| SMA-MVS |  | | 98.66 7 | 98.89 7 | 98.39 9 | 99.60 1 | 99.41 12 | 99.00 20 | 97.63 12 | 97.78 18 | 95.83 18 | 98.33 11 | 99.83 4 | 98.85 9 | 98.93 8 | 98.56 6 | 99.41 50 | 99.40 20 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| APDe-MVS |  | | 98.87 3 | 98.96 4 | 98.77 1 | 99.58 2 | 99.53 7 | 99.44 1 | 97.81 2 | 98.22 10 | 97.33 4 | 98.70 5 | 99.33 10 | 98.86 8 | 98.96 6 | 98.40 13 | 99.63 5 | 99.57 9 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| PGM-MVS | | | 97.81 25 | 98.11 28 | 97.46 29 | 99.55 3 | 99.34 20 | 99.32 9 | 94.51 45 | 96.21 63 | 93.07 36 | 98.05 14 | 97.95 42 | 98.82 11 | 98.22 36 | 97.89 39 | 99.48 30 | 99.09 56 |
|
| ACMMP_NAP | | | 98.20 18 | 98.49 13 | 97.85 25 | 99.50 4 | 99.40 13 | 99.26 11 | 97.64 11 | 97.47 33 | 92.62 46 | 97.59 20 | 99.09 22 | 98.71 15 | 98.82 12 | 97.86 40 | 99.40 53 | 99.19 45 |
|
| DVP-MVS++ | | | 98.92 1 | 99.18 1 | 98.61 4 | 99.47 5 | 99.61 2 | 99.39 3 | 97.82 1 | 98.80 1 | 96.86 8 | 98.90 2 | 99.92 1 | 98.67 17 | 99.02 2 | 98.20 19 | 99.43 47 | 99.82 1 |
|
| APD-MVS |  | | 98.36 15 | 98.32 23 | 98.41 8 | 99.47 5 | 99.26 26 | 99.12 15 | 97.77 7 | 96.73 50 | 96.12 16 | 97.27 28 | 98.88 24 | 98.46 25 | 98.47 18 | 98.39 14 | 99.52 22 | 99.22 41 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| CSCG | | | 97.44 32 | 97.18 43 | 97.75 27 | 99.47 5 | 99.52 8 | 98.55 31 | 95.41 40 | 97.69 23 | 95.72 19 | 94.29 55 | 95.53 63 | 98.10 33 | 96.20 107 | 97.38 57 | 99.24 78 | 99.62 4 |
|
| HPM-MVS++ |  | | 98.34 16 | 98.47 15 | 98.18 16 | 99.46 8 | 99.15 34 | 99.10 16 | 97.69 8 | 97.67 24 | 94.93 26 | 97.62 19 | 99.70 7 | 98.60 20 | 98.45 20 | 97.46 53 | 99.31 68 | 99.26 35 |
|
| SF-MVS | | | 98.39 13 | 98.45 17 | 98.33 10 | 99.45 9 | 99.05 37 | 98.27 37 | 97.65 9 | 97.73 19 | 97.02 7 | 98.18 12 | 99.25 15 | 98.11 32 | 98.15 38 | 97.62 48 | 99.45 38 | 99.19 45 |
|
| SR-MVS | | | | | | 99.45 9 | | | 97.61 14 | | | | 99.20 16 | | | | | |
|
| MSP-MVS | | | 98.73 6 | 98.93 5 | 98.50 6 | 99.44 11 | 99.57 4 | 99.36 4 | 97.65 9 | 98.14 12 | 96.51 14 | 98.49 7 | 99.65 8 | 98.67 17 | 98.60 14 | 98.42 11 | 99.40 53 | 99.63 2 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| DVP-MVS |  | | 98.86 4 | 98.97 3 | 98.75 2 | 99.43 12 | 99.63 1 | 99.25 12 | 97.81 2 | 98.62 2 | 97.69 1 | 97.59 20 | 99.90 2 | 98.93 5 | 98.99 4 | 98.42 11 | 99.37 59 | 99.62 4 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| ACMMPR | | | 98.40 12 | 98.49 13 | 98.28 13 | 99.41 13 | 99.40 13 | 99.36 4 | 97.35 21 | 98.30 6 | 95.02 25 | 97.79 17 | 98.39 37 | 99.04 2 | 98.26 33 | 98.10 23 | 99.50 29 | 99.22 41 |
|
| X-MVS | | | 97.84 24 | 98.19 27 | 97.42 30 | 99.40 14 | 99.35 17 | 99.06 17 | 97.25 25 | 97.38 34 | 90.85 62 | 96.06 37 | 98.72 30 | 98.53 24 | 98.41 24 | 98.15 22 | 99.46 34 | 99.28 30 |
|
| MCST-MVS | | | 98.20 18 | 98.36 19 | 98.01 22 | 99.40 14 | 99.05 37 | 99.00 20 | 97.62 13 | 97.59 28 | 93.70 33 | 97.42 27 | 99.30 11 | 98.77 13 | 98.39 26 | 97.48 52 | 99.59 7 | 99.31 29 |
|
| CNVR-MVS | | | 98.47 11 | 98.46 16 | 98.48 7 | 99.40 14 | 99.05 37 | 99.02 19 | 97.54 16 | 97.73 19 | 96.65 11 | 97.20 29 | 99.13 20 | 98.85 9 | 98.91 9 | 98.10 23 | 99.41 50 | 99.08 57 |
|
| HFP-MVS | | | 98.48 10 | 98.62 11 | 98.32 11 | 99.39 17 | 99.33 21 | 99.27 10 | 97.42 18 | 98.27 7 | 95.25 23 | 98.34 10 | 98.83 26 | 99.08 1 | 98.26 33 | 98.08 25 | 99.48 30 | 99.26 35 |
|
| SED-MVS | | | 98.90 2 | 99.07 2 | 98.69 3 | 99.38 18 | 99.61 2 | 99.33 8 | 97.80 4 | 98.25 8 | 97.60 2 | 98.87 4 | 99.89 3 | 98.67 17 | 99.02 2 | 98.26 17 | 99.36 61 | 99.61 6 |
|
| NCCC | | | 98.10 21 | 98.05 30 | 98.17 18 | 99.38 18 | 99.05 37 | 99.00 20 | 97.53 17 | 98.04 14 | 95.12 24 | 94.80 52 | 99.18 18 | 98.58 22 | 98.49 17 | 97.78 44 | 99.39 55 | 98.98 74 |
|
| MP-MVS |  | | 98.09 22 | 98.30 24 | 97.84 26 | 99.34 20 | 99.19 32 | 99.23 13 | 97.40 19 | 97.09 43 | 93.03 39 | 97.58 22 | 98.85 25 | 98.57 23 | 98.44 22 | 97.69 46 | 99.48 30 | 99.23 39 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| CP-MVS | | | 98.32 17 | 98.34 22 | 98.29 12 | 99.34 20 | 99.30 22 | 99.15 14 | 97.35 21 | 97.49 31 | 95.58 21 | 97.72 18 | 98.62 34 | 98.82 11 | 98.29 28 | 97.67 47 | 99.51 27 | 99.28 30 |
|
| SteuartSystems-ACMMP | | | 98.38 14 | 98.71 10 | 97.99 23 | 99.34 20 | 99.46 10 | 99.34 6 | 97.33 24 | 97.31 35 | 94.25 29 | 98.06 13 | 99.17 19 | 98.13 31 | 98.98 5 | 98.46 9 | 99.55 18 | 99.54 11 |
| Skip Steuart: Steuart Systems R&D Blog. |
| DPE-MVS |  | | 98.75 5 | 98.91 6 | 98.57 5 | 99.21 23 | 99.54 6 | 99.42 2 | 97.78 6 | 97.49 31 | 96.84 9 | 98.94 1 | 99.82 5 | 98.59 21 | 98.90 10 | 98.22 18 | 99.56 17 | 99.48 16 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| mPP-MVS | | | | | | 99.21 23 | | | | | | | 98.29 38 | | | | | |
|
| AdaColmap |  | | 97.53 30 | 96.93 47 | 98.24 14 | 99.21 23 | 98.77 65 | 98.47 34 | 97.34 23 | 96.68 52 | 96.52 13 | 95.11 49 | 96.12 58 | 98.72 14 | 97.19 69 | 96.24 85 | 99.17 94 | 98.39 115 |
|
| DeepC-MVS_fast | | 96.13 1 | 98.13 20 | 98.27 25 | 97.97 24 | 99.16 26 | 99.03 43 | 99.05 18 | 97.24 26 | 98.22 10 | 94.17 31 | 95.82 40 | 98.07 39 | 98.69 16 | 98.83 11 | 98.80 2 | 99.52 22 | 99.10 54 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| MSLP-MVS++ | | | 98.04 23 | 97.93 32 | 98.18 16 | 99.10 27 | 99.09 36 | 98.34 36 | 96.99 32 | 97.54 29 | 96.60 12 | 94.82 51 | 98.45 35 | 98.89 6 | 97.46 61 | 98.77 4 | 99.17 94 | 99.37 22 |
|
| 3Dnovator | | 93.79 8 | 97.08 37 | 97.20 41 | 96.95 37 | 99.09 28 | 99.03 43 | 98.20 39 | 93.33 52 | 97.99 15 | 93.82 32 | 90.61 94 | 96.80 49 | 97.82 37 | 97.90 48 | 98.78 3 | 99.47 33 | 99.26 35 |
|
| QAPM | | | 96.78 47 | 97.14 44 | 96.36 42 | 99.05 29 | 99.14 35 | 98.02 43 | 93.26 54 | 97.27 37 | 90.84 65 | 91.16 86 | 97.31 44 | 97.64 43 | 97.70 54 | 98.20 19 | 99.33 63 | 99.18 48 |
|
| OpenMVS |  | 92.33 11 | 95.50 56 | 95.22 75 | 95.82 53 | 98.98 30 | 98.97 49 | 97.67 50 | 93.04 62 | 94.64 105 | 89.18 95 | 84.44 142 | 94.79 65 | 96.79 62 | 97.23 66 | 97.61 49 | 99.24 78 | 98.88 85 |
|
| PLC |  | 94.95 3 | 97.37 33 | 96.77 51 | 98.07 20 | 98.97 31 | 98.21 92 | 97.94 46 | 96.85 35 | 97.66 25 | 97.58 3 | 93.33 61 | 96.84 48 | 98.01 36 | 97.13 71 | 96.20 87 | 99.09 106 | 98.01 131 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| TPM-MVS | | | | | | 98.94 32 | 98.47 85 | 98.04 42 | | | 92.62 46 | 96.51 33 | 98.76 29 | 95.94 79 | | | 98.92 127 | 97.55 147 |
| Ray Leroy Khuboni and Hongjun Xu: Textureless Resilient Propagation Matching in Multiple View Stereosis (TPM-MVS). SATNAC 2025 |
| train_agg | | | 97.65 29 | 98.06 29 | 97.18 33 | 98.94 32 | 98.91 56 | 98.98 24 | 97.07 31 | 96.71 51 | 90.66 68 | 97.43 26 | 99.08 23 | 98.20 27 | 97.96 46 | 97.14 64 | 99.22 84 | 99.19 45 |
|
| CDPH-MVS | | | 96.84 45 | 97.49 36 | 96.09 47 | 98.92 34 | 98.85 61 | 98.61 28 | 95.09 41 | 96.00 71 | 87.29 108 | 95.45 46 | 97.42 43 | 97.16 52 | 97.83 50 | 97.94 34 | 99.44 44 | 98.92 80 |
|
| CPTT-MVS | | | 97.78 26 | 97.54 35 | 98.05 21 | 98.91 35 | 99.05 37 | 99.00 20 | 96.96 33 | 97.14 41 | 95.92 17 | 95.50 44 | 98.78 28 | 98.99 4 | 97.20 67 | 96.07 89 | 98.54 161 | 99.04 66 |
|
| 3Dnovator+ | | 93.91 7 | 97.23 35 | 97.22 40 | 97.24 32 | 98.89 36 | 98.85 61 | 98.26 38 | 93.25 56 | 97.99 15 | 95.56 22 | 90.01 100 | 98.03 41 | 98.05 34 | 97.91 47 | 98.43 10 | 99.44 44 | 99.35 24 |
|
| ACMMP |  | | 97.37 33 | 97.48 37 | 97.25 31 | 98.88 37 | 99.28 24 | 98.47 34 | 96.86 34 | 97.04 45 | 92.15 50 | 97.57 23 | 96.05 60 | 97.67 40 | 97.27 65 | 95.99 94 | 99.46 34 | 99.14 53 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| PHI-MVS | | | 97.78 26 | 98.44 18 | 97.02 36 | 98.73 38 | 99.25 28 | 98.11 40 | 95.54 39 | 96.66 53 | 92.79 43 | 98.52 6 | 99.38 9 | 97.50 45 | 97.84 49 | 98.39 14 | 99.45 38 | 99.03 67 |
|
| OMC-MVS | | | 97.00 39 | 96.92 48 | 97.09 34 | 98.69 39 | 98.66 74 | 97.85 47 | 95.02 42 | 98.09 13 | 94.47 27 | 93.15 62 | 96.90 46 | 97.38 47 | 97.16 70 | 96.82 74 | 99.13 101 | 97.65 144 |
|
| MAR-MVS | | | 95.50 56 | 95.60 65 | 95.39 61 | 98.67 40 | 98.18 95 | 95.89 102 | 89.81 109 | 94.55 107 | 91.97 53 | 92.99 64 | 90.21 91 | 97.30 49 | 96.79 80 | 97.49 51 | 98.72 147 | 98.99 72 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| TSAR-MVS + ACMM | | | 97.71 28 | 98.60 12 | 96.66 39 | 98.64 41 | 99.05 37 | 98.85 25 | 97.23 27 | 98.45 4 | 89.40 90 | 97.51 24 | 99.27 14 | 96.88 61 | 98.53 15 | 97.81 43 | 98.96 123 | 99.59 8 |
|
| CNLPA | | | 96.90 42 | 96.28 57 | 97.64 28 | 98.56 42 | 98.63 79 | 96.85 68 | 96.60 36 | 97.73 19 | 97.08 6 | 89.78 102 | 96.28 56 | 97.80 39 | 96.73 83 | 96.63 76 | 98.94 125 | 98.14 127 |
|
| EPNet | | | 96.27 53 | 96.97 46 | 95.46 59 | 98.47 43 | 98.28 89 | 97.41 53 | 93.67 49 | 95.86 76 | 92.86 42 | 97.51 24 | 93.79 71 | 91.76 143 | 97.03 74 | 97.03 66 | 98.61 157 | 99.28 30 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| MVS_111021_LR | | | 97.16 36 | 98.01 31 | 96.16 46 | 98.47 43 | 98.98 48 | 96.94 64 | 93.89 48 | 97.64 26 | 91.44 55 | 98.89 3 | 96.41 52 | 97.20 51 | 98.02 45 | 97.29 62 | 99.04 117 | 98.85 89 |
|
| MVS_111021_HR | | | 97.04 38 | 98.20 26 | 95.69 54 | 98.44 45 | 99.29 23 | 96.59 80 | 93.20 57 | 97.70 22 | 89.94 82 | 98.46 8 | 96.89 47 | 96.71 65 | 98.11 42 | 97.95 33 | 99.27 74 | 99.01 70 |
|
| MSDG | | | 94.82 71 | 93.73 105 | 96.09 47 | 98.34 46 | 97.43 111 | 97.06 59 | 96.05 37 | 95.84 77 | 90.56 69 | 86.30 131 | 89.10 101 | 95.55 87 | 96.13 110 | 95.61 105 | 99.00 118 | 95.73 180 |
|
| TAPA-MVS | | 94.18 5 | 96.38 50 | 96.49 55 | 96.25 43 | 98.26 47 | 98.66 74 | 98.00 44 | 94.96 43 | 97.17 39 | 89.48 87 | 92.91 66 | 96.35 53 | 97.53 44 | 96.59 88 | 95.90 97 | 99.28 72 | 97.82 135 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| DeepC-MVS | | 94.87 4 | 96.76 48 | 96.50 54 | 97.05 35 | 98.21 48 | 99.28 24 | 98.67 27 | 97.38 20 | 97.31 35 | 90.36 75 | 89.19 104 | 93.58 72 | 98.19 28 | 98.31 27 | 98.50 7 | 99.51 27 | 99.36 23 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| SD-MVS | | | 98.52 8 | 98.77 9 | 98.23 15 | 98.15 49 | 99.26 26 | 98.79 26 | 97.59 15 | 98.52 3 | 96.25 15 | 97.99 15 | 99.75 6 | 99.01 3 | 98.27 32 | 97.97 31 | 99.59 7 | 99.63 2 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| TSAR-MVS + MP. | | | 98.49 9 | 98.78 8 | 98.15 19 | 98.14 50 | 99.17 33 | 99.34 6 | 97.18 29 | 98.44 5 | 95.72 19 | 97.84 16 | 99.28 12 | 98.87 7 | 99.05 1 | 98.05 26 | 99.66 2 | 99.60 7 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| DPM-MVS | | | 96.86 44 | 96.82 50 | 96.91 38 | 98.08 51 | 98.20 93 | 98.52 33 | 97.20 28 | 97.24 38 | 91.42 56 | 91.84 78 | 98.45 35 | 97.25 50 | 97.07 72 | 97.40 56 | 98.95 124 | 97.55 147 |
|
| EPNet_dtu | | | 92.45 119 | 95.02 81 | 89.46 147 | 98.02 52 | 95.47 170 | 94.79 122 | 92.62 66 | 94.97 100 | 70.11 194 | 94.76 54 | 92.61 78 | 84.07 204 | 95.94 113 | 95.56 106 | 97.15 190 | 95.82 179 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| CANet | | | 96.84 45 | 97.20 41 | 96.42 40 | 97.92 53 | 99.24 30 | 98.60 29 | 93.51 51 | 97.11 42 | 93.07 36 | 91.16 86 | 97.24 45 | 96.21 74 | 98.24 35 | 98.05 26 | 99.22 84 | 99.35 24 |
|
| LS3D | | | 95.46 59 | 95.14 77 | 95.84 52 | 97.91 54 | 98.90 58 | 98.58 30 | 97.79 5 | 97.07 44 | 83.65 123 | 88.71 107 | 88.64 104 | 97.82 37 | 97.49 59 | 97.42 54 | 99.26 77 | 97.72 143 |
|
| CS-MVS-test | | | 97.00 39 | 97.85 33 | 96.00 50 | 97.77 55 | 99.56 5 | 96.35 88 | 91.95 76 | 97.54 29 | 92.20 49 | 96.14 36 | 96.00 61 | 98.19 28 | 98.46 19 | 97.78 44 | 99.57 14 | 99.45 18 |
|
| DELS-MVS | | | 96.06 54 | 96.04 61 | 96.07 49 | 97.77 55 | 99.25 28 | 98.10 41 | 93.26 54 | 94.42 109 | 92.79 43 | 88.52 111 | 93.48 73 | 95.06 96 | 98.51 16 | 98.83 1 | 99.45 38 | 99.28 30 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| COLMAP_ROB |  | 90.49 14 | 93.27 111 | 92.71 120 | 93.93 92 | 97.75 57 | 97.44 110 | 96.07 95 | 93.17 58 | 95.40 86 | 83.86 121 | 83.76 146 | 88.72 103 | 93.87 116 | 94.25 154 | 94.11 148 | 98.87 132 | 95.28 186 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| PCF-MVS | | 93.95 6 | 95.65 55 | 95.14 77 | 96.25 43 | 97.73 58 | 98.73 67 | 97.59 51 | 97.13 30 | 92.50 139 | 89.09 97 | 89.85 101 | 96.65 50 | 96.90 60 | 94.97 141 | 94.89 126 | 99.08 107 | 98.38 116 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| PatchMatch-RL | | | 94.69 77 | 94.41 88 | 95.02 67 | 97.63 59 | 98.15 96 | 94.50 128 | 91.99 74 | 95.32 89 | 91.31 58 | 95.47 45 | 83.44 141 | 96.02 77 | 96.56 89 | 95.23 116 | 98.69 150 | 96.67 172 |
|
| CS-MVS | | | 96.87 43 | 97.41 39 | 96.24 45 | 97.42 60 | 99.48 9 | 97.30 56 | 91.83 81 | 97.17 39 | 93.02 40 | 94.80 52 | 94.45 67 | 98.16 30 | 98.61 13 | 97.85 41 | 99.69 1 | 99.50 12 |
|
| PVSNet_BlendedMVS | | | 95.41 61 | 95.28 73 | 95.57 56 | 97.42 60 | 99.02 45 | 95.89 102 | 93.10 59 | 96.16 64 | 93.12 34 | 91.99 74 | 85.27 126 | 94.66 102 | 98.09 43 | 97.34 58 | 99.24 78 | 99.08 57 |
|
| PVSNet_Blended | | | 95.41 61 | 95.28 73 | 95.57 56 | 97.42 60 | 99.02 45 | 95.89 102 | 93.10 59 | 96.16 64 | 93.12 34 | 91.99 74 | 85.27 126 | 94.66 102 | 98.09 43 | 97.34 58 | 99.24 78 | 99.08 57 |
|
| DeepPCF-MVS | | 95.28 2 | 97.00 39 | 98.35 21 | 95.42 60 | 97.30 63 | 98.94 51 | 94.82 121 | 96.03 38 | 98.24 9 | 92.11 51 | 95.80 41 | 98.64 33 | 95.51 88 | 98.95 7 | 98.66 5 | 96.78 193 | 99.20 44 |
|
| CHOSEN 280x420 | | | 95.46 59 | 97.01 45 | 93.66 97 | 97.28 64 | 97.98 100 | 96.40 86 | 85.39 161 | 96.10 68 | 91.07 59 | 96.53 32 | 96.34 55 | 95.61 85 | 97.65 55 | 96.95 69 | 96.21 194 | 97.49 149 |
|
| MVS_0304 | | | 96.31 51 | 96.91 49 | 95.62 55 | 97.21 65 | 99.20 31 | 98.55 31 | 93.10 59 | 97.04 45 | 89.73 84 | 90.30 96 | 96.35 53 | 95.71 81 | 98.14 39 | 97.93 37 | 99.38 56 | 99.40 20 |
|
| CHOSEN 1792x2688 | | | 92.66 116 | 92.49 126 | 92.85 107 | 97.13 66 | 98.89 59 | 95.90 100 | 88.50 127 | 95.32 89 | 83.31 124 | 71.99 200 | 88.96 102 | 94.10 113 | 96.69 84 | 96.49 78 | 98.15 174 | 99.10 54 |
|
| HyFIR lowres test | | | 92.03 120 | 91.55 145 | 92.58 108 | 97.13 66 | 98.72 68 | 94.65 125 | 86.54 146 | 93.58 124 | 82.56 127 | 67.75 211 | 90.47 89 | 95.67 82 | 95.87 115 | 95.54 107 | 98.91 129 | 98.93 79 |
|
| OPM-MVS | | | 93.61 104 | 92.43 130 | 95.00 68 | 96.94 68 | 97.34 112 | 97.78 48 | 94.23 46 | 89.64 172 | 85.53 115 | 88.70 108 | 82.81 144 | 96.28 73 | 96.28 103 | 95.00 125 | 99.24 78 | 97.22 157 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| XVS | | | | | | 96.60 69 | 99.35 17 | 96.82 69 | | | 90.85 62 | | 98.72 30 | | | | 99.46 34 | |
|
| X-MVStestdata | | | | | | 96.60 69 | 99.35 17 | 96.82 69 | | | 90.85 62 | | 98.72 30 | | | | 99.46 34 | |
|
| TSAR-MVS + COLMAP | | | 94.79 73 | 94.51 86 | 95.11 65 | 96.50 71 | 97.54 106 | 97.99 45 | 94.54 44 | 97.81 17 | 85.88 114 | 96.73 31 | 81.28 151 | 96.99 58 | 96.29 102 | 95.21 117 | 98.76 146 | 96.73 171 |
|
| PVSNet_Blended_VisFu | | | 94.77 75 | 95.54 67 | 93.87 93 | 96.48 72 | 98.97 49 | 94.33 130 | 91.84 79 | 94.93 101 | 90.37 74 | 85.04 137 | 94.99 64 | 90.87 158 | 98.12 41 | 97.30 60 | 99.30 70 | 99.45 18 |
|
| LGP-MVS_train | | | 94.12 91 | 94.62 84 | 93.53 98 | 96.44 73 | 97.54 106 | 97.40 54 | 91.84 79 | 94.66 104 | 81.09 136 | 95.70 43 | 83.36 142 | 95.10 95 | 96.36 100 | 95.71 103 | 99.32 65 | 99.03 67 |
|
| HQP-MVS | | | 94.43 84 | 94.57 85 | 94.27 88 | 96.41 74 | 97.23 116 | 96.89 65 | 93.98 47 | 95.94 73 | 83.68 122 | 95.01 50 | 84.46 133 | 95.58 86 | 95.47 129 | 94.85 130 | 99.07 109 | 99.00 71 |
|
| ACMM | | 92.75 10 | 94.41 86 | 93.84 103 | 95.09 66 | 96.41 74 | 96.80 125 | 94.88 120 | 93.54 50 | 96.41 58 | 90.16 76 | 92.31 72 | 83.11 143 | 96.32 72 | 96.22 105 | 94.65 132 | 99.22 84 | 97.35 154 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| RPSCF | | | 94.05 92 | 94.00 99 | 94.12 90 | 96.20 76 | 96.41 139 | 96.61 79 | 91.54 86 | 95.83 78 | 89.73 84 | 96.94 30 | 92.80 76 | 95.35 92 | 91.63 192 | 90.44 194 | 95.27 206 | 93.94 197 |
|
| test2506 | | | 94.32 88 | 93.00 117 | 95.87 51 | 96.16 77 | 99.39 15 | 96.96 62 | 92.80 64 | 95.22 95 | 94.47 27 | 91.55 83 | 70.45 197 | 95.25 93 | 98.29 28 | 97.98 29 | 99.59 7 | 98.10 129 |
|
| ECVR-MVS |  | | 94.14 90 | 92.96 118 | 95.52 58 | 96.16 77 | 99.39 15 | 96.96 62 | 92.80 64 | 95.22 95 | 92.38 48 | 81.48 156 | 80.31 152 | 95.25 93 | 98.29 28 | 97.98 29 | 99.59 7 | 98.05 130 |
|
| test1111 | | | 93.94 95 | 92.78 119 | 95.29 63 | 96.14 79 | 99.42 11 | 96.79 73 | 92.85 63 | 95.08 99 | 91.39 57 | 80.69 161 | 79.86 155 | 95.00 97 | 98.28 31 | 98.00 28 | 99.58 11 | 98.11 128 |
|
| UA-Net | | | 93.96 94 | 95.95 62 | 91.64 119 | 96.06 80 | 98.59 81 | 95.29 111 | 90.00 103 | 91.06 159 | 82.87 125 | 90.64 93 | 98.06 40 | 86.06 191 | 98.14 39 | 98.20 19 | 99.58 11 | 96.96 165 |
|
| UGNet | | | 94.92 68 | 96.63 52 | 92.93 106 | 96.03 81 | 98.63 79 | 94.53 127 | 91.52 87 | 96.23 62 | 90.03 79 | 92.87 67 | 96.10 59 | 86.28 190 | 96.68 85 | 96.60 77 | 99.16 97 | 99.32 28 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| ACMP | | 92.88 9 | 94.43 84 | 94.38 89 | 94.50 84 | 96.01 82 | 97.69 104 | 95.85 105 | 92.09 73 | 95.74 79 | 89.12 96 | 95.14 48 | 82.62 146 | 94.77 98 | 95.73 122 | 94.67 131 | 99.14 100 | 99.06 62 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| IB-MVS | | 89.56 15 | 91.71 126 | 92.50 125 | 90.79 131 | 95.94 83 | 98.44 86 | 87.05 202 | 91.38 90 | 93.15 128 | 92.98 41 | 84.78 138 | 85.14 129 | 78.27 209 | 92.47 180 | 94.44 143 | 99.10 105 | 99.08 57 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| MS-PatchMatch | | | 91.82 124 | 92.51 124 | 91.02 125 | 95.83 84 | 96.88 121 | 95.05 115 | 84.55 175 | 93.85 119 | 82.01 129 | 82.51 152 | 91.71 80 | 90.52 165 | 95.07 139 | 93.03 170 | 98.13 175 | 94.52 188 |
|
| CANet_DTU | | | 93.92 97 | 96.57 53 | 90.83 129 | 95.63 85 | 98.39 87 | 96.99 61 | 87.38 137 | 96.26 61 | 71.97 183 | 96.31 34 | 93.02 74 | 94.53 105 | 97.38 63 | 96.83 73 | 98.49 164 | 97.79 136 |
|
| ACMH | | 90.77 13 | 91.51 131 | 91.63 143 | 91.38 122 | 95.62 86 | 96.87 123 | 91.76 175 | 89.66 112 | 91.58 154 | 78.67 146 | 86.73 119 | 78.12 161 | 93.77 120 | 94.59 145 | 94.54 139 | 98.78 144 | 98.98 74 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| TSAR-MVS + GP. | | | 97.45 31 | 98.36 19 | 96.39 41 | 95.56 87 | 98.93 53 | 97.74 49 | 93.31 53 | 97.61 27 | 94.24 30 | 98.44 9 | 99.19 17 | 98.03 35 | 97.60 56 | 97.41 55 | 99.44 44 | 99.33 26 |
|
| thres600view7 | | | 93.49 107 | 92.37 133 | 94.79 78 | 95.42 88 | 98.93 53 | 96.58 81 | 92.31 68 | 93.04 129 | 87.88 104 | 86.62 121 | 76.94 170 | 97.09 56 | 96.82 77 | 95.63 104 | 99.45 38 | 98.63 99 |
|
| thres400 | | | 93.56 105 | 92.43 130 | 94.87 75 | 95.40 89 | 98.91 56 | 96.70 77 | 92.38 67 | 92.93 131 | 88.19 103 | 86.69 120 | 77.35 167 | 97.13 53 | 96.75 82 | 95.85 99 | 99.42 49 | 98.56 102 |
|
| thres200 | | | 93.62 103 | 92.54 123 | 94.88 73 | 95.36 90 | 98.93 53 | 96.75 75 | 92.31 68 | 92.84 132 | 88.28 101 | 86.99 117 | 77.81 166 | 97.13 53 | 96.82 77 | 95.92 95 | 99.45 38 | 98.49 108 |
|
| thres100view900 | | | 93.55 106 | 92.47 129 | 94.81 77 | 95.33 91 | 98.74 66 | 96.78 74 | 92.30 71 | 92.63 135 | 88.29 99 | 87.21 115 | 78.01 163 | 96.78 63 | 96.38 97 | 95.92 95 | 99.38 56 | 98.40 114 |
|
| tfpn200view9 | | | 93.64 102 | 92.57 122 | 94.89 72 | 95.33 91 | 98.94 51 | 96.82 69 | 92.31 68 | 92.63 135 | 88.29 99 | 87.21 115 | 78.01 163 | 97.12 55 | 96.82 77 | 95.85 99 | 99.45 38 | 98.56 102 |
|
| IS_MVSNet | | | 95.28 63 | 96.43 56 | 93.94 91 | 95.30 93 | 99.01 47 | 95.90 100 | 91.12 92 | 94.13 115 | 87.50 107 | 91.23 85 | 94.45 67 | 94.17 111 | 98.45 20 | 98.50 7 | 99.65 3 | 99.23 39 |
|
| CMPMVS |  | 65.18 17 | 84.76 200 | 83.10 206 | 86.69 188 | 95.29 94 | 95.05 182 | 88.37 197 | 85.51 160 | 80.27 215 | 71.31 187 | 68.37 209 | 73.85 182 | 85.25 195 | 87.72 207 | 87.75 204 | 94.38 214 | 88.70 214 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| sasdasda | | | 95.25 65 | 95.45 69 | 95.00 68 | 95.27 95 | 98.72 68 | 96.89 65 | 89.82 107 | 96.51 54 | 90.84 65 | 93.72 58 | 86.01 119 | 97.66 41 | 95.78 119 | 97.94 34 | 99.54 19 | 99.50 12 |
|
| canonicalmvs | | | 95.25 65 | 95.45 69 | 95.00 68 | 95.27 95 | 98.72 68 | 96.89 65 | 89.82 107 | 96.51 54 | 90.84 65 | 93.72 58 | 86.01 119 | 97.66 41 | 95.78 119 | 97.94 34 | 99.54 19 | 99.50 12 |
|
| MGCFI-Net | | | 95.12 67 | 95.39 72 | 94.79 78 | 95.24 97 | 98.68 72 | 96.80 72 | 89.72 111 | 96.48 56 | 90.11 78 | 93.64 60 | 85.86 123 | 97.36 48 | 95.69 125 | 97.92 38 | 99.53 21 | 99.49 15 |
|
| Vis-MVSNet (Re-imp) | | | 94.46 83 | 96.24 58 | 92.40 110 | 95.23 98 | 98.64 77 | 95.56 108 | 90.99 93 | 94.42 109 | 85.02 117 | 90.88 92 | 94.65 66 | 88.01 180 | 98.17 37 | 98.37 16 | 99.57 14 | 98.53 105 |
|
| CLD-MVS | | | 94.79 73 | 94.36 90 | 95.30 62 | 95.21 99 | 97.46 109 | 97.23 57 | 92.24 72 | 96.43 57 | 91.77 54 | 92.69 68 | 84.31 134 | 96.06 75 | 95.52 127 | 95.03 122 | 99.31 68 | 99.06 62 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| baseline1 | | | 94.59 79 | 94.47 87 | 94.72 80 | 95.16 100 | 97.97 101 | 96.07 95 | 91.94 77 | 94.86 102 | 89.98 80 | 91.60 82 | 85.87 122 | 95.64 83 | 97.07 72 | 96.90 70 | 99.52 22 | 97.06 164 |
|
| TDRefinement | | | 89.07 163 | 88.15 172 | 90.14 140 | 95.16 100 | 96.88 121 | 95.55 109 | 90.20 101 | 89.68 171 | 76.42 159 | 76.67 174 | 74.30 180 | 84.85 198 | 93.11 170 | 91.91 188 | 98.64 156 | 94.47 189 |
|
| ACMH+ | | 90.88 12 | 91.41 132 | 91.13 148 | 91.74 118 | 95.11 102 | 96.95 120 | 93.13 147 | 89.48 116 | 92.42 141 | 79.93 141 | 85.13 136 | 78.02 162 | 93.82 119 | 93.49 165 | 93.88 154 | 98.94 125 | 97.99 132 |
|
| DCV-MVSNet | | | 94.76 76 | 95.12 79 | 94.35 87 | 95.10 103 | 95.81 159 | 96.46 85 | 89.49 115 | 96.33 60 | 90.16 76 | 92.55 70 | 90.26 90 | 95.83 80 | 95.52 127 | 96.03 92 | 99.06 112 | 99.33 26 |
|
| Anonymous202405211 | | | | 92.18 135 | | 95.04 104 | 98.20 93 | 96.14 92 | 91.79 83 | 93.93 116 | | 74.60 183 | 88.38 107 | 96.48 70 | 95.17 137 | 95.82 102 | 99.00 118 | 99.15 51 |
|
| casdiffmvs_mvg |  | | 94.55 80 | 94.26 92 | 94.88 73 | 94.96 105 | 98.51 83 | 97.11 58 | 91.82 82 | 94.28 112 | 89.20 94 | 86.60 122 | 86.85 112 | 96.56 69 | 97.47 60 | 97.25 63 | 99.64 4 | 98.83 91 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| FC-MVSNet-train | | | 93.85 98 | 93.91 100 | 93.78 95 | 94.94 106 | 96.79 128 | 94.29 131 | 91.13 91 | 93.84 120 | 88.26 102 | 90.40 95 | 85.23 128 | 94.65 104 | 96.54 91 | 95.31 113 | 99.38 56 | 99.28 30 |
|
| EPP-MVSNet | | | 95.27 64 | 96.18 60 | 94.20 89 | 94.88 107 | 98.64 77 | 94.97 117 | 90.70 96 | 95.34 88 | 89.67 86 | 91.66 81 | 93.84 70 | 95.42 91 | 97.32 64 | 97.00 67 | 99.58 11 | 99.47 17 |
|
| FA-MVS(training) | | | 93.94 95 | 95.16 76 | 92.53 109 | 94.87 108 | 98.57 82 | 95.42 110 | 79.49 195 | 95.37 87 | 90.98 60 | 86.54 124 | 94.26 69 | 95.44 90 | 97.80 53 | 95.19 118 | 98.97 121 | 98.38 116 |
|
| EIA-MVS | | | 95.50 56 | 96.19 59 | 94.69 81 | 94.83 109 | 98.88 60 | 95.93 99 | 91.50 88 | 94.47 108 | 89.43 88 | 93.14 63 | 92.72 77 | 97.05 57 | 97.82 52 | 97.13 65 | 99.43 47 | 99.15 51 |
|
| ETV-MVS | | | 96.31 51 | 97.47 38 | 94.96 71 | 94.79 110 | 98.78 64 | 96.08 94 | 91.41 89 | 96.16 64 | 90.50 70 | 95.76 42 | 96.20 57 | 97.39 46 | 98.42 23 | 97.82 42 | 99.57 14 | 99.18 48 |
|
| MVS_Test | | | 94.82 71 | 95.66 64 | 93.84 94 | 94.79 110 | 98.35 88 | 96.49 84 | 89.10 120 | 96.12 67 | 87.09 110 | 92.58 69 | 90.61 88 | 96.48 70 | 96.51 95 | 96.89 71 | 99.11 104 | 98.54 104 |
|
| Anonymous20231211 | | | 93.49 107 | 92.33 134 | 94.84 76 | 94.78 112 | 98.00 99 | 96.11 93 | 91.85 78 | 94.86 102 | 90.91 61 | 74.69 182 | 89.18 99 | 96.73 64 | 94.82 142 | 95.51 108 | 98.67 151 | 99.24 38 |
|
| baseline | | | 94.83 70 | 95.82 63 | 93.68 96 | 94.75 113 | 97.80 102 | 96.51 83 | 88.53 126 | 97.02 47 | 89.34 92 | 92.93 65 | 92.18 79 | 94.69 101 | 95.78 119 | 96.08 88 | 98.27 172 | 98.97 78 |
|
| EC-MVSNet | | | 96.49 49 | 97.63 34 | 95.16 64 | 94.75 113 | 98.69 71 | 97.39 55 | 88.97 121 | 96.34 59 | 92.02 52 | 96.04 38 | 96.46 51 | 98.21 26 | 98.41 24 | 97.96 32 | 99.61 6 | 99.55 10 |
|
| MVSTER | | | 94.89 69 | 95.07 80 | 94.68 82 | 94.71 115 | 96.68 131 | 97.00 60 | 90.57 98 | 95.18 97 | 93.05 38 | 95.21 47 | 86.41 116 | 93.72 121 | 97.59 57 | 95.88 98 | 99.00 118 | 98.50 107 |
|
| EPMVS | | | 90.88 137 | 92.12 136 | 89.44 148 | 94.71 115 | 97.24 115 | 93.55 138 | 76.81 202 | 95.89 74 | 81.77 131 | 91.49 84 | 86.47 115 | 93.87 116 | 90.21 199 | 90.07 196 | 95.92 197 | 93.49 203 |
|
| casdiffmvs |  | | 94.38 87 | 94.15 98 | 94.64 83 | 94.70 117 | 98.51 83 | 96.03 97 | 91.66 84 | 95.70 80 | 89.36 91 | 86.48 126 | 85.03 131 | 96.60 68 | 97.40 62 | 97.30 60 | 99.52 22 | 98.67 97 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| diffmvs |  | | 94.31 89 | 94.21 93 | 94.42 86 | 94.64 118 | 98.28 89 | 96.36 87 | 91.56 85 | 96.77 49 | 88.89 98 | 88.97 105 | 84.23 135 | 96.01 78 | 96.05 111 | 96.41 80 | 99.05 116 | 98.79 94 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| DI_MVS_plusplus_trai | | | 94.01 93 | 93.63 107 | 94.44 85 | 94.54 119 | 98.26 91 | 97.51 52 | 90.63 97 | 95.88 75 | 89.34 92 | 80.54 163 | 89.36 96 | 95.48 89 | 96.33 101 | 96.27 84 | 99.17 94 | 98.78 95 |
|
| thisisatest0530 | | | 94.54 81 | 95.47 68 | 93.46 100 | 94.51 120 | 98.65 76 | 94.66 124 | 90.72 94 | 95.69 82 | 86.90 111 | 93.80 56 | 89.44 95 | 94.74 99 | 96.98 76 | 94.86 127 | 99.19 92 | 98.85 89 |
|
| tttt0517 | | | 94.52 82 | 95.44 71 | 93.44 101 | 94.51 120 | 98.68 72 | 94.61 126 | 90.72 94 | 95.61 84 | 86.84 112 | 93.78 57 | 89.26 98 | 94.74 99 | 97.02 75 | 94.86 127 | 99.20 91 | 98.87 87 |
|
| ADS-MVSNet | | | 89.80 152 | 91.33 147 | 88.00 169 | 94.43 122 | 96.71 130 | 92.29 163 | 74.95 212 | 96.07 69 | 77.39 151 | 88.67 109 | 86.09 118 | 93.26 128 | 88.44 205 | 89.57 199 | 95.68 200 | 93.81 200 |
|
| tpmrst | | | 88.86 167 | 89.62 159 | 87.97 170 | 94.33 123 | 95.98 149 | 92.62 155 | 76.36 205 | 94.62 106 | 76.94 155 | 85.98 132 | 82.80 145 | 92.80 133 | 86.90 211 | 87.15 207 | 94.77 211 | 93.93 198 |
|
| PMMVS | | | 94.61 78 | 95.56 66 | 93.50 99 | 94.30 124 | 96.74 129 | 94.91 119 | 89.56 114 | 95.58 85 | 87.72 105 | 96.15 35 | 92.86 75 | 96.06 75 | 95.47 129 | 95.02 123 | 98.43 169 | 97.09 160 |
|
| CostFormer | | | 90.69 138 | 90.48 156 | 90.93 127 | 94.18 125 | 96.08 147 | 94.03 133 | 78.20 198 | 93.47 125 | 89.96 81 | 90.97 91 | 80.30 153 | 93.72 121 | 87.66 209 | 88.75 201 | 95.51 203 | 96.12 176 |
|
| USDC | | | 90.69 138 | 90.52 155 | 90.88 128 | 94.17 126 | 96.43 138 | 95.82 106 | 86.76 143 | 93.92 117 | 76.27 161 | 86.49 125 | 74.30 180 | 93.67 123 | 95.04 140 | 93.36 163 | 98.61 157 | 94.13 193 |
|
| Vis-MVSNet |  | | 92.77 114 | 95.00 82 | 90.16 138 | 94.10 127 | 98.79 63 | 94.76 123 | 88.26 128 | 92.37 144 | 79.95 140 | 88.19 113 | 91.58 81 | 84.38 201 | 97.59 57 | 97.58 50 | 99.52 22 | 98.91 83 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| Effi-MVS+ | | | 92.93 113 | 93.86 102 | 91.86 115 | 94.07 128 | 98.09 98 | 95.59 107 | 85.98 153 | 94.27 113 | 79.54 144 | 91.12 89 | 81.81 148 | 96.71 65 | 96.67 86 | 96.06 90 | 99.27 74 | 98.98 74 |
|
| GeoE | | | 92.52 118 | 92.64 121 | 92.39 111 | 93.96 129 | 97.76 103 | 96.01 98 | 85.60 158 | 93.23 127 | 83.94 120 | 81.56 155 | 84.80 132 | 95.63 84 | 96.22 105 | 95.83 101 | 99.19 92 | 99.07 61 |
|
| IterMVS-LS | | | 92.56 117 | 93.18 114 | 91.84 116 | 93.90 130 | 94.97 184 | 94.99 116 | 86.20 150 | 94.18 114 | 82.68 126 | 85.81 133 | 87.36 111 | 94.43 106 | 95.31 133 | 96.02 93 | 98.87 132 | 98.60 101 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| dps | | | 90.11 150 | 89.37 163 | 90.98 126 | 93.89 131 | 96.21 144 | 93.49 140 | 77.61 200 | 91.95 150 | 92.74 45 | 88.85 106 | 78.77 160 | 92.37 136 | 87.71 208 | 87.71 205 | 95.80 199 | 94.38 191 |
|
| tpm cat1 | | | 88.90 165 | 87.78 181 | 90.22 137 | 93.88 132 | 95.39 173 | 93.79 136 | 78.11 199 | 92.55 138 | 89.43 88 | 81.31 157 | 79.84 156 | 91.40 146 | 84.95 212 | 86.34 210 | 94.68 213 | 94.09 194 |
|
| PatchmatchNet |  | | 90.56 140 | 92.49 126 | 88.31 160 | 93.83 133 | 96.86 124 | 92.42 159 | 76.50 204 | 95.96 72 | 78.31 147 | 91.96 76 | 89.66 94 | 93.48 125 | 90.04 201 | 89.20 200 | 95.32 204 | 93.73 201 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| TinyColmap | | | 89.42 155 | 88.58 167 | 90.40 135 | 93.80 134 | 95.45 171 | 93.96 135 | 86.54 146 | 92.24 147 | 76.49 158 | 80.83 159 | 70.44 198 | 93.37 126 | 94.45 149 | 93.30 166 | 98.26 173 | 93.37 204 |
|
| SCA | | | 90.92 136 | 93.04 116 | 88.45 157 | 93.72 135 | 97.33 113 | 92.77 151 | 76.08 207 | 96.02 70 | 78.26 148 | 91.96 76 | 90.86 85 | 93.99 115 | 90.98 196 | 90.04 197 | 95.88 198 | 94.06 196 |
|
| RPMNet | | | 90.19 147 | 92.03 139 | 88.05 166 | 93.46 136 | 95.95 152 | 93.41 141 | 74.59 213 | 92.40 142 | 75.91 163 | 84.22 143 | 86.41 116 | 92.49 134 | 94.42 150 | 93.85 156 | 98.44 167 | 96.96 165 |
|
| gg-mvs-nofinetune | | | 86.17 194 | 88.57 168 | 83.36 201 | 93.44 137 | 98.15 96 | 96.58 81 | 72.05 216 | 74.12 220 | 49.23 224 | 64.81 215 | 90.85 86 | 89.90 173 | 97.83 50 | 96.84 72 | 98.97 121 | 97.41 152 |
|
| MDTV_nov1_ep13 | | | 91.57 129 | 93.18 114 | 89.70 144 | 93.39 138 | 96.97 119 | 93.53 139 | 80.91 192 | 95.70 80 | 81.86 130 | 92.40 71 | 89.93 92 | 93.25 129 | 91.97 189 | 90.80 192 | 95.25 207 | 94.46 190 |
|
| CR-MVSNet | | | 90.16 148 | 91.96 140 | 88.06 165 | 93.32 139 | 95.95 152 | 93.36 143 | 75.99 208 | 92.40 142 | 75.19 169 | 83.18 148 | 85.37 125 | 92.05 138 | 95.21 135 | 94.56 137 | 98.47 166 | 97.08 162 |
|
| test-LLR | | | 91.62 128 | 93.56 110 | 89.35 150 | 93.31 140 | 96.57 134 | 92.02 171 | 87.06 141 | 92.34 145 | 75.05 172 | 90.20 97 | 88.64 104 | 90.93 154 | 96.19 108 | 94.07 149 | 97.75 184 | 96.90 168 |
|
| test0.0.03 1 | | | 91.97 121 | 93.91 100 | 89.72 143 | 93.31 140 | 96.40 140 | 91.34 180 | 87.06 141 | 93.86 118 | 81.67 132 | 91.15 88 | 89.16 100 | 86.02 192 | 95.08 138 | 95.09 119 | 98.91 129 | 96.64 174 |
|
| CVMVSNet | | | 89.77 153 | 91.66 142 | 87.56 179 | 93.21 142 | 95.45 171 | 91.94 174 | 89.22 118 | 89.62 173 | 69.34 200 | 83.99 145 | 85.90 121 | 84.81 199 | 94.30 153 | 95.28 114 | 96.85 192 | 97.09 160 |
|
| PatchT | | | 89.13 162 | 91.71 141 | 86.11 193 | 92.92 143 | 95.59 166 | 83.64 210 | 75.09 211 | 91.87 151 | 75.19 169 | 82.63 151 | 85.06 130 | 92.05 138 | 95.21 135 | 94.56 137 | 97.76 183 | 97.08 162 |
|
| Fast-Effi-MVS+ | | | 91.87 122 | 92.08 137 | 91.62 121 | 92.91 144 | 97.21 117 | 94.93 118 | 84.60 173 | 93.61 123 | 81.49 134 | 83.50 147 | 78.95 158 | 96.62 67 | 96.55 90 | 96.22 86 | 99.16 97 | 98.51 106 |
|
| IterMVS-SCA-FT | | | 90.24 145 | 92.48 128 | 87.63 176 | 92.85 145 | 94.30 200 | 93.79 136 | 81.47 191 | 92.66 134 | 69.95 195 | 84.66 140 | 88.38 107 | 89.99 171 | 95.39 132 | 94.34 144 | 97.74 186 | 97.63 145 |
|
| baseline2 | | | 93.01 112 | 94.17 96 | 91.64 119 | 92.83 146 | 97.49 108 | 93.40 142 | 87.53 135 | 93.67 122 | 86.07 113 | 91.83 79 | 86.58 113 | 91.36 147 | 96.38 97 | 95.06 121 | 98.67 151 | 98.20 125 |
|
| IterMVS | | | 90.20 146 | 92.43 130 | 87.61 177 | 92.82 147 | 94.31 199 | 94.11 132 | 81.54 189 | 92.97 130 | 69.90 196 | 84.71 139 | 88.16 110 | 89.96 172 | 95.25 134 | 94.17 147 | 97.31 188 | 97.46 150 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| CDS-MVSNet | | | 92.77 114 | 93.60 108 | 91.80 117 | 92.63 148 | 96.80 125 | 95.24 112 | 89.14 119 | 90.30 169 | 84.58 118 | 86.76 118 | 90.65 87 | 90.42 166 | 95.89 114 | 96.49 78 | 98.79 143 | 98.32 121 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| tpm | | | 87.95 175 | 89.44 162 | 86.21 192 | 92.53 149 | 94.62 194 | 91.40 178 | 76.36 205 | 91.46 155 | 69.80 198 | 87.43 114 | 75.14 175 | 91.55 145 | 89.85 203 | 90.60 193 | 95.61 201 | 96.96 165 |
|
| Effi-MVS+-dtu | | | 91.78 125 | 93.59 109 | 89.68 146 | 92.44 150 | 97.11 118 | 94.40 129 | 84.94 169 | 92.43 140 | 75.48 165 | 91.09 90 | 83.75 139 | 93.55 124 | 96.61 87 | 95.47 109 | 97.24 189 | 98.67 97 |
|
| testgi | | | 89.42 155 | 91.50 146 | 87.00 186 | 92.40 151 | 95.59 166 | 89.15 196 | 85.27 165 | 92.78 133 | 72.42 181 | 91.75 80 | 76.00 173 | 84.09 203 | 94.38 151 | 93.82 158 | 98.65 155 | 96.15 175 |
|
| Fast-Effi-MVS+-dtu | | | 91.19 133 | 93.64 106 | 88.33 159 | 92.19 152 | 96.46 137 | 93.99 134 | 81.52 190 | 92.59 137 | 71.82 184 | 92.17 73 | 85.54 124 | 91.68 144 | 95.73 122 | 94.64 133 | 98.80 141 | 98.34 118 |
|
| FC-MVSNet-test | | | 91.63 127 | 93.82 104 | 89.08 151 | 92.02 153 | 96.40 140 | 93.26 145 | 87.26 138 | 93.72 121 | 77.26 152 | 88.61 110 | 89.86 93 | 85.50 194 | 95.72 124 | 95.02 123 | 99.16 97 | 97.44 151 |
|
| GA-MVS | | | 89.28 158 | 90.75 154 | 87.57 178 | 91.77 154 | 96.48 136 | 92.29 163 | 87.58 134 | 90.61 166 | 65.77 205 | 84.48 141 | 76.84 171 | 89.46 174 | 95.84 116 | 93.68 159 | 98.52 162 | 97.34 155 |
|
| dmvs_re | | | 91.84 123 | 91.60 144 | 92.12 114 | 91.60 155 | 97.26 114 | 95.14 114 | 91.96 75 | 91.02 160 | 80.98 137 | 86.56 123 | 77.96 165 | 93.84 118 | 94.71 143 | 95.08 120 | 99.22 84 | 98.62 100 |
|
| UniMVSNet_ETH3D | | | 88.47 169 | 86.00 199 | 91.35 123 | 91.55 156 | 96.29 142 | 92.53 156 | 88.81 122 | 85.58 202 | 82.33 128 | 67.63 212 | 66.87 212 | 94.04 114 | 91.49 193 | 95.24 115 | 98.84 135 | 98.92 80 |
|
| TAMVS | | | 90.54 142 | 90.87 153 | 90.16 138 | 91.48 157 | 96.61 133 | 93.26 145 | 86.08 151 | 87.71 188 | 81.66 133 | 83.11 150 | 84.04 136 | 90.42 166 | 94.54 146 | 94.60 134 | 98.04 179 | 95.48 184 |
|
| tfpnnormal | | | 88.50 168 | 87.01 190 | 90.23 136 | 91.36 158 | 95.78 161 | 92.74 152 | 90.09 102 | 83.65 207 | 76.33 160 | 71.46 203 | 69.58 203 | 91.84 141 | 95.54 126 | 94.02 151 | 99.06 112 | 99.03 67 |
|
| GBi-Net | | | 93.81 99 | 94.18 94 | 93.38 102 | 91.34 159 | 95.86 155 | 96.22 89 | 88.68 123 | 95.23 92 | 90.40 71 | 86.39 127 | 91.16 82 | 94.40 108 | 96.52 92 | 96.30 81 | 99.21 88 | 97.79 136 |
|
| test1 | | | 93.81 99 | 94.18 94 | 93.38 102 | 91.34 159 | 95.86 155 | 96.22 89 | 88.68 123 | 95.23 92 | 90.40 71 | 86.39 127 | 91.16 82 | 94.40 108 | 96.52 92 | 96.30 81 | 99.21 88 | 97.79 136 |
|
| FMVSNet2 | | | 93.30 110 | 93.36 113 | 93.22 105 | 91.34 159 | 95.86 155 | 96.22 89 | 88.24 129 | 95.15 98 | 89.92 83 | 81.64 154 | 89.36 96 | 94.40 108 | 96.77 81 | 96.98 68 | 99.21 88 | 97.79 136 |
|
| FMVSNet3 | | | 93.79 101 | 94.17 96 | 93.35 104 | 91.21 162 | 95.99 148 | 96.62 78 | 88.68 123 | 95.23 92 | 90.40 71 | 86.39 127 | 91.16 82 | 94.11 112 | 95.96 112 | 96.67 75 | 99.07 109 | 97.79 136 |
|
| TransMVSNet (Re) | | | 87.73 181 | 86.79 192 | 88.83 153 | 90.76 163 | 94.40 197 | 91.33 181 | 89.62 113 | 84.73 204 | 75.41 167 | 72.73 196 | 71.41 193 | 86.80 186 | 94.53 147 | 93.93 153 | 99.06 112 | 95.83 178 |
|
| LTVRE_ROB | | 87.32 16 | 87.55 182 | 88.25 171 | 86.73 187 | 90.66 164 | 95.80 160 | 93.05 148 | 84.77 170 | 83.35 208 | 60.32 217 | 83.12 149 | 67.39 210 | 93.32 127 | 94.36 152 | 94.86 127 | 98.28 171 | 98.87 87 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| EG-PatchMatch MVS | | | 86.68 190 | 87.24 186 | 86.02 194 | 90.58 165 | 96.26 143 | 91.08 184 | 81.59 188 | 84.96 203 | 69.80 198 | 71.35 204 | 75.08 177 | 84.23 202 | 94.24 155 | 93.35 164 | 98.82 136 | 95.46 185 |
|
| TESTMET0.1,1 | | | 91.07 134 | 93.56 110 | 88.17 161 | 90.43 166 | 96.57 134 | 92.02 171 | 82.83 184 | 92.34 145 | 75.05 172 | 90.20 97 | 88.64 104 | 90.93 154 | 96.19 108 | 94.07 149 | 97.75 184 | 96.90 168 |
|
| pm-mvs1 | | | 89.19 161 | 89.02 164 | 89.38 149 | 90.40 167 | 95.74 162 | 92.05 169 | 88.10 131 | 86.13 198 | 77.70 149 | 73.72 191 | 79.44 157 | 88.97 177 | 95.81 118 | 94.51 141 | 99.08 107 | 97.78 141 |
|
| NR-MVSNet | | | 89.34 157 | 88.66 166 | 90.13 141 | 90.40 167 | 95.61 164 | 93.04 149 | 89.91 104 | 91.22 157 | 78.96 145 | 77.72 171 | 68.90 206 | 89.16 176 | 94.24 155 | 93.95 152 | 99.32 65 | 98.99 72 |
|
| FMVSNet1 | | | 91.54 130 | 90.93 151 | 92.26 112 | 90.35 169 | 95.27 177 | 95.22 113 | 87.16 140 | 91.37 156 | 87.62 106 | 75.45 177 | 83.84 138 | 94.43 106 | 96.52 92 | 96.30 81 | 98.82 136 | 97.74 142 |
|
| test-mter | | | 90.95 135 | 93.54 112 | 87.93 171 | 90.28 170 | 96.80 125 | 91.44 177 | 82.68 185 | 92.15 149 | 74.37 176 | 89.57 103 | 88.23 109 | 90.88 157 | 96.37 99 | 94.31 145 | 97.93 181 | 97.37 153 |
|
| pmmvs4 | | | 90.55 141 | 89.91 158 | 91.30 124 | 90.26 171 | 94.95 185 | 92.73 153 | 87.94 132 | 93.44 126 | 85.35 116 | 82.28 153 | 76.09 172 | 93.02 132 | 93.56 163 | 92.26 186 | 98.51 163 | 96.77 170 |
|
| MVS-HIRNet | | | 85.36 198 | 86.89 191 | 83.57 200 | 90.13 172 | 94.51 195 | 83.57 211 | 72.61 215 | 88.27 184 | 71.22 188 | 68.97 207 | 81.81 148 | 88.91 178 | 93.08 171 | 91.94 187 | 94.97 210 | 89.64 213 |
|
| thisisatest0515 | | | 90.12 149 | 92.06 138 | 87.85 172 | 90.03 173 | 96.17 145 | 87.83 199 | 87.45 136 | 91.71 153 | 77.15 153 | 85.40 135 | 84.01 137 | 85.74 193 | 95.41 131 | 93.30 166 | 98.88 131 | 98.43 110 |
|
| SixPastTwentyTwo | | | 88.37 170 | 89.47 161 | 87.08 184 | 90.01 174 | 95.93 154 | 87.41 200 | 85.32 162 | 90.26 170 | 70.26 192 | 86.34 130 | 71.95 190 | 90.93 154 | 92.89 175 | 91.72 189 | 98.55 160 | 97.22 157 |
|
| UniMVSNet (Re) | | | 90.03 151 | 89.61 160 | 90.51 134 | 89.97 175 | 96.12 146 | 92.32 161 | 89.26 117 | 90.99 161 | 80.95 138 | 78.25 170 | 75.08 177 | 91.14 150 | 93.78 158 | 93.87 155 | 99.41 50 | 99.21 43 |
|
| pmnet_mix02 | | | 86.12 195 | 87.12 189 | 84.96 197 | 89.82 176 | 94.12 201 | 84.88 208 | 86.63 145 | 91.78 152 | 65.60 206 | 80.76 160 | 76.98 169 | 86.61 188 | 87.29 210 | 84.80 213 | 96.21 194 | 94.09 194 |
|
| our_test_3 | | | | | | 89.78 177 | 93.84 203 | 85.59 205 | | | | | | | | | | |
|
| UniMVSNet_NR-MVSNet | | | 90.35 144 | 89.96 157 | 90.80 130 | 89.66 178 | 95.83 158 | 92.48 157 | 90.53 99 | 90.96 162 | 79.57 142 | 79.33 167 | 77.14 168 | 93.21 130 | 92.91 174 | 94.50 142 | 99.37 59 | 99.05 64 |
|
| v8 | | | 88.21 173 | 87.94 178 | 88.51 156 | 89.62 179 | 95.01 183 | 92.31 162 | 84.99 167 | 88.94 175 | 74.70 174 | 75.03 179 | 73.51 184 | 90.67 162 | 92.11 185 | 92.74 178 | 98.80 141 | 98.24 123 |
|
| WR-MVS_H | | | 87.93 176 | 87.85 179 | 88.03 168 | 89.62 179 | 95.58 168 | 90.47 189 | 85.55 159 | 87.20 193 | 76.83 156 | 74.42 186 | 72.67 188 | 86.37 189 | 93.22 169 | 93.04 169 | 99.33 63 | 98.83 91 |
|
| pmmvs5 | | | 87.83 180 | 88.09 173 | 87.51 181 | 89.59 181 | 95.48 169 | 89.75 194 | 84.73 171 | 86.07 200 | 71.44 186 | 80.57 162 | 70.09 201 | 90.74 161 | 94.47 148 | 92.87 174 | 98.82 136 | 97.10 159 |
|
| gm-plane-assit | | | 83.26 204 | 85.29 201 | 80.89 204 | 89.52 182 | 89.89 215 | 70.26 221 | 78.24 197 | 77.11 218 | 58.01 221 | 74.16 188 | 66.90 211 | 90.63 164 | 97.20 67 | 96.05 91 | 98.66 154 | 95.68 181 |
|
| v10 | | | 88.00 174 | 87.96 176 | 88.05 166 | 89.44 183 | 94.68 191 | 92.36 160 | 83.35 180 | 89.37 174 | 72.96 180 | 73.98 189 | 72.79 187 | 91.35 148 | 93.59 160 | 92.88 173 | 98.81 139 | 98.42 112 |
|
| V42 | | | 88.31 171 | 87.95 177 | 88.73 154 | 89.44 183 | 95.34 174 | 92.23 165 | 87.21 139 | 88.83 177 | 74.49 175 | 74.89 181 | 73.43 185 | 90.41 168 | 92.08 187 | 92.77 177 | 98.60 159 | 98.33 119 |
|
| v148 | | | 87.51 183 | 86.79 192 | 88.36 158 | 89.39 185 | 95.21 179 | 89.84 193 | 88.20 130 | 87.61 190 | 77.56 150 | 73.38 194 | 70.32 200 | 86.80 186 | 90.70 197 | 92.31 184 | 98.37 170 | 97.98 134 |
|
| CP-MVSNet | | | 87.89 179 | 87.27 185 | 88.62 155 | 89.30 186 | 95.06 181 | 90.60 188 | 85.78 155 | 87.43 192 | 75.98 162 | 74.60 183 | 68.14 209 | 90.76 159 | 93.07 172 | 93.60 160 | 99.30 70 | 98.98 74 |
|
| v1144 | | | 87.92 178 | 87.79 180 | 88.07 163 | 89.27 187 | 95.15 180 | 92.17 166 | 85.62 157 | 88.52 181 | 71.52 185 | 73.80 190 | 72.40 189 | 91.06 152 | 93.54 164 | 92.80 175 | 98.81 139 | 98.33 119 |
|
| DU-MVS | | | 89.67 154 | 88.84 165 | 90.63 133 | 89.26 188 | 95.61 164 | 92.48 157 | 89.91 104 | 91.22 157 | 79.57 142 | 77.72 171 | 71.18 194 | 93.21 130 | 92.53 178 | 94.57 136 | 99.35 62 | 99.05 64 |
|
| WR-MVS | | | 87.93 176 | 88.09 173 | 87.75 173 | 89.26 188 | 95.28 175 | 90.81 186 | 86.69 144 | 88.90 176 | 75.29 168 | 74.31 187 | 73.72 183 | 85.19 197 | 92.26 181 | 93.32 165 | 99.27 74 | 98.81 93 |
|
| Baseline_NR-MVSNet | | | 89.27 159 | 88.01 175 | 90.73 132 | 89.26 188 | 93.71 204 | 92.71 154 | 89.78 110 | 90.73 163 | 81.28 135 | 73.53 192 | 72.85 186 | 92.30 137 | 92.53 178 | 93.84 157 | 99.07 109 | 98.88 85 |
|
| N_pmnet | | | 84.80 199 | 85.10 203 | 84.45 198 | 89.25 191 | 92.86 207 | 84.04 209 | 86.21 148 | 88.78 178 | 66.73 204 | 72.41 199 | 74.87 179 | 85.21 196 | 88.32 206 | 86.45 208 | 95.30 205 | 92.04 207 |
|
| v2v482 | | | 88.25 172 | 87.71 182 | 88.88 152 | 89.23 192 | 95.28 175 | 92.10 167 | 87.89 133 | 88.69 180 | 73.31 179 | 75.32 178 | 71.64 191 | 91.89 140 | 92.10 186 | 92.92 172 | 98.86 134 | 97.99 132 |
|
| PS-CasMVS | | | 87.33 186 | 86.68 195 | 88.10 162 | 89.22 193 | 94.93 186 | 90.35 191 | 85.70 156 | 86.44 197 | 74.01 177 | 73.43 193 | 66.59 215 | 90.04 170 | 92.92 173 | 93.52 161 | 99.28 72 | 98.91 83 |
|
| TranMVSNet+NR-MVSNet | | | 89.23 160 | 88.48 169 | 90.11 142 | 89.07 194 | 95.25 178 | 92.91 150 | 90.43 100 | 90.31 168 | 77.10 154 | 76.62 175 | 71.57 192 | 91.83 142 | 92.12 184 | 94.59 135 | 99.32 65 | 98.92 80 |
|
| v1192 | | | 87.51 183 | 87.31 184 | 87.74 174 | 89.04 195 | 94.87 189 | 92.07 168 | 85.03 166 | 88.49 182 | 70.32 191 | 72.65 197 | 70.35 199 | 91.21 149 | 93.59 160 | 92.80 175 | 98.78 144 | 98.42 112 |
|
| v144192 | | | 87.40 185 | 87.20 187 | 87.64 175 | 88.89 196 | 94.88 188 | 91.65 176 | 84.70 172 | 87.80 187 | 71.17 189 | 73.20 195 | 70.91 195 | 90.75 160 | 92.69 176 | 92.49 181 | 98.71 148 | 98.43 110 |
|
| PEN-MVS | | | 87.22 188 | 86.50 197 | 88.07 163 | 88.88 197 | 94.44 196 | 90.99 185 | 86.21 148 | 86.53 196 | 73.66 178 | 74.97 180 | 66.56 216 | 89.42 175 | 91.20 195 | 93.48 162 | 99.24 78 | 98.31 122 |
|
| v1921920 | | | 87.31 187 | 87.13 188 | 87.52 180 | 88.87 198 | 94.72 190 | 91.96 173 | 84.59 174 | 88.28 183 | 69.86 197 | 72.50 198 | 70.03 202 | 91.10 151 | 93.33 167 | 92.61 180 | 98.71 148 | 98.44 109 |
|
| pmmvs6 | | | 85.98 196 | 84.89 204 | 87.25 183 | 88.83 199 | 94.35 198 | 89.36 195 | 85.30 164 | 78.51 217 | 75.44 166 | 62.71 217 | 75.41 174 | 87.65 182 | 93.58 162 | 92.40 183 | 96.89 191 | 97.29 156 |
|
| v1240 | | | 86.89 189 | 86.75 194 | 87.06 185 | 88.75 200 | 94.65 193 | 91.30 182 | 84.05 176 | 87.49 191 | 68.94 201 | 71.96 201 | 68.86 207 | 90.65 163 | 93.33 167 | 92.72 179 | 98.67 151 | 98.24 123 |
|
| anonymousdsp | | | 88.90 165 | 91.00 150 | 86.44 190 | 88.74 201 | 95.97 150 | 90.40 190 | 82.86 183 | 88.77 179 | 67.33 203 | 81.18 158 | 81.44 150 | 90.22 169 | 96.23 104 | 94.27 146 | 99.12 103 | 99.16 50 |
|
| EU-MVSNet | | | 85.62 197 | 87.65 183 | 83.24 202 | 88.54 202 | 92.77 208 | 87.12 201 | 85.32 162 | 86.71 194 | 64.54 208 | 78.52 169 | 75.11 176 | 78.35 208 | 92.25 182 | 92.28 185 | 95.58 202 | 95.93 177 |
|
| DTE-MVSNet | | | 86.67 191 | 86.09 198 | 87.35 182 | 88.45 203 | 94.08 202 | 90.65 187 | 86.05 152 | 86.13 198 | 72.19 182 | 74.58 185 | 66.77 214 | 87.61 183 | 90.31 198 | 93.12 168 | 99.13 101 | 97.62 146 |
|
| FMVSNet5 | | | 90.36 143 | 90.93 151 | 89.70 144 | 87.99 204 | 92.25 209 | 92.03 170 | 83.51 179 | 92.20 148 | 84.13 119 | 85.59 134 | 86.48 114 | 92.43 135 | 94.61 144 | 94.52 140 | 98.13 175 | 90.85 210 |
|
| v7n | | | 86.43 192 | 86.52 196 | 86.33 191 | 87.91 205 | 94.93 186 | 90.15 192 | 83.05 181 | 86.57 195 | 70.21 193 | 71.48 202 | 66.78 213 | 87.72 181 | 94.19 157 | 92.96 171 | 98.92 127 | 98.76 96 |
|
| test20.03 | | | 82.92 205 | 85.52 200 | 79.90 207 | 87.75 206 | 91.84 210 | 82.80 212 | 82.99 182 | 82.65 212 | 60.32 217 | 78.90 168 | 70.50 196 | 67.10 216 | 92.05 188 | 90.89 191 | 98.44 167 | 91.80 208 |
|
| MDTV_nov1_ep13_2view | | | 86.30 193 | 88.27 170 | 84.01 199 | 87.71 207 | 94.67 192 | 88.08 198 | 76.78 203 | 90.59 167 | 68.66 202 | 80.46 164 | 80.12 154 | 87.58 184 | 89.95 202 | 88.20 203 | 95.25 207 | 93.90 199 |
|
| Anonymous20231206 | | | 83.84 203 | 85.19 202 | 82.26 203 | 87.38 208 | 92.87 206 | 85.49 206 | 83.65 178 | 86.07 200 | 63.44 212 | 68.42 208 | 69.01 205 | 75.45 212 | 93.34 166 | 92.44 182 | 98.12 177 | 94.20 192 |
|
| FPMVS | | | 75.84 211 | 74.59 215 | 77.29 211 | 86.92 209 | 83.89 220 | 85.01 207 | 80.05 194 | 82.91 210 | 60.61 216 | 65.25 214 | 60.41 220 | 63.86 217 | 75.60 218 | 73.60 220 | 87.29 221 | 80.47 218 |
|
| MIMVSNet | | | 88.99 164 | 91.07 149 | 86.57 189 | 86.78 210 | 95.62 163 | 91.20 183 | 75.40 210 | 90.65 165 | 76.57 157 | 84.05 144 | 82.44 147 | 91.01 153 | 95.84 116 | 95.38 111 | 98.48 165 | 93.50 202 |
|
| tmp_tt | | | | | 66.88 214 | 86.07 211 | 73.86 223 | 68.22 222 | 33.38 224 | 96.88 48 | 80.67 139 | 88.23 112 | 78.82 159 | 49.78 221 | 82.68 215 | 77.47 218 | 83.19 223 | |
|
| WB-MVS | | | 69.22 213 | 76.91 214 | 60.24 217 | 85.80 212 | 79.37 221 | 56.86 226 | 84.96 168 | 81.50 213 | 18.16 229 | 76.85 173 | 61.07 218 | 34.23 224 | 82.46 216 | 81.81 215 | 81.43 224 | 75.31 222 |
|
| PM-MVS | | | 84.72 201 | 84.47 205 | 85.03 196 | 84.67 213 | 91.57 211 | 86.27 204 | 82.31 187 | 87.65 189 | 70.62 190 | 76.54 176 | 56.41 224 | 88.75 179 | 92.59 177 | 89.85 198 | 97.54 187 | 96.66 173 |
|
| pmmvs-eth3d | | | 84.33 202 | 82.94 207 | 85.96 195 | 84.16 214 | 90.94 212 | 86.55 203 | 83.79 177 | 84.25 205 | 75.85 164 | 70.64 205 | 56.43 223 | 87.44 185 | 92.20 183 | 90.41 195 | 97.97 180 | 95.68 181 |
|
| new-patchmatchnet | | | 78.49 210 | 78.19 213 | 78.84 209 | 84.13 215 | 90.06 214 | 77.11 219 | 80.39 193 | 79.57 216 | 59.64 220 | 66.01 213 | 55.65 225 | 75.62 211 | 84.55 213 | 80.70 216 | 96.14 196 | 90.77 211 |
|
| new_pmnet | | | 81.53 206 | 82.68 208 | 80.20 205 | 83.47 216 | 89.47 216 | 82.21 214 | 78.36 196 | 87.86 186 | 60.14 219 | 67.90 210 | 69.43 204 | 82.03 206 | 89.22 204 | 87.47 206 | 94.99 209 | 87.39 215 |
|
| ET-MVSNet_ETH3D | | | 93.34 109 | 94.33 91 | 92.18 113 | 83.26 217 | 97.66 105 | 96.72 76 | 89.89 106 | 95.62 83 | 87.17 109 | 96.00 39 | 83.69 140 | 96.99 58 | 93.78 158 | 95.34 112 | 99.06 112 | 98.18 126 |
|
| pmmvs3 | | | 79.16 209 | 80.12 211 | 78.05 210 | 79.36 218 | 86.59 218 | 78.13 218 | 73.87 214 | 76.42 219 | 57.51 222 | 70.59 206 | 57.02 222 | 84.66 200 | 90.10 200 | 88.32 202 | 94.75 212 | 91.77 209 |
|
| PMVS |  | 63.12 18 | 67.27 215 | 66.39 218 | 68.30 213 | 77.98 219 | 60.24 226 | 59.53 225 | 76.82 201 | 66.65 221 | 60.74 215 | 54.39 219 | 59.82 221 | 51.24 220 | 73.92 221 | 70.52 221 | 83.48 222 | 79.17 220 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| MDA-MVSNet-bldmvs | | | 80.11 207 | 80.24 210 | 79.94 206 | 77.01 220 | 93.21 205 | 78.86 217 | 85.94 154 | 82.71 211 | 60.86 214 | 79.71 166 | 51.77 226 | 83.71 205 | 75.60 218 | 86.37 209 | 93.28 215 | 92.35 205 |
|
| ambc | | | | 73.83 216 | | 76.23 221 | 85.13 219 | 82.27 213 | | 84.16 206 | 65.58 207 | 52.82 220 | 23.31 231 | 73.55 213 | 91.41 194 | 85.26 212 | 92.97 216 | 94.70 187 |
|
| Gipuma |  | | 68.35 214 | 66.71 217 | 70.27 212 | 74.16 222 | 68.78 224 | 63.93 224 | 71.77 217 | 83.34 209 | 54.57 223 | 34.37 222 | 31.88 228 | 68.69 215 | 83.30 214 | 85.53 211 | 88.48 219 | 79.78 219 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| MIMVSNet1 | | | 80.03 208 | 80.93 209 | 78.97 208 | 72.46 223 | 90.73 213 | 80.81 215 | 82.44 186 | 80.39 214 | 63.64 210 | 57.57 218 | 64.93 217 | 76.37 210 | 91.66 191 | 91.55 190 | 98.07 178 | 89.70 212 |
|
| PMMVS2 | | | 64.36 217 | 65.94 219 | 62.52 216 | 67.37 224 | 77.44 222 | 64.39 223 | 69.32 221 | 61.47 222 | 34.59 225 | 46.09 221 | 41.03 227 | 48.02 223 | 74.56 220 | 78.23 217 | 91.43 217 | 82.76 217 |
|
| EMVS | | | 49.98 219 | 46.76 222 | 53.74 219 | 64.96 225 | 51.29 228 | 37.81 228 | 69.35 220 | 51.83 223 | 22.69 228 | 29.57 224 | 25.06 229 | 57.28 218 | 44.81 224 | 56.11 223 | 70.32 226 | 68.64 224 |
|
| E-PMN | | | 50.67 218 | 47.85 221 | 53.96 218 | 64.13 226 | 50.98 229 | 38.06 227 | 69.51 219 | 51.40 224 | 24.60 227 | 29.46 225 | 24.39 230 | 56.07 219 | 48.17 223 | 59.70 222 | 71.40 225 | 70.84 223 |
|
| test_method | | | 72.96 212 | 78.68 212 | 66.28 215 | 50.17 227 | 64.90 225 | 75.45 220 | 50.90 223 | 87.89 185 | 62.54 213 | 62.98 216 | 68.34 208 | 70.45 214 | 91.90 190 | 82.41 214 | 88.19 220 | 92.35 205 |
|
| MVE |  | 50.86 19 | 49.54 220 | 51.43 220 | 47.33 220 | 44.14 228 | 59.20 227 | 36.45 229 | 60.59 222 | 41.47 225 | 31.14 226 | 29.58 223 | 17.06 232 | 48.52 222 | 62.22 222 | 74.63 219 | 63.12 227 | 75.87 221 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| testmvs | | | 12.09 221 | 16.94 223 | 6.42 222 | 3.15 229 | 6.08 230 | 9.51 231 | 3.84 225 | 21.46 226 | 5.31 230 | 27.49 226 | 6.76 233 | 10.89 225 | 17.06 225 | 15.01 224 | 5.84 228 | 24.75 225 |
|
| GG-mvs-BLEND | | | 66.17 216 | 94.91 83 | 32.63 221 | 1.32 230 | 96.64 132 | 91.40 178 | 0.85 227 | 94.39 111 | 2.20 231 | 90.15 99 | 95.70 62 | 2.27 227 | 96.39 96 | 95.44 110 | 97.78 182 | 95.68 181 |
|
| test123 | | | 9.58 222 | 13.53 224 | 4.97 223 | 1.31 231 | 5.47 231 | 8.32 232 | 2.95 226 | 18.14 227 | 2.03 232 | 20.82 227 | 2.34 234 | 10.60 226 | 10.00 226 | 14.16 225 | 4.60 229 | 23.77 226 |
|
| uanet_test | | | 0.00 223 | 0.00 225 | 0.00 224 | 0.00 232 | 0.00 232 | 0.00 233 | 0.00 228 | 0.00 228 | 0.00 233 | 0.00 228 | 0.00 235 | 0.00 228 | 0.00 227 | 0.00 226 | 0.00 230 | 0.00 227 |
|
| sosnet-low-res | | | 0.00 223 | 0.00 225 | 0.00 224 | 0.00 232 | 0.00 232 | 0.00 233 | 0.00 228 | 0.00 228 | 0.00 233 | 0.00 228 | 0.00 235 | 0.00 228 | 0.00 227 | 0.00 226 | 0.00 230 | 0.00 227 |
|
| sosnet | | | 0.00 223 | 0.00 225 | 0.00 224 | 0.00 232 | 0.00 232 | 0.00 233 | 0.00 228 | 0.00 228 | 0.00 233 | 0.00 228 | 0.00 235 | 0.00 228 | 0.00 227 | 0.00 226 | 0.00 230 | 0.00 227 |
|
| RE-MVS-def | | | | | | | | | | | 63.50 211 | | | | | | | |
|
| 9.14 | | | | | | | | | | | | | 99.28 12 | | | | | |
|
| MTAPA | | | | | | | | | | | 96.83 10 | | 99.12 21 | | | | | |
|
| MTMP | | | | | | | | | | | 97.18 5 | | 98.83 26 | | | | | |
|
| Patchmatch-RL test | | | | | | | | 34.61 230 | | | | | | | | | | |
|
| NP-MVS | | | | | | | | | | 95.32 89 | | | | | | | | |
|
| Patchmtry | | | | | | | 95.96 151 | 93.36 143 | 75.99 208 | | 75.19 169 | | | | | | | |
|
| DeepMVS_CX |  | | | | | | 86.86 217 | 79.50 216 | 70.43 218 | 90.73 163 | 63.66 209 | 80.36 165 | 60.83 219 | 79.68 207 | 76.23 217 | | 89.46 218 | 86.53 216 |
|