This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted by
APDe-MVS99.02 498.84 499.55 999.57 3398.96 1699.39 1298.93 3897.38 2699.41 1899.54 196.66 1799.84 5398.86 899.85 599.87 1
MSC_two_6792asdad99.62 699.17 8899.08 1198.63 12799.94 398.53 1699.80 1999.86 2
No_MVS99.62 699.17 8899.08 1198.63 12799.94 398.53 1699.80 1999.86 2
test_0728_THIRD97.32 2999.45 1699.46 1497.88 199.94 398.47 2499.86 199.85 4
MSP-MVS98.74 998.55 1399.29 2899.75 398.23 4699.26 2798.88 5097.52 1799.41 1898.78 11696.00 3399.79 8497.79 6199.59 6699.85 4
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
test_0728_SECOND99.71 199.72 1299.35 198.97 8298.88 5099.94 398.47 2499.81 1299.84 6
IU-MVS99.71 1999.23 798.64 12595.28 12999.63 998.35 3399.81 1299.83 7
test_241102_TWO98.87 5797.65 1099.53 1499.48 997.34 1199.94 398.43 2899.80 1999.83 7
DPE-MVScopyleft98.92 598.67 899.65 299.58 3299.20 998.42 18598.91 4497.58 1599.54 1399.46 1497.10 1299.94 397.64 7299.84 1099.83 7
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
patch_mono-298.36 4098.87 396.82 19699.53 3690.68 29998.64 15399.29 897.88 599.19 3099.52 396.80 1599.97 199.11 399.86 199.82 10
CHOSEN 1792x268897.12 10096.80 9798.08 11499.30 6594.56 21098.05 22699.71 193.57 21197.09 14098.91 10388.17 20399.89 3696.87 11399.56 7699.81 11
EI-MVSNet-Vis-set98.47 3298.39 1998.69 6599.46 4996.49 11698.30 19798.69 10997.21 3898.84 5099.36 2995.41 5099.78 8798.62 1399.65 5599.80 12
ACMMP_NAP98.61 1498.30 3399.55 999.62 3098.95 1798.82 11298.81 7495.80 10299.16 3399.47 1195.37 5399.92 2397.89 5399.75 3899.79 13
HPM-MVScopyleft98.36 4098.10 4699.13 4599.74 797.82 6599.53 898.80 8294.63 16098.61 6898.97 9195.13 6699.77 9297.65 7199.83 1199.79 13
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
region2R98.61 1498.38 2099.29 2899.74 798.16 5199.23 3198.93 3896.15 8798.94 4299.17 6095.91 3799.94 397.55 8099.79 2399.78 15
XVS98.70 1098.49 1599.34 2399.70 2298.35 4199.29 2298.88 5097.40 2398.46 7399.20 5395.90 3899.89 3697.85 5699.74 4199.78 15
X-MVStestdata94.06 26592.30 28699.34 2399.70 2298.35 4199.29 2298.88 5097.40 2398.46 7343.50 37495.90 3899.89 3697.85 5699.74 4199.78 15
ACMMPR98.59 1798.36 2299.29 2899.74 798.15 5299.23 3198.95 3496.10 9098.93 4699.19 5895.70 4299.94 397.62 7399.79 2399.78 15
PGM-MVS98.49 2998.23 3999.27 3399.72 1298.08 5598.99 7999.49 595.43 11999.03 3699.32 3595.56 4599.94 396.80 11899.77 2899.78 15
SteuartSystems-ACMMP98.90 698.75 699.36 2199.22 8398.43 3399.10 5798.87 5797.38 2699.35 2299.40 1897.78 599.87 4597.77 6299.85 599.78 15
Skip Steuart: Steuart Systems R&D Blog.
dcpmvs_298.08 4998.59 1096.56 22099.57 3390.34 30699.15 4698.38 18096.82 5999.29 2499.49 895.78 4099.57 12898.94 699.86 199.77 21
MTAPA98.58 1998.29 3499.46 1499.76 298.64 2598.90 9398.74 9797.27 3698.02 9799.39 1994.81 7399.96 297.91 5199.79 2399.77 21
mPP-MVS98.51 2898.26 3599.25 3499.75 398.04 5699.28 2498.81 7496.24 8398.35 8299.23 4895.46 4899.94 397.42 8799.81 1299.77 21
HPM-MVS_fast98.38 3898.13 4399.12 4799.75 397.86 6199.44 1198.82 6994.46 16798.94 4299.20 5395.16 6599.74 9797.58 7699.85 599.77 21
CP-MVS98.57 2298.36 2299.19 3899.66 2697.86 6199.34 1898.87 5795.96 9598.60 6999.13 6896.05 3199.94 397.77 6299.86 199.77 21
HyFIR lowres test96.90 10896.49 11498.14 10899.33 5695.56 16197.38 27999.65 292.34 25697.61 12898.20 18089.29 17399.10 18696.97 10197.60 17399.77 21
SMA-MVScopyleft98.58 1998.25 3699.56 899.51 3999.04 1598.95 8698.80 8293.67 20699.37 2199.52 396.52 2199.89 3698.06 4399.81 1299.76 27
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
HFP-MVS98.63 1398.40 1899.32 2799.72 1298.29 4499.23 3198.96 3396.10 9098.94 4299.17 6096.06 3099.92 2397.62 7399.78 2699.75 28
CPTT-MVS97.72 6397.32 7798.92 5799.64 2897.10 8899.12 5298.81 7492.34 25698.09 9099.08 8093.01 9899.92 2396.06 14099.77 2899.75 28
DVP-MVS++99.08 298.89 299.64 399.17 8899.23 799.69 198.88 5097.32 2999.53 1499.47 1197.81 399.94 398.47 2499.72 4699.74 30
PC_three_145295.08 14299.60 1099.16 6397.86 298.47 25997.52 8399.72 4699.74 30
ZNCC-MVS98.49 2998.20 4199.35 2299.73 1198.39 3499.19 4198.86 6395.77 10398.31 8599.10 7295.46 4899.93 1897.57 7999.81 1299.74 30
MCST-MVS98.65 1198.37 2199.48 1399.60 3198.87 1998.41 18698.68 11297.04 4998.52 7298.80 11496.78 1699.83 5597.93 5099.61 6399.74 30
APD-MVScopyleft98.35 4298.00 5099.42 1699.51 3998.72 2198.80 11998.82 6994.52 16499.23 2799.25 4795.54 4799.80 7496.52 12699.77 2899.74 30
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
TSAR-MVS + MP.98.78 798.62 999.24 3599.69 2498.28 4599.14 4898.66 12096.84 5799.56 1199.31 3796.34 2399.70 10598.32 3499.73 4399.73 35
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
EI-MVSNet-UG-set98.41 3698.34 2798.61 7099.45 5296.32 12598.28 20098.68 11297.17 4198.74 5799.37 2595.25 6199.79 8498.57 1499.54 7999.73 35
MP-MVScopyleft98.33 4598.01 4999.28 3199.75 398.18 4999.22 3598.79 8796.13 8897.92 10899.23 4894.54 7699.94 396.74 12199.78 2699.73 35
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
SR-MVS98.57 2298.35 2499.24 3599.53 3698.18 4999.09 5898.82 6996.58 6999.10 3599.32 3595.39 5199.82 6297.70 6999.63 6099.72 38
GST-MVS98.43 3598.12 4499.34 2399.72 1298.38 3599.09 5898.82 6995.71 10798.73 5999.06 8295.27 5999.93 1897.07 9899.63 6099.72 38
APD-MVS_3200maxsize98.53 2798.33 3199.15 4499.50 4197.92 6099.15 4698.81 7496.24 8399.20 2899.37 2595.30 5799.80 7497.73 6499.67 5299.72 38
DeepPCF-MVS96.37 297.93 5598.48 1796.30 24699.00 10689.54 31797.43 27698.87 5798.16 299.26 2699.38 2496.12 2999.64 11798.30 3599.77 2899.72 38
SR-MVS-dyc-post98.54 2698.35 2499.13 4599.49 4597.86 6199.11 5498.80 8296.49 7299.17 3199.35 3195.34 5599.82 6297.72 6599.65 5599.71 42
RE-MVS-def98.34 2799.49 4597.86 6199.11 5498.80 8296.49 7299.17 3199.35 3195.29 5897.72 6599.65 5599.71 42
NCCC98.61 1498.35 2499.38 1899.28 7198.61 2698.45 17898.76 9397.82 698.45 7698.93 10096.65 1899.83 5597.38 8999.41 9399.71 42
3Dnovator+94.38 697.43 8496.78 10099.38 1897.83 20498.52 2899.37 1498.71 10597.09 4892.99 28099.13 6889.36 17199.89 3696.97 10199.57 7099.71 42
SED-MVS99.09 198.91 199.63 499.71 1999.24 599.02 7398.87 5797.65 1099.73 299.48 997.53 799.94 398.43 2899.81 1299.70 46
OPU-MVS99.37 2099.24 8199.05 1499.02 7399.16 6397.81 399.37 15597.24 9299.73 4399.70 46
ACMMPcopyleft98.23 4797.95 5199.09 4899.74 797.62 6999.03 7099.41 695.98 9397.60 12999.36 2994.45 8199.93 1897.14 9598.85 12199.70 46
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DVP-MVScopyleft99.03 398.83 599.63 499.72 1299.25 298.97 8298.58 13797.62 1299.45 1699.46 1497.42 999.94 398.47 2499.81 1299.69 49
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test9_res96.39 13199.57 7099.69 49
CNVR-MVS98.78 798.56 1299.45 1599.32 5998.87 1998.47 17798.81 7497.72 798.76 5699.16 6397.05 1399.78 8798.06 4399.66 5499.69 49
MVS_111021_HR98.47 3298.34 2798.88 6099.22 8397.32 7797.91 23999.58 397.20 3998.33 8399.00 8995.99 3499.64 11798.05 4599.76 3499.69 49
DeepC-MVS_fast96.70 198.55 2598.34 2799.18 4099.25 7598.04 5698.50 17498.78 8997.72 798.92 4799.28 4095.27 5999.82 6297.55 8099.77 2899.69 49
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
train_agg97.97 5197.52 6699.33 2699.31 6198.50 2997.92 23798.73 10092.98 23397.74 11698.68 12696.20 2699.80 7496.59 12299.57 7099.68 54
agg_prior295.87 14799.57 7099.68 54
CDPH-MVS97.94 5497.49 6799.28 3199.47 4798.44 3197.91 23998.67 11792.57 24898.77 5598.85 10895.93 3699.72 9995.56 15899.69 5099.68 54
DP-MVS96.59 11895.93 13598.57 7299.34 5496.19 13198.70 14398.39 17789.45 32494.52 21399.35 3191.85 12099.85 5092.89 24198.88 11899.68 54
SF-MVS98.59 1798.32 3299.41 1799.54 3598.71 2299.04 6798.81 7495.12 13799.32 2399.39 1996.22 2499.84 5397.72 6599.73 4399.67 58
MP-MVS-pluss98.31 4697.92 5299.49 1299.72 1298.88 1898.43 18398.78 8994.10 17597.69 12199.42 1795.25 6199.92 2398.09 4299.80 1999.67 58
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MG-MVS97.81 5997.60 6098.44 8799.12 9695.97 14197.75 25598.78 8996.89 5698.46 7399.22 5093.90 9199.68 11194.81 17899.52 8199.67 58
HPM-MVS++copyleft98.58 1998.25 3699.55 999.50 4199.08 1198.72 13898.66 12097.51 1898.15 8698.83 11195.70 4299.92 2397.53 8299.67 5299.66 61
UA-Net97.96 5297.62 5998.98 5398.86 11897.47 7498.89 9799.08 2296.67 6698.72 6099.54 193.15 9799.81 6794.87 17498.83 12299.65 62
test_prior99.19 3899.31 6198.22 4798.84 6799.70 10599.65 62
SD-MVS98.64 1298.68 798.53 7899.33 5698.36 4098.90 9398.85 6697.28 3299.72 499.39 1996.63 1997.60 32798.17 3899.85 599.64 64
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
3Dnovator94.51 597.46 7996.93 9299.07 4997.78 20697.64 6799.35 1799.06 2397.02 5093.75 25599.16 6389.25 17599.92 2397.22 9499.75 3899.64 64
test111195.94 14995.78 14096.41 23898.99 10990.12 30899.04 6792.45 36896.99 5298.03 9599.27 4281.40 29999.48 14896.87 11399.04 10999.63 66
test1299.18 4099.16 9298.19 4898.53 14798.07 9195.13 6699.72 9999.56 7699.63 66
旧先验199.29 6797.48 7398.70 10899.09 7895.56 4599.47 8799.61 68
test22299.23 8297.17 8797.40 27798.66 12088.68 33198.05 9298.96 9694.14 8799.53 8099.61 68
无先验97.58 26998.72 10291.38 28399.87 4593.36 22599.60 70
CVMVSNet95.43 17796.04 13093.57 31897.93 19983.62 35598.12 22098.59 13295.68 10896.56 16699.02 8487.51 22097.51 33293.56 22197.44 17599.60 70
test250694.44 24093.91 23796.04 25499.02 10388.99 32799.06 6279.47 38196.96 5398.36 8099.26 4377.21 33299.52 14296.78 11999.04 10999.59 72
ECVR-MVScopyleft95.95 14795.71 14696.65 20699.02 10390.86 29499.03 7091.80 36996.96 5398.10 8999.26 4381.31 30099.51 14396.90 10799.04 10999.59 72
新几何199.16 4399.34 5498.01 5898.69 10990.06 31498.13 8798.95 9894.60 7599.89 3691.97 26599.47 8799.59 72
PHI-MVS98.34 4398.06 4799.18 4099.15 9498.12 5499.04 6799.09 2193.32 22098.83 5299.10 7296.54 2099.83 5597.70 6999.76 3499.59 72
testdata98.26 10199.20 8695.36 16998.68 11291.89 27098.60 6999.10 7294.44 8299.82 6294.27 19799.44 9199.58 76
Test_1112_low_res96.34 13295.66 15198.36 9498.56 14495.94 14497.71 25898.07 23992.10 26594.79 20797.29 25391.75 12299.56 13194.17 20096.50 19699.58 76
1112_ss96.63 11696.00 13298.50 8098.56 14496.37 12298.18 21498.10 23292.92 23694.84 20398.43 15292.14 11399.58 12794.35 19396.51 19599.56 78
PAPM_NR97.46 7997.11 8498.50 8099.50 4196.41 12198.63 15598.60 13095.18 13497.06 14498.06 18994.26 8699.57 12893.80 21398.87 12099.52 79
CSCG97.85 5897.74 5698.20 10599.67 2595.16 17799.22 3599.32 793.04 23197.02 14698.92 10295.36 5499.91 3197.43 8699.64 5999.52 79
DeepC-MVS95.98 397.88 5697.58 6198.77 6299.25 7596.93 9398.83 11098.75 9596.96 5396.89 15399.50 690.46 15299.87 4597.84 5899.76 3499.52 79
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CANet98.05 5097.76 5598.90 5998.73 12797.27 7998.35 18898.78 8997.37 2897.72 11998.96 9691.53 13199.92 2398.79 1099.65 5599.51 82
TSAR-MVS + GP.98.38 3898.24 3898.81 6199.22 8397.25 8498.11 22298.29 19897.19 4098.99 4199.02 8496.22 2499.67 11298.52 2298.56 13599.51 82
原ACMM198.65 6899.32 5996.62 10598.67 11793.27 22497.81 11198.97 9195.18 6499.83 5593.84 21199.46 9099.50 84
VNet97.79 6097.40 7498.96 5598.88 11697.55 7198.63 15598.93 3896.74 6399.02 3798.84 10990.33 15599.83 5598.53 1696.66 18999.50 84
EPNet97.28 9196.87 9598.51 7994.98 33796.14 13298.90 9397.02 31698.28 195.99 18699.11 7091.36 13399.89 3696.98 10099.19 10599.50 84
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PVSNet_Blended_VisFu97.70 6597.46 7098.44 8799.27 7295.91 14998.63 15599.16 1894.48 16697.67 12298.88 10592.80 10099.91 3197.11 9699.12 10799.50 84
MVS_111021_LR98.34 4398.23 3998.67 6799.27 7296.90 9597.95 23599.58 397.14 4498.44 7799.01 8895.03 6999.62 12397.91 5199.75 3899.50 84
casdiffmvs_mvgpermissive97.72 6397.48 6998.44 8798.42 15396.59 11098.92 9198.44 16796.20 8597.76 11399.20 5391.66 12599.23 16598.27 3798.41 14499.49 89
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
casdiffmvspermissive97.63 7097.41 7398.28 9898.33 16696.14 13298.82 11298.32 18896.38 8097.95 10399.21 5191.23 13899.23 16598.12 4098.37 14599.48 90
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
WTY-MVS97.37 8996.92 9398.72 6498.86 11896.89 9798.31 19598.71 10595.26 13097.67 12298.56 14092.21 11199.78 8795.89 14596.85 18499.48 90
MSLP-MVS++98.56 2498.57 1198.55 7499.26 7496.80 9898.71 13999.05 2597.28 3298.84 5099.28 4096.47 2299.40 15398.52 2299.70 4999.47 92
114514_t96.93 10696.27 12198.92 5799.50 4197.63 6898.85 10698.90 4584.80 35197.77 11299.11 7092.84 9999.66 11494.85 17599.77 2899.47 92
IS-MVSNet97.22 9396.88 9498.25 10298.85 12096.36 12399.19 4197.97 25295.39 12197.23 13698.99 9091.11 14098.93 21194.60 18598.59 13399.47 92
PAPR96.84 11096.24 12398.65 6898.72 13196.92 9497.36 28398.57 13993.33 21996.67 16197.57 23694.30 8499.56 13191.05 28298.59 13399.47 92
LFMVS95.86 15494.98 18298.47 8498.87 11796.32 12598.84 10996.02 33993.40 21798.62 6799.20 5374.99 34299.63 12097.72 6597.20 17999.46 96
Vis-MVSNet (Re-imp)96.87 10996.55 11197.83 12798.73 12795.46 16699.20 3998.30 19694.96 14796.60 16598.87 10690.05 15898.59 24593.67 21798.60 13299.46 96
Vis-MVSNetpermissive97.42 8597.11 8498.34 9598.66 13796.23 12899.22 3599.00 2896.63 6898.04 9499.21 5188.05 20899.35 15696.01 14399.21 10399.45 98
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
test_vis1_n95.47 17395.13 17396.49 22997.77 20790.41 30499.27 2698.11 22996.58 6999.66 699.18 5967.00 35799.62 12399.21 299.40 9599.44 99
Anonymous20240521195.28 18994.49 20397.67 14499.00 10693.75 23798.70 14397.04 31390.66 30296.49 17298.80 11478.13 32499.83 5596.21 13695.36 21899.44 99
GeoE96.58 12096.07 12898.10 11398.35 15995.89 15199.34 1898.12 22693.12 22996.09 18298.87 10689.71 16498.97 20192.95 23798.08 15699.43 101
DPM-MVS97.55 7796.99 9099.23 3799.04 10198.55 2797.17 29998.35 18494.85 15297.93 10798.58 13795.07 6899.71 10492.60 24599.34 9999.43 101
DELS-MVS98.40 3798.20 4198.99 5299.00 10697.66 6697.75 25598.89 4797.71 998.33 8398.97 9194.97 7099.88 4498.42 3099.76 3499.42 103
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
baseline97.64 6997.44 7298.25 10298.35 15996.20 12999.00 7798.32 18896.33 8298.03 9599.17 6091.35 13499.16 17298.10 4198.29 15199.39 104
sss97.39 8796.98 9198.61 7098.60 14396.61 10798.22 20598.93 3893.97 18398.01 10098.48 14691.98 11899.85 5096.45 12898.15 15399.39 104
EPP-MVSNet97.46 7997.28 7897.99 11998.64 13995.38 16899.33 2198.31 19093.61 21097.19 13799.07 8194.05 8899.23 16596.89 10898.43 14399.37 106
test_yl97.22 9396.78 10098.54 7698.73 12796.60 10898.45 17898.31 19094.70 15498.02 9798.42 15490.80 14699.70 10596.81 11696.79 18699.34 107
DCV-MVSNet97.22 9396.78 10098.54 7698.73 12796.60 10898.45 17898.31 19094.70 15498.02 9798.42 15490.80 14699.70 10596.81 11696.79 18699.34 107
diffmvspermissive97.58 7497.40 7498.13 11098.32 16895.81 15498.06 22598.37 18196.20 8598.74 5798.89 10491.31 13699.25 16298.16 3998.52 13699.34 107
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MVSFormer97.57 7597.49 6797.84 12698.07 18995.76 15599.47 998.40 17594.98 14598.79 5398.83 11192.34 10598.41 27396.91 10499.59 6699.34 107
jason97.32 9097.08 8698.06 11697.45 23595.59 15997.87 24597.91 25994.79 15398.55 7198.83 11191.12 13999.23 16597.58 7699.60 6499.34 107
jason: jason.
QAPM96.29 13395.40 15598.96 5597.85 20397.60 7099.23 3198.93 3889.76 31993.11 27799.02 8489.11 18099.93 1891.99 26499.62 6299.34 107
mvs_anonymous96.70 11596.53 11397.18 17098.19 17993.78 23498.31 19598.19 21194.01 18094.47 21598.27 17492.08 11698.46 26097.39 8897.91 16099.31 113
lupinMVS97.44 8397.22 8198.12 11298.07 18995.76 15597.68 26097.76 26594.50 16598.79 5398.61 13292.34 10599.30 15997.58 7699.59 6699.31 113
CDS-MVSNet96.99 10496.69 10597.90 12498.05 19295.98 13698.20 20898.33 18793.67 20696.95 14798.49 14593.54 9398.42 26595.24 16997.74 16899.31 113
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
Patchmatch-RL test91.49 29790.85 29893.41 32091.37 35984.40 35292.81 36295.93 34391.87 27187.25 34194.87 33988.99 18396.53 35092.54 25182.00 34799.30 116
BH-RMVSNet95.92 15195.32 16497.69 14298.32 16894.64 20298.19 21197.45 29294.56 16196.03 18498.61 13285.02 26499.12 18090.68 28799.06 10899.30 116
Patchmatch-test94.42 24193.68 25696.63 21097.60 21991.76 27894.83 35497.49 28989.45 32494.14 23597.10 26388.99 18398.83 22585.37 33898.13 15499.29 118
TAMVS97.02 10396.79 9997.70 14198.06 19195.31 17398.52 16998.31 19093.95 18497.05 14598.61 13293.49 9498.52 25395.33 16397.81 16499.29 118
test_vis1_n_192096.71 11496.84 9696.31 24599.11 9789.74 31299.05 6498.58 13798.08 399.87 199.37 2578.48 32099.93 1899.29 199.69 5099.27 120
PVSNet_Blended97.38 8897.12 8398.14 10899.25 7595.35 17197.28 29099.26 993.13 22897.94 10598.21 17992.74 10199.81 6796.88 11099.40 9599.27 120
PatchmatchNetpermissive95.71 16295.52 15396.29 24797.58 22090.72 29896.84 32397.52 28594.06 17697.08 14196.96 28589.24 17698.90 21692.03 26398.37 14599.26 122
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
CHOSEN 280x42097.18 9797.18 8297.20 16898.81 12393.27 25695.78 34499.15 1995.25 13196.79 15998.11 18692.29 10799.07 18998.56 1599.85 599.25 123
mvsany_test197.69 6697.70 5797.66 14798.24 17194.18 22597.53 27197.53 28495.52 11599.66 699.51 594.30 8499.56 13198.38 3198.62 13199.23 124
PLCcopyleft95.07 497.20 9696.78 10098.44 8799.29 6796.31 12798.14 21798.76 9392.41 25496.39 17698.31 16994.92 7299.78 8794.06 20598.77 12599.23 124
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
LCM-MVSNet-Re95.22 19295.32 16494.91 29398.18 18187.85 34498.75 12795.66 34595.11 13888.96 33196.85 29490.26 15797.65 32595.65 15698.44 14199.22 126
GSMVS99.20 127
sam_mvs189.45 16999.20 127
CS-MVS-test98.49 2998.50 1498.46 8599.20 8697.05 8999.64 498.50 15697.45 2298.88 4899.14 6795.25 6199.15 17598.83 999.56 7699.20 127
SCA95.46 17495.13 17396.46 23597.67 21491.29 28997.33 28697.60 27494.68 15796.92 15197.10 26383.97 28598.89 21792.59 24798.32 15099.20 127
Effi-MVS+97.12 10096.69 10598.39 9398.19 17996.72 10397.37 28198.43 17193.71 19997.65 12598.02 19292.20 11299.25 16296.87 11397.79 16599.19 131
alignmvs97.56 7697.07 8799.01 5198.66 13798.37 3998.83 11098.06 24496.74 6398.00 10197.65 22890.80 14699.48 14898.37 3296.56 19399.19 131
DROMVSNet98.21 4898.11 4598.49 8298.34 16497.26 8399.61 598.43 17196.78 6098.87 4998.84 10993.72 9299.01 19998.91 799.50 8299.19 131
DP-MVS Recon97.86 5797.46 7099.06 5099.53 3698.35 4198.33 19098.89 4792.62 24598.05 9298.94 9995.34 5599.65 11596.04 14199.42 9299.19 131
OMC-MVS97.55 7797.34 7698.20 10599.33 5695.92 14898.28 20098.59 13295.52 11597.97 10299.10 7293.28 9699.49 14495.09 17198.88 11899.19 131
MDTV_nov1_ep13_2view84.26 35396.89 31990.97 29997.90 10989.89 16193.91 20999.18 136
MVS_Test97.28 9197.00 8998.13 11098.33 16695.97 14198.74 13098.07 23994.27 17198.44 7798.07 18892.48 10399.26 16196.43 12998.19 15299.16 137
ab-mvs96.42 12695.71 14698.55 7498.63 14096.75 10197.88 24498.74 9793.84 18996.54 17098.18 18285.34 26099.75 9595.93 14496.35 19999.15 138
PVSNet91.96 1896.35 13196.15 12596.96 18699.17 8892.05 27496.08 33798.68 11293.69 20297.75 11597.80 21688.86 18999.69 11094.26 19899.01 11299.15 138
tpm94.13 25893.80 24595.12 28796.50 29287.91 34397.44 27495.89 34492.62 24596.37 17796.30 31384.13 28298.30 28693.24 22791.66 27499.14 140
F-COLMAP97.09 10296.80 9797.97 12099.45 5294.95 19098.55 16898.62 12993.02 23296.17 18198.58 13794.01 8999.81 6793.95 20798.90 11699.14 140
Anonymous2024052995.10 19994.22 21697.75 13699.01 10594.26 22198.87 10398.83 6885.79 34796.64 16298.97 9178.73 31899.85 5096.27 13294.89 21999.12 142
h-mvs3396.17 13895.62 15297.81 13099.03 10294.45 21298.64 15398.75 9597.48 1998.67 6198.72 12389.76 16299.86 4997.95 4881.59 35099.11 143
PMMVS96.60 11796.33 11897.41 15897.90 20193.93 23097.35 28498.41 17392.84 23997.76 11397.45 24491.10 14199.20 16996.26 13397.91 16099.11 143
CS-MVS98.44 3498.49 1598.31 9799.08 9996.73 10299.67 398.47 16297.17 4198.94 4299.10 7295.73 4199.13 17898.71 1199.49 8499.09 145
GA-MVS94.81 21494.03 22697.14 17397.15 25693.86 23296.76 32697.58 27594.00 18194.76 20897.04 27680.91 30498.48 25691.79 26896.25 20799.09 145
EPNet_dtu95.21 19394.95 18495.99 25696.17 30790.45 30398.16 21697.27 30496.77 6193.14 27698.33 16790.34 15498.42 26585.57 33598.81 12499.09 145
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
TAPA-MVS93.98 795.35 18594.56 20097.74 13799.13 9594.83 19698.33 19098.64 12586.62 33996.29 17898.61 13294.00 9099.29 16080.00 35699.41 9399.09 145
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
canonicalmvs97.67 6797.23 8098.98 5398.70 13298.38 3599.34 1898.39 17796.76 6297.67 12297.40 24892.26 10899.49 14498.28 3696.28 20599.08 149
VDD-MVS95.82 15795.23 16997.61 15098.84 12193.98 22998.68 14697.40 29695.02 14497.95 10399.34 3474.37 34699.78 8798.64 1296.80 18599.08 149
EIA-MVS97.75 6197.58 6198.27 9998.38 15696.44 11899.01 7598.60 13095.88 9997.26 13597.53 23994.97 7099.33 15897.38 8999.20 10499.05 151
tttt051796.07 14195.51 15497.78 13298.41 15594.84 19499.28 2494.33 35894.26 17297.64 12698.64 13084.05 28399.47 15095.34 16297.60 17399.03 152
ET-MVSNet_ETH3D94.13 25892.98 27497.58 15198.22 17496.20 12997.31 28895.37 34794.53 16279.56 36097.63 23286.51 23697.53 33196.91 10490.74 28499.02 153
ADS-MVSNet294.58 22994.40 21295.11 28898.00 19388.74 33096.04 33897.30 30190.15 31296.47 17396.64 30487.89 21197.56 33090.08 29497.06 18099.02 153
ADS-MVSNet95.00 20494.45 20896.63 21098.00 19391.91 27696.04 33897.74 26790.15 31296.47 17396.64 30487.89 21198.96 20590.08 29497.06 18099.02 153
CNLPA97.45 8297.03 8898.73 6399.05 10097.44 7698.07 22498.53 14795.32 12796.80 15898.53 14193.32 9599.72 9994.31 19699.31 10199.02 153
AdaColmapbinary97.15 9996.70 10498.48 8399.16 9296.69 10498.01 23098.89 4794.44 16896.83 15498.68 12690.69 14999.76 9394.36 19299.29 10298.98 157
Fast-Effi-MVS+96.28 13595.70 14898.03 11798.29 17095.97 14198.58 16198.25 20491.74 27395.29 19597.23 25791.03 14399.15 17592.90 23997.96 15998.97 158
EPMVS94.99 20594.48 20496.52 22797.22 24891.75 27997.23 29291.66 37094.11 17497.28 13496.81 29685.70 25298.84 22393.04 23497.28 17898.97 158
LS3D97.16 9896.66 10898.68 6698.53 14797.19 8698.93 9098.90 4592.83 24095.99 18699.37 2592.12 11499.87 4593.67 21799.57 7098.97 158
HY-MVS93.96 896.82 11196.23 12498.57 7298.46 15197.00 9098.14 21798.21 20793.95 18496.72 16097.99 19691.58 12699.76 9394.51 18996.54 19498.95 161
thisisatest053096.01 14395.36 16097.97 12098.38 15695.52 16498.88 10094.19 36094.04 17797.64 12698.31 16983.82 29099.46 15195.29 16697.70 17098.93 162
MIMVSNet93.26 28092.21 28796.41 23897.73 21293.13 26195.65 34597.03 31491.27 29294.04 24096.06 32175.33 34097.19 33786.56 32896.23 20898.92 163
baseline195.84 15595.12 17598.01 11898.49 15095.98 13698.73 13497.03 31495.37 12496.22 17998.19 18189.96 16099.16 17294.60 18587.48 32498.90 164
test_fmvs1_n95.90 15295.99 13395.63 27298.67 13688.32 33899.26 2798.22 20696.40 7899.67 599.26 4373.91 34799.70 10599.02 599.50 8298.87 165
TESTMET0.1,194.18 25693.69 25595.63 27296.92 26889.12 32396.91 31494.78 35393.17 22794.88 20296.45 31078.52 31998.92 21293.09 23198.50 13898.85 166
dp94.15 25793.90 23894.90 29497.31 24386.82 34996.97 30997.19 30891.22 29496.02 18596.61 30685.51 25699.02 19790.00 29894.30 22198.85 166
PAPM94.95 20994.00 23097.78 13297.04 26195.65 15896.03 34098.25 20491.23 29394.19 23397.80 21691.27 13798.86 22282.61 35097.61 17298.84 168
VDDNet95.36 18494.53 20197.86 12598.10 18895.13 18098.85 10697.75 26690.46 30698.36 8099.39 1973.27 34999.64 11797.98 4696.58 19298.81 169
FE-MVS95.62 16894.90 18697.78 13298.37 15894.92 19197.17 29997.38 29890.95 30097.73 11897.70 22285.32 26299.63 12091.18 27798.33 14898.79 170
CostFormer94.95 20994.73 19395.60 27497.28 24489.06 32497.53 27196.89 32489.66 32196.82 15696.72 29986.05 24698.95 21095.53 15996.13 21198.79 170
UGNet96.78 11296.30 12098.19 10798.24 17195.89 15198.88 10098.93 3897.39 2596.81 15797.84 21082.60 29499.90 3496.53 12599.49 8498.79 170
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
test_fmvs196.42 12696.67 10795.66 27198.82 12288.53 33498.80 11998.20 20996.39 7999.64 899.20 5380.35 31099.67 11299.04 499.57 7098.78 173
UniMVSNet_ETH3D94.24 25193.33 26896.97 18597.19 25393.38 25398.74 13098.57 13991.21 29593.81 25198.58 13772.85 35098.77 23195.05 17293.93 23698.77 174
test-LLR95.10 19994.87 18895.80 26696.77 27689.70 31396.91 31495.21 34895.11 13894.83 20595.72 32987.71 21698.97 20193.06 23298.50 13898.72 175
test-mter94.08 26393.51 26395.80 26696.77 27689.70 31396.91 31495.21 34892.89 23794.83 20595.72 32977.69 32798.97 20193.06 23298.50 13898.72 175
FA-MVS(test-final)96.41 13095.94 13497.82 12998.21 17595.20 17697.80 25197.58 27593.21 22597.36 13397.70 22289.47 16899.56 13194.12 20297.99 15798.71 177
MAR-MVS96.91 10796.40 11698.45 8698.69 13496.90 9598.66 15198.68 11292.40 25597.07 14397.96 19991.54 13099.75 9593.68 21598.92 11598.69 178
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
thisisatest051595.61 17194.89 18797.76 13598.15 18595.15 17996.77 32594.41 35692.95 23597.18 13897.43 24684.78 26999.45 15294.63 18297.73 16998.68 179
BH-untuned95.95 14795.72 14396.65 20698.55 14692.26 27098.23 20497.79 26493.73 19794.62 21098.01 19488.97 18799.00 20093.04 23498.51 13798.68 179
PCF-MVS93.45 1194.68 22093.43 26698.42 9198.62 14196.77 10095.48 34898.20 20984.63 35293.34 26898.32 16888.55 19699.81 6784.80 34298.96 11498.68 179
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
CANet_DTU96.96 10596.55 11198.21 10498.17 18396.07 13497.98 23398.21 20797.24 3797.13 13998.93 10086.88 23299.91 3195.00 17399.37 9898.66 182
PatchMatch-RL96.59 11896.03 13198.27 9999.31 6196.51 11597.91 23999.06 2393.72 19896.92 15198.06 18988.50 19899.65 11591.77 26999.00 11398.66 182
tpmrst95.63 16795.69 14995.44 27997.54 22588.54 33396.97 30997.56 27793.50 21397.52 13196.93 28989.49 16699.16 17295.25 16896.42 19898.64 184
IB-MVS91.98 1793.27 27991.97 29097.19 16997.47 23093.41 25197.09 30495.99 34093.32 22092.47 29695.73 32778.06 32599.53 13994.59 18782.98 34598.62 185
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
DSMNet-mixed92.52 29192.58 28292.33 33194.15 34682.65 35898.30 19794.26 35989.08 32992.65 28995.73 32785.01 26595.76 35586.24 33097.76 16798.59 186
tpm294.19 25493.76 25095.46 27897.23 24789.04 32597.31 28896.85 32887.08 33896.21 18096.79 29783.75 29198.74 23292.43 25596.23 20898.59 186
ETV-MVS97.96 5297.81 5398.40 9298.42 15397.27 7998.73 13498.55 14396.84 5798.38 7997.44 24595.39 5199.35 15697.62 7398.89 11798.58 188
MSDG95.93 15095.30 16797.83 12798.90 11495.36 16996.83 32498.37 18191.32 28894.43 22098.73 12290.27 15699.60 12590.05 29698.82 12398.52 189
PatchT93.06 28591.97 29096.35 24296.69 28292.67 26794.48 35897.08 31086.62 33997.08 14192.23 35887.94 21097.90 31678.89 36096.69 18898.49 190
CR-MVSNet94.76 21794.15 22196.59 21697.00 26293.43 24994.96 35097.56 27792.46 24996.93 14996.24 31488.15 20497.88 32087.38 32496.65 19098.46 191
RPMNet92.81 28791.34 29597.24 16697.00 26293.43 24994.96 35098.80 8282.27 35696.93 14992.12 35986.98 23099.82 6276.32 36496.65 19098.46 191
thres600view795.49 17294.77 19097.67 14498.98 11095.02 18398.85 10696.90 32295.38 12296.63 16396.90 29084.29 27699.59 12688.65 31796.33 20098.40 193
thres40095.38 18194.62 19797.65 14898.94 11294.98 18798.68 14696.93 32095.33 12596.55 16896.53 30784.23 27999.56 13188.11 31896.29 20298.40 193
TR-MVS94.94 21194.20 21797.17 17197.75 20894.14 22697.59 26897.02 31692.28 26095.75 18997.64 23083.88 28798.96 20589.77 30096.15 21098.40 193
JIA-IIPM93.35 27692.49 28395.92 26096.48 29490.65 30095.01 34996.96 31885.93 34596.08 18387.33 36487.70 21898.78 23091.35 27595.58 21698.34 196
PVSNet_088.72 1991.28 30090.03 30695.00 29197.99 19587.29 34794.84 35398.50 15692.06 26689.86 32495.19 33579.81 31399.39 15492.27 25669.79 36798.33 197
131496.25 13795.73 14297.79 13197.13 25795.55 16398.19 21198.59 13293.47 21492.03 30597.82 21491.33 13599.49 14494.62 18498.44 14198.32 198
RPSCF94.87 21395.40 15593.26 32498.89 11582.06 36098.33 19098.06 24490.30 31196.56 16699.26 4387.09 22799.49 14493.82 21296.32 20198.24 199
hse-mvs295.71 16295.30 16796.93 18898.50 14893.53 24698.36 18798.10 23297.48 1998.67 6197.99 19689.76 16299.02 19797.95 4880.91 35498.22 200
AUN-MVS94.53 23393.73 25296.92 19198.50 14893.52 24798.34 18998.10 23293.83 19195.94 18897.98 19885.59 25499.03 19494.35 19380.94 35398.22 200
tpmvs94.60 22694.36 21395.33 28297.46 23188.60 33296.88 32097.68 26891.29 29093.80 25296.42 31188.58 19399.24 16491.06 28096.04 21398.17 202
BH-w/o95.38 18195.08 17796.26 24898.34 16491.79 27797.70 25997.43 29492.87 23894.24 23097.22 25888.66 19298.84 22391.55 27397.70 17098.16 203
tpm cat193.36 27592.80 27795.07 29097.58 22087.97 34296.76 32697.86 26182.17 35793.53 26096.04 32286.13 24499.13 17889.24 31195.87 21498.10 204
MVS94.67 22393.54 26298.08 11496.88 27296.56 11298.19 21198.50 15678.05 36192.69 28898.02 19291.07 14299.63 12090.09 29398.36 14798.04 205
AllTest95.24 19194.65 19696.99 18299.25 7593.21 25998.59 15998.18 21491.36 28493.52 26198.77 11884.67 27199.72 9989.70 30397.87 16298.02 206
TestCases96.99 18299.25 7593.21 25998.18 21491.36 28493.52 26198.77 11884.67 27199.72 9989.70 30397.87 16298.02 206
gg-mvs-nofinetune92.21 29390.58 30197.13 17496.75 27995.09 18195.85 34289.40 37485.43 34994.50 21481.98 36780.80 30798.40 27992.16 25798.33 14897.88 208
baseline295.11 19894.52 20296.87 19396.65 28593.56 24398.27 20294.10 36293.45 21592.02 30697.43 24687.45 22499.19 17093.88 21097.41 17797.87 209
tt080594.54 23193.85 24296.63 21097.98 19793.06 26498.77 12697.84 26293.67 20693.80 25298.04 19176.88 33598.96 20594.79 17992.86 26197.86 210
thres100view90095.38 18194.70 19497.41 15898.98 11094.92 19198.87 10396.90 32295.38 12296.61 16496.88 29184.29 27699.56 13188.11 31896.29 20297.76 211
tfpn200view995.32 18894.62 19797.43 15798.94 11294.98 18798.68 14696.93 32095.33 12596.55 16896.53 30784.23 27999.56 13188.11 31896.29 20297.76 211
XVG-OURS-SEG-HR96.51 12396.34 11797.02 18198.77 12593.76 23597.79 25398.50 15695.45 11896.94 14899.09 7887.87 21399.55 13896.76 12095.83 21597.74 213
OpenMVScopyleft93.04 1395.83 15695.00 18098.32 9697.18 25497.32 7799.21 3898.97 3189.96 31591.14 31399.05 8386.64 23599.92 2393.38 22399.47 8797.73 214
testgi93.06 28592.45 28494.88 29596.43 29789.90 30998.75 12797.54 28395.60 11191.63 31097.91 20274.46 34597.02 33986.10 33193.67 24297.72 215
XVG-OURS96.55 12296.41 11596.99 18298.75 12693.76 23597.50 27398.52 14995.67 10996.83 15499.30 3888.95 18899.53 13995.88 14696.26 20697.69 216
cascas94.63 22593.86 24196.93 18896.91 27094.27 22096.00 34198.51 15185.55 34894.54 21296.23 31684.20 28198.87 22095.80 15096.98 18397.66 217
test0.0.03 194.08 26393.51 26395.80 26695.53 32992.89 26697.38 27995.97 34195.11 13892.51 29596.66 30187.71 21696.94 34187.03 32693.67 24297.57 218
MVS-HIRNet89.46 31788.40 31692.64 32997.58 22082.15 35994.16 36193.05 36775.73 36390.90 31582.52 36679.42 31598.33 28183.53 34798.68 12697.43 219
xiu_mvs_v2_base97.66 6897.70 5797.56 15398.61 14295.46 16697.44 27498.46 16397.15 4398.65 6698.15 18394.33 8399.80 7497.84 5898.66 13097.41 220
Effi-MVS+-dtu96.29 13396.56 11095.51 27597.89 20290.22 30798.80 11998.10 23296.57 7196.45 17596.66 30190.81 14598.91 21395.72 15297.99 15797.40 221
PS-MVSNAJ97.73 6297.77 5497.62 14998.68 13595.58 16097.34 28598.51 15197.29 3198.66 6597.88 20694.51 7799.90 3497.87 5599.17 10697.39 222
thres20095.25 19094.57 19997.28 16598.81 12394.92 19198.20 20897.11 30995.24 13396.54 17096.22 31884.58 27399.53 13987.93 32296.50 19697.39 222
xiu_mvs_v1_base_debu97.60 7197.56 6397.72 13898.35 15995.98 13697.86 24698.51 15197.13 4599.01 3898.40 15691.56 12799.80 7498.53 1698.68 12697.37 224
xiu_mvs_v1_base97.60 7197.56 6397.72 13898.35 15995.98 13697.86 24698.51 15197.13 4599.01 3898.40 15691.56 12799.80 7498.53 1698.68 12697.37 224
xiu_mvs_v1_base_debi97.60 7197.56 6397.72 13898.35 15995.98 13697.86 24698.51 15197.13 4599.01 3898.40 15691.56 12799.80 7498.53 1698.68 12697.37 224
API-MVS97.41 8697.25 7997.91 12398.70 13296.80 9898.82 11298.69 10994.53 16298.11 8898.28 17194.50 8099.57 12894.12 20299.49 8497.37 224
Fast-Effi-MVS+-dtu95.87 15395.85 13795.91 26197.74 21191.74 28098.69 14598.15 22295.56 11394.92 20197.68 22788.98 18698.79 22993.19 22997.78 16697.20 228
COLMAP_ROBcopyleft93.27 1295.33 18794.87 18896.71 20199.29 6793.24 25898.58 16198.11 22989.92 31693.57 25999.10 7286.37 24199.79 8490.78 28598.10 15597.09 229
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
PS-MVSNAJss96.43 12596.26 12296.92 19195.84 32195.08 18299.16 4598.50 15695.87 10093.84 25098.34 16694.51 7798.61 24296.88 11093.45 25197.06 230
nrg03096.28 13595.72 14397.96 12296.90 27198.15 5299.39 1298.31 19095.47 11794.42 22198.35 16292.09 11598.69 23597.50 8489.05 30897.04 231
RRT_MVS95.98 14595.78 14096.56 22096.48 29494.22 22499.57 697.92 25795.89 9793.95 24398.70 12489.27 17498.42 26597.23 9393.02 25897.04 231
FIs96.51 12396.12 12697.67 14497.13 25797.54 7299.36 1599.22 1595.89 9794.03 24198.35 16291.98 11898.44 26396.40 13092.76 26297.01 233
FC-MVSNet-test96.42 12696.05 12997.53 15496.95 26697.27 7999.36 1599.23 1395.83 10193.93 24498.37 16092.00 11798.32 28296.02 14292.72 26397.00 234
EU-MVSNet93.66 27094.14 22292.25 33395.96 31783.38 35698.52 16998.12 22694.69 15692.61 29098.13 18587.36 22596.39 35291.82 26790.00 29396.98 235
mvsmamba96.57 12196.32 11997.32 16496.60 28696.43 11999.54 797.98 25096.49 7295.20 19698.64 13090.82 14498.55 24997.97 4793.65 24496.98 235
VPNet94.99 20594.19 21897.40 16097.16 25596.57 11198.71 13998.97 3195.67 10994.84 20398.24 17880.36 30998.67 23996.46 12787.32 32796.96 237
XXY-MVS95.20 19494.45 20897.46 15596.75 27996.56 11298.86 10598.65 12493.30 22293.27 27098.27 17484.85 26898.87 22094.82 17791.26 27996.96 237
TranMVSNet+NR-MVSNet95.14 19794.48 20497.11 17696.45 29696.36 12399.03 7099.03 2695.04 14393.58 25897.93 20188.27 20198.03 30794.13 20186.90 33396.95 239
HQP_MVS96.14 13995.90 13696.85 19497.42 23794.60 20898.80 11998.56 14197.28 3295.34 19398.28 17187.09 22799.03 19496.07 13794.27 22296.92 240
plane_prior598.56 14199.03 19496.07 13794.27 22296.92 240
UniMVSNet_NR-MVSNet95.71 16295.15 17297.40 16096.84 27496.97 9198.74 13099.24 1195.16 13593.88 24797.72 22191.68 12398.31 28495.81 14887.25 32896.92 240
DU-MVS95.42 17894.76 19197.40 16096.53 29096.97 9198.66 15198.99 3095.43 11993.88 24797.69 22488.57 19498.31 28495.81 14887.25 32896.92 240
NR-MVSNet94.98 20794.16 22097.44 15696.53 29097.22 8598.74 13098.95 3494.96 14789.25 33097.69 22489.32 17298.18 29494.59 18787.40 32696.92 240
jajsoiax95.45 17695.03 17996.73 20095.42 33494.63 20399.14 4898.52 14995.74 10493.22 27198.36 16183.87 28898.65 24096.95 10394.04 23196.91 245
mvs_tets95.41 18095.00 18096.65 20695.58 32794.42 21499.00 7798.55 14395.73 10693.21 27298.38 15983.45 29298.63 24197.09 9794.00 23396.91 245
WR-MVS95.15 19694.46 20697.22 16796.67 28496.45 11798.21 20698.81 7494.15 17393.16 27397.69 22487.51 22098.30 28695.29 16688.62 31496.90 247
VPA-MVSNet95.75 15995.11 17697.69 14297.24 24697.27 7998.94 8899.23 1395.13 13695.51 19297.32 25185.73 25198.91 21397.33 9189.55 30096.89 248
Anonymous2023121194.10 26193.26 27196.61 21399.11 9794.28 21999.01 7598.88 5086.43 34192.81 28397.57 23681.66 29898.68 23894.83 17689.02 31096.88 249
test_djsdf96.00 14495.69 14996.93 18895.72 32395.49 16599.47 998.40 17594.98 14594.58 21197.86 20789.16 17898.41 27396.91 10494.12 23096.88 249
iter_conf_final96.42 12696.12 12697.34 16398.46 15196.55 11499.08 6098.06 24496.03 9295.63 19098.46 15087.72 21598.59 24597.84 5893.80 23996.87 251
HQP4-MVS94.45 21698.96 20596.87 251
ACMM93.85 995.69 16595.38 15996.61 21397.61 21893.84 23398.91 9298.44 16795.25 13194.28 22798.47 14886.04 24899.12 18095.50 16093.95 23596.87 251
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
iter_conf0596.13 14095.79 13997.15 17298.16 18495.99 13598.88 10097.98 25095.91 9695.58 19198.46 15085.53 25598.59 24597.88 5493.75 24096.86 254
HQP-MVS95.72 16195.40 15596.69 20497.20 25094.25 22298.05 22698.46 16396.43 7594.45 21697.73 21986.75 23398.96 20595.30 16494.18 22696.86 254
bld_raw_dy_0_6495.74 16095.31 16697.03 18096.35 30095.76 15599.12 5297.37 29995.97 9494.70 20998.48 14685.80 25098.49 25596.55 12493.48 24896.84 256
EI-MVSNet95.96 14695.83 13896.36 24197.93 19993.70 24198.12 22098.27 19993.70 20195.07 19899.02 8492.23 11098.54 25194.68 18093.46 24996.84 256
IterMVS-LS95.46 17495.21 17096.22 24998.12 18693.72 24098.32 19498.13 22593.71 19994.26 22897.31 25292.24 10998.10 30094.63 18290.12 29196.84 256
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CP-MVSNet94.94 21194.30 21496.83 19596.72 28195.56 16199.11 5498.95 3493.89 18692.42 29897.90 20387.19 22698.12 29994.32 19588.21 31796.82 259
PS-CasMVS94.67 22393.99 23296.71 20196.68 28395.26 17499.13 5199.03 2693.68 20492.33 29997.95 20085.35 25998.10 30093.59 21988.16 31996.79 260
UniMVSNet (Re)95.78 15895.19 17197.58 15196.99 26497.47 7498.79 12499.18 1795.60 11193.92 24597.04 27691.68 12398.48 25695.80 15087.66 32396.79 260
MVSTER96.06 14295.72 14397.08 17898.23 17395.93 14798.73 13498.27 19994.86 15195.07 19898.09 18788.21 20298.54 25196.59 12293.46 24996.79 260
LPG-MVS_test95.62 16895.34 16196.47 23297.46 23193.54 24498.99 7998.54 14594.67 15894.36 22398.77 11885.39 25799.11 18295.71 15394.15 22896.76 263
LGP-MVS_train96.47 23297.46 23193.54 24498.54 14594.67 15894.36 22398.77 11885.39 25799.11 18295.71 15394.15 22896.76 263
GG-mvs-BLEND96.59 21696.34 30194.98 18796.51 33488.58 37593.10 27894.34 34580.34 31198.05 30689.53 30696.99 18296.74 265
PEN-MVS94.42 24193.73 25296.49 22996.28 30394.84 19499.17 4499.00 2893.51 21292.23 30197.83 21386.10 24597.90 31692.55 25086.92 33296.74 265
OurMVSNet-221017-094.21 25294.00 23094.85 29695.60 32689.22 32298.89 9797.43 29495.29 12892.18 30298.52 14482.86 29398.59 24593.46 22291.76 27196.74 265
v2v48294.69 21894.03 22696.65 20696.17 30794.79 19998.67 14998.08 23792.72 24294.00 24297.16 26187.69 21998.45 26192.91 23888.87 31296.72 268
GBi-Net94.49 23693.80 24596.56 22098.21 17595.00 18498.82 11298.18 21492.46 24994.09 23797.07 27081.16 30197.95 31292.08 25992.14 26696.72 268
test194.49 23693.80 24596.56 22098.21 17595.00 18498.82 11298.18 21492.46 24994.09 23797.07 27081.16 30197.95 31292.08 25992.14 26696.72 268
FMVSNet193.19 28392.07 28896.56 22097.54 22595.00 18498.82 11298.18 21490.38 30992.27 30097.07 27073.68 34897.95 31289.36 31091.30 27796.72 268
v119294.32 24693.58 25996.53 22696.10 31094.45 21298.50 17498.17 21991.54 27994.19 23397.06 27386.95 23198.43 26490.14 29289.57 29896.70 272
v124094.06 26593.29 27096.34 24396.03 31493.90 23198.44 18198.17 21991.18 29694.13 23697.01 28086.05 24698.42 26589.13 31389.50 30296.70 272
FMVSNet394.97 20894.26 21597.11 17698.18 18196.62 10598.56 16798.26 20393.67 20694.09 23797.10 26384.25 27898.01 30892.08 25992.14 26696.70 272
FMVSNet294.47 23893.61 25897.04 17998.21 17596.43 11998.79 12498.27 19992.46 24993.50 26497.09 26781.16 30198.00 31091.09 27891.93 26996.70 272
ACMH92.88 1694.55 23093.95 23496.34 24397.63 21793.26 25798.81 11898.49 16193.43 21689.74 32598.53 14181.91 29699.08 18893.69 21493.30 25596.70 272
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
v192192094.20 25393.47 26596.40 24095.98 31594.08 22798.52 16998.15 22291.33 28794.25 22997.20 26086.41 24098.42 26590.04 29789.39 30496.69 277
ACMP93.49 1095.34 18694.98 18296.43 23797.67 21493.48 24898.73 13498.44 16794.94 15092.53 29398.53 14184.50 27599.14 17795.48 16194.00 23396.66 278
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
CLD-MVS95.62 16895.34 16196.46 23597.52 22893.75 23797.27 29198.46 16395.53 11494.42 22198.00 19586.21 24398.97 20196.25 13594.37 22096.66 278
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
v14419294.39 24393.70 25496.48 23196.06 31294.35 21898.58 16198.16 22191.45 28194.33 22597.02 27887.50 22298.45 26191.08 27989.11 30796.63 280
IterMVS94.09 26293.85 24294.80 29997.99 19590.35 30597.18 29798.12 22693.68 20492.46 29797.34 24984.05 28397.41 33492.51 25291.33 27696.62 281
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v114494.59 22893.92 23596.60 21596.21 30494.78 20098.59 15998.14 22491.86 27294.21 23297.02 27887.97 20998.41 27391.72 27089.57 29896.61 282
OPM-MVS95.69 16595.33 16396.76 19996.16 30994.63 20398.43 18398.39 17796.64 6795.02 20098.78 11685.15 26399.05 19095.21 17094.20 22596.60 283
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
LTVRE_ROB92.95 1594.60 22693.90 23896.68 20597.41 24094.42 21498.52 16998.59 13291.69 27691.21 31298.35 16284.87 26799.04 19391.06 28093.44 25296.60 283
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
IterMVS-SCA-FT94.11 26093.87 24094.85 29697.98 19790.56 30297.18 29798.11 22993.75 19492.58 29197.48 24183.97 28597.41 33492.48 25491.30 27796.58 285
pmmvs593.65 27292.97 27595.68 27095.49 33092.37 26998.20 20897.28 30389.66 32192.58 29197.26 25482.14 29598.09 30293.18 23090.95 28396.58 285
K. test v392.55 29091.91 29294.48 30895.64 32589.24 32199.07 6194.88 35294.04 17786.78 34497.59 23477.64 33097.64 32692.08 25989.43 30396.57 287
SixPastTwentyTwo93.34 27792.86 27694.75 30095.67 32489.41 32098.75 12796.67 33393.89 18690.15 32398.25 17780.87 30598.27 29190.90 28390.64 28596.57 287
miper_lstm_enhance94.33 24594.07 22595.11 28897.75 20890.97 29397.22 29398.03 24791.67 27792.76 28596.97 28390.03 15997.78 32392.51 25289.64 29796.56 289
MDA-MVSNet_test_wron90.71 30689.38 31194.68 30294.83 34090.78 29797.19 29697.46 29087.60 33572.41 36795.72 32986.51 23696.71 34785.92 33386.80 33496.56 289
ACMH+92.99 1494.30 24793.77 24895.88 26497.81 20592.04 27598.71 13998.37 18193.99 18290.60 31998.47 14880.86 30699.05 19092.75 24392.40 26596.55 291
eth_miper_zixun_eth94.68 22094.41 21195.47 27797.64 21691.71 28196.73 32898.07 23992.71 24393.64 25697.21 25990.54 15198.17 29593.38 22389.76 29596.54 292
YYNet190.70 30789.39 31094.62 30494.79 34290.65 30097.20 29597.46 29087.54 33672.54 36695.74 32586.51 23696.66 34886.00 33286.76 33596.54 292
DIV-MVS_self_test94.52 23494.03 22695.99 25697.57 22493.38 25397.05 30597.94 25591.74 27392.81 28397.10 26389.12 17998.07 30492.60 24590.30 28896.53 294
c3_l94.79 21594.43 21095.89 26397.75 20893.12 26297.16 30198.03 24792.23 26193.46 26697.05 27591.39 13298.01 30893.58 22089.21 30696.53 294
Patchmtry93.22 28192.35 28595.84 26596.77 27693.09 26394.66 35797.56 27787.37 33792.90 28196.24 31488.15 20497.90 31687.37 32590.10 29296.53 294
cl____94.51 23594.01 22996.02 25597.58 22093.40 25297.05 30597.96 25491.73 27592.76 28597.08 26989.06 18298.13 29892.61 24490.29 28996.52 297
v7n94.19 25493.43 26696.47 23295.90 31894.38 21799.26 2798.34 18691.99 26792.76 28597.13 26288.31 20098.52 25389.48 30887.70 32296.52 297
MDA-MVSNet-bldmvs89.97 31288.35 31794.83 29895.21 33591.34 28697.64 26497.51 28688.36 33371.17 36896.13 32079.22 31696.63 34983.65 34686.27 33696.52 297
cl2294.68 22094.19 21896.13 25298.11 18793.60 24296.94 31198.31 19092.43 25393.32 26996.87 29386.51 23698.28 29094.10 20491.16 28096.51 300
lessismore_v094.45 31194.93 33988.44 33691.03 37186.77 34597.64 23076.23 33798.42 26590.31 29185.64 34096.51 300
anonymousdsp95.42 17894.91 18596.94 18795.10 33695.90 15099.14 4898.41 17393.75 19493.16 27397.46 24287.50 22298.41 27395.63 15794.03 23296.50 302
v14894.29 24893.76 25095.91 26196.10 31092.93 26598.58 16197.97 25292.59 24793.47 26596.95 28788.53 19798.32 28292.56 24987.06 33096.49 303
our_test_393.65 27293.30 26994.69 30195.45 33289.68 31596.91 31497.65 27091.97 26891.66 30996.88 29189.67 16597.93 31588.02 32191.49 27596.48 304
XVG-ACMP-BASELINE94.54 23194.14 22295.75 26996.55 28991.65 28298.11 22298.44 16794.96 14794.22 23197.90 20379.18 31799.11 18294.05 20693.85 23796.48 304
DTE-MVSNet93.98 26793.26 27196.14 25196.06 31294.39 21699.20 3998.86 6393.06 23091.78 30797.81 21585.87 24997.58 32990.53 28886.17 33796.46 306
miper_ehance_all_eth95.01 20394.69 19595.97 25897.70 21393.31 25597.02 30798.07 23992.23 26193.51 26396.96 28591.85 12098.15 29693.68 21591.16 28096.44 307
v894.47 23893.77 24896.57 21996.36 29994.83 19699.05 6498.19 21191.92 26993.16 27396.97 28388.82 19198.48 25691.69 27187.79 32196.39 308
WR-MVS_H95.05 20294.46 20696.81 19796.86 27395.82 15399.24 3099.24 1193.87 18892.53 29396.84 29590.37 15398.24 29293.24 22787.93 32096.38 309
miper_enhance_ethall95.10 19994.75 19296.12 25397.53 22793.73 23996.61 33198.08 23792.20 26493.89 24696.65 30392.44 10498.30 28694.21 19991.16 28096.34 310
V4294.78 21694.14 22296.70 20396.33 30295.22 17598.97 8298.09 23692.32 25894.31 22697.06 27388.39 19998.55 24992.90 23988.87 31296.34 310
v1094.29 24893.55 26196.51 22896.39 29894.80 19898.99 7998.19 21191.35 28693.02 27996.99 28188.09 20698.41 27390.50 28988.41 31696.33 312
MVS_030492.81 28792.01 28995.23 28397.46 23191.33 28798.17 21598.81 7491.13 29793.80 25295.68 33266.08 35998.06 30590.79 28496.13 21196.32 313
pmmvs494.69 21893.99 23296.81 19795.74 32295.94 14497.40 27797.67 26990.42 30893.37 26797.59 23489.08 18198.20 29392.97 23691.67 27396.30 314
test_fmvs293.43 27493.58 25992.95 32896.97 26583.91 35499.19 4197.24 30695.74 10495.20 19698.27 17469.65 35298.72 23496.26 13393.73 24196.24 315
ppachtmachnet_test93.22 28192.63 28194.97 29295.45 33290.84 29596.88 32097.88 26090.60 30392.08 30497.26 25488.08 20797.86 32185.12 33990.33 28796.22 316
PVSNet_BlendedMVS96.73 11396.60 10997.12 17599.25 7595.35 17198.26 20399.26 994.28 17097.94 10597.46 24292.74 10199.81 6796.88 11093.32 25496.20 317
pm-mvs193.94 26893.06 27396.59 21696.49 29395.16 17798.95 8698.03 24792.32 25891.08 31497.84 21084.54 27498.41 27392.16 25786.13 33996.19 318
Anonymous2023120691.66 29691.10 29693.33 32294.02 35087.35 34698.58 16197.26 30590.48 30590.16 32296.31 31283.83 28996.53 35079.36 35889.90 29496.12 319
ITE_SJBPF95.44 27997.42 23791.32 28897.50 28795.09 14193.59 25798.35 16281.70 29798.88 21989.71 30293.39 25396.12 319
FMVSNet591.81 29490.92 29794.49 30797.21 24992.09 27298.00 23297.55 28289.31 32790.86 31695.61 33374.48 34495.32 35985.57 33589.70 29696.07 321
UnsupCasMVSNet_eth90.99 30489.92 30794.19 31494.08 34789.83 31097.13 30398.67 11793.69 20285.83 35096.19 31975.15 34196.74 34489.14 31279.41 35696.00 322
USDC93.33 27892.71 27995.21 28496.83 27590.83 29696.91 31497.50 28793.84 18990.72 31798.14 18477.69 32798.82 22689.51 30793.21 25795.97 323
pmmvs691.77 29590.63 30095.17 28694.69 34491.24 29098.67 14997.92 25786.14 34389.62 32697.56 23875.79 33998.34 28090.75 28684.56 34195.94 324
N_pmnet87.12 32587.77 32385.17 34695.46 33161.92 37697.37 28170.66 38285.83 34688.73 33696.04 32285.33 26197.76 32480.02 35590.48 28695.84 325
MIMVSNet189.67 31488.28 31893.82 31692.81 35691.08 29298.01 23097.45 29287.95 33487.90 33995.87 32467.63 35694.56 36378.73 36188.18 31895.83 326
test_method79.03 32978.17 33181.63 35186.06 37154.40 38182.75 37096.89 32439.54 37480.98 35995.57 33458.37 36494.73 36284.74 34378.61 35795.75 327
TransMVSNet (Re)92.67 28991.51 29496.15 25096.58 28894.65 20198.90 9396.73 32990.86 30189.46 32997.86 20785.62 25398.09 30286.45 32981.12 35195.71 328
Baseline_NR-MVSNet94.35 24493.81 24495.96 25996.20 30594.05 22898.61 15896.67 33391.44 28293.85 24997.60 23388.57 19498.14 29794.39 19186.93 33195.68 329
D2MVS95.18 19595.08 17795.48 27697.10 25992.07 27398.30 19799.13 2094.02 17992.90 28196.73 29889.48 16798.73 23394.48 19093.60 24795.65 330
CL-MVSNet_self_test90.11 31089.14 31393.02 32791.86 35888.23 34096.51 33498.07 23990.49 30490.49 32094.41 34184.75 27095.34 35880.79 35474.95 36495.50 331
TinyColmap92.31 29291.53 29394.65 30396.92 26889.75 31196.92 31296.68 33290.45 30789.62 32697.85 20976.06 33898.81 22786.74 32792.51 26495.41 332
KD-MVS_self_test90.38 30889.38 31193.40 32192.85 35588.94 32897.95 23597.94 25590.35 31090.25 32193.96 34679.82 31295.94 35484.62 34476.69 36295.33 333
MS-PatchMatch93.84 26993.63 25794.46 31096.18 30689.45 31897.76 25498.27 19992.23 26192.13 30397.49 24079.50 31498.69 23589.75 30199.38 9795.25 334
KD-MVS_2432*160089.61 31587.96 32194.54 30594.06 34891.59 28395.59 34697.63 27289.87 31788.95 33294.38 34378.28 32296.82 34284.83 34068.05 36895.21 335
miper_refine_blended89.61 31587.96 32194.54 30594.06 34891.59 28395.59 34697.63 27289.87 31788.95 33294.38 34378.28 32296.82 34284.83 34068.05 36895.21 335
LF4IMVS93.14 28492.79 27894.20 31395.88 31988.67 33197.66 26297.07 31193.81 19291.71 30897.65 22877.96 32698.81 22791.47 27491.92 27095.12 337
tfpnnormal93.66 27092.70 28096.55 22596.94 26795.94 14498.97 8299.19 1691.04 29891.38 31197.34 24984.94 26698.61 24285.45 33789.02 31095.11 338
EG-PatchMatch MVS91.13 30290.12 30594.17 31594.73 34389.00 32698.13 21997.81 26389.22 32885.32 35396.46 30967.71 35598.42 26587.89 32393.82 23895.08 339
TDRefinement91.06 30389.68 30895.21 28485.35 37291.49 28598.51 17397.07 31191.47 28088.83 33597.84 21077.31 33199.09 18792.79 24277.98 36095.04 340
MVP-Stereo94.28 25093.92 23595.35 28194.95 33892.60 26897.97 23497.65 27091.61 27890.68 31897.09 26786.32 24298.42 26589.70 30399.34 9995.02 341
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
test20.0390.89 30590.38 30392.43 33093.48 35288.14 34198.33 19097.56 27793.40 21787.96 33896.71 30080.69 30894.13 36479.15 35986.17 33795.01 342
Anonymous2024052191.18 30190.44 30293.42 31993.70 35188.47 33598.94 8897.56 27788.46 33289.56 32895.08 33877.15 33496.97 34083.92 34589.55 30094.82 343
ambc89.49 33986.66 36975.78 36492.66 36396.72 33086.55 34792.50 35746.01 36797.90 31690.32 29082.09 34694.80 344
test_040291.32 29890.27 30494.48 30896.60 28691.12 29198.50 17497.22 30786.10 34488.30 33796.98 28277.65 32997.99 31178.13 36292.94 26094.34 345
mvsany_test388.80 31988.04 31991.09 33789.78 36481.57 36197.83 25095.49 34693.81 19287.53 34093.95 34756.14 36597.43 33394.68 18083.13 34494.26 346
new_pmnet90.06 31189.00 31593.22 32594.18 34588.32 33896.42 33696.89 32486.19 34285.67 35193.62 34877.18 33397.10 33881.61 35289.29 30594.23 347
test_vis1_rt91.29 29990.65 29993.19 32697.45 23586.25 35098.57 16690.90 37293.30 22286.94 34393.59 34962.07 36299.11 18297.48 8595.58 21694.22 348
CMPMVSbinary66.06 2189.70 31389.67 30989.78 33893.19 35376.56 36397.00 30898.35 18480.97 35881.57 35897.75 21874.75 34398.61 24289.85 29993.63 24594.17 349
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
PM-MVS87.77 32286.55 32791.40 33691.03 36283.36 35796.92 31295.18 35091.28 29186.48 34893.42 35053.27 36696.74 34489.43 30981.97 34894.11 350
APD_test188.22 32188.01 32088.86 34095.98 31574.66 36997.21 29496.44 33783.96 35486.66 34697.90 20360.95 36397.84 32282.73 34890.23 29094.09 351
pmmvs-eth3d90.36 30989.05 31494.32 31291.10 36192.12 27197.63 26796.95 31988.86 33084.91 35493.13 35378.32 32196.74 34488.70 31681.81 34994.09 351
new-patchmatchnet88.50 32087.45 32491.67 33590.31 36385.89 35197.16 30197.33 30089.47 32383.63 35692.77 35576.38 33695.06 36182.70 34977.29 36194.06 353
pmmvs386.67 32684.86 33092.11 33488.16 36687.19 34896.63 33094.75 35479.88 35987.22 34292.75 35666.56 35895.20 36081.24 35376.56 36393.96 354
UnsupCasMVSNet_bld87.17 32385.12 32993.31 32391.94 35788.77 32994.92 35298.30 19684.30 35382.30 35790.04 36163.96 36197.25 33685.85 33474.47 36693.93 355
LCM-MVSNet78.70 33276.24 33786.08 34477.26 37871.99 37194.34 35996.72 33061.62 36976.53 36189.33 36233.91 37792.78 36981.85 35174.60 36593.46 356
OpenMVS_ROBcopyleft86.42 2089.00 31887.43 32593.69 31793.08 35489.42 31997.91 23996.89 32478.58 36085.86 34994.69 34069.48 35398.29 28977.13 36393.29 25693.36 357
test_fmvs387.17 32387.06 32687.50 34291.21 36075.66 36599.05 6496.61 33592.79 24188.85 33492.78 35443.72 36993.49 36593.95 20784.56 34193.34 358
test_f86.07 32785.39 32888.10 34189.28 36575.57 36697.73 25796.33 33889.41 32685.35 35291.56 36043.31 37195.53 35691.32 27684.23 34393.21 359
DeepMVS_CXcopyleft86.78 34397.09 26072.30 37095.17 35175.92 36284.34 35595.19 33570.58 35195.35 35779.98 35789.04 30992.68 360
EGC-MVSNET75.22 33669.54 33992.28 33294.81 34189.58 31697.64 26496.50 3361.82 3795.57 38095.74 32568.21 35496.26 35373.80 36691.71 27290.99 361
PMMVS277.95 33475.44 33885.46 34582.54 37374.95 36794.23 36093.08 36672.80 36474.68 36287.38 36336.36 37491.56 37073.95 36563.94 37089.87 362
testf179.02 33077.70 33282.99 34988.10 36766.90 37394.67 35593.11 36471.08 36574.02 36393.41 35134.15 37593.25 36672.25 36778.50 35888.82 363
APD_test279.02 33077.70 33282.99 34988.10 36766.90 37394.67 35593.11 36471.08 36574.02 36393.41 35134.15 37593.25 36672.25 36778.50 35888.82 363
FPMVS77.62 33577.14 33579.05 35379.25 37660.97 37795.79 34395.94 34265.96 36767.93 36994.40 34237.73 37388.88 37268.83 36988.46 31587.29 365
tmp_tt68.90 33866.97 34074.68 35550.78 38259.95 37887.13 36783.47 37838.80 37562.21 37196.23 31664.70 36076.91 37788.91 31530.49 37587.19 366
ANet_high69.08 33765.37 34180.22 35265.99 38071.96 37290.91 36690.09 37382.62 35549.93 37578.39 37029.36 37881.75 37362.49 37138.52 37486.95 367
test_vis3_rt79.22 32877.40 33484.67 34786.44 37074.85 36897.66 26281.43 37984.98 35067.12 37081.91 36828.09 37997.60 32788.96 31480.04 35581.55 368
MVEpermissive62.14 2263.28 34259.38 34574.99 35474.33 37965.47 37585.55 36880.50 38052.02 37251.10 37475.00 37310.91 38380.50 37451.60 37353.40 37178.99 369
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMVScopyleft61.03 2365.95 33963.57 34373.09 35657.90 38151.22 38285.05 36993.93 36354.45 37044.32 37683.57 36513.22 38089.15 37158.68 37281.00 35278.91 370
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
Gipumacopyleft78.40 33376.75 33683.38 34895.54 32880.43 36279.42 37197.40 29664.67 36873.46 36580.82 36945.65 36893.14 36866.32 37087.43 32576.56 371
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
EMVS64.07 34163.26 34466.53 35881.73 37558.81 38091.85 36484.75 37751.93 37359.09 37375.13 37243.32 37079.09 37642.03 37539.47 37361.69 372
E-PMN64.94 34064.25 34267.02 35782.28 37459.36 37991.83 36585.63 37652.69 37160.22 37277.28 37141.06 37280.12 37546.15 37441.14 37261.57 373
test12320.95 34623.72 34912.64 36013.54 3848.19 38496.55 3336.13 3857.48 37816.74 37837.98 37612.97 3816.05 37916.69 3775.43 37823.68 374
testmvs21.48 34524.95 34811.09 36114.89 3836.47 38596.56 3329.87 3847.55 37717.93 37739.02 3759.43 3845.90 38016.56 37812.72 37720.91 375
wuyk23d30.17 34330.18 34730.16 35978.61 37743.29 38366.79 37214.21 38317.31 37614.82 37911.93 37911.55 38241.43 37837.08 37619.30 3765.76 376
test_blank0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
uanet_test0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
DCPMVS0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
cdsmvs_eth3d_5k23.98 34431.98 3460.00 3620.00 3850.00 3860.00 37398.59 1320.00 3800.00 38198.61 13290.60 1500.00 3810.00 3790.00 3790.00 377
pcd_1.5k_mvsjas7.88 34810.50 3510.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 38094.51 770.00 3810.00 3790.00 3790.00 377
sosnet-low-res0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
sosnet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
uncertanet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
Regformer0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
ab-mvs-re8.20 34710.94 3500.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 38198.43 1520.00 3850.00 3810.00 3790.00 3790.00 377
uanet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
FOURS199.82 198.66 2499.69 198.95 3497.46 2199.39 20
test_one_060199.66 2699.25 298.86 6397.55 1699.20 2899.47 1197.57 6
eth-test20.00 385
eth-test0.00 385
ZD-MVS99.46 4998.70 2398.79 8793.21 22598.67 6198.97 9195.70 4299.83 5596.07 13799.58 69
test_241102_ONE99.71 1999.24 598.87 5797.62 1299.73 299.39 1997.53 799.74 97
9.1498.06 4799.47 4798.71 13998.82 6994.36 16999.16 3399.29 3996.05 3199.81 6797.00 9999.71 48
save fliter99.46 4998.38 3598.21 20698.71 10597.95 4
test072699.72 1299.25 299.06 6298.88 5097.62 1299.56 1199.50 697.42 9
test_part299.63 2999.18 1099.27 25
sam_mvs88.99 183
MTGPAbinary98.74 97
test_post196.68 32930.43 37887.85 21498.69 23592.59 247
test_post31.83 37788.83 19098.91 213
patchmatchnet-post95.10 33789.42 17098.89 217
MTMP98.89 9794.14 361
gm-plane-assit95.88 31987.47 34589.74 32096.94 28899.19 17093.32 226
TEST999.31 6198.50 2997.92 23798.73 10092.63 24497.74 11698.68 12696.20 2699.80 74
test_899.29 6798.44 3197.89 24398.72 10292.98 23397.70 12098.66 12996.20 2699.80 74
agg_prior99.30 6598.38 3598.72 10297.57 13099.81 67
test_prior498.01 5897.86 246
test_prior297.80 25196.12 8997.89 11098.69 12595.96 3596.89 10899.60 64
旧先验297.57 27091.30 28998.67 6199.80 7495.70 155
新几何297.64 264
原ACMM297.67 261
testdata299.89 3691.65 272
segment_acmp96.85 14
testdata197.32 28796.34 81
plane_prior797.42 23794.63 203
plane_prior697.35 24294.61 20687.09 227
plane_prior498.28 171
plane_prior394.61 20697.02 5095.34 193
plane_prior298.80 11997.28 32
plane_prior197.37 241
plane_prior94.60 20898.44 18196.74 6394.22 224
n20.00 386
nn0.00 386
door-mid94.37 357
test1198.66 120
door94.64 355
HQP5-MVS94.25 222
HQP-NCC97.20 25098.05 22696.43 7594.45 216
ACMP_Plane97.20 25098.05 22696.43 7594.45 216
BP-MVS95.30 164
HQP3-MVS98.46 16394.18 226
HQP2-MVS86.75 233
NP-MVS97.28 24494.51 21197.73 219
MDTV_nov1_ep1395.40 15597.48 22988.34 33796.85 32297.29 30293.74 19697.48 13297.26 25489.18 17799.05 19091.92 26697.43 176
ACMMP++_ref92.97 259
ACMMP++93.61 246
Test By Simon94.64 74