This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort by
fmvsm_s_conf0.1_n_a98.08 6098.04 6098.21 11697.66 24195.39 18198.89 10499.17 2697.24 5099.76 899.67 191.13 15299.88 5699.39 1399.41 10799.35 115
fmvsm_s_conf0.1_n98.18 5998.21 5198.11 12898.54 16095.24 19198.87 11499.24 1797.50 3199.70 1399.67 191.33 14799.89 4799.47 1299.54 9099.21 138
fmvsm_s_conf0.5_n98.42 4498.51 1898.13 12499.30 6895.25 19098.85 11999.39 797.94 1499.74 999.62 392.59 11099.91 3999.65 799.52 9399.25 133
fmvsm_s_conf0.5_n_a98.38 4798.42 2598.27 10999.09 10695.41 18098.86 11799.37 897.69 2199.78 699.61 492.38 11399.91 3999.58 1099.43 10599.49 96
test_fmvsmconf_n98.92 798.87 699.04 5598.88 12697.25 9098.82 12799.34 1098.75 399.80 599.61 495.16 6899.95 799.70 699.80 2099.93 1
test_fmvsmconf0.01_n97.86 6997.54 7898.83 6995.48 35896.83 10698.95 9198.60 14198.58 698.93 5799.55 688.57 20899.91 3999.54 1199.61 7399.77 27
test_fmvsmvis_n_192098.44 4198.51 1898.23 11598.33 17996.15 14298.97 8599.15 2898.55 798.45 8999.55 694.26 9199.97 199.65 799.66 6298.57 212
test_fmvsmconf0.1_n98.58 2398.44 2498.99 5797.73 23597.15 9598.84 12398.97 4298.75 399.43 2799.54 893.29 10299.93 2599.64 999.79 2699.89 5
UA-Net97.96 6497.62 7198.98 5998.86 12997.47 8098.89 10499.08 3296.67 8298.72 7299.54 893.15 10499.81 8194.87 19598.83 13799.65 69
APDe-MVScopyleft99.02 698.84 899.55 999.57 3398.96 1699.39 1298.93 5097.38 3999.41 2899.54 896.66 1899.84 6798.86 2199.85 599.87 7
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
patch_mono-298.36 5098.87 696.82 21999.53 3690.68 32598.64 17099.29 1497.88 1599.19 4099.52 1196.80 1599.97 199.11 1699.86 199.82 16
SMA-MVScopyleft98.58 2398.25 4499.56 899.51 3999.04 1598.95 9198.80 9393.67 23299.37 3199.52 1196.52 2299.89 4798.06 5999.81 1399.76 34
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
test_fmvsm_n_192098.87 1099.01 398.45 9599.42 5596.43 12798.96 9099.36 998.63 599.86 299.51 1395.91 3999.97 199.72 599.75 4298.94 176
mvsany_test197.69 7997.70 6997.66 16698.24 18794.18 24497.53 29997.53 29995.52 13399.66 1599.51 1394.30 8999.56 14598.38 4598.62 14699.23 135
test072699.72 1299.25 299.06 6398.88 6297.62 2499.56 2099.50 1597.42 9
DeepC-MVS95.98 397.88 6897.58 7398.77 7199.25 8196.93 10198.83 12598.75 10696.96 6796.89 17099.50 1590.46 16699.87 5897.84 7599.76 3899.52 86
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
dcpmvs_298.08 6098.59 1496.56 24399.57 3390.34 33299.15 4998.38 19496.82 7399.29 3499.49 1795.78 4399.57 14298.94 1999.86 199.77 27
SED-MVS99.09 198.91 499.63 499.71 1999.24 599.02 7598.87 6997.65 2299.73 1099.48 1897.53 799.94 898.43 4299.81 1399.70 53
test_241102_TWO98.87 6997.65 2299.53 2399.48 1897.34 1199.94 898.43 4299.80 2099.83 13
MM98.51 3398.24 4699.33 2699.12 10298.14 5698.93 9697.02 33798.96 199.17 4199.47 2091.97 13199.94 899.85 499.69 5799.91 2
DVP-MVS++99.08 398.89 599.64 399.17 9499.23 799.69 198.88 6297.32 4299.53 2399.47 2097.81 399.94 898.47 3899.72 5299.74 37
test_one_060199.66 2699.25 298.86 7597.55 2899.20 3899.47 2097.57 6
ACMMP_NAP98.61 1898.30 4199.55 999.62 3098.95 1798.82 12798.81 8695.80 12099.16 4499.47 2095.37 5699.92 3197.89 7099.75 4299.79 19
DVP-MVScopyleft99.03 598.83 999.63 499.72 1299.25 298.97 8598.58 14997.62 2499.45 2599.46 2497.42 999.94 898.47 3899.81 1399.69 56
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD97.32 4299.45 2599.46 2497.88 199.94 898.47 3899.86 199.85 10
DPE-MVScopyleft98.92 798.67 1299.65 299.58 3299.20 998.42 20498.91 5697.58 2799.54 2299.46 2497.10 1299.94 897.64 8899.84 1099.83 13
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MVS_030498.47 3898.22 5099.21 3999.00 11497.80 6998.88 10995.32 37698.86 298.53 8499.44 2794.38 8799.94 899.86 199.70 5599.90 3
fmvsm_l_conf0.5_n_a99.09 199.08 199.11 5199.43 5497.48 7898.88 10999.30 1398.47 999.85 499.43 2896.71 1799.96 499.86 199.80 2099.89 5
fmvsm_l_conf0.5_n99.07 499.05 299.14 4799.41 5697.54 7698.89 10499.31 1298.49 899.86 299.42 2996.45 2499.96 499.86 199.74 4699.90 3
MP-MVS-pluss98.31 5697.92 6499.49 1299.72 1298.88 1898.43 20298.78 10094.10 19997.69 13699.42 2995.25 6499.92 3198.09 5899.80 2099.67 65
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
SteuartSystems-ACMMP98.90 998.75 1099.36 2199.22 8998.43 3399.10 5998.87 6997.38 3999.35 3299.40 3197.78 599.87 5897.77 7899.85 599.78 21
Skip Steuart: Steuart Systems R&D Blog.
test_241102_ONE99.71 1999.24 598.87 6997.62 2499.73 1099.39 3297.53 799.74 111
SF-MVS98.59 2198.32 4099.41 1799.54 3598.71 2299.04 6898.81 8695.12 15599.32 3399.39 3296.22 2699.84 6797.72 8199.73 4999.67 65
MTAPA98.58 2398.29 4299.46 1499.76 298.64 2598.90 10098.74 10897.27 4998.02 11299.39 3294.81 7799.96 497.91 6899.79 2699.77 27
VDDNet95.36 20294.53 21997.86 14398.10 20595.13 19798.85 11997.75 28090.46 33598.36 9499.39 3273.27 37899.64 13197.98 6296.58 21298.81 185
SD-MVS98.64 1698.68 1198.53 8799.33 5998.36 4198.90 10098.85 7897.28 4599.72 1299.39 3296.63 2097.60 35298.17 5499.85 599.64 71
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DeepPCF-MVS96.37 297.93 6798.48 2396.30 26999.00 11489.54 34497.43 30598.87 6998.16 1199.26 3699.38 3796.12 3199.64 13198.30 4999.77 3299.72 45
test_vis1_n_192096.71 13196.84 11296.31 26899.11 10489.74 33999.05 6598.58 14998.08 1299.87 199.37 3878.48 34599.93 2599.29 1499.69 5799.27 129
EI-MVSNet-UG-set98.41 4598.34 3598.61 7999.45 5296.32 13598.28 21998.68 12397.17 5598.74 6999.37 3895.25 6499.79 9898.57 2799.54 9099.73 42
APD-MVS_3200maxsize98.53 3298.33 3999.15 4699.50 4197.92 6399.15 4998.81 8696.24 10199.20 3899.37 3895.30 6099.80 8897.73 8099.67 6099.72 45
LS3D97.16 11496.66 12498.68 7598.53 16197.19 9398.93 9698.90 5792.83 27095.99 20599.37 3892.12 12499.87 5893.67 23899.57 8198.97 172
EI-MVSNet-Vis-set98.47 3898.39 2798.69 7499.46 4996.49 12498.30 21698.69 12097.21 5298.84 6299.36 4295.41 5399.78 10198.62 2699.65 6599.80 18
ACMMPcopyleft98.23 5797.95 6399.09 5299.74 797.62 7399.03 7299.41 695.98 11097.60 14599.36 4294.45 8599.93 2597.14 11398.85 13699.70 53
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
test_cas_vis1_n_192097.38 10397.36 8997.45 17598.95 12193.25 27999.00 7998.53 15997.70 2099.77 799.35 4484.71 28999.85 6398.57 2799.66 6299.26 131
SR-MVS-dyc-post98.54 3198.35 3299.13 4899.49 4597.86 6499.11 5698.80 9396.49 9099.17 4199.35 4495.34 5899.82 7697.72 8199.65 6599.71 49
RE-MVS-def98.34 3599.49 4597.86 6499.11 5698.80 9396.49 9099.17 4199.35 4495.29 6197.72 8199.65 6599.71 49
DP-MVS96.59 13595.93 15198.57 8199.34 5796.19 14198.70 16098.39 19089.45 35494.52 23899.35 4491.85 13299.85 6392.89 26298.88 13399.68 61
VDD-MVS95.82 17595.23 18697.61 16998.84 13293.98 24898.68 16397.40 31395.02 16297.95 11899.34 4874.37 37599.78 10198.64 2596.80 20599.08 161
SR-MVS98.57 2798.35 3299.24 3699.53 3698.18 5199.09 6098.82 8196.58 8599.10 4699.32 4995.39 5499.82 7697.70 8599.63 7099.72 45
PGM-MVS98.49 3598.23 4899.27 3499.72 1298.08 5898.99 8299.49 595.43 13799.03 4799.32 4995.56 4899.94 896.80 13699.77 3299.78 21
TSAR-MVS + MP.98.78 1198.62 1399.24 3699.69 2498.28 4699.14 5198.66 13196.84 7199.56 2099.31 5196.34 2599.70 11998.32 4899.73 4999.73 42
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
XVG-OURS96.55 13996.41 13296.99 20598.75 13793.76 25497.50 30298.52 16295.67 12796.83 17199.30 5288.95 20299.53 15395.88 16396.26 22997.69 243
9.1498.06 5899.47 4798.71 15698.82 8194.36 19399.16 4499.29 5396.05 3399.81 8197.00 11799.71 54
MSLP-MVS++98.56 2998.57 1598.55 8399.26 8096.80 10798.71 15699.05 3697.28 4598.84 6299.28 5496.47 2399.40 17398.52 3699.70 5599.47 100
DeepC-MVS_fast96.70 198.55 3098.34 3599.18 4299.25 8198.04 5998.50 19398.78 10097.72 1798.92 5999.28 5495.27 6299.82 7697.55 9899.77 3299.69 56
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test111195.94 16795.78 15696.41 26198.99 11890.12 33499.04 6892.45 39896.99 6698.03 11099.27 5681.40 32199.48 16496.87 13199.04 12499.63 73
test_fmvs1_n95.90 17095.99 14995.63 29598.67 14888.32 36699.26 2998.22 22196.40 9699.67 1499.26 5773.91 37699.70 11999.02 1899.50 9598.87 180
test250694.44 26393.91 26096.04 27799.02 11188.99 35499.06 6379.47 41296.96 6798.36 9499.26 5777.21 35799.52 15696.78 13799.04 12499.59 79
ECVR-MVScopyleft95.95 16595.71 16396.65 22999.02 11190.86 32099.03 7291.80 39996.96 6798.10 10499.26 5781.31 32299.51 15796.90 12599.04 12499.59 79
RPSCF94.87 23395.40 17393.26 35198.89 12582.06 38998.33 20998.06 25990.30 34096.56 18499.26 5787.09 24299.49 15993.82 23396.32 22198.24 225
APD-MVScopyleft98.35 5298.00 6299.42 1699.51 3998.72 2198.80 13698.82 8194.52 18799.23 3799.25 6195.54 5099.80 8896.52 14399.77 3299.74 37
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
MP-MVScopyleft98.33 5598.01 6199.28 3299.75 398.18 5199.22 3798.79 9896.13 10697.92 12399.23 6294.54 8099.94 896.74 13999.78 3099.73 42
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
mPP-MVS98.51 3398.26 4399.25 3599.75 398.04 5999.28 2698.81 8696.24 10198.35 9699.23 6295.46 5199.94 897.42 10599.81 1399.77 27
MG-MVS97.81 7297.60 7298.44 9799.12 10295.97 15297.75 28398.78 10096.89 7098.46 8699.22 6493.90 9799.68 12594.81 19999.52 9399.67 65
casdiffmvspermissive97.63 8497.41 8698.28 10898.33 17996.14 14398.82 12798.32 20396.38 9897.95 11899.21 6591.23 15199.23 18998.12 5698.37 16099.48 98
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Vis-MVSNetpermissive97.42 10097.11 10098.34 10598.66 14996.23 13899.22 3799.00 3996.63 8498.04 10999.21 6588.05 22499.35 17896.01 16099.21 11899.45 106
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
test_fmvs196.42 14396.67 12395.66 29498.82 13388.53 36298.80 13698.20 22496.39 9799.64 1799.20 6780.35 33299.67 12699.04 1799.57 8198.78 189
XVS98.70 1498.49 2199.34 2399.70 2298.35 4299.29 2498.88 6297.40 3698.46 8699.20 6795.90 4199.89 4797.85 7399.74 4699.78 21
LFMVS95.86 17294.98 19998.47 9398.87 12896.32 13598.84 12396.02 36693.40 24498.62 7999.20 6774.99 37099.63 13497.72 8197.20 19599.46 104
HPM-MVS_fast98.38 4798.13 5499.12 5099.75 397.86 6499.44 1198.82 8194.46 19098.94 5399.20 6795.16 6899.74 11197.58 9299.85 599.77 27
casdiffmvs_mvgpermissive97.72 7697.48 8298.44 9798.42 16696.59 11998.92 9898.44 18096.20 10397.76 12899.20 6791.66 13799.23 18998.27 5398.41 15999.49 96
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
ACMMPR98.59 2198.36 3099.29 2999.74 798.15 5499.23 3398.95 4696.10 10898.93 5799.19 7295.70 4599.94 897.62 8999.79 2699.78 21
test_vis1_n95.47 19195.13 19096.49 25297.77 23090.41 33099.27 2898.11 24496.58 8599.66 1599.18 7367.00 38999.62 13799.21 1599.40 11099.44 107
HFP-MVS98.63 1798.40 2699.32 2899.72 1298.29 4599.23 3398.96 4596.10 10898.94 5399.17 7496.06 3299.92 3197.62 8999.78 3099.75 35
region2R98.61 1898.38 2899.29 2999.74 798.16 5399.23 3398.93 5096.15 10598.94 5399.17 7495.91 3999.94 897.55 9899.79 2699.78 21
baseline97.64 8397.44 8598.25 11398.35 17296.20 13999.00 7998.32 20396.33 10098.03 11099.17 7491.35 14699.16 19698.10 5798.29 16699.39 112
PC_three_145295.08 16099.60 1999.16 7797.86 298.47 28397.52 10199.72 5299.74 37
OPU-MVS99.37 2099.24 8799.05 1499.02 7599.16 7797.81 399.37 17797.24 11099.73 4999.70 53
CNVR-MVS98.78 1198.56 1699.45 1599.32 6298.87 1998.47 19698.81 8697.72 1798.76 6899.16 7797.05 1399.78 10198.06 5999.66 6299.69 56
3Dnovator94.51 597.46 9496.93 10899.07 5397.78 22997.64 7199.35 1799.06 3497.02 6493.75 28199.16 7789.25 18999.92 3197.22 11299.75 4299.64 71
CS-MVS-test98.49 3598.50 2098.46 9499.20 9297.05 9799.64 498.50 16997.45 3598.88 6099.14 8195.25 6499.15 19998.83 2299.56 8799.20 139
CP-MVS98.57 2798.36 3099.19 4099.66 2697.86 6499.34 1898.87 6995.96 11198.60 8199.13 8296.05 3399.94 897.77 7899.86 199.77 27
3Dnovator+94.38 697.43 9996.78 11699.38 1897.83 22698.52 2899.37 1498.71 11697.09 6292.99 30899.13 8289.36 18599.89 4796.97 11999.57 8199.71 49
EPNet97.28 10796.87 11198.51 8894.98 36696.14 14398.90 10097.02 33798.28 1095.99 20599.11 8491.36 14599.89 4796.98 11899.19 12099.50 91
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
114514_t96.93 12296.27 13898.92 6499.50 4197.63 7298.85 11998.90 5784.80 38297.77 12799.11 8492.84 10699.66 12894.85 19699.77 3299.47 100
ZNCC-MVS98.49 3598.20 5299.35 2299.73 1198.39 3499.19 4498.86 7595.77 12198.31 9999.10 8695.46 5199.93 2597.57 9799.81 1399.74 37
CS-MVS98.44 4198.49 2198.31 10799.08 10796.73 11199.67 398.47 17597.17 5598.94 5399.10 8695.73 4499.13 20298.71 2499.49 9799.09 157
testdata98.26 11299.20 9295.36 18398.68 12391.89 30098.60 8199.10 8694.44 8699.82 7694.27 21899.44 10499.58 83
PHI-MVS98.34 5398.06 5899.18 4299.15 10098.12 5799.04 6899.09 3193.32 24798.83 6499.10 8696.54 2199.83 6997.70 8599.76 3899.59 79
OMC-MVS97.55 9297.34 9098.20 11899.33 5995.92 15998.28 21998.59 14495.52 13397.97 11799.10 8693.28 10399.49 15995.09 19098.88 13399.19 143
COLMAP_ROBcopyleft93.27 1295.33 20594.87 20696.71 22499.29 7393.24 28098.58 17998.11 24489.92 34593.57 28599.10 8686.37 25699.79 9890.78 30998.10 17097.09 259
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
旧先验199.29 7397.48 7898.70 11999.09 9295.56 4899.47 10099.61 75
XVG-OURS-SEG-HR96.51 14096.34 13497.02 20498.77 13693.76 25497.79 28198.50 16995.45 13696.94 16599.09 9287.87 22999.55 15296.76 13895.83 24197.74 240
CPTT-MVS97.72 7697.32 9198.92 6499.64 2897.10 9699.12 5598.81 8692.34 28698.09 10599.08 9493.01 10599.92 3196.06 15799.77 3299.75 35
EPP-MVSNet97.46 9497.28 9297.99 13698.64 15295.38 18299.33 2298.31 20593.61 23697.19 15499.07 9594.05 9499.23 18996.89 12698.43 15899.37 114
GST-MVS98.43 4398.12 5599.34 2399.72 1298.38 3599.09 6098.82 8195.71 12598.73 7199.06 9695.27 6299.93 2597.07 11699.63 7099.72 45
OpenMVScopyleft93.04 1395.83 17495.00 19798.32 10697.18 28197.32 8399.21 4098.97 4289.96 34491.14 34199.05 9786.64 25099.92 3193.38 24499.47 10097.73 241
EI-MVSNet95.96 16495.83 15496.36 26497.93 22193.70 26098.12 24098.27 21493.70 22795.07 22499.02 9892.23 12098.54 27694.68 20193.46 27696.84 285
CVMVSNet95.43 19596.04 14693.57 34597.93 22183.62 38398.12 24098.59 14495.68 12696.56 18499.02 9887.51 23597.51 35793.56 24297.44 19199.60 77
TSAR-MVS + GP.98.38 4798.24 4698.81 7099.22 8997.25 9098.11 24298.29 21397.19 5498.99 5299.02 9896.22 2699.67 12698.52 3698.56 15099.51 89
QAPM96.29 14995.40 17398.96 6297.85 22597.60 7499.23 3398.93 5089.76 34893.11 30599.02 9889.11 19499.93 2591.99 28599.62 7299.34 116
MVS_111021_LR98.34 5398.23 4898.67 7699.27 7896.90 10397.95 25999.58 397.14 5898.44 9199.01 10295.03 7399.62 13797.91 6899.75 4299.50 91
MVS_111021_HR98.47 3898.34 3598.88 6899.22 8997.32 8397.91 26499.58 397.20 5398.33 9799.00 10395.99 3699.64 13198.05 6199.76 3899.69 56
IS-MVSNet97.22 10996.88 11098.25 11398.85 13196.36 13399.19 4497.97 26695.39 13997.23 15398.99 10491.11 15498.93 23594.60 20698.59 14899.47 100
ZD-MVS99.46 4998.70 2398.79 9893.21 25298.67 7398.97 10595.70 4599.83 6996.07 15499.58 80
Anonymous2024052995.10 21794.22 23697.75 15499.01 11394.26 24098.87 11498.83 8085.79 37896.64 17998.97 10578.73 34199.85 6396.27 14994.89 24799.12 154
原ACMM198.65 7799.32 6296.62 11498.67 12893.27 25197.81 12698.97 10595.18 6799.83 6993.84 23299.46 10399.50 91
HPM-MVScopyleft98.36 5098.10 5799.13 4899.74 797.82 6899.53 898.80 9394.63 18198.61 8098.97 10595.13 7099.77 10697.65 8799.83 1299.79 19
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
DELS-MVS98.40 4698.20 5298.99 5799.00 11497.66 7097.75 28398.89 5997.71 1998.33 9798.97 10594.97 7499.88 5698.42 4499.76 3899.42 111
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CANet98.05 6297.76 6798.90 6798.73 13897.27 8598.35 20798.78 10097.37 4197.72 13498.96 11091.53 14399.92 3198.79 2399.65 6599.51 89
test22299.23 8897.17 9497.40 30798.66 13188.68 36298.05 10798.96 11094.14 9399.53 9299.61 75
新几何199.16 4599.34 5798.01 6198.69 12090.06 34398.13 10298.95 11294.60 7999.89 4791.97 28799.47 10099.59 79
DP-MVS Recon97.86 6997.46 8399.06 5499.53 3698.35 4298.33 20998.89 5992.62 27598.05 10798.94 11395.34 5899.65 12996.04 15899.42 10699.19 143
CANet_DTU96.96 12196.55 12798.21 11698.17 20096.07 14597.98 25798.21 22297.24 5097.13 15698.93 11486.88 24799.91 3995.00 19399.37 11398.66 203
NCCC98.61 1898.35 3299.38 1899.28 7798.61 2698.45 19798.76 10497.82 1698.45 8998.93 11496.65 1999.83 6997.38 10799.41 10799.71 49
CSCG97.85 7197.74 6898.20 11899.67 2595.16 19499.22 3799.32 1193.04 26197.02 16398.92 11695.36 5799.91 3997.43 10499.64 6999.52 86
CHOSEN 1792x268897.12 11696.80 11398.08 13099.30 6894.56 22898.05 24999.71 193.57 23797.09 15798.91 11788.17 21899.89 4796.87 13199.56 8799.81 17
diffmvspermissive97.58 8997.40 8798.13 12498.32 18295.81 16698.06 24898.37 19696.20 10398.74 6998.89 11891.31 14999.25 18698.16 5598.52 15199.34 116
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PVSNet_Blended_VisFu97.70 7897.46 8398.44 9799.27 7895.91 16098.63 17399.16 2794.48 18997.67 13798.88 11992.80 10799.91 3997.11 11499.12 12299.50 91
GeoE96.58 13796.07 14498.10 12998.35 17295.89 16299.34 1898.12 24193.12 25896.09 20198.87 12089.71 17898.97 22592.95 25898.08 17199.43 109
Vis-MVSNet (Re-imp)96.87 12596.55 12797.83 14598.73 13895.46 17899.20 4298.30 21194.96 16696.60 18398.87 12090.05 17298.59 27193.67 23898.60 14799.46 104
CDPH-MVS97.94 6697.49 8099.28 3299.47 4798.44 3197.91 26498.67 12892.57 27898.77 6798.85 12295.93 3899.72 11395.56 17699.69 5799.68 61
VNet97.79 7397.40 8798.96 6298.88 12697.55 7598.63 17398.93 5096.74 7899.02 4898.84 12390.33 16999.83 6998.53 3096.66 20999.50 91
EC-MVSNet98.21 5898.11 5698.49 9198.34 17797.26 8999.61 598.43 18496.78 7498.87 6198.84 12393.72 9899.01 22398.91 2099.50 9599.19 143
HPM-MVS++copyleft98.58 2398.25 4499.55 999.50 4199.08 1198.72 15598.66 13197.51 3098.15 10198.83 12595.70 4599.92 3197.53 10099.67 6099.66 68
MVSFormer97.57 9097.49 8097.84 14498.07 20695.76 16799.47 998.40 18894.98 16498.79 6598.83 12592.34 11498.41 29796.91 12299.59 7799.34 116
jason97.32 10697.08 10298.06 13297.45 26095.59 17197.87 27297.91 27394.79 17498.55 8398.83 12591.12 15399.23 18997.58 9299.60 7599.34 116
jason: jason.
Anonymous20240521195.28 20794.49 22197.67 16399.00 11493.75 25698.70 16097.04 33490.66 33196.49 19098.80 12878.13 34999.83 6996.21 15395.36 24699.44 107
MCST-MVS98.65 1598.37 2999.48 1399.60 3198.87 1998.41 20598.68 12397.04 6398.52 8598.80 12896.78 1699.83 6997.93 6699.61 7399.74 37
MSP-MVS98.74 1398.55 1799.29 2999.75 398.23 4799.26 2998.88 6297.52 2999.41 2898.78 13096.00 3599.79 9897.79 7799.59 7799.85 10
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
OPM-MVS95.69 18395.33 18196.76 22296.16 33694.63 22198.43 20298.39 19096.64 8395.02 22698.78 13085.15 27999.05 21495.21 18994.20 25396.60 311
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
AllTest95.24 20994.65 21496.99 20599.25 8193.21 28198.59 17798.18 22991.36 31493.52 28798.77 13284.67 29099.72 11389.70 32797.87 17798.02 233
TestCases96.99 20599.25 8193.21 28198.18 22991.36 31493.52 28798.77 13284.67 29099.72 11389.70 32797.87 17798.02 233
LPG-MVS_test95.62 18695.34 17996.47 25597.46 25793.54 26398.99 8298.54 15794.67 17994.36 24998.77 13285.39 27299.11 20695.71 17194.15 25696.76 291
LGP-MVS_train96.47 25597.46 25793.54 26398.54 15794.67 17994.36 24998.77 13285.39 27299.11 20695.71 17194.15 25696.76 291
SDMVSNet96.85 12696.42 13198.14 12199.30 6896.38 13199.21 4099.23 2095.92 11295.96 20798.76 13685.88 26499.44 16997.93 6695.59 24298.60 207
sd_testset96.17 15595.76 15897.42 17899.30 6894.34 23798.82 12799.08 3295.92 11295.96 20798.76 13682.83 31599.32 18195.56 17695.59 24298.60 207
MSDG95.93 16895.30 18497.83 14598.90 12495.36 18396.83 35598.37 19691.32 31894.43 24598.73 13890.27 17099.60 13990.05 32098.82 13898.52 213
h-mvs3396.17 15595.62 17097.81 14899.03 11094.45 23098.64 17098.75 10697.48 3298.67 7398.72 13989.76 17699.86 6297.95 6481.59 37999.11 155
RRT_MVS95.98 16395.78 15696.56 24396.48 32294.22 24399.57 697.92 27195.89 11593.95 27098.70 14089.27 18898.42 28997.23 11193.02 28597.04 261
test_prior297.80 27996.12 10797.89 12598.69 14195.96 3796.89 12699.60 75
TEST999.31 6498.50 2997.92 26298.73 11192.63 27497.74 13198.68 14296.20 2899.80 88
train_agg97.97 6397.52 7999.33 2699.31 6498.50 2997.92 26298.73 11192.98 26397.74 13198.68 14296.20 2899.80 8896.59 14099.57 8199.68 61
AdaColmapbinary97.15 11596.70 12098.48 9299.16 9896.69 11398.01 25398.89 5994.44 19196.83 17198.68 14290.69 16399.76 10794.36 21399.29 11798.98 171
test_899.29 7398.44 3197.89 27098.72 11392.98 26397.70 13598.66 14596.20 2899.80 88
tttt051796.07 15995.51 17297.78 15098.41 16894.84 21199.28 2694.33 38794.26 19697.64 14298.64 14684.05 30499.47 16695.34 18197.60 18899.03 166
mvsmamba96.57 13896.32 13697.32 18596.60 31496.43 12799.54 797.98 26496.49 9095.20 22298.64 14690.82 15898.55 27497.97 6393.65 27296.98 265
cdsmvs_eth3d_5k23.98 37531.98 3770.00 3930.00 4160.00 4180.00 40498.59 1440.00 4110.00 41298.61 14890.60 1640.00 4120.00 4110.00 4100.00 408
lupinMVS97.44 9897.22 9698.12 12798.07 20695.76 16797.68 28897.76 27994.50 18898.79 6598.61 14892.34 11499.30 18297.58 9299.59 7799.31 122
BH-RMVSNet95.92 16995.32 18297.69 16098.32 18294.64 22098.19 23097.45 30994.56 18396.03 20398.61 14885.02 28099.12 20490.68 31199.06 12399.30 125
TAMVS97.02 11996.79 11597.70 15998.06 20995.31 18898.52 18898.31 20593.95 20897.05 16298.61 14893.49 10098.52 27895.33 18297.81 17999.29 127
TAPA-MVS93.98 795.35 20394.56 21897.74 15599.13 10194.83 21398.33 20998.64 13686.62 37096.29 19798.61 14894.00 9699.29 18380.00 38499.41 10799.09 157
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
UniMVSNet_ETH3D94.24 27593.33 29396.97 20897.19 28093.38 27398.74 14798.57 15191.21 32593.81 27898.58 15372.85 37998.77 25795.05 19293.93 26598.77 193
DPM-MVS97.55 9296.99 10699.23 3899.04 10998.55 2797.17 33098.35 19994.85 17397.93 12298.58 15395.07 7299.71 11892.60 26699.34 11499.43 109
F-COLMAP97.09 11896.80 11397.97 13799.45 5294.95 20798.55 18698.62 14093.02 26296.17 20098.58 15394.01 9599.81 8193.95 22898.90 13199.14 152
WTY-MVS97.37 10596.92 10998.72 7398.86 12996.89 10598.31 21498.71 11695.26 14897.67 13798.56 15692.21 12199.78 10195.89 16296.85 20499.48 98
CNLPA97.45 9797.03 10498.73 7299.05 10897.44 8298.07 24798.53 15995.32 14596.80 17598.53 15793.32 10199.72 11394.31 21799.31 11699.02 167
ACMP93.49 1095.34 20494.98 19996.43 26097.67 23993.48 26798.73 15198.44 18094.94 16992.53 32198.53 15784.50 29599.14 20195.48 18094.00 26196.66 306
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ACMH92.88 1694.55 25193.95 25796.34 26697.63 24393.26 27898.81 13598.49 17493.43 24389.74 35398.53 15781.91 31899.08 21293.69 23593.30 28296.70 300
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
OurMVSNet-221017-094.21 27694.00 25394.85 32295.60 35389.22 34998.89 10497.43 31195.29 14692.18 33098.52 16082.86 31498.59 27193.46 24391.76 29996.74 293
CDS-MVSNet96.99 12096.69 12197.90 14298.05 21095.98 14798.20 22798.33 20293.67 23296.95 16498.49 16193.54 9998.42 28995.24 18897.74 18399.31 122
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
sss97.39 10296.98 10798.61 7998.60 15696.61 11698.22 22498.93 5093.97 20798.01 11598.48 16291.98 12999.85 6396.45 14598.15 16899.39 112
ACMH+92.99 1494.30 27093.77 27295.88 28797.81 22892.04 30098.71 15698.37 19693.99 20690.60 34798.47 16380.86 32899.05 21492.75 26492.40 29396.55 319
ACMM93.85 995.69 18395.38 17796.61 23697.61 24493.84 25298.91 9998.44 18095.25 14994.28 25398.47 16386.04 26399.12 20495.50 17993.95 26496.87 281
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
iter_conf0596.13 15895.79 15597.15 19598.16 20195.99 14698.88 10997.98 26495.91 11495.58 21498.46 16585.53 27098.59 27197.88 7193.75 26896.86 283
bld_raw_dy_0_6495.72 17894.98 19997.97 13798.29 18495.68 16999.04 6896.34 36296.51 8895.86 21098.44 16678.73 34199.44 16997.58 9293.99 26398.78 189
1112_ss96.63 13396.00 14898.50 8998.56 15796.37 13298.18 23598.10 24792.92 26694.84 22998.43 16792.14 12399.58 14194.35 21496.51 21599.56 85
ab-mvs-re8.20 37810.94 3810.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 41298.43 1670.00 4160.00 4120.00 4110.00 4100.00 408
test_yl97.22 10996.78 11698.54 8598.73 13896.60 11798.45 19798.31 20594.70 17598.02 11298.42 16990.80 16099.70 11996.81 13496.79 20699.34 116
DCV-MVSNet97.22 10996.78 11698.54 8598.73 13896.60 11798.45 19798.31 20594.70 17598.02 11298.42 16990.80 16099.70 11996.81 13496.79 20699.34 116
xiu_mvs_v1_base_debu97.60 8697.56 7597.72 15698.35 17295.98 14797.86 27398.51 16497.13 5999.01 4998.40 17191.56 13999.80 8898.53 3098.68 14197.37 254
xiu_mvs_v1_base97.60 8697.56 7597.72 15698.35 17295.98 14797.86 27398.51 16497.13 5999.01 4998.40 17191.56 13999.80 8898.53 3098.68 14197.37 254
xiu_mvs_v1_base_debi97.60 8697.56 7597.72 15698.35 17295.98 14797.86 27398.51 16497.13 5999.01 4998.40 17191.56 13999.80 8898.53 3098.68 14197.37 254
mvs_tets95.41 19895.00 19796.65 22995.58 35494.42 23299.00 7998.55 15595.73 12493.21 30098.38 17483.45 31398.63 26797.09 11594.00 26196.91 275
FC-MVSNet-test96.42 14396.05 14597.53 17396.95 29397.27 8599.36 1599.23 2095.83 11993.93 27198.37 17592.00 12898.32 30696.02 15992.72 29197.00 264
jajsoiax95.45 19495.03 19696.73 22395.42 36294.63 22199.14 5198.52 16295.74 12293.22 29998.36 17683.87 30998.65 26696.95 12194.04 25996.91 275
nrg03096.28 15195.72 16097.96 14096.90 29898.15 5499.39 1298.31 20595.47 13594.42 24698.35 17792.09 12698.69 26197.50 10289.05 33697.04 261
FIs96.51 14096.12 14397.67 16397.13 28497.54 7699.36 1599.22 2395.89 11594.03 26798.35 17791.98 12998.44 28796.40 14792.76 29097.01 263
ITE_SJBPF95.44 30397.42 26291.32 31297.50 30295.09 15993.59 28398.35 17781.70 31998.88 24489.71 32693.39 28096.12 347
LTVRE_ROB92.95 1594.60 24793.90 26196.68 22897.41 26594.42 23298.52 18898.59 14491.69 30691.21 34098.35 17784.87 28399.04 21791.06 30493.44 27996.60 311
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
PS-MVSNAJss96.43 14296.26 13996.92 21495.84 34895.08 19999.16 4898.50 16995.87 11893.84 27798.34 18194.51 8198.61 26896.88 12893.45 27897.06 260
EPNet_dtu95.21 21194.95 20295.99 27996.17 33490.45 32998.16 23697.27 32096.77 7593.14 30498.33 18290.34 16898.42 28985.57 36298.81 13999.09 157
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PCF-MVS93.45 1194.68 24193.43 29198.42 10198.62 15496.77 10995.48 37998.20 22484.63 38393.34 29698.32 18388.55 21199.81 8184.80 37098.96 12998.68 199
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
thisisatest053096.01 16195.36 17897.97 13798.38 16995.52 17698.88 10994.19 38994.04 20197.64 14298.31 18483.82 31199.46 16795.29 18597.70 18598.93 177
PLCcopyleft95.07 497.20 11296.78 11698.44 9799.29 7396.31 13798.14 23798.76 10492.41 28496.39 19598.31 18494.92 7699.78 10194.06 22698.77 14099.23 135
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
iter_conf05_1196.28 15195.69 16698.03 13398.29 18495.88 16497.43 30596.24 36596.50 8998.26 10098.30 18678.78 34099.44 16997.58 9299.84 1098.78 189
HQP_MVS96.14 15795.90 15296.85 21797.42 26294.60 22698.80 13698.56 15397.28 4595.34 21798.28 18787.09 24299.03 21896.07 15494.27 25096.92 270
plane_prior498.28 187
API-MVS97.41 10197.25 9397.91 14198.70 14396.80 10798.82 12798.69 12094.53 18598.11 10398.28 18794.50 8499.57 14294.12 22399.49 9797.37 254
test_fmvs293.43 30093.58 28392.95 35596.97 29283.91 38299.19 4497.24 32295.74 12295.20 22298.27 19069.65 38298.72 26096.26 15093.73 26996.24 343
mvs_anonymous96.70 13296.53 12997.18 19298.19 19593.78 25398.31 21498.19 22694.01 20494.47 24098.27 19092.08 12798.46 28497.39 10697.91 17599.31 122
XXY-MVS95.20 21294.45 22697.46 17496.75 30796.56 12198.86 11798.65 13593.30 24993.27 29898.27 19084.85 28498.87 24594.82 19891.26 30796.96 267
SixPastTwentyTwo93.34 30392.86 30294.75 32695.67 35189.41 34798.75 14496.67 35593.89 21190.15 35198.25 19380.87 32798.27 31590.90 30890.64 31396.57 315
VPNet94.99 22494.19 23897.40 18197.16 28296.57 12098.71 15698.97 4295.67 12794.84 22998.24 19480.36 33198.67 26596.46 14487.32 35696.96 267
PVSNet_Blended97.38 10397.12 9998.14 12199.25 8195.35 18597.28 32099.26 1593.13 25797.94 12098.21 19592.74 10899.81 8196.88 12899.40 11099.27 129
HyFIR lowres test96.90 12496.49 13098.14 12199.33 5995.56 17397.38 30999.65 292.34 28697.61 14498.20 19689.29 18799.10 21096.97 11997.60 18899.77 27
baseline195.84 17395.12 19298.01 13598.49 16495.98 14798.73 15197.03 33595.37 14296.22 19898.19 19789.96 17499.16 19694.60 20687.48 35298.90 179
ab-mvs96.42 14395.71 16398.55 8398.63 15396.75 11097.88 27198.74 10893.84 21496.54 18898.18 19885.34 27599.75 10995.93 16196.35 21999.15 150
xiu_mvs_v2_base97.66 8297.70 6997.56 17298.61 15595.46 17897.44 30398.46 17697.15 5798.65 7898.15 19994.33 8899.80 8897.84 7598.66 14597.41 250
USDC93.33 30492.71 30595.21 30996.83 30290.83 32296.91 34597.50 30293.84 21490.72 34598.14 20077.69 35298.82 25289.51 33193.21 28495.97 351
EU-MVSNet93.66 29694.14 24392.25 36195.96 34483.38 38598.52 18898.12 24194.69 17792.61 31898.13 20187.36 24096.39 37791.82 28990.00 32196.98 265
CHOSEN 280x42097.18 11397.18 9897.20 18998.81 13493.27 27795.78 37599.15 2895.25 14996.79 17698.11 20292.29 11699.07 21398.56 2999.85 599.25 133
MVSTER96.06 16095.72 16097.08 20198.23 18995.93 15898.73 15198.27 21494.86 17195.07 22498.09 20388.21 21798.54 27696.59 14093.46 27696.79 288
MVS_Test97.28 10797.00 10598.13 12498.33 17995.97 15298.74 14798.07 25494.27 19598.44 9198.07 20492.48 11199.26 18596.43 14698.19 16799.16 149
PAPM_NR97.46 9497.11 10098.50 8999.50 4196.41 13098.63 17398.60 14195.18 15297.06 16198.06 20594.26 9199.57 14293.80 23498.87 13599.52 86
PatchMatch-RL96.59 13596.03 14798.27 10999.31 6496.51 12397.91 26499.06 3493.72 22496.92 16898.06 20588.50 21399.65 12991.77 29199.00 12898.66 203
tt080594.54 25293.85 26696.63 23397.98 21693.06 28798.77 14397.84 27693.67 23293.80 27998.04 20776.88 36298.96 22994.79 20092.86 28897.86 237
Effi-MVS+97.12 11696.69 12198.39 10398.19 19596.72 11297.37 31198.43 18493.71 22597.65 14198.02 20892.20 12299.25 18696.87 13197.79 18099.19 143
MVS94.67 24493.54 28698.08 13096.88 29996.56 12198.19 23098.50 16978.05 39292.69 31698.02 20891.07 15699.63 13490.09 31798.36 16298.04 232
BH-untuned95.95 16595.72 16096.65 22998.55 15992.26 29498.23 22397.79 27893.73 22294.62 23598.01 21088.97 20199.00 22493.04 25598.51 15298.68 199
CLD-MVS95.62 18695.34 17996.46 25897.52 25493.75 25697.27 32198.46 17695.53 13294.42 24698.00 21186.21 25898.97 22596.25 15294.37 24896.66 306
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
hse-mvs295.71 18095.30 18496.93 21198.50 16293.53 26598.36 20698.10 24797.48 3298.67 7397.99 21289.76 17699.02 22197.95 6480.91 38398.22 227
HY-MVS93.96 896.82 12896.23 14198.57 8198.46 16597.00 9898.14 23798.21 22293.95 20896.72 17797.99 21291.58 13899.76 10794.51 21096.54 21498.95 175
AUN-MVS94.53 25493.73 27696.92 21498.50 16293.52 26698.34 20898.10 24793.83 21695.94 20997.98 21485.59 26999.03 21894.35 21480.94 38298.22 227
MAR-MVS96.91 12396.40 13398.45 9598.69 14696.90 10398.66 16898.68 12392.40 28597.07 16097.96 21591.54 14299.75 10993.68 23698.92 13098.69 198
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PS-CasMVS94.67 24493.99 25596.71 22496.68 31195.26 18999.13 5499.03 3793.68 23092.33 32797.95 21685.35 27498.10 32493.59 24088.16 34796.79 288
TranMVSNet+NR-MVSNet95.14 21594.48 22297.11 19996.45 32496.36 13399.03 7299.03 3795.04 16193.58 28497.93 21788.27 21698.03 33094.13 22286.90 36296.95 269
testgi93.06 31292.45 31294.88 32196.43 32589.90 33698.75 14497.54 29895.60 12991.63 33897.91 21874.46 37497.02 36486.10 35893.67 27097.72 242
APD_test188.22 34988.01 34988.86 36895.98 34274.66 39897.21 32496.44 36083.96 38586.66 37497.90 21960.95 39497.84 34682.73 37690.23 31894.09 379
CP-MVSNet94.94 23194.30 23296.83 21896.72 30995.56 17399.11 5698.95 4693.89 21192.42 32697.90 21987.19 24198.12 32394.32 21688.21 34596.82 287
XVG-ACMP-BASELINE94.54 25294.14 24395.75 29296.55 31791.65 30798.11 24298.44 18094.96 16694.22 25797.90 21979.18 33999.11 20694.05 22793.85 26696.48 333
PS-MVSNAJ97.73 7597.77 6697.62 16898.68 14795.58 17297.34 31598.51 16497.29 4498.66 7797.88 22294.51 8199.90 4597.87 7299.17 12197.39 252
TransMVSNet (Re)92.67 31691.51 32296.15 27396.58 31694.65 21998.90 10096.73 35190.86 33089.46 35797.86 22385.62 26898.09 32686.45 35681.12 38095.71 356
test_djsdf96.00 16295.69 16696.93 21195.72 35095.49 17799.47 998.40 18894.98 16494.58 23697.86 22389.16 19298.41 29796.91 12294.12 25896.88 279
TinyColmap92.31 32091.53 32194.65 33096.92 29589.75 33896.92 34396.68 35490.45 33689.62 35497.85 22576.06 36698.81 25386.74 35492.51 29295.41 360
pm-mvs193.94 29493.06 29896.59 23996.49 32195.16 19498.95 9198.03 26192.32 28891.08 34297.84 22684.54 29498.41 29792.16 27886.13 36896.19 346
UGNet96.78 12996.30 13798.19 12098.24 18795.89 16298.88 10998.93 5097.39 3896.81 17497.84 22682.60 31699.90 4596.53 14299.49 9798.79 186
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
TDRefinement91.06 33189.68 33695.21 30985.35 40391.49 31098.51 19297.07 33191.47 31088.83 36397.84 22677.31 35699.09 21192.79 26377.98 39195.04 368
PEN-MVS94.42 26493.73 27696.49 25296.28 33094.84 21199.17 4799.00 3993.51 23892.23 32997.83 22986.10 26097.90 34092.55 27186.92 36196.74 293
131496.25 15495.73 15997.79 14997.13 28495.55 17598.19 23098.59 14493.47 24192.03 33397.82 23091.33 14799.49 15994.62 20598.44 15698.32 224
DTE-MVSNet93.98 29393.26 29696.14 27496.06 33994.39 23499.20 4298.86 7593.06 26091.78 33597.81 23185.87 26597.58 35490.53 31286.17 36696.46 335
PAPM94.95 22994.00 25397.78 15097.04 28895.65 17096.03 37198.25 21991.23 32394.19 25997.80 23291.27 15098.86 24782.61 37897.61 18798.84 183
PVSNet91.96 1896.35 14796.15 14296.96 20999.17 9492.05 29996.08 36898.68 12393.69 22897.75 13097.80 23288.86 20399.69 12494.26 21999.01 12799.15 150
CMPMVSbinary66.06 2189.70 34189.67 33789.78 36693.19 38276.56 39297.00 33998.35 19980.97 38981.57 38897.75 23474.75 37198.61 26889.85 32393.63 27394.17 377
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
NP-MVS97.28 27194.51 22997.73 235
HQP-MVS95.72 17895.40 17396.69 22797.20 27794.25 24198.05 24998.46 17696.43 9394.45 24197.73 23586.75 24898.96 22995.30 18394.18 25496.86 283
UniMVSNet_NR-MVSNet95.71 18095.15 18997.40 18196.84 30196.97 9998.74 14799.24 1795.16 15393.88 27497.72 23791.68 13598.31 30895.81 16587.25 35796.92 270
FE-MVS95.62 18694.90 20497.78 15098.37 17194.92 20897.17 33097.38 31590.95 32997.73 13397.70 23885.32 27799.63 13491.18 29998.33 16398.79 186
FA-MVS(test-final)96.41 14695.94 15097.82 14798.21 19195.20 19397.80 27997.58 28993.21 25297.36 15097.70 23889.47 18299.56 14594.12 22397.99 17298.71 197
DU-MVS95.42 19694.76 20997.40 18196.53 31896.97 9998.66 16898.99 4195.43 13793.88 27497.69 24088.57 20898.31 30895.81 16587.25 35796.92 270
WR-MVS95.15 21494.46 22497.22 18896.67 31296.45 12598.21 22598.81 8694.15 19793.16 30197.69 24087.51 23598.30 31095.29 18588.62 34296.90 277
NR-MVSNet94.98 22694.16 24197.44 17696.53 31897.22 9298.74 14798.95 4694.96 16689.25 35897.69 24089.32 18698.18 31894.59 20887.40 35496.92 270
Fast-Effi-MVS+-dtu95.87 17195.85 15395.91 28497.74 23491.74 30598.69 16298.15 23795.56 13194.92 22797.68 24388.98 20098.79 25593.19 25097.78 18197.20 258
alignmvs97.56 9197.07 10399.01 5698.66 14998.37 4098.83 12598.06 25996.74 7898.00 11697.65 24490.80 16099.48 16498.37 4696.56 21399.19 143
LF4IMVS93.14 31192.79 30494.20 34095.88 34688.67 35997.66 29097.07 33193.81 21791.71 33697.65 24477.96 35198.81 25391.47 29691.92 29895.12 365
lessismore_v094.45 33894.93 36888.44 36491.03 40286.77 37397.64 24676.23 36598.42 28990.31 31585.64 36996.51 328
TR-MVS94.94 23194.20 23797.17 19397.75 23194.14 24597.59 29697.02 33792.28 29095.75 21297.64 24683.88 30898.96 22989.77 32496.15 23498.40 218
ET-MVSNet_ETH3D94.13 28392.98 30097.58 17098.22 19096.20 13997.31 31895.37 37594.53 18579.56 39197.63 24886.51 25197.53 35696.91 12290.74 31299.02 167
Baseline_NR-MVSNet94.35 26793.81 26895.96 28296.20 33294.05 24798.61 17696.67 35591.44 31293.85 27697.60 24988.57 20898.14 32194.39 21286.93 36095.68 357
pmmvs494.69 23993.99 25596.81 22095.74 34995.94 15597.40 30797.67 28390.42 33793.37 29597.59 25089.08 19598.20 31792.97 25791.67 30196.30 342
K. test v392.55 31791.91 32094.48 33595.64 35289.24 34899.07 6294.88 38194.04 20186.78 37297.59 25077.64 35597.64 35192.08 28089.43 33196.57 315
Anonymous2023121194.10 28793.26 29696.61 23699.11 10494.28 23899.01 7798.88 6286.43 37292.81 31197.57 25281.66 32098.68 26494.83 19789.02 33896.88 279
PAPR96.84 12796.24 14098.65 7798.72 14296.92 10297.36 31398.57 15193.33 24696.67 17897.57 25294.30 8999.56 14591.05 30698.59 14899.47 100
pmmvs691.77 32390.63 32895.17 31194.69 37391.24 31498.67 16697.92 27186.14 37489.62 35497.56 25475.79 36798.34 30490.75 31084.56 37095.94 352
EIA-MVS97.75 7497.58 7398.27 10998.38 16996.44 12699.01 7798.60 14195.88 11797.26 15297.53 25594.97 7499.33 18097.38 10799.20 11999.05 165
MS-PatchMatch93.84 29593.63 28194.46 33796.18 33389.45 34597.76 28298.27 21492.23 29192.13 33197.49 25679.50 33698.69 26189.75 32599.38 11295.25 362
IterMVS-SCA-FT94.11 28693.87 26494.85 32297.98 21690.56 32897.18 32898.11 24493.75 21992.58 31997.48 25783.97 30697.41 35992.48 27591.30 30596.58 313
anonymousdsp95.42 19694.91 20396.94 21095.10 36595.90 16199.14 5198.41 18693.75 21993.16 30197.46 25887.50 23798.41 29795.63 17594.03 26096.50 330
PVSNet_BlendedMVS96.73 13096.60 12597.12 19899.25 8195.35 18598.26 22299.26 1594.28 19497.94 12097.46 25892.74 10899.81 8196.88 12893.32 28196.20 345
PMMVS96.60 13496.33 13597.41 17997.90 22393.93 24997.35 31498.41 18692.84 26997.76 12897.45 26091.10 15599.20 19396.26 15097.91 17599.11 155
ETV-MVS97.96 6497.81 6598.40 10298.42 16697.27 8598.73 15198.55 15596.84 7198.38 9397.44 26195.39 5499.35 17897.62 8998.89 13298.58 211
thisisatest051595.61 18994.89 20597.76 15398.15 20295.15 19696.77 35694.41 38592.95 26597.18 15597.43 26284.78 28699.45 16894.63 20397.73 18498.68 199
baseline295.11 21694.52 22096.87 21696.65 31393.56 26298.27 22194.10 39193.45 24292.02 33497.43 26287.45 23999.19 19493.88 23197.41 19397.87 236
MGCFI-Net97.62 8597.19 9798.92 6498.66 14998.20 4999.32 2398.38 19496.69 8197.58 14697.42 26492.10 12599.50 15898.28 5096.25 23099.08 161
sasdasda97.67 8097.23 9498.98 5998.70 14398.38 3599.34 1898.39 19096.76 7697.67 13797.40 26592.26 11799.49 15998.28 5096.28 22799.08 161
canonicalmvs97.67 8097.23 9498.98 5998.70 14398.38 3599.34 1898.39 19096.76 7697.67 13797.40 26592.26 11799.49 15998.28 5096.28 22799.08 161
tfpnnormal93.66 29692.70 30696.55 24896.94 29495.94 15598.97 8599.19 2491.04 32791.38 33997.34 26784.94 28298.61 26885.45 36489.02 33895.11 366
IterMVS94.09 28893.85 26694.80 32597.99 21490.35 33197.18 32898.12 24193.68 23092.46 32597.34 26784.05 30497.41 35992.51 27391.33 30496.62 309
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
VPA-MVSNet95.75 17795.11 19397.69 16097.24 27397.27 8598.94 9499.23 2095.13 15495.51 21597.32 26985.73 26698.91 23897.33 10989.55 32896.89 278
IterMVS-LS95.46 19295.21 18796.22 27298.12 20393.72 25998.32 21398.13 24093.71 22594.26 25497.31 27092.24 11998.10 32494.63 20390.12 31996.84 285
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Test_1112_low_res96.34 14895.66 16998.36 10498.56 15795.94 15597.71 28698.07 25492.10 29594.79 23397.29 27191.75 13499.56 14594.17 22196.50 21699.58 83
ppachtmachnet_test93.22 30792.63 30794.97 31795.45 36090.84 32196.88 35197.88 27490.60 33292.08 33297.26 27288.08 22297.86 34585.12 36690.33 31596.22 344
pmmvs593.65 29892.97 30195.68 29395.49 35792.37 29298.20 22797.28 31989.66 35092.58 31997.26 27282.14 31798.09 32693.18 25190.95 31196.58 313
MDTV_nov1_ep1395.40 17397.48 25588.34 36596.85 35397.29 31893.74 22197.48 14997.26 27289.18 19199.05 21491.92 28897.43 192
dmvs_re94.48 26094.18 24095.37 30597.68 23890.11 33598.54 18797.08 32994.56 18394.42 24697.24 27584.25 29897.76 34891.02 30792.83 28998.24 225
Fast-Effi-MVS+96.28 15195.70 16598.03 13398.29 18495.97 15298.58 17998.25 21991.74 30395.29 22197.23 27691.03 15799.15 19992.90 26097.96 17498.97 172
BH-w/o95.38 19995.08 19496.26 27198.34 17791.79 30297.70 28797.43 31192.87 26894.24 25697.22 27788.66 20698.84 24891.55 29597.70 18598.16 230
eth_miper_zixun_eth94.68 24194.41 22995.47 30197.64 24291.71 30696.73 35998.07 25492.71 27393.64 28297.21 27890.54 16598.17 31993.38 24489.76 32396.54 320
v192192094.20 27793.47 28996.40 26395.98 34294.08 24698.52 18898.15 23791.33 31794.25 25597.20 27986.41 25598.42 28990.04 32189.39 33296.69 305
v2v48294.69 23994.03 24996.65 22996.17 33494.79 21698.67 16698.08 25292.72 27294.00 26897.16 28087.69 23498.45 28592.91 25988.87 34096.72 296
v7n94.19 27893.43 29196.47 25595.90 34594.38 23599.26 2998.34 20191.99 29792.76 31397.13 28188.31 21598.52 27889.48 33287.70 35096.52 325
DIV-MVS_self_test94.52 25594.03 24995.99 27997.57 25093.38 27397.05 33697.94 26991.74 30392.81 31197.10 28289.12 19398.07 32892.60 26690.30 31696.53 322
SCA95.46 19295.13 19096.46 25897.67 23991.29 31397.33 31697.60 28894.68 17896.92 16897.10 28283.97 30698.89 24292.59 26898.32 16599.20 139
Patchmatch-test94.42 26493.68 28096.63 23397.60 24591.76 30394.83 38597.49 30489.45 35494.14 26197.10 28288.99 19798.83 25185.37 36598.13 16999.29 127
FMVSNet394.97 22894.26 23497.11 19998.18 19796.62 11498.56 18598.26 21893.67 23294.09 26397.10 28284.25 29898.01 33192.08 28092.14 29496.70 300
MVP-Stereo94.28 27493.92 25895.35 30694.95 36792.60 29197.97 25897.65 28491.61 30890.68 34697.09 28686.32 25798.42 28989.70 32799.34 11495.02 369
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
FMVSNet294.47 26193.61 28297.04 20398.21 19196.43 12798.79 14198.27 21492.46 27993.50 29097.09 28681.16 32398.00 33391.09 30291.93 29796.70 300
cl____94.51 25694.01 25296.02 27897.58 24693.40 27297.05 33697.96 26891.73 30592.76 31397.08 28889.06 19698.13 32292.61 26590.29 31796.52 325
UWE-MVS94.30 27093.89 26395.53 29897.83 22688.95 35597.52 30193.25 39394.44 19196.63 18097.07 28978.70 34399.28 18491.99 28597.56 19098.36 221
GBi-Net94.49 25893.80 26996.56 24398.21 19195.00 20198.82 12798.18 22992.46 27994.09 26397.07 28981.16 32397.95 33692.08 28092.14 29496.72 296
test194.49 25893.80 26996.56 24398.21 19195.00 20198.82 12798.18 22992.46 27994.09 26397.07 28981.16 32397.95 33692.08 28092.14 29496.72 296
FMVSNet193.19 30992.07 31696.56 24397.54 25195.00 20198.82 12798.18 22990.38 33892.27 32897.07 28973.68 37797.95 33689.36 33491.30 30596.72 296
v119294.32 26993.58 28396.53 24996.10 33794.45 23098.50 19398.17 23491.54 30994.19 25997.06 29386.95 24698.43 28890.14 31689.57 32696.70 300
V4294.78 23794.14 24396.70 22696.33 32995.22 19298.97 8598.09 25192.32 28894.31 25297.06 29388.39 21498.55 27492.90 26088.87 34096.34 339
c3_l94.79 23694.43 22895.89 28697.75 23193.12 28597.16 33298.03 26192.23 29193.46 29297.05 29591.39 14498.01 33193.58 24189.21 33496.53 322
testing393.19 30992.48 31195.30 30898.07 20692.27 29398.64 17097.17 32593.94 21093.98 26997.04 29667.97 38696.01 38188.40 34397.14 19697.63 245
GA-MVS94.81 23594.03 24997.14 19697.15 28393.86 25196.76 35797.58 28994.00 20594.76 23497.04 29680.91 32698.48 28091.79 29096.25 23099.09 157
UniMVSNet (Re)95.78 17695.19 18897.58 17096.99 29197.47 8098.79 14199.18 2595.60 12993.92 27297.04 29691.68 13598.48 28095.80 16787.66 35196.79 288
v14419294.39 26693.70 27896.48 25496.06 33994.35 23698.58 17998.16 23691.45 31194.33 25197.02 29987.50 23798.45 28591.08 30389.11 33596.63 308
v114494.59 24993.92 25896.60 23896.21 33194.78 21798.59 17798.14 23991.86 30294.21 25897.02 29987.97 22598.41 29791.72 29289.57 32696.61 310
v124094.06 29193.29 29596.34 26696.03 34193.90 25098.44 20098.17 23491.18 32694.13 26297.01 30186.05 26198.42 28989.13 33789.50 33096.70 300
v1094.29 27293.55 28596.51 25196.39 32694.80 21598.99 8298.19 22691.35 31693.02 30796.99 30288.09 22198.41 29790.50 31388.41 34496.33 341
test_040291.32 32690.27 33294.48 33596.60 31491.12 31598.50 19397.22 32386.10 37588.30 36596.98 30377.65 35497.99 33478.13 39092.94 28794.34 373
miper_lstm_enhance94.33 26894.07 24795.11 31397.75 23190.97 31797.22 32398.03 26191.67 30792.76 31396.97 30490.03 17397.78 34792.51 27389.64 32596.56 317
v894.47 26193.77 27296.57 24296.36 32794.83 21399.05 6598.19 22691.92 29993.16 30196.97 30488.82 20598.48 28091.69 29387.79 34996.39 337
miper_ehance_all_eth95.01 22194.69 21395.97 28197.70 23793.31 27697.02 33898.07 25492.23 29193.51 28996.96 30691.85 13298.15 32093.68 23691.16 30896.44 336
PatchmatchNetpermissive95.71 18095.52 17196.29 27097.58 24690.72 32496.84 35497.52 30094.06 20097.08 15896.96 30689.24 19098.90 24192.03 28498.37 16099.26 131
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
v14894.29 27293.76 27495.91 28496.10 33792.93 28898.58 17997.97 26692.59 27793.47 29196.95 30888.53 21298.32 30692.56 27087.06 35996.49 331
gm-plane-assit95.88 34687.47 37389.74 34996.94 30999.19 19493.32 247
tpmrst95.63 18595.69 16695.44 30397.54 25188.54 36196.97 34097.56 29293.50 23997.52 14896.93 31089.49 18099.16 19695.25 18796.42 21898.64 205
thres600view795.49 19094.77 20897.67 16398.98 11995.02 20098.85 11996.90 34495.38 14096.63 18096.90 31184.29 29699.59 14088.65 34296.33 22098.40 218
our_test_393.65 29893.30 29494.69 32795.45 36089.68 34296.91 34597.65 28491.97 29891.66 33796.88 31289.67 17997.93 33988.02 34891.49 30396.48 333
thres100view90095.38 19994.70 21297.41 17998.98 11994.92 20898.87 11496.90 34495.38 14096.61 18296.88 31284.29 29699.56 14588.11 34596.29 22497.76 238
cl2294.68 24194.19 23896.13 27598.11 20493.60 26196.94 34298.31 20592.43 28393.32 29796.87 31486.51 25198.28 31494.10 22591.16 30896.51 328
LCM-MVSNet-Re95.22 21095.32 18294.91 31898.18 19787.85 37298.75 14495.66 37395.11 15688.96 35996.85 31590.26 17197.65 35095.65 17498.44 15699.22 137
WR-MVS_H95.05 22094.46 22496.81 22096.86 30095.82 16599.24 3299.24 1793.87 21392.53 32196.84 31690.37 16798.24 31693.24 24887.93 34896.38 338
EPMVS94.99 22494.48 22296.52 25097.22 27591.75 30497.23 32291.66 40094.11 19897.28 15196.81 31785.70 26798.84 24893.04 25597.28 19498.97 172
tpm294.19 27893.76 27495.46 30297.23 27489.04 35297.31 31896.85 35087.08 36996.21 19996.79 31883.75 31298.74 25892.43 27696.23 23298.59 209
WB-MVSnew94.19 27894.04 24894.66 32996.82 30392.14 29597.86 27395.96 36993.50 23995.64 21396.77 31988.06 22397.99 33484.87 36796.86 20393.85 384
D2MVS95.18 21395.08 19495.48 30097.10 28692.07 29898.30 21699.13 3094.02 20392.90 30996.73 32089.48 18198.73 25994.48 21193.60 27595.65 358
CostFormer94.95 22994.73 21195.60 29797.28 27189.06 35197.53 29996.89 34689.66 35096.82 17396.72 32186.05 26198.95 23495.53 17896.13 23598.79 186
test20.0390.89 33390.38 33192.43 35793.48 38188.14 36998.33 20997.56 29293.40 24487.96 36696.71 32280.69 33094.13 39279.15 38786.17 36695.01 370
Effi-MVS+-dtu96.29 14996.56 12695.51 29997.89 22490.22 33398.80 13698.10 24796.57 8796.45 19396.66 32390.81 15998.91 23895.72 17097.99 17297.40 251
test0.0.03 194.08 28993.51 28795.80 28995.53 35692.89 28997.38 30995.97 36895.11 15692.51 32396.66 32387.71 23196.94 36687.03 35393.67 27097.57 248
miper_enhance_ethall95.10 21794.75 21096.12 27697.53 25393.73 25896.61 36298.08 25292.20 29493.89 27396.65 32592.44 11298.30 31094.21 22091.16 30896.34 339
ADS-MVSNet294.58 25094.40 23095.11 31398.00 21288.74 35896.04 36997.30 31790.15 34196.47 19196.64 32687.89 22797.56 35590.08 31897.06 19799.02 167
ADS-MVSNet95.00 22294.45 22696.63 23398.00 21291.91 30196.04 36997.74 28190.15 34196.47 19196.64 32687.89 22798.96 22990.08 31897.06 19799.02 167
dp94.15 28293.90 26194.90 31997.31 27086.82 37796.97 34097.19 32491.22 32496.02 20496.61 32885.51 27199.02 22190.00 32294.30 24998.85 181
tfpn200view995.32 20694.62 21597.43 17798.94 12294.98 20498.68 16396.93 34295.33 14396.55 18696.53 32984.23 30099.56 14588.11 34596.29 22497.76 238
thres40095.38 19994.62 21597.65 16798.94 12294.98 20498.68 16396.93 34295.33 14396.55 18696.53 32984.23 30099.56 14588.11 34596.29 22498.40 218
EG-PatchMatch MVS91.13 33090.12 33394.17 34294.73 37289.00 35398.13 23997.81 27789.22 35885.32 38296.46 33167.71 38798.42 28987.89 35093.82 26795.08 367
TESTMET0.1,194.18 28193.69 27995.63 29596.92 29589.12 35096.91 34594.78 38293.17 25494.88 22896.45 33278.52 34498.92 23693.09 25298.50 15398.85 181
tpmvs94.60 24794.36 23195.33 30797.46 25788.60 36096.88 35197.68 28291.29 32093.80 27996.42 33388.58 20799.24 18891.06 30496.04 23698.17 229
Anonymous2023120691.66 32491.10 32493.33 34994.02 37987.35 37498.58 17997.26 32190.48 33490.16 35096.31 33483.83 31096.53 37579.36 38689.90 32296.12 347
tpm94.13 28393.80 26995.12 31296.50 32087.91 37197.44 30395.89 37292.62 27596.37 19696.30 33584.13 30398.30 31093.24 24891.66 30299.14 152
CR-MVSNet94.76 23894.15 24296.59 23997.00 28993.43 26894.96 38197.56 29292.46 27996.93 16696.24 33688.15 21997.88 34487.38 35196.65 21098.46 216
Patchmtry93.22 30792.35 31395.84 28896.77 30493.09 28694.66 38897.56 29287.37 36892.90 30996.24 33688.15 21997.90 34087.37 35290.10 32096.53 322
tmp_tt68.90 36966.97 37174.68 38650.78 41359.95 41087.13 39883.47 40938.80 40662.21 40296.23 33864.70 39176.91 40888.91 33930.49 40687.19 397
cascas94.63 24693.86 26596.93 21196.91 29794.27 23996.00 37298.51 16485.55 37994.54 23796.23 33884.20 30298.87 24595.80 16796.98 20297.66 244
thres20095.25 20894.57 21797.28 18698.81 13494.92 20898.20 22797.11 32795.24 15196.54 18896.22 34084.58 29399.53 15387.93 34996.50 21697.39 252
UnsupCasMVSNet_eth90.99 33289.92 33594.19 34194.08 37689.83 33797.13 33498.67 12893.69 22885.83 37896.19 34175.15 36996.74 36989.14 33679.41 38796.00 350
testing1195.00 22294.28 23397.16 19497.96 21893.36 27598.09 24597.06 33394.94 16995.33 22096.15 34276.89 36199.40 17395.77 16996.30 22398.72 194
MDA-MVSNet-bldmvs89.97 34088.35 34694.83 32495.21 36491.34 31197.64 29297.51 30188.36 36471.17 39996.13 34379.22 33896.63 37483.65 37486.27 36596.52 325
MIMVSNet93.26 30692.21 31596.41 26197.73 23593.13 28395.65 37697.03 33591.27 32294.04 26696.06 34475.33 36897.19 36286.56 35596.23 23298.92 178
testing9194.98 22694.25 23597.20 18997.94 21993.41 27098.00 25597.58 28994.99 16395.45 21696.04 34577.20 35899.42 17294.97 19496.02 23798.78 189
tpm cat193.36 30192.80 30395.07 31597.58 24687.97 37096.76 35797.86 27582.17 38893.53 28696.04 34586.13 25999.13 20289.24 33595.87 24098.10 231
N_pmnet87.12 35487.77 35285.17 37495.46 35961.92 40897.37 31170.66 41385.83 37788.73 36496.04 34585.33 27697.76 34880.02 38390.48 31495.84 353
testing9994.83 23494.08 24697.07 20297.94 21993.13 28398.10 24497.17 32594.86 17195.34 21796.00 34876.31 36499.40 17395.08 19195.90 23898.68 199
dmvs_testset87.64 35188.93 34483.79 37695.25 36363.36 40797.20 32591.17 40193.07 25985.64 38095.98 34985.30 27891.52 39969.42 39887.33 35596.49 331
MIMVSNet189.67 34288.28 34793.82 34392.81 38591.08 31698.01 25397.45 30987.95 36587.90 36795.87 35067.63 38894.56 39178.73 38988.18 34695.83 354
testing22294.12 28593.03 29997.37 18498.02 21194.66 21897.94 26196.65 35794.63 18195.78 21195.76 35171.49 38098.92 23691.17 30095.88 23998.52 213
EGC-MVSNET75.22 36769.54 37092.28 36094.81 37089.58 34397.64 29296.50 3591.82 4105.57 41195.74 35268.21 38496.26 37873.80 39591.71 30090.99 390
YYNet190.70 33589.39 33894.62 33194.79 37190.65 32697.20 32597.46 30587.54 36772.54 39795.74 35286.51 25196.66 37386.00 35986.76 36496.54 320
DSMNet-mixed92.52 31992.58 30992.33 35994.15 37582.65 38798.30 21694.26 38889.08 35992.65 31795.73 35485.01 28195.76 38386.24 35797.76 18298.59 209
IB-MVS91.98 1793.27 30591.97 31897.19 19197.47 25693.41 27097.09 33595.99 36793.32 24792.47 32495.73 35478.06 35099.53 15394.59 20882.98 37498.62 206
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
test-LLR95.10 21794.87 20695.80 28996.77 30489.70 34096.91 34595.21 37795.11 15694.83 23195.72 35687.71 23198.97 22593.06 25398.50 15398.72 194
test-mter94.08 28993.51 28795.80 28996.77 30489.70 34096.91 34595.21 37792.89 26794.83 23195.72 35677.69 35298.97 22593.06 25398.50 15398.72 194
MDA-MVSNet_test_wron90.71 33489.38 33994.68 32894.83 36990.78 32397.19 32797.46 30587.60 36672.41 39895.72 35686.51 25196.71 37285.92 36086.80 36396.56 317
FMVSNet591.81 32290.92 32594.49 33497.21 27692.09 29798.00 25597.55 29789.31 35790.86 34495.61 35974.48 37395.32 38785.57 36289.70 32496.07 349
test_method79.03 36078.17 36281.63 38286.06 40254.40 41382.75 40196.89 34639.54 40580.98 39095.57 36058.37 39594.73 39084.74 37178.61 38895.75 355
ETVMVS94.50 25793.44 29097.68 16298.18 19795.35 18598.19 23097.11 32793.73 22296.40 19495.39 36174.53 37298.84 24891.10 30196.31 22298.84 183
Syy-MVS92.55 31792.61 30892.38 35897.39 26683.41 38497.91 26497.46 30593.16 25593.42 29395.37 36284.75 28796.12 37977.00 39296.99 19997.60 246
myMVS_eth3d92.73 31592.01 31794.89 32097.39 26690.94 31897.91 26497.46 30593.16 25593.42 29395.37 36268.09 38596.12 37988.34 34496.99 19997.60 246
PVSNet_088.72 1991.28 32890.03 33495.00 31697.99 21487.29 37594.84 38498.50 16992.06 29689.86 35295.19 36479.81 33599.39 17692.27 27769.79 39898.33 223
DeepMVS_CXcopyleft86.78 37197.09 28772.30 39995.17 38075.92 39384.34 38495.19 36470.58 38195.35 38579.98 38589.04 33792.68 389
patchmatchnet-post95.10 36689.42 18498.89 242
Anonymous2024052191.18 32990.44 33093.42 34693.70 38088.47 36398.94 9497.56 29288.46 36389.56 35695.08 36777.15 36096.97 36583.92 37389.55 32894.82 371
Patchmatch-RL test91.49 32590.85 32693.41 34791.37 38884.40 38092.81 39395.93 37191.87 30187.25 36994.87 36888.99 19796.53 37592.54 27282.00 37699.30 125
OpenMVS_ROBcopyleft86.42 2089.00 34687.43 35493.69 34493.08 38389.42 34697.91 26496.89 34678.58 39185.86 37794.69 36969.48 38398.29 31377.13 39193.29 28393.36 386
WB-MVS84.86 35785.33 35883.46 37789.48 39469.56 40298.19 23096.42 36189.55 35281.79 38794.67 37084.80 28590.12 40052.44 40380.64 38490.69 391
SSC-MVS84.27 35884.71 36182.96 38189.19 39668.83 40398.08 24696.30 36489.04 36081.37 38994.47 37184.60 29289.89 40149.80 40579.52 38690.15 392
CL-MVSNet_self_test90.11 33889.14 34193.02 35491.86 38788.23 36896.51 36598.07 25490.49 33390.49 34894.41 37284.75 28795.34 38680.79 38274.95 39595.50 359
FPMVS77.62 36677.14 36679.05 38479.25 40760.97 40995.79 37495.94 37065.96 39867.93 40094.40 37337.73 40488.88 40368.83 39988.46 34387.29 396
KD-MVS_2432*160089.61 34387.96 35094.54 33294.06 37791.59 30895.59 37797.63 28689.87 34688.95 36094.38 37478.28 34796.82 36784.83 36868.05 39995.21 363
miper_refine_blended89.61 34387.96 35094.54 33294.06 37791.59 30895.59 37797.63 28689.87 34688.95 36094.38 37478.28 34796.82 36784.83 36868.05 39995.21 363
GG-mvs-BLEND96.59 23996.34 32894.98 20496.51 36588.58 40693.10 30694.34 37680.34 33398.05 32989.53 33096.99 19996.74 293
KD-MVS_self_test90.38 33689.38 33993.40 34892.85 38488.94 35697.95 25997.94 26990.35 33990.25 34993.96 37779.82 33495.94 38284.62 37276.69 39395.33 361
mvsany_test388.80 34788.04 34891.09 36589.78 39381.57 39097.83 27895.49 37493.81 21787.53 36893.95 37856.14 39697.43 35894.68 20183.13 37394.26 374
new_pmnet90.06 33989.00 34393.22 35294.18 37488.32 36696.42 36796.89 34686.19 37385.67 37993.62 37977.18 35997.10 36381.61 38089.29 33394.23 375
test_vis1_rt91.29 32790.65 32793.19 35397.45 26086.25 37898.57 18490.90 40393.30 24986.94 37193.59 38062.07 39399.11 20697.48 10395.58 24494.22 376
PM-MVS87.77 35086.55 35691.40 36491.03 39183.36 38696.92 34395.18 37991.28 32186.48 37693.42 38153.27 39796.74 36989.43 33381.97 37794.11 378
testf179.02 36177.70 36382.99 37988.10 39866.90 40494.67 38693.11 39471.08 39674.02 39493.41 38234.15 40693.25 39472.25 39678.50 38988.82 394
APD_test279.02 36177.70 36382.99 37988.10 39866.90 40494.67 38693.11 39471.08 39674.02 39493.41 38234.15 40693.25 39472.25 39678.50 38988.82 394
pmmvs-eth3d90.36 33789.05 34294.32 33991.10 39092.12 29697.63 29596.95 34188.86 36184.91 38393.13 38478.32 34696.74 36988.70 34081.81 37894.09 379
test_fmvs387.17 35287.06 35587.50 37091.21 38975.66 39499.05 6596.61 35892.79 27188.85 36292.78 38543.72 40093.49 39393.95 22884.56 37093.34 387
new-patchmatchnet88.50 34887.45 35391.67 36390.31 39285.89 37997.16 33297.33 31689.47 35383.63 38592.77 38676.38 36395.06 38982.70 37777.29 39294.06 381
pmmvs386.67 35584.86 36092.11 36288.16 39787.19 37696.63 36194.75 38379.88 39087.22 37092.75 38766.56 39095.20 38881.24 38176.56 39493.96 382
ambc89.49 36786.66 40075.78 39392.66 39496.72 35286.55 37592.50 38846.01 39897.90 34090.32 31482.09 37594.80 372
PatchT93.06 31291.97 31896.35 26596.69 31092.67 29094.48 38997.08 32986.62 37097.08 15892.23 38987.94 22697.90 34078.89 38896.69 20898.49 215
RPMNet92.81 31491.34 32397.24 18797.00 28993.43 26894.96 38198.80 9382.27 38796.93 16692.12 39086.98 24599.82 7676.32 39396.65 21098.46 216
test_f86.07 35685.39 35788.10 36989.28 39575.57 39597.73 28596.33 36389.41 35685.35 38191.56 39143.31 40295.53 38491.32 29884.23 37293.21 388
UnsupCasMVSNet_bld87.17 35285.12 35993.31 35091.94 38688.77 35794.92 38398.30 21184.30 38482.30 38690.04 39263.96 39297.25 36185.85 36174.47 39793.93 383
LCM-MVSNet78.70 36376.24 36886.08 37277.26 40971.99 40094.34 39096.72 35261.62 40076.53 39289.33 39333.91 40892.78 39781.85 37974.60 39693.46 385
PMMVS277.95 36575.44 36985.46 37382.54 40474.95 39694.23 39193.08 39672.80 39574.68 39387.38 39436.36 40591.56 39873.95 39463.94 40189.87 393
JIA-IIPM93.35 30292.49 31095.92 28396.48 32290.65 32695.01 38096.96 34085.93 37696.08 20287.33 39587.70 23398.78 25691.35 29795.58 24498.34 222
PMVScopyleft61.03 2365.95 37063.57 37473.09 38757.90 41251.22 41485.05 40093.93 39254.45 40144.32 40783.57 39613.22 41189.15 40258.68 40281.00 38178.91 401
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVS-HIRNet89.46 34588.40 34592.64 35697.58 24682.15 38894.16 39293.05 39775.73 39490.90 34382.52 39779.42 33798.33 30583.53 37598.68 14197.43 249
gg-mvs-nofinetune92.21 32190.58 32997.13 19796.75 30795.09 19895.85 37389.40 40585.43 38094.50 23981.98 39880.80 32998.40 30392.16 27898.33 16397.88 235
test_vis3_rt79.22 35977.40 36584.67 37586.44 40174.85 39797.66 29081.43 41084.98 38167.12 40181.91 39928.09 41097.60 35288.96 33880.04 38581.55 399
Gipumacopyleft78.40 36476.75 36783.38 37895.54 35580.43 39179.42 40297.40 31364.67 39973.46 39680.82 40045.65 39993.14 39666.32 40087.43 35376.56 402
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
ANet_high69.08 36865.37 37280.22 38365.99 41171.96 40190.91 39790.09 40482.62 38649.93 40678.39 40129.36 40981.75 40462.49 40138.52 40586.95 398
E-PMN64.94 37164.25 37367.02 38882.28 40559.36 41191.83 39685.63 40752.69 40260.22 40377.28 40241.06 40380.12 40646.15 40641.14 40361.57 404
EMVS64.07 37263.26 37566.53 38981.73 40658.81 41291.85 39584.75 40851.93 40459.09 40475.13 40343.32 40179.09 40742.03 40739.47 40461.69 403
MVEpermissive62.14 2263.28 37359.38 37674.99 38574.33 41065.47 40685.55 39980.50 41152.02 40351.10 40575.00 40410.91 41480.50 40551.60 40453.40 40278.99 400
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
X-MVStestdata94.06 29192.30 31499.34 2399.70 2298.35 4299.29 2498.88 6297.40 3698.46 8643.50 40595.90 4199.89 4797.85 7399.74 4699.78 21
testmvs21.48 37624.95 37911.09 39214.89 4146.47 41796.56 3639.87 4157.55 40817.93 40839.02 4069.43 4155.90 41116.56 41012.72 40820.91 406
test12320.95 37723.72 38012.64 39113.54 4158.19 41696.55 3646.13 4167.48 40916.74 40937.98 40712.97 4126.05 41016.69 4095.43 40923.68 405
test_post31.83 40888.83 20498.91 238
test_post196.68 36030.43 40987.85 23098.69 26192.59 268
wuyk23d30.17 37430.18 37830.16 39078.61 40843.29 41566.79 40314.21 41417.31 40714.82 41011.93 41011.55 41341.43 40937.08 40819.30 4075.76 407
test_blank0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
uanet_test0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
DCPMVS0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
pcd_1.5k_mvsjas7.88 37910.50 3820.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 41194.51 810.00 4120.00 4110.00 4100.00 408
sosnet-low-res0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
sosnet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
uncertanet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
Regformer0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
uanet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
WAC-MVS90.94 31888.66 341
FOURS199.82 198.66 2499.69 198.95 4697.46 3499.39 30
MSC_two_6792asdad99.62 699.17 9499.08 1198.63 13899.94 898.53 3099.80 2099.86 8
No_MVS99.62 699.17 9499.08 1198.63 13899.94 898.53 3099.80 2099.86 8
eth-test20.00 416
eth-test0.00 416
IU-MVS99.71 1999.23 798.64 13695.28 14799.63 1898.35 4799.81 1399.83 13
save fliter99.46 4998.38 3598.21 22598.71 11697.95 13
test_0728_SECOND99.71 199.72 1299.35 198.97 8598.88 6299.94 898.47 3899.81 1399.84 12
GSMVS99.20 139
test_part299.63 2999.18 1099.27 35
sam_mvs189.45 18399.20 139
sam_mvs88.99 197
MTGPAbinary98.74 108
MTMP98.89 10494.14 390
test9_res96.39 14899.57 8199.69 56
agg_prior295.87 16499.57 8199.68 61
agg_prior99.30 6898.38 3598.72 11397.57 14799.81 81
test_prior498.01 6197.86 273
test_prior99.19 4099.31 6498.22 4898.84 7999.70 11999.65 69
旧先验297.57 29891.30 31998.67 7399.80 8895.70 173
新几何297.64 292
无先验97.58 29798.72 11391.38 31399.87 5893.36 24699.60 77
原ACMM297.67 289
testdata299.89 4791.65 294
segment_acmp96.85 14
testdata197.32 31796.34 99
test1299.18 4299.16 9898.19 5098.53 15998.07 10695.13 7099.72 11399.56 8799.63 73
plane_prior797.42 26294.63 221
plane_prior697.35 26994.61 22487.09 242
plane_prior598.56 15399.03 21896.07 15494.27 25096.92 270
plane_prior394.61 22497.02 6495.34 217
plane_prior298.80 13697.28 45
plane_prior197.37 268
plane_prior94.60 22698.44 20096.74 7894.22 252
n20.00 417
nn0.00 417
door-mid94.37 386
test1198.66 131
door94.64 384
HQP5-MVS94.25 241
HQP-NCC97.20 27798.05 24996.43 9394.45 241
ACMP_Plane97.20 27798.05 24996.43 9394.45 241
BP-MVS95.30 183
HQP4-MVS94.45 24198.96 22996.87 281
HQP3-MVS98.46 17694.18 254
HQP2-MVS86.75 248
MDTV_nov1_ep13_2view84.26 38196.89 35090.97 32897.90 12489.89 17593.91 23099.18 148
ACMMP++_ref92.97 286
ACMMP++93.61 274
Test By Simon94.64 78