799.50 8299.19 131
HPM-MVS++copyleft98.58 1998.25 3699.55 999.50 4199.08 1198.72 13898.66 12097.51 1898.15 8698.83 11195.70 4299.92 2397.53 8299.67 5299.66 61
MVSFormer97.57 7597.49 6797.84 12698.07 18995.76 15599.47 998.40 17594.98 14598.79 5398.83 11192.34 10598.41 27396.91 10499.59 6699.34 107
jason97.32 9097.08 8698.06 11697.45 23595.59 15997.87 24597.91 25994.79 15398.55 7198.83 11191.12 13999.23 16597.58 7699.60 6499.34 107
jason: jason.
Anonymous20240521195.28 18994.49 20397.67 14499.00 10693.75 23798.70 14397.04 31390.66 30296.49 17298.80 11478.13 32499.83 5596.21 13695.36 21899.44 99
MCST-MVS98.65 1198.37 2199.48 1399.60 3198.87 1998.41 18698.68 11297.04 4998.52 7298.80 11496.78 1699.83 5597.93 5099.61 6399.74 30
MSP-MVS98.74 998.55 1399.29 2899.75 398.23 4699.26 2798.88 5097.52 1799.41 1898.78 11696.00 3399.79 8497.79 6199.59 6699.85 4
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
OPM-MVS95.69 16595.33 16396.76 19996.16 30994.63 20398.43 18398.39 17796.64 6795.02 20098.78 11685.15 26399.05 19095.21 17094.20 22596.60 283
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
AllTest95.24 19194.65 19696.99 18299.25 7593.21 25998.59 15998.18 21491.36 28493.52 26198.77 11884.67 27199.72 9989.70 30397.87 16298.02 206
TestCases96.99 18299.25 7593.21 25998.18 21491.36 28493.52 26198.77 11884.67 27199.72 9989.70 30397.87 16298.02 206
LPG-MVS_test95.62 16895.34 16196.47 23297.46 23193.54 24498.99 7998.54 14594.67 15894.36 22398.77 11885.39 25799.11 18295.71 15394.15 22896.76 263
LGP-MVS_train96.47 23297.46 23193.54 24498.54 14594.67 15894.36 22398.77 11885.39 25799.11 18295.71 15394.15 22896.76 263
MSDG95.93 15095.30 16797.83 12798.90 11495.36 16996.83 32498.37 18191.32 28894.43 22098.73 12290.27 15699.60 12590.05 29698.82 12398.52 189
h-mvs3396.17 13895.62 15297.81 13099.03 10294.45 21298.64 15398.75 9597.48 1998.67 6198.72 12389.76 16299.86 4997.95 4881.59 35099.11 143
RRT_MVS95.98 14595.78 14096.56 22096.48 29494.22 22499.57 697.92 25795.89 9793.95 24398.70 12489.27 17498.42 26597.23 9393.02 25897.04 231
test_prior297.80 25196.12 8997.89 11098.69 12595.96 3596.89 10899.60 64
TEST999.31 6198.50 2997.92 23798.73 10092.63 24497.74 11698.68 12696.20 2699.80 74
train_agg97.97 5197.52 6699.33 2699.31 6198.50 2997.92 23798.73 10092.98 23397.74 11698.68 12696.20 2699.80 7496.59 12299.57 7099.68 54
AdaColmapbinary97.15 9996.70 10498.48 8399.16 9296.69 10498.01 23098.89 4794.44 16896.83 15498.68 12690.69 14999.76 9394.36 19299.29 10298.98 157
test_899.29 6798.44 3197.89 24398.72 10292.98 23397.70 12098.66 12996.20 2699.80 74
tttt051796.07 14195.51 15497.78 13298.41 15594.84 19499.28 2494.33 35894.26 17297.64 12698.64 13084.05 28399.47 15095.34 16297.60 17399.03 152
mvsmamba96.57 12196.32 11997.32 16496.60 28696.43 11999.54 797.98 25096.49 7295.20 19698.64 13090.82 14498.55 24997.97 4793.65 24496.98 235
cdsmvs_eth3d_5k23.98 34431.98 3460.00 3620.00 3850.00 3860.00 37398.59 1320.00 3800.00 38198.61 13290.60 1500.00 3810.00 3790.00 3790.00 377
lupinMVS97.44 8397.22 8198.12 11298.07 18995.76 15597.68 26097.76 26594.50 16598.79 5398.61 13292.34 10599.30 15997.58 7699.59 6699.31 113
BH-RMVSNet95.92 15195.32 16497.69 14298.32 16894.64 20298.19 21197.45 29294.56 16196.03 18498.61 13285.02 26499.12 18090.68 28799.06 10899.30 116
TAMVS97.02 10396.79 9997.70 14198.06 19195.31 17398.52 16998.31 19093.95 18497.05 14598.61 13293.49 9498.52 25395.33 16397.81 16499.29 118
TAPA-MVS93.98 795.35 18594.56 20097.74 13799.13 9594.83 19698.33 19098.64 12586.62 33996.29 17898.61 13294.00 9099.29 16080.00 35699.41 9399.09 145
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
UniMVSNet_ETH3D94.24 25193.33 26896.97 18597.19 25393.38 25398.74 13098.57 13991.21 29593.81 25198.58 13772.85 35098.77 23195.05 17293.93 23698.77 174
DPM-MVS97.55 7796.99 9099.23 3799.04 10198.55 2797.17 29998.35 18494.85 15297.93 10798.58 13795.07 6899.71 10492.60 24599.34 9999.43 101
F-COLMAP97.09 10296.80 9797.97 12099.45 5294.95 19098.55 16898.62 12993.02 23296.17 18198.58 13794.01 8999.81 6793.95 20798.90 11699.14 140
WTY-MVS97.37 8996.92 9398.72 6498.86 11896.89 9798.31 19598.71 10595.26 13097.67 12298.56 14092.21 11199.78 8795.89 14596.85 18499.48 90
CNLPA97.45 8297.03 8898.73 6399.05 10097.44 7698.07 22498.53 14795.32 12796.80 15898.53 14193.32 9599.72 9994.31 19699.31 10199.02 153
ACMP93.49 1095.34 18694.98 18296.43 23797.67 21493.48 24898.73 13498.44 16794.94 15092.53 29398.53 14184.50 27599.14 17795.48 16194.00 23396.66 278
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ACMH92.88 1694.55 23093.95 23496.34 24397.63 21793.26 25798.81 11898.49 16193.43 21689.74 32598.53 14181.91 29699.08 18893.69 21493.30 25596.70 272
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
OurMVSNet-221017-094.21 25294.00 23094.85 29695.60 32689.22 32298.89 9797.43 29495.29 12892.18 30298.52 14482.86 29398.59 24593.46 22291.76 27196.74 265
CDS-MVSNet96.99 10496.69 10597.90 12498.05 19295.98 13698.20 20898.33 18793.67 20696.95 14798.49 14593.54 9398.42 26595.24 16997.74 16899.31 113
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
bld_raw_dy_0_6495.74 16095.31 16697.03 18096.35 30095.76 15599.12 5297.37 29995.97 9494.70 20998.48 14685.80 25098.49 25596.55 12493.48 24896.84 256
sss97.39 8796.98 9198.61 7098.60 14396.61 10798.22 20598.93 3893.97 18398.01 10098.48 14691.98 11899.85 5096.45 12898.15 15399.39 104
ACMH+92.99 1494.30 24793.77 24895.88 26497.81 20592.04 27598.71 13998.37 18193.99 18290.60 31998.47 14880.86 30699.05 19092.75 24392.40 26596.55 291
ACMM93.85 995.69 16595.38 15996.61 21397.61 21893.84 23398.91 9298.44 16795.25 13194.28 22798.47 14886.04 24899.12 18095.50 16093.95 23596.87 251
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
iter_conf_final96.42 12696.12 12697.34 16398.46 15196.55 11499.08 6098.06 24496.03 9295.63 19098.46 15087.72 21598.59 24597.84 5893.80 23996.87 251
iter_conf0596.13 14095.79 13997.15 17298.16 18495.99 13598.88 10097.98 25095.91 9695.58 19198.46 15085.53 25598.59 24597.88 5493.75 24096.86 254
1112_ss96.63 11696.00 13298.50 8098.56 14496.37 12298.18 21498.10 23292.92 23694.84 20398.43 15292.14 11399.58 12794.35 19396.51 19599.56 78
ab-mvs-re8.20 34710.94 3500.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 38198.43 1520.00 3850.00 3810.00 3790.00 3790.00 377
test_yl97.22 9396.78 10098.54 7698.73 12796.60 10898.45 17898.31 19094.70 15498.02 9798.42 15490.80 14699.70 10596.81 11696.79 18699.34 107
DCV-MVSNet97.22 9396.78 10098.54 7698.73 12796.60 10898.45 17898.31 19094.70 15498.02 9798.42 15490.80 14699.70 10596.81 11696.79 18699.34 107
xiu_mvs_v1_base_debu97.60 7197.56 6397.72 13898.35 15995.98 13697.86 24698.51 15197.13 4599.01 3898.40 15691.56 12799.80 7498.53 1698.68 12697.37 224
xiu_mvs_v1_base97.60 7197.56 6397.72 13898.35 15995.98 13697.86 24698.51 15197.13 4599.01 3898.40 15691.56 12799.80 7498.53 1698.68 12697.37 224
xiu_mvs_v1_base_debi97.60 7197.56 6397.72 13898.35 15995.98 13697.86 24698.51 15197.13 4599.01 3898.40 15691.56 12799.80 7498.53 1698.68 12697.37 224
mvs_tets95.41 18095.00 18096.65 20695.58 32794.42 21499.00 7798.55 14395.73 10693.21 27298.38 15983.45 29298.63 24197.09 9794.00 23396.91 245
FC-MVSNet-test96.42 12696.05 12997.53 15496.95 26697.27 7999.36 1599.23 1395.83 10193.93 24498.37 16092.00 11798.32 28296.02 14292.72 26397.00 234
jajsoiax95.45 17695.03 17996.73 20095.42 33494.63 20399.14 4898.52 14995.74 10493.22 27198.36 16183.87 28898.65 24096.95 10394.04 23196.91 245
nrg03096.28 13595.72 14397.96 12296.90 27198.15 5299.39 1298.31 19095.47 11794.42 22198.35 16292.09 11598.69 23597.50 8489.05 30897.04 231
FIs96.51 12396.12 12697.67 14497.13 25797.54 7299.36 1599.22 1595.89 9794.03 24198.35 16291.98 11898.44 26396.40 13092.76 26297.01 233
ITE_SJBPF95.44 27997.42 23791.32 28897.50 28795.09 14193.59 25798.35 16281.70 29798.88 21989.71 30293.39 25396.12 319
LTVRE_ROB92.95 1594.60 22693.90 23896.68 20597.41 24094.42 21498.52 16998.59 13291.69 27691.21 31298.35 16284.87 26799.04 19391.06 28093.44 25296.60 283
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
PS-MVSNAJss96.43 12596.26 12296.92 19195.84 32195.08 18299.16 4598.50 15695.87 10093.84 25098.34 16694.51 7798.61 24296.88 11093.45 25197.06 230
EPNet_dtu95.21 19394.95 18495.99 25696.17 30790.45 30398.16 21697.27 30496.77 6193.14 27698.33 16790.34 15498.42 26585.57 33598.81 12499.09 145
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PCF-MVS93.45 1194.68 22093.43 26698.42 9198.62 14196.77 10095.48 34898.20 20984.63 35293.34 26898.32 16888.55 19699.81 6784.80 34298.96 11498.68 179
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
thisisatest053096.01 14395.36 16097.97 12098.38 15695.52 16498.88 10094.19 36094.04 17797.64 12698.31 16983.82 29099.46 15195.29 16697.70 17098.93 162
PLCcopyleft95.07 497.20 9696.78 10098.44 8799.29 6796.31 12798.14 21798.76 9392.41 25496.39 17698.31 16994.92 7299.78 8794.06 20598.77 12599.23 124
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
HQP_MVS96.14 13995.90 13696.85 19497.42 23794.60 20898.80 11998.56 14197.28 3295.34 19398.28 17187.09 22799.03 19496.07 13794.27 22296.92 240
plane_prior498.28 171
API-MVS97.41 8697.25 7997.91 12398.70 13296.80 9898.82 11298.69 10994.53 16298.11 8898.28 17194.50 8099.57 12894.12 20299.49 8497.37 224
test_fmvs293.43 27493.58 25992.95 32896.97 26583.91 35499.19 4197.24 30695.74 10495.20 19698.27 17469.65 35298.72 23496.26 13393.73 24196.24 315
mvs_anonymous96.70 11596.53 11397.18 17098.19 17993.78 23498.31 19598.19 21194.01 18094.47 21598.27 17492.08 11698.46 26097.39 8897.91 16099.31 113
XXY-MVS95.20 19494.45 20897.46 15596.75 27996.56 11298.86 10598.65 12493.30 22293.27 27098.27 17484.85 26898.87 22094.82 17791.26 27996.96 237
SixPastTwentyTwo93.34 27792.86 27694.75 30095.67 32489.41 32098.75 12796.67 33393.89 18690.15 32398.25 17780.87 30598.27 29190.90 28390.64 28596.57 287
VPNet94.99 20594.19 21897.40 16097.16 25596.57 11198.71 13998.97 3195.67 10994.84 20398.24 17880.36 30998.67 23996.46 12787.32 32796.96 237
PVSNet_Blended97.38 8897.12 8398.14 10899.25 7595.35 17197.28 29099.26 993.13 22897.94 10598.21 17992.74 10199.81 6796.88 11099.40 9599.27 120
HyFIR lowres test96.90 10896.49 11498.14 10899.33 5695.56 16197.38 27999.65 292.34 25697.61 12898.20 18089.29 17399.10 18696.97 10197.60 17399.77 21
baseline195.84 15595.12 17598.01 11898.49 15095.98 13698.73 13497.03 31495.37 12496.22 17998.19 18189.96 16099.16 17294.60 18587.48 32498.90 164
ab-mvs96.42 12695.71 14698.55 7498.63 14096.75 10197.88 24498.74 9793.84 18996.54 17098.18 18285.34 26099.75 9595.93 14496.35 19999.15 138
xiu_mvs_v2_base97.66 6897.70 5797.56 15398.61 14295.46 16697.44 27498.46 16397.15 4398.65 6698.15 18394.33 8399.80 7497.84 5898.66 13097.41 220
USDC93.33 27892.71 27995.21 28496.83 27590.83 29696.91 31497.50 28793.84 18990.72 31798.14 18477.69 32798.82 22689.51 30793.21 25795.97 323
EU-MVSNet93.66 27094.14 22292.25 33395.96 31783.38 35698.52 16998.12 22694.69 15692.61 29098.13 18587.36 22596.39 35291.82 26790.00 29396.98 235
CHOSEN 280x42097.18 9797.18 8297.20 16898.81 12393.27 25695.78 34499.15 1995.25 13196.79 15998.11 18692.29 10799.07 18998.56 1599.85 599.25 123
MVSTER96.06 14295.72 14397.08 17898.23 17395.93 14798.73 13498.27 19994.86 15195.07 19898.09 18788.21 20298.54 25196.59 12293.46 24996.79 260
MVS_Test97.28 9197.00 8998.13 11098.33 16695.97 14198.74 13098.07 23994.27 17198.44 7798.07 18892.48 10399.26 16196.43 12998.19 15299.16 137
PAPM_NR97.46 7997.11 8498.50 8099.50 4196.41 12198.63 15598.60 13095.18 13497.06 14498.06 18994.26 8699.57 12893.80 21398.87 12099.52 79
PatchMatch-RL96.59 11896.03 13198.27 9999.31 6196.51 11597.91 23999.06 2393.72 19896.92 15198.06 18988.50 19899.65 11591.77 26999.00 11398.66 182
tt080594.54 23193.85 24296.63 21097.98 19793.06 26498.77 12697.84 26293.67 20693.80 25298.04 19176.88 33598.96 20594.79 17992.86 26197.86 210
Effi-MVS+97.12 10096.69 10598.39 9398.19 17996.72 10397.37 28198.43 17193.71 19997.65 12598.02 19292.20 11299.25 16296.87 11397.79 16599.19 131
MVS94.67 22393.54 26298.08 11496.88 27296.56 11298.19 21198.50 15678.05 36192.69 28898.02 19291.07 14299.63 12090.09 29398.36 14798.04 205
BH-untuned95.95 14795.72 14396.65 20698.55 14692.26 27098.23 20497.79 26493.73 19794.62 21098.01 19488.97 18799.00 20093.04 23498.51 13798.68 179
CLD-MVS95.62 16895.34 16196.46 23597.52 22893.75 23797.27 29198.46 16395.53 11494.42 22198.00 19586.21 24398.97 20196.25 13594.37 22096.66 278
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
hse-mvs295.71 16295.30 16796.93 18898.50 14893.53 24698.36 18798.10 23297.48 1998.67 6197.99 19689.76 16299.02 19797.95 4880.91 35498.22 200
HY-MVS93.96 896.82 11196.23 12498.57 7298.46 15197.00 9098.14 21798.21 20793.95 18496.72 16097.99 19691.58 12699.76 9394.51 18996.54 19498.95 161
AUN-MVS94.53 23393.73 25296.92 19198.50 14893.52 24798.34 18998.10 23293.83 19195.94 18897.98 19885.59 25499.03 19494.35 19380.94 35398.22 200
MAR-MVS96.91 10796.40 11698.45 8698.69 13496.90 9598.66 15198.68 11292.40 25597.07 14397.96 19991.54 13099.75 9593.68 21598.92 11598.69 178
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PS-CasMVS94.67 22393.99 23296.71 20196.68 28395.26 17499.13 5199.03 2693.68 20492.33 29997.95 20085.35 25998.10 30093.59 21988.16 31996.79 260
TranMVSNet+NR-MVSNet95.14 19794.48 20497.11 17696.45 29696.36 12399.03 7099.03 2695.04 14393.58 25897.93 20188.27 20198.03 30794.13 20186.90 33396.95 239
testgi93.06 28592.45 28494.88 29596.43 29789.90 30998.75 12797.54 28395.60 11191.63 31097.91 20274.46 34597.02 33986.10 33193.67 24297.72 215
APD_test188.22 32188.01 32088.86 34095.98 31574.66 36997.21 29496.44 33783.96 35486.66 34697.90 20360.95 36397.84 32282.73 34890.23 29094.09 351
CP-MVSNet94.94 21194.30 21496.83 19596.72 28195.56 16199.11 5498.95 3493.89 18692.42 29897.90 20387.19 22698.12 29994.32 19588.21 31796.82 259
XVG-ACMP-BASELINE94.54 23194.14 22295.75 26996.55 28991.65 28298.11 22298.44 16794.96 14794.22 23197.90 20379.18 31799.11 18294.05 20693.85 23796.48 304
PS-MVSNAJ97.73 6297.77 5497.62 14998.68 13595.58 16097.34 28598.51 15197.29 3198.66 6597.88 20694.51 7799.90 3497.87 5599.17 10697.39 222
TransMVSNet (Re)92.67 28991.51 29496.15 25096.58 28894.65 20198.90 9396.73 32990.86 30189.46 32997.86 20785.62 25398.09 30286.45 32981.12 35195.71 328
test_djsdf96.00 14495.69 14996.93 18895.72 32395.49 16599.47 998.40 17594.98 14594.58 21197.86 20789.16 17898.41 27396.91 10494.12 23096.88 249
TinyColmap92.31 29291.53 29394.65 30396.92 26889.75 31196.92 31296.68 33290.45 30789.62 32697.85 20976.06 33898.81 22786.74 32792.51 26495.41 332
pm-mvs193.94 26893.06 27396.59 21696.49 29395.16 17798.95 8698.03 24792.32 25891.08 31497.84 21084.54 27498.41 27392.16 25786.13 33996.19 318
UGNet96.78 11296.30 12098.19 10798.24 17195.89 15198.88 10098.93 3897.39 2596.81 15797.84 21082.60 29499.90 3496.53 12599.49 8498.79 170
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
TDRefinement91.06 30389.68 30895.21 28485.35 37291.49 28598.51 17397.07 31191.47 28088.83 33597.84 21077.31 33199.09 18792.79 24277.98 36095.04 340
PEN-MVS94.42 24193.73 25296.49 22996.28 30394.84 19499.17 4499.00 2893.51 21292.23 30197.83 21386.10 24597.90 31692.55 25086.92 33296.74 265
131496.25 13795.73 14297.79 13197.13 25795.55 16398.19 21198.59 13293.47 21492.03 30597.82 21491.33 13599.49 14494.62 18498.44 14198.32 198
DTE-MVSNet93.98 26793.26 27196.14 25196.06 31294.39 21699.20 3998.86 6393.06 23091.78 30797.81 21585.87 24997.58 32990.53 28886.17 33796.46 306
PAPM94.95 20994.00 23097.78 13297.04 26195.65 15896.03 34098.25 20491.23 29394.19 23397.80 21691.27 13798.86 22282.61 35097.61 17298.84 168
PVSNet91.96 1896.35 13196.15 12596.96 18699.17 8892.05 27496.08 33798.68 11293.69 20297.75 11597.80 21688.86 18999.69 11094.26 19899.01 11299.15 138
CMPMVSbinary66.06 2189.70 31389.67 30989.78 33893.19 35376.56 36397.00 30898.35 18480.97 35881.57 35897.75 21874.75 34398.61 24289.85 29993.63 24594.17 349
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
NP-MVS97.28 24494.51 21197.73 219
HQP-MVS95.72 16195.40 15596.69 20497.20 25094.25 22298.05 22698.46 16396.43 7594.45 21697.73 21986.75 23398.96 20595.30 16494.18 22696.86 254
UniMVSNet_NR-MVSNet95.71 16295.15 17297.40 16096.84 27496.97 9198.74 13099.24 1195.16 13593.88 24797.72 22191.68 12398.31 28495.81 14887.25 32896.92 240
FE-MVS95.62 16894.90 18697.78 13298.37 15894.92 19197.17 29997.38 29890.95 30097.73 11897.70 22285.32 26299.63 12091.18 27798.33 14898.79 170
FA-MVS(test-final)96.41 13095.94 13497.82 12998.21 17595.20 17697.80 25197.58 27593.21 22597.36 13397.70 22289.47 16899.56 13194.12 20297.99 15798.71 177
DU-MVS95.42 17894.76 19197.40 16096.53 29096.97 9198.66 15198.99 3095.43 11993.88 24797.69 22488.57 19498.31 28495.81 14887.25 32896.92 240
WR-MVS95.15 19694.46 20697.22 16796.67 28496.45 11798.21 20698.81 7494.15 17393.16 27397.69 22487.51 22098.30 28695.29 16688.62 31496.90 247
NR-MVSNet94.98 20794.16 22097.44 15696.53 29097.22 8598.74 13098.95 3494.96 14789.25 33097.69 22489.32 17298.18 29494.59 18787.40 32696.92 240
Fast-Effi-MVS+-dtu95.87 15395.85 13795.91 26197.74 21191.74 28098.69 14598.15 22295.56 11394.92 20197.68 22788.98 18698.79 22993.19 22997.78 16697.20 228
alignmvs97.56 7697.07 8799.01 5198.66 13798.37 3998.83 11098.06 24496.74 6398.00 10197.65 22890.80 14699.48 14898.37 3296.56 19399.19 131
LF4IMVS93.14 28492.79 27894.20 31395.88 31988.67 33197.66 26297.07 31193.81 19291.71 30897.65 22877.96 32698.81 22791.47 27491.92 27095.12 337
lessismore_v094.45 31194.93 33988.44 33691.03 37186.77 34597.64 23076.23 33798.42 26590.31 29185.64 34096.51 300
TR-MVS94.94 21194.20 21797.17 17197.75 20894.14 22697.59 26897.02 31692.28 26095.75 18997.64 23083.88 28798.96 20589.77 30096.15 21098.40 193
ET-MVSNet_ETH3D94.13 25892.98 27497.58 15198.22 17496.20 12997.31 28895.37 34794.53 16279.56 36097.63 23286.51 23697.53 33196.91 10490.74 28499.02 153
Baseline_NR-MVSNet94.35 24493.81 24495.96 25996.20 30594.05 22898.61 15896.67 33391.44 28293.85 24997.60 23388.57 19498.14 29794.39 19186.93 33195.68 329
pmmvs494.69 21893.99 23296.81 19795.74 32295.94 14497.40 27797.67 26990.42 30893.37 26797.59 23489.08 18198.20 29392.97 23691.67 27396.30 314
K. test v392.55 29091.91 29294.48 30895.64 32589.24 32199.07 6194.88 35294.04 17786.78 34497.59 23477.64 33097.64 32692.08 25989.43 30396.57 287
Anonymous2023121194.10 26193.26 27196.61 21399.11 9794.28 21999.01 7598.88 5086.43 34192.81 28397.57 23681.66 29898.68 23894.83 17689.02 31096.88 249
PAPR96.84 11096.24 12398.65 6898.72 13196.92 9497.36 28398.57 13993.33 21996.67 16197.57 23694.30 8499.56 13191.05 28298.59 13399.47 92
pmmvs691.77 29590.63 30095.17 28694.69 34491.24 29098.67 14997.92 25786.14 34389.62 32697.56 23875.79 33998.34 28090.75 28684.56 34195.94 324
EIA-MVS97.75 6197.58 6198.27 9998.38 15696.44 11899.01 7598.60 13095.88 9997.26 13597.53 23994.97 7099.33 15897.38 8999.20 10499.05 151
MS-PatchMatch93.84 26993.63 25794.46 31096.18 30689.45 31897.76 25498.27 19992.23 26192.13 30397.49 24079.50 31498.69 23589.75 30199.38 9795.25 334
IterMVS-SCA-FT94.11 26093.87 24094.85 29697.98 19790.56 30297.18 29798.11 22993.75 19492.58 29197.48 24183.97 28597.41 33492.48 25491.30 27796.58 285
anonymousdsp95.42 17894.91 18596.94 18795.10 33695.90 15099.14 4898.41 17393.75 19493.16 27397.46 24287.50 22298.41 27395.63 15794.03 23296.50 302
PVSNet_BlendedMVS96.73 11396.60 10997.12 17599.25 7595.35 17198.26 20399.26 994.28 17097.94 10597.46 24292.74 10199.81 6796.88 11093.32 25496.20 317
PMMVS96.60 11796.33 11897.41 15897.90 20193.93 23097.35 28498.41 17392.84 23997.76 11397.45 24491.10 14199.20 16996.26 13397.91 16099.11 143
ETV-MVS97.96 5297.81 5398.40 9298.42 15397.27 7998.73 13498.55 14396.84 5798.38 7997.44 24595.39 5199.35 15697.62 7398.89 11798.58 188
thisisatest051595.61 17194.89 18797.76 13598.15 18595.15 17996.77 32594.41 35692.95 23597.18 13897.43 24684.78 26999.45 15294.63 18297.73 16998.68 179
baseline295.11 19894.52 20296.87 19396.65 28593.56 24398.27 20294.10 36293.45 21592.02 30697.43 24687.45 22499.19 17093.88 21097.41 17797.87 209
canonicalmvs97.67 6797.23 8098.98 5398.70 13298.38 3599.34 1898.39 17796.76 6297.67 12297.40 24892.26 10899.49 14498.28 3696.28 20599.08 149
tfpnnormal93.66 27092.70 28096.55 22596.94 26795.94 14498.97 8299.19 1691.04 29891.38 31197.34 24984.94 26698.61 24285.45 33789.02 31095.11 338
IterMVS94.09 26293.85 24294.80 29997.99 19590.35 30597.18 29798.12 22693.68 20492.46 29797.34 24984.05 28397.41 33492.51 25291.33 27696.62 281
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
VPA-MVSNet95.75 15995.11 17697.69 14297.24 24697.27 7998.94 8899.23 1395.13 13695.51 19297.32 25185.73 25198.91 21397.33 9189.55 30096.89 248
IterMVS-LS95.46 17495.21 17096.22 24998.12 18693.72 24098.32 19498.13 22593.71 19994.26 22897.31 25292.24 10998.10 30094.63 18290.12 29196.84 256
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Test_1112_low_res96.34 13295.66 15198.36 9498.56 14495.94 14497.71 25898.07 23992.10 26594.79 20797.29 25391.75 12299.56 13194.17 20096.50 19699.58 76
ppachtmachnet_test93.22 28192.63 28194.97 29295.45 33290.84 29596.88 32097.88 26090.60 30392.08 30497.26 25488.08 20797.86 32185.12 33990.33 28796.22 316
pmmvs593.65 27292.97 27595.68 27095.49 33092.37 26998.20 20897.28 30389.66 32192.58 29197.26 25482.14 29598.09 30293.18 23090.95 28396.58 285
MDTV_nov1_ep1395.40 15597.48 22988.34 33796.85 32297.29 30293.74 19697.48 13297.26 25489.18 17799.05 19091.92 26697.43 176
Fast-Effi-MVS+96.28 13595.70 14898.03 11798.29 17095.97 14198.58 16198.25 20491.74 27395.29 19597.23 25791.03 14399.15 17592.90 23997.96 15998.97 158
BH-w/o95.38 18195.08 17796.26 24898.34 16491.79 27797.70 25997.43 29492.87 23894.24 23097.22 25888.66 19298.84 22391.55 27397.70 17098.16 203
eth_miper_zixun_eth94.68 22094.41 21195.47 27797.64 21691.71 28196.73 32898.07 23992.71 24393.64 25697.21 25990.54 15198.17 29593.38 22389.76 29596.54 292
v192192094.20 25393.47 26596.40 24095.98 31594.08 22798.52 16998.15 22291.33 28794.25 22997.20 26086.41 24098.42 26590.04 29789.39 30496.69 277
v2v48294.69 21894.03 22696.65 20696.17 30794.79 19998.67 14998.08 23792.72 24294.00 24297.16 26187.69 21998.45 26192.91 23888.87 31296.72 268
v7n94.19 25493.43 26696.47 23295.90 31894.38 21799.26 2798.34 18691.99 26792.76 28597.13 26288.31 20098.52 25389.48 30887.70 32296.52 297
DIV-MVS_self_test94.52 23494.03 22695.99 25697.57 22493.38 25397.05 30597.94 25591.74 27392.81 28397.10 26389.12 17998.07 30492.60 24590.30 28896.53 294
SCA95.46 17495.13 17396.46 23597.67 21491.29 28997.33 28697.60 27494.68 15796.92 15197.10 26383.97 28598.89 21792.59 24798.32 15099.20 127
Patchmatch-test94.42 24193.68 25696.63 21097.60 21991.76 27894.83 35497.49 28989.45 32494.14 23597.10 26388.99 18398.83 22585.37 33898.13 15499.29 118
FMVSNet394.97 20894.26 21597.11 17698.18 18196.62 10598.56 16798.26 20393.67 20694.09 23797.10 26384.25 27898.01 30892.08 25992.14 26696.70 272
MVP-Stereo94.28 25093.92 23595.35 28194.95 33892.60 26897.97 23497.65 27091.61 27890.68 31897.09 26786.32 24298.42 26589.70 30399.34 9995.02 341
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
FMVSNet294.47 23893.61 25897.04 17998.21 17596.43 11998.79 12498.27 19992.46 24993.50 26497.09 26781.16 30198.00 31091.09 27891.93 26996.70 272
cl____94.51 23594.01 22996.02 25597.58 22093.40 25297.05 30597.96 25491.73 27592.76 28597.08 26989.06 18298.13 29892.61 24490.29 28996.52 297
GBi-Net94.49 23693.80 24596.56 22098.21 17595.00 18498.82 11298.18 21492.46 24994.09 23797.07 27081.16 30197.95 31292.08 25992.14 26696.72 268
test194.49 23693.80 24596.56 22098.21 17595.00 18498.82 11298.18 21492.46 24994.09 23797.07 27081.16 30197.95 31292.08 25992.14 26696.72 268
FMVSNet193.19 28392.07 28896.56 22097.54 22595.00 18498.82 11298.18 21490.38 30992.27 30097.07 27073.68 34897.95 31289.36 31091.30 27796.72 268
v119294.32 24693.58 25996.53 22696.10 31094.45 21298.50 17498.17 21991.54 27994.19 23397.06 27386.95 23198.43 26490.14 29289.57 29896.70 272
V4294.78 21694.14 22296.70 20396.33 30295.22 17598.97 8298.09 23692.32 25894.31 22697.06 27388.39 19998.55 24992.90 23988.87 31296.34 310
c3_l94.79 21594.43 21095.89 26397.75 20893.12 26297.16 30198.03 24792.23 26193.46 26697.05 27591.39 13298.01 30893.58 22089.21 30696.53 294
GA-MVS94.81 21494.03 22697.14 17397.15 25693.86 23296.76 32697.58 27594.00 18194.76 20897.04 27680.91 30498.48 25691.79 26896.25 20799.09 145
UniMVSNet (Re)95.78 15895.19 17197.58 15196.99 26497.47 7498.79 12499.18 1795.60 11193.92 24597.04 27691.68 12398.48 25695.80 15087.66 32396.79 260
v14419294.39 24393.70 25496.48 23196.06 31294.35 21898.58 16198.16 22191.45 28194.33 22597.02 27887.50 22298.45 26191.08 27989.11 30796.63 280
v114494.59 22893.92 23596.60 21596.21 30494.78 20098.59 15998.14 22491.86 27294.21 23297.02 27887.97 20998.41 27391.72 27089.57 29896.61 282
v124094.06 26593.29 27096.34 24396.03 31493.90 23198.44 18198.17 21991.18 29694.13 23697.01 28086.05 24698.42 26589.13 31389.50 30296.70 272
v1094.29 24893.55 26196.51 22896.39 29894.80 19898.99 7998.19 21191.35 28693.02 27996.99 28188.09 20698.41 27390.50 28988.41 31696.33 312
test_040291.32 29890.27 30494.48 30896.60 28691.12 29198.50 17497.22 30786.10 34488.30 33796.98 28277.65 32997.99 31178.13 36292.94 26094.34 345
miper_lstm_enhance94.33 24594.07 22595.11 28897.75 20890.97 29397.22 29398.03 24791.67 27792.76 28596.97 28390.03 15997.78 32392.51 25289.64 29796.56 289
v894.47 23893.77 24896.57 21996.36 29994.83 19699.05 6498.19 21191.92 26993.16 27396.97 28388.82 19198.48 25691.69 27187.79 32196.39 308
miper_ehance_all_eth95.01 20394.69 19595.97 25897.70 21393.31 25597.02 30798.07 23992.23 26193.51 26396.96 28591.85 12098.15 29693.68 21591.16 28096.44 307
PatchmatchNetpermissive95.71 16295.52 15396.29 24797.58 22090.72 29896.84 32397.52 28594.06 17697.08 14196.96 28589.24 17698.90 21692.03 26398.37 14599.26 122
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
v14894.29 24893.76 25095.91 26196.10 31092.93 26598.58 16197.97 25292.59 24793.47 26596.95 28788.53 19798.32 28292.56 24987.06 33096.49 303
gm-plane-assit95.88 31987.47 34589.74 32096.94 28899.19 17093.32 226
tpmrst95.63 16795.69 14995.44 27997.54 22588.54 33396.97 30997.56 27793.50 21397.52 13196.93 28989.49 16699.16 17295.25 16896.42 19898.64 184
thres600view795.49 17294.77 19097.67 14498.98 11095.02 18398.85 10696.90 32295.38 12296.63 16396.90 29084.29 27699.59 12688.65 31796.33 20098.40 193
our_test_393.65 27293.30 26994.69 30195.45 33289.68 31596.91 31497.65 27091.97 26891.66 30996.88 29189.67 16597.93 31588.02 32191.49 27596.48 304
thres100view90095.38 18194.70 19497.41 15898.98 11094.92 19198.87 10396.90 32295.38 12296.61 16496.88 29184.29 27699.56 13188.11 31896.29 20297.76 211
cl2294.68 22094.19 21896.13 25298.11 18793.60 24296.94 31198.31 19092.43 25393.32 26996.87 29386.51 23698.28 29094.10 20491.16 28096.51 300
LCM-MVSNet-Re95.22 19295.32 16494.91 29398.18 18187.85 34498.75 12795.66 34595.11 13888.96 33196.85 29490.26 15797.65 32595.65 15698.44 14199.22 126
WR-MVS_H95.05 20294.46 20696.81 19796.86 27395.82 15399.24 3099.24 1193.87 18892.53 29396.84 29590.37 15398.24 29293.24 22787.93 32096.38 309
EPMVS94.99 20594.48 20496.52 22797.22 24891.75 27997.23 29291.66 37094.11 17497.28 13496.81 29685.70 25298.84 22393.04 23497.28 17898.97 158
tpm294.19 25493.76 25095.46 27897.23 24789.04 32597.31 28896.85 32887.08 33896.21 18096.79 29783.75 29198.74 23292.43 25596.23 20898.59 186
D2MVS95.18 19595.08 17795.48 27697.10 25992.07 27398.30 19799.13 2094.02 17992.90 28196.73 29889.48 16798.73 23394.48 19093.60 24795.65 330
CostFormer94.95 20994.73 19395.60 27497.28 24489.06 32497.53 27196.89 32489.66 32196.82 15696.72 29986.05 24698.95 21095.53 15996.13 21198.79 170
test20.0390.89 30590.38 30392.43 33093.48 35288.14 34198.33 19097.56 27793.40 21787.96 33896.71 30080.69 30894.13 36479.15 35986.17 33795.01 342
Effi-MVS+-dtu96.29 13396.56 11095.51 27597.89 20290.22 30798.80 11998.10 23296.57 7196.45 17596.66 30190.81 14598.91 21395.72 15297.99 15797.40 221
test0.0.03 194.08 26393.51 26395.80 26695.53 32992.89 26697.38 27995.97 34195.11 13892.51 29596.66 30187.71 21696.94 34187.03 32693.67 24297.57 218
miper_enhance_ethall95.10 19994.75 19296.12 25397.53 22793.73 23996.61 33198.08 23792.20 26493.89 24696.65 30392.44 10498.30 28694.21 19991.16 28096.34 310
ADS-MVSNet294.58 22994.40 21295.11 28898.00 19388.74 33096.04 33897.30 30190.15 31296.47 17396.64 30487.89 21197.56 33090.08 29497.06 18099.02 153
ADS-MVSNet95.00 20494.45 20896.63 21098.00 19391.91 27696.04 33897.74 26790.15 31296.47 17396.64 30487.89 21198.96 20590.08 29497.06 18099.02 153
dp94.15 25793.90 23894.90 29497.31 24386.82 34996.97 30997.19 30891.22 29496.02 18596.61 30685.51 25699.02 19790.00 29894.30 22198.85 166
tfpn200view995.32 18894.62 19797.43 15798.94 11294.98 18798.68 14696.93 32095.33 12596.55 16896.53 30784.23 27999.56 13188.11 31896.29 20297.76 211
thres40095.38 18194.62 19797.65 14898.94 11294.98 18798.68 14696.93 32095.33 12596.55 16896.53 30784.23 27999.56 13188.11 31896.29 20298.40 193
EG-PatchMatch MVS91.13 30290.12 30594.17 31594.73 34389.00 32698.13 21997.81 26389.22 32885.32 35396.46 30967.71 35598.42 26587.89 32393.82 23895.08 339
TESTMET0.1,194.18 25693.69 25595.63 27296.92 26889.12 32396.91 31494.78 35393.17 22794.88 20296.45 31078.52 31998.92 21293.09 23198.50 13898.85 166
tpmvs94.60 22694.36 21395.33 28297.46 23188.60 33296.88 32097.68 26891.29 29093.80 25296.42 31188.58 19399.24 16491.06 28096.04 21398.17 202
Anonymous2023120691.66 29691.10 29693.33 32294.02 35087.35 34698.58 16197.26 30590.48 30590.16 32296.31 31283.83 28996.53 35079.36 35889.90 29496.12 319
tpm94.13 25893.80 24595.12 28796.50 29287.91 34397.44 27495.89 34492.62 24596.37 17796.30 31384.13 28298.30 28693.24 22791.66 27499.14 140
CR-MVSNet94.76 21794.15 22196.59 21697.00 26293.43 24994.96 35097.56 27792.46 24996.93 14996.24 31488.15 20497.88 32087.38 32496.65 19098.46 191
Patchmtry93.22 28192.35 28595.84 26596.77 27693.09 26394.66 35797.56 27787.37 33792.90 28196.24 31488.15 20497.90 31687.37 32590.10 29296.53 294
tmp_tt68.90 33866.97 34074.68 35550.78 38259.95 37887.13 36783.47 37838.80 37562.21 37196.23 31664.70 36076.91 37788.91 31530.49 37587.19 366
cascas94.63 22593.86 24196.93 18896.91 27094.27 22096.00 34198.51 15185.55 34894.54 21296.23 31684.20 28198.87 22095.80 15096.98 18397.66 217
thres20095.25 19094.57 19997.28 16598.81 12394.92 19198.20 20897.11 30995.24 13396.54 17096.22 31884.58 27399.53 13987.93 32296.50 19697.39 222
UnsupCasMVSNet_eth90.99 30489.92 30794.19 31494.08 34789.83 31097.13 30398.67 11793.69 20285.83 35096.19 31975.15 34196.74 34489.14 31279.41 35696.00 322
MDA-MVSNet-bldmvs89.97 31288.35 31794.83 29895.21 33591.34 28697.64 26497.51 28688.36 33371.17 36896.13 32079.22 31696.63 34983.65 34686.27 33696.52 297
MIMVSNet93.26 28092.21 28796.41 23897.73 21293.13 26195.65 34597.03 31491.27 29294.04 24096.06 32175.33 34097.19 33786.56 32896.23 20898.92 163
tpm cat193.36 27592.80 27795.07 29097.58 22087.97 34296.76 32697.86 26182.17 35793.53 26096.04 32286.13 24499.13 17889.24 31195.87 21498.10 204
N_pmnet87.12 32587.77 32385.17 34695.46 33161.92 37697.37 28170.66 38285.83 34688.73 33696.04 32285.33 26197.76 32480.02 35590.48 28695.84 325
MIMVSNet189.67 31488.28 31893.82 31692.81 35691.08 29298.01 23097.45 29287.95 33487.90 33995.87 32467.63 35694.56 36378.73 36188.18 31895.83 326
EGC-MVSNET75.22 33669.54 33992.28 33294.81 34189.58 31697.64 26496.50 3361.82 3795.57 38095.74 32568.21 35496.26 35373.80 36691.71 27290.99 361
YYNet190.70 30789.39 31094.62 30494.79 34290.65 30097.20 29597.46 29087.54 33672.54 36695.74 32586.51 23696.66 34886.00 33286.76 33596.54 292
DSMNet-mixed92.52 29192.58 28292.33 33194.15 34682.65 35898.30 19794.26 35989.08 32992.65 28995.73 32785.01 26595.76 35586.24 33097.76 16798.59 186
IB-MVS91.98 1793.27 27991.97 29097.19 16997.47 23093.41 25197.09 30495.99 34093.32 22092.47 29695.73 32778.06 32599.53 13994.59 18782.98 34598.62 185
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
test-LLR95.10 19994.87 18895.80 26696.77 27689.70 31396.91 31495.21 34895.11 13894.83 20595.72 32987.71 21698.97 20193.06 23298.50 13898.72 175
test-mter94.08 26393.51 26395.80 26696.77 27689.70 31396.91 31495.21 34892.89 23794.83 20595.72 32977.69 32798.97 20193.06 23298.50 13898.72 175
MDA-MVSNet_test_wron90.71 30689.38 31194.68 30294.83 34090.78 29797.19 29697.46 29087.60 33572.41 36795.72 32986.51 23696.71 34785.92 33386.80 33496.56 289
MVS_030492.81 28792.01 28995.23 28397.46 23191.33 28798.17 21598.81 7491.13 29793.80 25295.68 33266.08 35998.06 30590.79 28496.13 21196.32 313
FMVSNet591.81 29490.92 29794.49 30797.21 24992.09 27298.00 23297.55 28289.31 32790.86 31695.61 33374.48 34495.32 35985.57 33589.70 29696.07 321
test_method79.03 32978.17 33181.63 35186.06 37154.40 38182.75 37096.89 32439.54 37480.98 35995.57 33458.37 36494.73 36284.74 34378.61 35795.75 327
PVSNet_088.72 1991.28 30090.03 30695.00 29197.99 19587.29 34794.84 35398.50 15692.06 26689.86 32495.19 33579.81 31399.39 15492.27 25669.79 36798.33 197
DeepMVS_CXcopyleft86.78 34397.09 26072.30 37095.17 35175.92 36284.34 35595.19 33570.58 35195.35 35779.98 35789.04 30992.68 360
patchmatchnet-post95.10 33789.42 17098.89 217
Anonymous2024052191.18 30190.44 30293.42 31993.70 35188.47 33598.94 8897.56 27788.46 33289.56 32895.08 33877.15 33496.97 34083.92 34589.55 30094.82 343
Patchmatch-RL test91.49 29790.85 29893.41 32091.37 35984.40 35292.81 36295.93 34391.87 27187.25 34194.87 33988.99 18396.53 35092.54 25182.00 34799.30 116
OpenMVS_ROBcopyleft86.42 2089.00 31887.43 32593.69 31793.08 35489.42 31997.91 23996.89 32478.58 36085.86 34994.69 34069.48 35398.29 28977.13 36393.29 25693.36 357
CL-MVSNet_self_test90.11 31089.14 31393.02 32791.86 35888.23 34096.51 33498.07 23990.49 30490.49 32094.41 34184.75 27095.34 35880.79 35474.95 36495.50 331
FPMVS77.62 33577.14 33579.05 35379.25 37660.97 37795.79 34395.94 34265.96 36767.93 36994.40 34237.73 37388.88 37268.83 36988.46 31587.29 365
KD-MVS_2432*160089.61 31587.96 32194.54 30594.06 34891.59 28395.59 34697.63 27289.87 31788.95 33294.38 34378.28 32296.82 34284.83 34068.05 36895.21 335
miper_refine_blended89.61 31587.96 32194.54 30594.06 34891.59 28395.59 34697.63 27289.87 31788.95 33294.38 34378.28 32296.82 34284.83 34068.05 36895.21 335
GG-mvs-BLEND96.59 21696.34 30194.98 18796.51 33488.58 37593.10 27894.34 34580.34 31198.05 30689.53 30696.99 18296.74 265
KD-MVS_self_test90.38 30889.38 31193.40 32192.85 35588.94 32897.95 23597.94 25590.35 31090.25 32193.96 34679.82 31295.94 35484.62 34476.69 36295.33 333
mvsany_test388.80 31988.04 31991.09 33789.78 36481.57 36197.83 25095.49 34693.81 19287.53 34093.95 34756.14 36597.43 33394.68 18083.13 34494.26 346
new_pmnet90.06 31189.00 31593.22 32594.18 34588.32 33896.42 33696.89 32486.19 34285.67 35193.62 34877.18 33397.10 33881.61 35289.29 30594.23 347
test_vis1_rt91.29 29990.65 29993.19 32697.45 23586.25 35098.57 16690.90 37293.30 22286.94 34393.59 34962.07 36299.11 18297.48 8595.58 21694.22 348
PM-MVS87.77 32286.55 32791.40 33691.03 36283.36 35796.92 31295.18 35091.28 29186.48 34893.42 35053.27 36696.74 34489.43 30981.97 34894.11 350
testf179.02 33077.70 33282.99 34988.10 36766.90 37394.67 35593.11 36471.08 36574.02 36393.41 35134.15 37593.25 36672.25 36778.50 35888.82 363
APD_test279.02 33077.70 33282.99 34988.10 36766.90 37394.67 35593.11 36471.08 36574.02 36393.41 35134.15 37593.25 36672.25 36778.50 35888.82 363
pmmvs-eth3d90.36 30989.05 31494.32 31291.10 36192.12 27197.63 26796.95 31988.86 33084.91 35493.13 35378.32 32196.74 34488.70 31681.81 34994.09 351
test_fmvs387.17 32387.06 32687.50 34291.21 36075.66 36599.05 6496.61 33592.79 24188.85 33492.78 35443.72 36993.49 36593.95 20784.56 34193.34 358
new-patchmatchnet88.50 32087.45 32491.67 33590.31 36385.89 35197.16 30197.33 30089.47 32383.63 35692.77 35576.38 33695.06 36182.70 34977.29 36194.06 353
pmmvs386.67 32684.86 33092.11 33488.16 36687.19 34896.63 33094.75 35479.88 35987.22 34292.75 35666.56 35895.20 36081.24 35376.56 36393.96 354
ambc89.49 33986.66 36975.78 36492.66 36396.72 33086.55 34792.50 35746.01 36797.90 31690.32 29082.09 34694.80 344
PatchT93.06 28591.97 29096.35 24296.69 28292.67 26794.48 35897.08 31086.62 33997.08 14192.23 35887.94 21097.90 31678.89 36096.69 18898.49 190
RPMNet92.81 28791.34 29597.24 16697.00 26293.43 24994.96 35098.80 8282.27 35696.93 14992.12 35986.98 23099.82 6276.32 36496.65 19098.46 191
test_f86.07 32785.39 32888.10 34189.28 36575.57 36697.73 25796.33 33889.41 32685.35 35291.56 36043.31 37195.53 35691.32 27684.23 34393.21 359
UnsupCasMVSNet_bld87.17 32385.12 32993.31 32391.94 35788.77 32994.92 35298.30 19684.30 35382.30 35790.04 36163.96 36197.25 33685.85 33474.47 36693.93 355
LCM-MVSNet78.70 33276.24 33786.08 34477.26 37871.99 37194.34 35996.72 33061.62 36976.53 36189.33 36233.91 37792.78 36981.85 35174.60 36593.46 356
PMMVS277.95 33475.44 33885.46 34582.54 37374.95 36794.23 36093.08 36672.80 36474.68 36287.38 36336.36 37491.56 37073.95 36563.94 37089.87 362
JIA-IIPM93.35 27692.49 28395.92 26096.48 29490.65 30095.01 34996.96 31885.93 34596.08 18387.33 36487.70 21898.78 23091.35 27595.58 21698.34 196
PMVScopyleft61.03 2365.95 33963.57 34373.09 35657.90 38151.22 38285.05 36993.93 36354.45 37044.32 37683.57 36513.22 38089.15 37158.68 37281.00 35278.91 370
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVS-HIRNet89.46 31788.40 31692.64 32997.58 22082.15 35994.16 36193.05 36775.73 36390.90 31582.52 36679.42 31598.33 28183.53 34798.68 12697.43 219
gg-mvs-nofinetune92.21 29390.58 30197.13 17496.75 27995.09 18195.85 34289.40 37485.43 34994.50 21481.98 36780.80 30798.40 27992.16 25798.33 14897.88 208
test_vis3_rt79.22 32877.40 33484.67 34786.44 37074.85 36897.66 26281.43 37984.98 35067.12 37081.91 36828.09 37997.60 32788.96 31480.04 35581.55 368
Gipumacopyleft78.40 33376.75 33683.38 34895.54 32880.43 36279.42 37197.40 29664.67 36873.46 36580.82 36945.65 36893.14 36866.32 37087.43 32576.56 371
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
ANet_high69.08 33765.37 34180.22 35265.99 38071.96 37290.91 36690.09 37382.62 35549.93 37578.39 37029.36 37881.75 37362.49 37138.52 37486.95 367
E-PMN64.94 34064.25 34267.02 35782.28 37459.36 37991.83 36585.63 37652.69 37160.22 37277.28 37141.06 37280.12 37546.15 37441.14 37261.57 373
EMVS64.07 34163.26 34466.53 35881.73 37558.81 38091.85 36484.75 37751.93 37359.09 37375.13 37243.32 37079.09 37642.03 37539.47 37361.69 372
MVEpermissive62.14 2263.28 34259.38 34574.99 35474.33 37965.47 37585.55 36880.50 38052.02 37251.10 37475.00 37310.91 38380.50 37451.60 37353.40 37178.99 369
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
X-MVStestdata94.06 26592.30 28699.34 2399.70 2298.35 4199.29 2298.88 5097.40 2398.46 7343.50 37495.90 3899.89 3697.85 5699.74 4199.78 15
testmvs21.48 34524.95 34811.09 36114.89 3836.47 38596.56 3329.87 3847.55 37717.93 37739.02 3759.43 3845.90 38016.56 37812.72 37720.91 375
test12320.95 34623.72 34912.64 36013.54 3848.19 38496.55 3336.13 3857.48 37816.74 37837.98 37612.97 3816.05 37916.69 3775.43 37823.68 374
test_post31.83 37788.83 19098.91 213
test_post196.68 32930.43 37887.85 21498.69 23592.59 247
wuyk23d30.17 34330.18 34730.16 35978.61 37743.29 38366.79 37214.21 38317.31 37614.82 37911.93 37911.55 38241.43 37837.08 37619.30 3765.76 376
test_blank0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
uanet_test0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
DCPMVS0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
pcd_1.5k_mvsjas7.88 34810.50 3510.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 38094.51 770.00 3810.00 3790.00 3790.00 377
sosnet-low-res0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
sosnet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
uncertanet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
Regformer0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
uanet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
FOURS199.82 198.66 2499.69 198.95 3497.46 2199.39 20
MSC_two_6792asdad99.62 699.17 8899.08 1198.63 12799.94 398.53 1699.80 1999.86 2
No_MVS99.62 699.17 8899.08 1198.63 12799.94 398.53 1699.80 1999.86 2
eth-test20.00 385
eth-test0.00 385
IU-MVS99.71 1999.23 798.64 12595.28 12999.63 998.35 3399.81 1299.83 7
save fliter99.46 4998.38 3598.21 20698.71 10597.95 4
test_0728_SECOND99.71 199.72 1299.35 198.97 8298.88 5099.94 398.47 2499.81 1299.84 6
GSMVS99.20 127
test_part299.63 2999.18 1099.27 25
sam_mvs189.45 16999.20 127
sam_mvs88.99 183
MTGPAbinary98.74 97
MTMP98.89 9794.14 361
test9_res96.39 13199.57 7099.69 49
agg_prior295.87 14799.57 7099.68 54
agg_prior99.30 6598.38 3598.72 10297.57 13099.81 67
test_prior498.01 5897.86 246
test_prior99.19 3899.31 6198.22 4798.84 6799.70 10599.65 62
旧先验297.57 27091.30 28998.67 6199.80 7495.70 155
新几何297.64 264
无先验97.58 26998.72 10291.38 28399.87 4593.36 22599.60 70
原ACMM297.67 261
testdata299.89 3691.65 272
segment_acmp96.85 14
testdata197.32 28796.34 81
test1299.18 4099.16 9298.19 4898.53 14798.07 9195.13 6699.72 9999.56 7699.63 66
plane_prior797.42 23794.63 203
plane_prior697.35 24294.61 20687.09 227
plane_prior598.56 14199.03 19496.07 13794.27 22296.92 240
plane_prior394.61 20697.02 5095.34 193
plane_prior298.80 11997.28 32
plane_prior197.37 241
plane_prior94.60 20898.44 18196.74 6394.22 224
n20.00 386
nn0.00 386
door-mid94.37 357
test1198.66 120
door94.64 355
HQP5-MVS94.25 222
HQP-NCC97.20 25098.05 22696.43 7594.45 216
ACMP_Plane97.20 25098.05 22696.43 7594.45 216
BP-MVS95.30 164
HQP4-MVS94.45 21698.96 20596.87 251
HQP3-MVS98.46 16394.18 226
HQP2-MVS86.75 233
MDTV_nov1_ep13_2view84.26 35396.89 31990.97 29997.90 10989.89 16193.91 20999.18 136
ACMMP++_ref92.97 259
ACMMP++93.61 246
Test By Simon94.64 74