This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
test_0728_SECOND95.01 1598.79 186.43 4197.09 1197.49 599.61 395.62 599.08 798.99 5
DVP-MVS95.67 296.02 294.64 4098.78 285.93 5897.09 1196.73 7690.27 2897.04 898.05 691.47 699.55 1295.62 599.08 798.45 32
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072698.78 285.93 5897.19 697.47 890.27 2897.64 498.13 191.47 6
SED-MVS95.91 196.28 194.80 3398.77 485.99 5597.13 997.44 1290.31 2697.71 198.07 492.31 299.58 595.66 299.13 398.84 8
IU-MVS98.77 486.00 5496.84 6281.26 24297.26 695.50 799.13 399.03 4
test_241102_ONE98.77 485.99 5597.44 1290.26 3097.71 197.96 892.31 299.38 29
region2R94.43 2294.27 2494.92 2098.65 786.67 3296.92 1997.23 3288.60 7293.58 4797.27 2785.22 5699.54 1692.21 4798.74 2998.56 19
ACMMPR94.43 2294.28 2294.91 2298.63 886.69 3096.94 1597.32 2488.63 7093.53 5097.26 2985.04 5999.54 1692.35 4498.78 2198.50 22
HFP-MVS94.52 1794.40 1994.86 2598.61 986.81 2496.94 1597.34 1988.63 7093.65 4397.21 3286.10 4599.49 2392.35 4498.77 2498.30 41
#test#94.32 2894.14 3194.86 2598.61 986.81 2496.43 3297.34 1987.51 10293.65 4397.21 3286.10 4599.49 2391.68 6898.77 2498.30 41
test_part298.55 1187.22 1696.40 11
XVS94.45 2094.32 2094.85 2798.54 1286.60 3696.93 1797.19 3590.66 2392.85 6197.16 3785.02 6099.49 2391.99 5698.56 4798.47 28
X-MVStestdata88.31 16386.13 20594.85 2798.54 1286.60 3696.93 1797.19 3590.66 2392.85 6123.41 36285.02 6099.49 2391.99 5698.56 4798.47 28
ZNCC-MVS94.47 1894.28 2295.03 1498.52 1486.96 1796.85 2397.32 2488.24 8293.15 5597.04 4286.17 4499.62 192.40 4298.81 1898.52 20
mPP-MVS93.99 3893.78 4394.63 4198.50 1585.90 6396.87 2196.91 5688.70 6891.83 9197.17 3683.96 7399.55 1291.44 7398.64 4398.43 34
MSP-MVS95.42 595.56 594.98 1998.49 1686.52 3896.91 2097.47 891.73 896.10 1396.69 5889.90 999.30 3994.70 998.04 6499.13 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MP-MVScopyleft94.25 2994.07 3494.77 3598.47 1786.31 4796.71 2696.98 4889.04 6091.98 8597.19 3485.43 5499.56 792.06 5598.79 1998.44 33
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MCST-MVS94.45 2094.20 2895.19 998.46 1887.50 1395.00 10897.12 4087.13 10992.51 7596.30 7489.24 1499.34 3393.46 2198.62 4498.73 11
PGM-MVS93.96 4093.72 4594.68 3898.43 1986.22 5095.30 8697.78 187.45 10593.26 5197.33 2484.62 6599.51 2190.75 8598.57 4698.32 40
zzz-MVS94.47 1894.30 2195.00 1698.42 2086.95 1895.06 10696.97 4991.07 1393.14 5697.56 1484.30 6799.56 793.43 2298.75 2798.47 28
MTAPA94.42 2494.22 2595.00 1698.42 2086.95 1894.36 15696.97 4991.07 1393.14 5697.56 1484.30 6799.56 793.43 2298.75 2798.47 28
GST-MVS94.21 3393.97 3894.90 2498.41 2286.82 2396.54 3197.19 3588.24 8293.26 5196.83 5185.48 5399.59 491.43 7498.40 5398.30 41
HPM-MVScopyleft94.02 3793.88 3994.43 5098.39 2385.78 6597.25 597.07 4486.90 11792.62 7296.80 5584.85 6399.17 5092.43 4098.65 4298.33 39
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CP-MVS94.34 2694.21 2794.74 3798.39 2386.64 3497.60 197.24 3088.53 7492.73 6897.23 3085.20 5799.32 3792.15 5098.83 1798.25 50
DPE-MVScopyleft95.57 395.67 395.25 798.36 2587.28 1595.56 7697.51 489.13 5897.14 797.91 991.64 599.62 194.61 1199.17 298.86 7
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
HPM-MVS_fast93.40 5593.22 5593.94 6198.36 2584.83 7697.15 896.80 6885.77 13992.47 7697.13 3882.38 8699.07 5890.51 8798.40 5397.92 75
DP-MVS Recon91.95 7691.28 8293.96 6098.33 2785.92 6094.66 13196.66 8482.69 20890.03 11595.82 9582.30 8999.03 6484.57 15296.48 10096.91 117
APDe-MVS95.46 495.64 494.91 2298.26 2886.29 4997.46 297.40 1789.03 6196.20 1298.10 289.39 1399.34 3395.88 199.03 999.10 3
TSAR-MVS + MP.94.85 1294.94 1094.58 4398.25 2986.33 4596.11 4996.62 8888.14 8796.10 1396.96 4689.09 1598.94 8494.48 1298.68 3598.48 24
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
HPM-MVS++copyleft95.14 994.91 1195.83 298.25 2989.65 295.92 5996.96 5291.75 794.02 3596.83 5188.12 2199.55 1293.41 2498.94 1298.28 45
testtj94.39 2594.18 2995.00 1698.24 3186.77 2896.16 4497.23 3287.28 10794.85 2497.04 4286.99 3799.52 2091.54 7098.33 5698.71 12
CPTT-MVS91.99 7591.80 7692.55 10798.24 3181.98 15496.76 2596.49 9581.89 22790.24 11196.44 7178.59 13198.61 10789.68 9297.85 7297.06 109
SR-MVS94.23 3194.17 3094.43 5098.21 3385.78 6596.40 3496.90 5788.20 8594.33 2797.40 2184.75 6499.03 6493.35 2597.99 6598.48 24
MP-MVS-pluss94.21 3394.00 3794.85 2798.17 3486.65 3394.82 12097.17 3886.26 13092.83 6397.87 1085.57 5299.56 794.37 1498.92 1398.34 38
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
ZD-MVS98.15 3586.62 3597.07 4483.63 18594.19 3096.91 4887.57 2999.26 4391.99 5698.44 51
SMA-MVScopyleft95.20 795.07 995.59 398.14 3688.48 696.26 4097.28 2885.90 13697.67 398.10 288.41 1799.56 794.66 1099.19 198.71 12
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
test117293.97 3994.07 3493.66 7198.11 3783.45 11596.26 4096.84 6288.33 7894.19 3097.43 1884.24 6999.01 7093.26 2797.98 6798.52 20
CNVR-MVS95.40 695.37 695.50 598.11 3788.51 595.29 8896.96 5292.09 395.32 1997.08 4089.49 1299.33 3695.10 898.85 1598.66 14
114514_t89.51 12888.50 13892.54 10898.11 3781.99 15395.16 9996.36 10370.19 34085.81 18195.25 11076.70 14998.63 10582.07 18796.86 9097.00 113
ACMMPcopyleft93.24 5992.88 6494.30 5498.09 4085.33 7296.86 2297.45 1188.33 7890.15 11397.03 4481.44 10099.51 2190.85 8495.74 10698.04 66
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
APD-MVScopyleft94.24 3094.07 3494.75 3698.06 4186.90 2195.88 6096.94 5485.68 14295.05 2397.18 3587.31 3199.07 5891.90 6498.61 4598.28 45
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CSCG93.23 6093.05 5993.76 6998.04 4284.07 9896.22 4297.37 1884.15 17490.05 11495.66 10087.77 2399.15 5389.91 9098.27 5898.07 63
ACMMP_NAP94.74 1494.56 1695.28 698.02 4387.70 1095.68 6997.34 1988.28 8195.30 2097.67 1385.90 4999.54 1693.91 1798.95 1198.60 17
OPU-MVS96.21 198.00 4490.85 197.13 997.08 4092.59 198.94 8492.25 4698.99 1098.84 8
SR-MVS-dyc-post93.82 4493.82 4093.82 6497.92 4584.57 8196.28 3896.76 7287.46 10393.75 4097.43 1884.24 6999.01 7092.73 3597.80 7397.88 77
RE-MVS-def93.68 4697.92 4584.57 8196.28 3896.76 7287.46 10393.75 4097.43 1882.94 8092.73 3597.80 7397.88 77
APD-MVS_3200maxsize93.78 4593.77 4493.80 6897.92 4584.19 9696.30 3696.87 6186.96 11393.92 3797.47 1683.88 7498.96 8392.71 3897.87 7198.26 49
xxxxxxxxxxxxxcwj94.65 1594.70 1494.48 4797.85 4885.63 6895.21 9495.47 16989.44 4795.71 1597.70 1188.28 1999.35 3193.89 1898.78 2198.48 24
save fliter97.85 4885.63 6895.21 9496.82 6689.44 47
SF-MVS94.97 1094.90 1295.20 897.84 5087.76 896.65 2897.48 787.76 9695.71 1597.70 1188.28 1999.35 3193.89 1898.78 2198.48 24
NCCC94.81 1394.69 1595.17 1097.83 5187.46 1495.66 7196.93 5592.34 293.94 3696.58 6587.74 2499.44 2792.83 3498.40 5398.62 16
ETH3 D test640093.64 4993.22 5594.92 2097.79 5286.84 2295.31 8397.26 2982.67 20993.81 3996.29 7587.29 3299.27 4289.87 9198.67 3798.65 15
9.1494.47 1797.79 5296.08 5097.44 1286.13 13495.10 2297.40 2188.34 1899.22 4693.25 2898.70 32
CDPH-MVS92.83 6592.30 7194.44 4897.79 5286.11 5294.06 17596.66 8480.09 25592.77 6596.63 6286.62 3999.04 6387.40 11998.66 4098.17 54
ETH3D-3000-0.194.61 1694.44 1895.12 1197.70 5587.71 995.98 5697.44 1286.67 12295.25 2197.31 2587.73 2599.24 4493.11 3198.76 2698.40 35
DP-MVS87.25 20185.36 23192.90 9197.65 5683.24 12094.81 12192.00 28274.99 30981.92 27295.00 11972.66 20599.05 6066.92 32392.33 16596.40 131
PAPM_NR91.22 9090.78 9392.52 10997.60 5781.46 16894.37 15596.24 11086.39 12887.41 15194.80 12882.06 9598.48 11382.80 17695.37 11497.61 88
TEST997.53 5886.49 3994.07 17396.78 6981.61 23592.77 6596.20 8087.71 2699.12 55
train_agg93.44 5393.08 5894.52 4597.53 5886.49 3994.07 17396.78 6981.86 22892.77 6596.20 8087.63 2799.12 5592.14 5198.69 3397.94 72
abl_693.18 6193.05 5993.57 7397.52 6084.27 9595.53 7796.67 8387.85 9393.20 5497.22 3180.35 10799.18 4991.91 6197.21 8397.26 100
test_897.49 6186.30 4894.02 17896.76 7281.86 22892.70 6996.20 8087.63 2799.02 68
DeepC-MVS_fast89.43 294.04 3693.79 4294.80 3397.48 6286.78 2695.65 7396.89 5889.40 5092.81 6496.97 4585.37 5599.24 4490.87 8398.69 3398.38 37
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
AdaColmapbinary89.89 12089.07 12692.37 11797.41 6383.03 12694.42 14795.92 13382.81 20686.34 17494.65 13473.89 18899.02 6880.69 21395.51 10995.05 178
agg_prior193.29 5792.97 6294.26 5597.38 6485.92 6093.92 18496.72 7881.96 22292.16 8196.23 7887.85 2298.97 8091.95 6098.55 4997.90 76
agg_prior97.38 6485.92 6096.72 7892.16 8198.97 80
原ACMM192.01 12997.34 6681.05 17996.81 6778.89 26990.45 10995.92 9182.65 8398.84 9680.68 21498.26 5996.14 139
MSLP-MVS++93.72 4694.08 3392.65 10397.31 6783.43 11695.79 6497.33 2290.03 3393.58 4796.96 4684.87 6297.76 16492.19 4998.66 4096.76 121
新几何193.10 8197.30 6884.35 9495.56 16171.09 33791.26 10296.24 7782.87 8298.86 9179.19 23598.10 6296.07 146
test_prior393.60 5093.53 4993.82 6497.29 6984.49 8594.12 16696.88 5987.67 9992.63 7096.39 7286.62 3998.87 8891.50 7198.67 3798.11 61
test_prior93.82 6497.29 6984.49 8596.88 5998.87 8898.11 61
112190.42 10789.49 11393.20 7797.27 7184.46 8892.63 23295.51 16771.01 33891.20 10396.21 7982.92 8199.05 6080.56 21698.07 6396.10 144
PLCcopyleft84.53 789.06 14388.03 15192.15 12697.27 7182.69 14094.29 15895.44 17579.71 26084.01 23894.18 15076.68 15098.75 10077.28 25293.41 14695.02 179
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
SD-MVS94.96 1195.33 793.88 6297.25 7386.69 3096.19 4397.11 4290.42 2596.95 1097.27 2789.53 1196.91 23794.38 1398.85 1598.03 67
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
test1294.34 5397.13 7486.15 5196.29 10591.04 10585.08 5899.01 7098.13 6197.86 79
MG-MVS91.77 7991.70 7892.00 13197.08 7580.03 20893.60 19795.18 18987.85 9390.89 10696.47 7082.06 9598.36 12285.07 14497.04 8797.62 87
SteuartSystems-ACMMP95.20 795.32 894.85 2796.99 7686.33 4597.33 397.30 2691.38 1195.39 1897.46 1788.98 1699.40 2894.12 1598.89 1498.82 10
Skip Steuart: Steuart Systems R&D Blog.
MVS_111021_HR93.45 5293.31 5293.84 6396.99 7684.84 7593.24 21497.24 3088.76 6791.60 9695.85 9486.07 4798.66 10291.91 6198.16 6098.03 67
CNLPA89.07 14287.98 15392.34 11896.87 7884.78 7794.08 17293.24 25381.41 23884.46 22295.13 11575.57 16596.62 24777.21 25393.84 13795.61 164
PHI-MVS93.89 4393.65 4794.62 4296.84 7986.43 4196.69 2797.49 585.15 15893.56 4996.28 7685.60 5199.31 3892.45 3998.79 1998.12 59
旧先验196.79 8081.81 15795.67 15396.81 5386.69 3897.66 7796.97 114
ETH3D cwj APD-0.1693.91 4193.53 4995.06 1396.76 8187.78 794.92 11397.21 3484.33 17293.89 3897.09 3987.20 3399.29 4191.90 6498.44 5198.12 59
LFMVS90.08 11289.13 12592.95 8996.71 8282.32 14996.08 5089.91 33086.79 11892.15 8396.81 5362.60 29798.34 12587.18 12393.90 13598.19 53
Anonymous20240521187.68 17986.13 20592.31 12096.66 8380.74 18994.87 11791.49 29780.47 25189.46 12095.44 10454.72 33598.23 13182.19 18589.89 18997.97 70
TAPA-MVS84.62 688.16 16787.01 17591.62 15096.64 8480.65 19094.39 15096.21 11576.38 29486.19 17795.44 10479.75 11598.08 14662.75 33895.29 11696.13 140
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
MAR-MVS90.30 10889.37 11893.07 8496.61 8584.48 8795.68 6995.67 15382.36 21387.85 14292.85 19776.63 15198.80 9880.01 22496.68 9395.91 151
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
VNet92.24 7491.91 7593.24 7696.59 8683.43 11694.84 11996.44 9689.19 5694.08 3495.90 9277.85 14298.17 13588.90 10193.38 14798.13 58
TSAR-MVS + GP.93.66 4893.41 5194.41 5296.59 8686.78 2694.40 14893.93 23989.77 4094.21 2995.59 10387.35 3098.61 10792.72 3796.15 10397.83 81
test22296.55 8881.70 15992.22 24695.01 19668.36 34390.20 11296.14 8580.26 11097.80 7396.05 148
Anonymous2024052988.09 16986.59 19092.58 10696.53 8981.92 15695.99 5495.84 14174.11 31789.06 12695.21 11261.44 30598.81 9783.67 16487.47 22697.01 112
Anonymous2023121186.59 22485.13 23490.98 17996.52 9081.50 16496.14 4696.16 11673.78 31983.65 24792.15 22063.26 29597.37 20382.82 17581.74 28294.06 226
DeepPCF-MVS89.96 194.20 3594.77 1392.49 11096.52 9080.00 21094.00 18097.08 4390.05 3295.65 1797.29 2689.66 1098.97 8093.95 1698.71 3098.50 22
testdata90.49 19296.40 9277.89 25695.37 18172.51 33093.63 4596.69 5882.08 9497.65 17383.08 16897.39 8195.94 150
PVSNet_Blended_VisFu91.38 8690.91 9092.80 9496.39 9383.17 12294.87 11796.66 8483.29 19589.27 12294.46 14080.29 10999.17 5087.57 11795.37 11496.05 148
API-MVS90.66 10190.07 10392.45 11296.36 9484.57 8196.06 5295.22 18882.39 21189.13 12394.27 14880.32 10898.46 11580.16 22396.71 9294.33 214
F-COLMAP87.95 17286.80 18091.40 15896.35 9580.88 18594.73 12695.45 17379.65 26182.04 27094.61 13571.13 21998.50 11276.24 26391.05 17694.80 192
VDD-MVS90.74 9789.92 10993.20 7796.27 9683.02 12795.73 6693.86 24388.42 7792.53 7396.84 5062.09 30098.64 10490.95 8192.62 16197.93 74
OMC-MVS91.23 8990.62 9493.08 8296.27 9684.07 9893.52 19995.93 13286.95 11489.51 11896.13 8678.50 13398.35 12485.84 13792.90 15796.83 119
DPM-MVS92.58 6991.74 7795.08 1296.19 9889.31 392.66 23196.56 9383.44 19191.68 9595.04 11886.60 4298.99 7785.60 14097.92 7096.93 116
CHOSEN 1792x268888.84 15087.69 15892.30 12196.14 9981.42 17090.01 28995.86 14074.52 31487.41 15193.94 15975.46 16698.36 12280.36 21995.53 10897.12 108
thres100view90087.63 18486.71 18390.38 19896.12 10078.55 23895.03 10791.58 29387.15 10888.06 13892.29 21668.91 25498.10 13970.13 30291.10 17294.48 210
PVSNet_BlendedMVS89.98 11589.70 11090.82 18196.12 10081.25 17393.92 18496.83 6483.49 19089.10 12492.26 21781.04 10498.85 9486.72 13187.86 22492.35 296
PVSNet_Blended90.73 9890.32 9791.98 13296.12 10081.25 17392.55 23696.83 6482.04 22089.10 12492.56 20781.04 10498.85 9486.72 13195.91 10495.84 155
UA-Net92.83 6592.54 6893.68 7096.10 10384.71 7895.66 7196.39 10191.92 493.22 5396.49 6983.16 7898.87 8884.47 15395.47 11197.45 96
thres600view787.65 18186.67 18590.59 18596.08 10478.72 23494.88 11691.58 29387.06 11188.08 13792.30 21568.91 25498.10 13970.05 30591.10 17294.96 183
DeepC-MVS88.79 393.31 5692.99 6194.26 5596.07 10585.83 6494.89 11596.99 4789.02 6289.56 11797.37 2382.51 8599.38 2992.20 4898.30 5797.57 91
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
LS3D87.89 17386.32 20092.59 10596.07 10582.92 13195.23 9294.92 20475.66 30182.89 26095.98 8972.48 20899.21 4768.43 31295.23 11995.64 163
hse-mvs390.80 9590.15 10192.75 9796.01 10782.66 14195.43 7995.53 16589.80 3793.08 5895.64 10175.77 15899.00 7592.07 5378.05 32096.60 126
HyFIR lowres test88.09 16986.81 17991.93 13696.00 10880.63 19190.01 28995.79 14573.42 32287.68 14792.10 22573.86 18997.96 15580.75 21291.70 16897.19 104
tfpn200view987.58 18886.64 18690.41 19595.99 10978.64 23694.58 13491.98 28486.94 11588.09 13591.77 23569.18 25198.10 13970.13 30291.10 17294.48 210
thres40087.62 18686.64 18690.57 18695.99 10978.64 23694.58 13491.98 28486.94 11588.09 13591.77 23569.18 25198.10 13970.13 30291.10 17294.96 183
MVS_111021_LR92.47 7192.29 7292.98 8795.99 10984.43 9293.08 21996.09 12088.20 8591.12 10495.72 9981.33 10297.76 16491.74 6697.37 8296.75 122
test_part189.00 14787.99 15292.04 12895.94 11283.81 10596.14 4696.05 12586.44 12685.69 18493.73 17371.57 21497.66 17185.80 13880.54 30194.66 195
PatchMatch-RL86.77 22085.54 22590.47 19495.88 11382.71 13990.54 27892.31 27379.82 25984.32 23091.57 24568.77 25696.39 26673.16 28693.48 14592.32 297
EPP-MVSNet91.70 8291.56 7992.13 12795.88 11380.50 19597.33 395.25 18586.15 13289.76 11695.60 10283.42 7698.32 12887.37 12193.25 15097.56 92
IS-MVSNet91.43 8591.09 8792.46 11195.87 11581.38 17196.95 1493.69 24889.72 4289.50 11995.98 8978.57 13297.77 16383.02 17096.50 9998.22 52
PAPR90.02 11489.27 12392.29 12295.78 11680.95 18392.68 23096.22 11281.91 22586.66 16793.75 17282.23 9098.44 11979.40 23494.79 12197.48 94
Vis-MVSNet (Re-imp)89.59 12689.44 11590.03 21295.74 11775.85 28795.61 7490.80 31587.66 10187.83 14395.40 10776.79 14796.46 26378.37 24096.73 9197.80 82
test_yl90.69 9990.02 10792.71 9995.72 11882.41 14794.11 16895.12 19185.63 14391.49 9794.70 13074.75 17398.42 12086.13 13592.53 16297.31 98
DCV-MVSNet90.69 9990.02 10792.71 9995.72 11882.41 14794.11 16895.12 19185.63 14391.49 9794.70 13074.75 17398.42 12086.13 13592.53 16297.31 98
canonicalmvs93.27 5892.75 6594.85 2795.70 12087.66 1196.33 3596.41 9990.00 3494.09 3394.60 13682.33 8898.62 10692.40 4292.86 15898.27 47
CANet93.54 5193.20 5794.55 4495.65 12185.73 6794.94 11196.69 8291.89 590.69 10795.88 9381.99 9799.54 1693.14 3097.95 6998.39 36
3Dnovator+87.14 492.42 7291.37 8095.55 495.63 12288.73 497.07 1396.77 7190.84 1684.02 23796.62 6375.95 15799.34 3387.77 11497.68 7698.59 18
alignmvs93.08 6292.50 6994.81 3295.62 12387.61 1295.99 5496.07 12289.77 4094.12 3294.87 12380.56 10698.66 10292.42 4193.10 15398.15 56
Regformer-194.22 3294.13 3294.51 4695.54 12486.36 4494.57 13696.44 9691.69 994.32 2896.56 6787.05 3699.03 6493.35 2597.65 7898.15 56
Regformer-294.33 2794.22 2594.68 3895.54 12486.75 2994.57 13696.70 8091.84 694.41 2596.56 6787.19 3499.13 5493.50 2097.65 7898.16 55
WTY-MVS89.60 12588.92 13091.67 14995.47 12681.15 17792.38 24094.78 21483.11 19889.06 12694.32 14378.67 13096.61 25081.57 19990.89 17897.24 101
DELS-MVS93.43 5493.25 5493.97 5995.42 12785.04 7493.06 22197.13 3990.74 2091.84 8995.09 11786.32 4399.21 4791.22 7598.45 5097.65 86
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
Regformer-393.68 4793.64 4893.81 6795.36 12884.61 7994.68 12895.83 14291.27 1293.60 4696.71 5685.75 5098.86 9192.87 3396.65 9497.96 71
Regformer-493.91 4193.81 4194.19 5795.36 12885.47 7094.68 12896.41 9991.60 1093.75 4096.71 5685.95 4899.10 5793.21 2996.65 9498.01 69
thres20087.21 20586.24 20390.12 20895.36 12878.53 23993.26 21192.10 27886.42 12788.00 14091.11 25869.24 25098.00 15269.58 30691.04 17793.83 239
Vis-MVSNetpermissive91.75 8091.23 8393.29 7495.32 13183.78 10696.14 4695.98 12889.89 3590.45 10996.58 6575.09 16998.31 12984.75 15096.90 8897.78 84
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
BH-RMVSNet88.37 16187.48 16391.02 17495.28 13279.45 22092.89 22693.07 25785.45 14986.91 16294.84 12770.35 23397.76 16473.97 28194.59 12695.85 154
COLMAP_ROBcopyleft80.39 1683.96 26582.04 27289.74 22495.28 13279.75 21594.25 16092.28 27475.17 30778.02 31093.77 17058.60 32497.84 16165.06 33185.92 23891.63 307
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
PS-MVSNAJ91.18 9190.92 8991.96 13495.26 13482.60 14492.09 25195.70 15186.27 12991.84 8992.46 20979.70 11798.99 7789.08 9995.86 10594.29 215
BH-untuned88.60 15788.13 15090.01 21495.24 13578.50 24193.29 20994.15 23384.75 16684.46 22293.40 17775.76 16097.40 19977.59 24994.52 12894.12 221
ETV-MVS92.74 6792.66 6692.97 8895.20 13684.04 10095.07 10396.51 9490.73 2192.96 6091.19 25284.06 7198.34 12591.72 6796.54 9796.54 130
GeoE90.05 11389.43 11691.90 13995.16 13780.37 19795.80 6394.65 21883.90 17987.55 15094.75 12978.18 13797.62 17781.28 20293.63 13997.71 85
EIA-MVS91.95 7691.94 7491.98 13295.16 13780.01 20995.36 8096.73 7688.44 7589.34 12192.16 21983.82 7598.45 11889.35 9697.06 8697.48 94
ab-mvs89.41 13488.35 14292.60 10495.15 13982.65 14292.20 24795.60 16083.97 17888.55 13093.70 17474.16 18498.21 13482.46 18189.37 19796.94 115
VDDNet89.56 12788.49 14092.76 9695.07 14082.09 15196.30 3693.19 25581.05 24791.88 8796.86 4961.16 31098.33 12788.43 10792.49 16497.84 80
AllTest83.42 27181.39 27789.52 23295.01 14177.79 26093.12 21690.89 31377.41 28676.12 32293.34 17854.08 33897.51 18368.31 31384.27 25193.26 262
TestCases89.52 23295.01 14177.79 26090.89 31377.41 28676.12 32293.34 17854.08 33897.51 18368.31 31384.27 25193.26 262
EI-MVSNet-Vis-set93.01 6392.92 6393.29 7495.01 14183.51 11494.48 14095.77 14690.87 1592.52 7496.67 6084.50 6699.00 7591.99 5694.44 13197.36 97
xiu_mvs_v2_base91.13 9290.89 9191.86 14094.97 14482.42 14592.24 24595.64 15886.11 13591.74 9493.14 18979.67 12098.89 8789.06 10095.46 11294.28 216
tttt051788.61 15687.78 15791.11 16994.96 14577.81 25995.35 8189.69 33485.09 16088.05 13994.59 13766.93 26998.48 11383.27 16792.13 16797.03 111
baseline188.10 16887.28 16990.57 18694.96 14580.07 20494.27 15991.29 30286.74 11987.41 15194.00 15676.77 14896.20 27480.77 21179.31 31695.44 168
Test_1112_low_res87.65 18186.51 19391.08 17094.94 14779.28 22891.77 25694.30 22776.04 29983.51 25192.37 21277.86 14197.73 16878.69 23989.13 20396.22 137
1112_ss88.42 15987.33 16791.72 14794.92 14880.98 18192.97 22494.54 21978.16 28383.82 24293.88 16478.78 12897.91 15979.45 23089.41 19696.26 136
QAPM89.51 12888.15 14993.59 7294.92 14884.58 8096.82 2496.70 8078.43 27883.41 25396.19 8373.18 20099.30 3977.11 25596.54 9796.89 118
BH-w/o87.57 18987.05 17489.12 24194.90 15077.90 25592.41 23893.51 25082.89 20583.70 24591.34 24675.75 16197.07 22675.49 26893.49 14392.39 294
thisisatest053088.67 15487.61 16191.86 14094.87 15180.07 20494.63 13289.90 33184.00 17788.46 13293.78 16966.88 27198.46 11583.30 16692.65 16097.06 109
EI-MVSNet-UG-set92.74 6792.62 6793.12 8094.86 15283.20 12194.40 14895.74 14990.71 2292.05 8496.60 6484.00 7298.99 7791.55 6993.63 13997.17 105
HY-MVS83.01 1289.03 14487.94 15592.29 12294.86 15282.77 13392.08 25294.49 22081.52 23786.93 16092.79 20378.32 13698.23 13179.93 22590.55 17995.88 153
hse-mvs289.88 12189.34 11991.51 15394.83 15481.12 17893.94 18393.91 24289.80 3793.08 5893.60 17575.77 15897.66 17192.07 5377.07 32795.74 160
AUN-MVS87.78 17786.54 19291.48 15594.82 15581.05 17993.91 18793.93 23983.00 20186.93 16093.53 17669.50 24497.67 17086.14 13477.12 32695.73 161
Fast-Effi-MVS+89.41 13488.64 13591.71 14894.74 15680.81 18793.54 19895.10 19383.11 19886.82 16590.67 27079.74 11697.75 16780.51 21893.55 14196.57 128
ACMP84.23 889.01 14688.35 14290.99 17794.73 15781.27 17295.07 10395.89 13886.48 12483.67 24694.30 14469.33 24697.99 15387.10 12888.55 20893.72 248
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
PVSNet78.82 1885.55 24284.65 24588.23 26694.72 15871.93 31987.12 32492.75 26478.80 27284.95 21390.53 27264.43 29196.71 24474.74 27693.86 13696.06 147
LCM-MVSNet-Re88.30 16488.32 14588.27 26394.71 15972.41 31893.15 21590.98 30987.77 9579.25 30491.96 23178.35 13595.75 29483.04 16995.62 10796.65 125
CS-MVS93.01 6393.28 5392.21 12594.70 16081.67 16196.60 2996.65 8789.58 4492.34 7795.10 11683.39 7798.15 13693.11 3197.99 6596.82 120
HQP_MVS90.60 10590.19 9991.82 14394.70 16082.73 13795.85 6196.22 11290.81 1786.91 16294.86 12474.23 18098.12 13788.15 10989.99 18594.63 196
plane_prior794.70 16082.74 136
ACMH+81.04 1485.05 25383.46 26189.82 22094.66 16379.37 22294.44 14594.12 23682.19 21678.04 30992.82 20058.23 32597.54 18173.77 28382.90 26892.54 288
ACMM84.12 989.14 14088.48 14191.12 16694.65 16481.22 17595.31 8396.12 11985.31 15385.92 18094.34 14170.19 23698.06 14885.65 13988.86 20694.08 225
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
plane_prior194.59 165
3Dnovator86.66 591.73 8190.82 9294.44 4894.59 16586.37 4397.18 797.02 4689.20 5584.31 23296.66 6173.74 19299.17 5086.74 12997.96 6897.79 83
plane_prior694.52 16782.75 13474.23 180
UGNet89.95 11788.95 12992.95 8994.51 16883.31 11995.70 6895.23 18689.37 5187.58 14893.94 15964.00 29298.78 9983.92 15996.31 10296.74 123
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
LPG-MVS_test89.45 13188.90 13191.12 16694.47 16981.49 16695.30 8696.14 11786.73 12085.45 19795.16 11369.89 23898.10 13987.70 11589.23 20193.77 244
LGP-MVS_train91.12 16694.47 16981.49 16696.14 11786.73 12085.45 19795.16 11369.89 23898.10 13987.70 11589.23 20193.77 244
baseline92.39 7392.29 7292.69 10294.46 17181.77 15894.14 16596.27 10689.22 5491.88 8796.00 8882.35 8797.99 15391.05 7795.27 11898.30 41
ACMH80.38 1785.36 24583.68 25790.39 19694.45 17280.63 19194.73 12694.85 20882.09 21777.24 31492.65 20560.01 31797.58 17872.25 29084.87 24692.96 277
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
LTVRE_ROB82.13 1386.26 23284.90 24090.34 20194.44 17381.50 16492.31 24494.89 20583.03 20079.63 30192.67 20469.69 24197.79 16271.20 29386.26 23791.72 305
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
casdiffmvs92.51 7092.43 7092.74 9894.41 17481.98 15494.54 13896.23 11189.57 4591.96 8696.17 8482.58 8498.01 15190.95 8195.45 11398.23 51
MVS_Test91.31 8891.11 8591.93 13694.37 17580.14 20193.46 20295.80 14486.46 12591.35 10193.77 17082.21 9198.09 14587.57 11794.95 12097.55 93
NP-MVS94.37 17582.42 14593.98 157
TR-MVS86.78 21785.76 22289.82 22094.37 17578.41 24392.47 23792.83 26181.11 24686.36 17392.40 21168.73 25797.48 18573.75 28489.85 19193.57 252
Effi-MVS+91.59 8491.11 8593.01 8694.35 17883.39 11894.60 13395.10 19387.10 11090.57 10893.10 19181.43 10198.07 14789.29 9794.48 12997.59 90
CLD-MVS89.47 13088.90 13191.18 16594.22 17982.07 15292.13 24996.09 12087.90 9185.37 20692.45 21074.38 17897.56 18087.15 12490.43 18093.93 231
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
HQP-NCC94.17 18094.39 15088.81 6485.43 200
ACMP_Plane94.17 18094.39 15088.81 6485.43 200
HQP-MVS89.80 12289.28 12291.34 16094.17 18081.56 16294.39 15096.04 12688.81 6485.43 20093.97 15873.83 19097.96 15587.11 12689.77 19294.50 207
XVG-OURS89.40 13688.70 13491.52 15294.06 18381.46 16891.27 26796.07 12286.14 13388.89 12895.77 9768.73 25797.26 21187.39 12089.96 18795.83 156
sss88.93 14888.26 14890.94 18094.05 18480.78 18891.71 25995.38 17981.55 23688.63 12993.91 16375.04 17095.47 30582.47 18091.61 16996.57 128
PCF-MVS84.11 1087.74 17886.08 20992.70 10194.02 18584.43 9289.27 29995.87 13973.62 32184.43 22494.33 14278.48 13498.86 9170.27 29894.45 13094.81 191
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
GBi-Net87.26 19985.98 21291.08 17094.01 18683.10 12395.14 10094.94 19983.57 18684.37 22591.64 23866.59 27696.34 27078.23 24385.36 24293.79 240
test187.26 19985.98 21291.08 17094.01 18683.10 12395.14 10094.94 19983.57 18684.37 22591.64 23866.59 27696.34 27078.23 24385.36 24293.79 240
FMVSNet287.19 20685.82 21891.30 16194.01 18683.67 10994.79 12294.94 19983.57 18683.88 24092.05 22966.59 27696.51 25877.56 25085.01 24593.73 247
XVG-OURS-SEG-HR89.95 11789.45 11491.47 15694.00 18981.21 17691.87 25496.06 12485.78 13888.55 13095.73 9874.67 17697.27 20988.71 10489.64 19495.91 151
FIs90.51 10690.35 9690.99 17793.99 19080.98 18195.73 6697.54 389.15 5786.72 16694.68 13281.83 9997.24 21385.18 14388.31 21694.76 193
xiu_mvs_v1_base_debu90.64 10290.05 10492.40 11393.97 19184.46 8893.32 20495.46 17085.17 15592.25 7894.03 15170.59 22898.57 10990.97 7894.67 12294.18 217
xiu_mvs_v1_base90.64 10290.05 10492.40 11393.97 19184.46 8893.32 20495.46 17085.17 15592.25 7894.03 15170.59 22898.57 10990.97 7894.67 12294.18 217
xiu_mvs_v1_base_debi90.64 10290.05 10492.40 11393.97 19184.46 8893.32 20495.46 17085.17 15592.25 7894.03 15170.59 22898.57 10990.97 7894.67 12294.18 217
VPA-MVSNet89.62 12488.96 12891.60 15193.86 19482.89 13295.46 7897.33 2287.91 9088.43 13393.31 18174.17 18397.40 19987.32 12282.86 26994.52 205
MVSFormer91.68 8391.30 8192.80 9493.86 19483.88 10395.96 5795.90 13684.66 16891.76 9294.91 12177.92 13997.30 20589.64 9397.11 8497.24 101
lupinMVS90.92 9490.21 9893.03 8593.86 19483.88 10392.81 22893.86 24379.84 25891.76 9294.29 14577.92 13998.04 14990.48 8897.11 8497.17 105
IterMVS-LS88.36 16287.91 15689.70 22793.80 19778.29 24793.73 19195.08 19585.73 14084.75 21591.90 23379.88 11396.92 23683.83 16082.51 27093.89 232
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MSDG84.86 25783.09 26490.14 20793.80 19780.05 20689.18 30293.09 25678.89 26978.19 30791.91 23265.86 28597.27 20968.47 31188.45 21293.11 272
FMVSNet387.40 19686.11 20791.30 16193.79 19983.64 11094.20 16394.81 21283.89 18084.37 22591.87 23468.45 26096.56 25578.23 24385.36 24293.70 249
FC-MVSNet-test90.27 10990.18 10090.53 18893.71 20079.85 21495.77 6597.59 289.31 5286.27 17594.67 13381.93 9897.01 23184.26 15588.09 22094.71 194
TAMVS89.21 13988.29 14691.96 13493.71 20082.62 14393.30 20894.19 23182.22 21587.78 14593.94 15978.83 12696.95 23477.70 24892.98 15696.32 133
ET-MVSNet_ETH3D87.51 19185.91 21692.32 11993.70 20283.93 10192.33 24290.94 31184.16 17372.09 34092.52 20869.90 23795.85 28989.20 9888.36 21597.17 105
CDS-MVSNet89.45 13188.51 13792.29 12293.62 20383.61 11293.01 22294.68 21781.95 22387.82 14493.24 18578.69 12996.99 23280.34 22093.23 15196.28 135
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
UniMVSNet (Re)89.80 12289.07 12692.01 12993.60 20484.52 8494.78 12397.47 889.26 5386.44 17292.32 21482.10 9397.39 20284.81 14980.84 29794.12 221
VPNet88.20 16687.47 16490.39 19693.56 20579.46 21994.04 17695.54 16488.67 6986.96 15994.58 13869.33 24697.15 21884.05 15880.53 30394.56 203
thisisatest051587.33 19785.99 21191.37 15993.49 20679.55 21790.63 27789.56 33780.17 25387.56 14990.86 26367.07 26898.28 13081.50 20093.02 15596.29 134
mvs_anonymous89.37 13789.32 12089.51 23493.47 20774.22 29891.65 26294.83 21082.91 20485.45 19793.79 16881.23 10396.36 26986.47 13394.09 13397.94 72
CANet_DTU90.26 11089.41 11792.81 9393.46 20883.01 12893.48 20094.47 22189.43 4987.76 14694.23 14970.54 23299.03 6484.97 14596.39 10196.38 132
UniMVSNet_NR-MVSNet89.92 11989.29 12191.81 14593.39 20983.72 10794.43 14697.12 4089.80 3786.46 16993.32 18083.16 7897.23 21484.92 14681.02 29394.49 209
Effi-MVS+-dtu88.65 15588.35 14289.54 23193.33 21076.39 28294.47 14394.36 22487.70 9785.43 20089.56 29273.45 19597.26 21185.57 14191.28 17194.97 180
mvs-test189.45 13189.14 12490.38 19893.33 21077.63 26594.95 11094.36 22487.70 9787.10 15892.81 20173.45 19598.03 15085.57 14193.04 15495.48 166
WR-MVS88.38 16087.67 16090.52 19093.30 21280.18 19993.26 21195.96 13088.57 7385.47 19692.81 20176.12 15396.91 23781.24 20382.29 27294.47 212
WR-MVS_H87.80 17687.37 16689.10 24293.23 21378.12 25095.61 7497.30 2687.90 9183.72 24492.01 23079.65 12196.01 28276.36 26080.54 30193.16 270
test_040281.30 29379.17 30187.67 27693.19 21478.17 24992.98 22391.71 28975.25 30676.02 32490.31 27659.23 32196.37 26750.22 35383.63 25888.47 343
OPM-MVS90.12 11189.56 11291.82 14393.14 21583.90 10294.16 16495.74 14988.96 6387.86 14195.43 10672.48 20897.91 15988.10 11290.18 18493.65 250
CP-MVSNet87.63 18487.26 17188.74 25293.12 21676.59 27995.29 8896.58 9188.43 7683.49 25292.98 19475.28 16795.83 29078.97 23681.15 28993.79 240
diffmvs91.37 8791.23 8391.77 14693.09 21780.27 19892.36 24195.52 16687.03 11291.40 10094.93 12080.08 11197.44 19092.13 5294.56 12797.61 88
nrg03091.08 9390.39 9593.17 7993.07 21886.91 2096.41 3396.26 10788.30 8088.37 13494.85 12682.19 9297.64 17591.09 7682.95 26494.96 183
PAPM86.68 22185.39 22990.53 18893.05 21979.33 22789.79 29294.77 21578.82 27181.95 27193.24 18576.81 14697.30 20566.94 32193.16 15294.95 186
DU-MVS89.34 13888.50 13891.85 14293.04 22083.72 10794.47 14396.59 9089.50 4686.46 16993.29 18377.25 14397.23 21484.92 14681.02 29394.59 200
NR-MVSNet88.58 15887.47 16491.93 13693.04 22084.16 9794.77 12496.25 10989.05 5980.04 29693.29 18379.02 12597.05 22881.71 19880.05 30894.59 200
jason90.80 9590.10 10292.90 9193.04 22083.53 11393.08 21994.15 23380.22 25291.41 9994.91 12176.87 14597.93 15890.28 8996.90 8897.24 101
jason: jason.
RRT_test8_iter0586.90 21286.36 19788.52 25793.00 22373.27 30694.32 15795.96 13085.50 14884.26 23392.86 19660.76 31297.70 16988.32 10882.29 27294.60 199
PS-CasMVS87.32 19886.88 17688.63 25592.99 22476.33 28495.33 8296.61 8988.22 8483.30 25793.07 19273.03 20295.79 29378.36 24181.00 29593.75 246
MVSTER88.84 15088.29 14690.51 19192.95 22580.44 19693.73 19195.01 19684.66 16887.15 15593.12 19072.79 20497.21 21687.86 11387.36 22993.87 235
RPSCF85.07 25284.27 24987.48 28292.91 22670.62 33191.69 26192.46 26976.20 29882.67 26395.22 11163.94 29397.29 20877.51 25185.80 24094.53 204
FMVSNet185.85 23884.11 25191.08 17092.81 22783.10 12395.14 10094.94 19981.64 23382.68 26291.64 23859.01 32396.34 27075.37 27083.78 25493.79 240
tfpnnormal84.72 25983.23 26389.20 23992.79 22880.05 20694.48 14095.81 14382.38 21281.08 28091.21 25169.01 25396.95 23461.69 34080.59 30090.58 327
OpenMVScopyleft83.78 1188.74 15387.29 16893.08 8292.70 22985.39 7196.57 3096.43 9878.74 27480.85 28296.07 8769.64 24299.01 7078.01 24696.65 9494.83 190
TranMVSNet+NR-MVSNet88.84 15087.95 15491.49 15492.68 23083.01 12894.92 11396.31 10489.88 3685.53 19093.85 16676.63 15196.96 23381.91 19179.87 31194.50 207
MVS87.44 19486.10 20891.44 15792.61 23183.62 11192.63 23295.66 15567.26 34481.47 27492.15 22077.95 13898.22 13379.71 22795.48 11092.47 291
CHOSEN 280x42085.15 25183.99 25388.65 25492.47 23278.40 24479.68 35192.76 26374.90 31181.41 27689.59 29069.85 24095.51 30179.92 22695.29 11692.03 301
UniMVSNet_ETH3D87.53 19086.37 19691.00 17692.44 23378.96 23394.74 12595.61 15984.07 17685.36 20794.52 13959.78 31997.34 20482.93 17187.88 22396.71 124
131487.51 19186.57 19190.34 20192.42 23479.74 21692.63 23295.35 18378.35 27980.14 29391.62 24274.05 18597.15 21881.05 20493.53 14294.12 221
cl-mvsnet286.78 21785.98 21289.18 24092.34 23577.62 26690.84 27494.13 23581.33 24083.97 23990.15 27973.96 18796.60 25284.19 15682.94 26593.33 260
PEN-MVS86.80 21686.27 20288.40 25992.32 23675.71 28995.18 9796.38 10287.97 8882.82 26193.15 18873.39 19895.92 28576.15 26479.03 31893.59 251
cl_fuxian87.14 20886.50 19489.04 24492.20 23777.26 27191.22 26994.70 21682.01 22184.34 22990.43 27478.81 12796.61 25083.70 16381.09 29093.25 264
SCA86.32 23185.18 23389.73 22692.15 23876.60 27891.12 27091.69 29183.53 18985.50 19388.81 29966.79 27296.48 26076.65 25890.35 18296.12 141
XXY-MVS87.65 18186.85 17890.03 21292.14 23980.60 19393.76 19095.23 18682.94 20384.60 21794.02 15474.27 17995.49 30481.04 20583.68 25794.01 229
miper_ehance_all_eth87.22 20486.62 18989.02 24592.13 24077.40 27090.91 27394.81 21281.28 24184.32 23090.08 28179.26 12396.62 24783.81 16182.94 26593.04 275
IB-MVS80.51 1585.24 25083.26 26291.19 16492.13 24079.86 21391.75 25791.29 30283.28 19680.66 28588.49 30561.28 30698.46 11580.99 20879.46 31495.25 174
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
cascas86.43 23084.98 23790.80 18292.10 24280.92 18490.24 28395.91 13573.10 32583.57 25088.39 30665.15 28797.46 18784.90 14891.43 17094.03 228
Fast-Effi-MVS+-dtu87.44 19486.72 18289.63 22992.04 24377.68 26494.03 17793.94 23885.81 13782.42 26491.32 24970.33 23497.06 22780.33 22190.23 18394.14 220
cl-mvsnet____86.52 22685.78 21988.75 25092.03 24476.46 28090.74 27594.30 22781.83 23083.34 25590.78 26775.74 16396.57 25381.74 19681.54 28493.22 267
cl-mvsnet186.53 22585.78 21988.75 25092.02 24576.45 28190.74 27594.30 22781.83 23083.34 25590.82 26575.75 16196.57 25381.73 19781.52 28593.24 265
RRT_MVS88.86 14987.68 15992.39 11692.02 24586.09 5394.38 15494.94 19985.45 14987.14 15793.84 16765.88 28497.11 22288.73 10386.77 23693.98 230
eth_miper_zixun_eth86.50 22785.77 22188.68 25391.94 24775.81 28890.47 27994.89 20582.05 21884.05 23690.46 27375.96 15696.77 24182.76 17779.36 31593.46 258
PS-MVSNAJss89.97 11689.62 11191.02 17491.90 24880.85 18695.26 9195.98 12886.26 13086.21 17694.29 14579.70 11797.65 17388.87 10288.10 21894.57 202
ITE_SJBPF88.24 26591.88 24977.05 27492.92 25985.54 14680.13 29493.30 18257.29 32796.20 27472.46 28984.71 24791.49 309
EI-MVSNet89.10 14188.86 13389.80 22391.84 25078.30 24693.70 19495.01 19685.73 14087.15 15595.28 10879.87 11497.21 21683.81 16187.36 22993.88 234
CVMVSNet84.69 26084.79 24384.37 31991.84 25064.92 35093.70 19491.47 29866.19 34686.16 17895.28 10867.18 26693.33 33180.89 21090.42 18194.88 188
MVS-HIRNet73.70 31872.20 32178.18 33391.81 25256.42 35782.94 34682.58 35255.24 35268.88 34566.48 35455.32 33395.13 30958.12 34788.42 21383.01 348
PatchmatchNetpermissive85.85 23884.70 24489.29 23791.76 25375.54 29088.49 31191.30 30181.63 23485.05 21188.70 30371.71 21296.24 27374.61 27889.05 20496.08 145
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
TransMVSNet (Re)84.43 26283.06 26588.54 25691.72 25478.44 24295.18 9792.82 26282.73 20779.67 30092.12 22273.49 19495.96 28471.10 29768.73 34491.21 316
IterMVS-SCA-FT85.45 24384.53 24888.18 26791.71 25576.87 27690.19 28692.65 26785.40 15181.44 27590.54 27166.79 27295.00 31381.04 20581.05 29192.66 286
TinyColmap79.76 30577.69 30785.97 30591.71 25573.12 30789.55 29390.36 32175.03 30872.03 34190.19 27746.22 35396.19 27663.11 33681.03 29288.59 342
MDTV_nov1_ep1383.56 26091.69 25769.93 33587.75 31991.54 29578.60 27684.86 21488.90 29869.54 24396.03 28070.25 29988.93 205
miper_enhance_ethall86.90 21286.18 20489.06 24391.66 25877.58 26790.22 28594.82 21179.16 26684.48 22189.10 29579.19 12496.66 24584.06 15782.94 26592.94 278
DTE-MVSNet86.11 23385.48 22787.98 27191.65 25974.92 29294.93 11295.75 14887.36 10682.26 26693.04 19372.85 20395.82 29174.04 28077.46 32493.20 268
MIMVSNet82.59 27780.53 28288.76 24991.51 26078.32 24586.57 32790.13 32479.32 26280.70 28488.69 30452.98 34293.07 33566.03 32688.86 20694.90 187
pm-mvs186.61 22285.54 22589.82 22091.44 26180.18 19995.28 9094.85 20883.84 18181.66 27392.62 20672.45 21096.48 26079.67 22878.06 31992.82 283
Baseline_NR-MVSNet87.07 20986.63 18888.40 25991.44 26177.87 25794.23 16292.57 26884.12 17585.74 18392.08 22677.25 14396.04 27982.29 18479.94 30991.30 313
IterMVS84.88 25683.98 25487.60 27791.44 26176.03 28690.18 28792.41 27083.24 19781.06 28190.42 27566.60 27594.28 32079.46 22980.98 29692.48 290
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DWT-MVSNet_test84.95 25583.68 25788.77 24891.43 26473.75 30291.74 25890.98 30980.66 25083.84 24187.36 32162.44 29897.11 22278.84 23885.81 23995.46 167
MS-PatchMatch85.05 25384.16 25087.73 27591.42 26578.51 24091.25 26893.53 24977.50 28580.15 29291.58 24361.99 30195.51 30175.69 26794.35 13289.16 337
tpm284.08 26482.94 26687.48 28291.39 26671.27 32389.23 30190.37 32071.95 33384.64 21689.33 29367.30 26396.55 25775.17 27287.09 23394.63 196
v887.50 19386.71 18389.89 21791.37 26779.40 22194.50 13995.38 17984.81 16583.60 24991.33 24776.05 15497.42 19282.84 17480.51 30592.84 282
ADS-MVSNet281.66 28679.71 29487.50 28091.35 26874.19 29983.33 34388.48 34072.90 32782.24 26785.77 33364.98 28893.20 33364.57 33283.74 25595.12 176
ADS-MVSNet81.56 28879.78 29286.90 29691.35 26871.82 32083.33 34389.16 33872.90 32782.24 26785.77 33364.98 28893.76 32664.57 33283.74 25595.12 176
GA-MVS86.61 22285.27 23290.66 18391.33 27078.71 23590.40 28093.81 24685.34 15285.12 21089.57 29161.25 30797.11 22280.99 20889.59 19596.15 138
miper_lstm_enhance85.27 24984.59 24787.31 28491.28 27174.63 29387.69 32094.09 23781.20 24581.36 27789.85 28774.97 17294.30 31981.03 20779.84 31293.01 276
XVG-ACMP-BASELINE86.00 23484.84 24289.45 23591.20 27278.00 25291.70 26095.55 16285.05 16182.97 25992.25 21854.49 33697.48 18582.93 17187.45 22892.89 280
v1087.25 20186.38 19589.85 21891.19 27379.50 21894.48 14095.45 17383.79 18283.62 24891.19 25275.13 16897.42 19281.94 19080.60 29992.63 287
FMVSNet581.52 28979.60 29587.27 28591.17 27477.95 25391.49 26492.26 27576.87 29176.16 32187.91 31551.67 34392.34 33967.74 31781.16 28791.52 308
USDC82.76 27481.26 27987.26 28691.17 27474.55 29489.27 29993.39 25278.26 28175.30 32792.08 22654.43 33796.63 24671.64 29185.79 24190.61 324
CostFormer85.77 24084.94 23988.26 26491.16 27672.58 31689.47 29791.04 30876.26 29786.45 17189.97 28470.74 22696.86 24082.35 18287.07 23495.34 173
baseline286.50 22785.39 22989.84 21991.12 27776.70 27791.88 25388.58 33982.35 21479.95 29790.95 26273.42 19797.63 17680.27 22289.95 18895.19 175
tpm cat181.96 28080.27 28687.01 29391.09 27871.02 32787.38 32391.53 29666.25 34580.17 29186.35 32968.22 26296.15 27769.16 30782.29 27293.86 237
tpmvs83.35 27382.07 27187.20 29191.07 27971.00 32888.31 31491.70 29078.91 26880.49 28887.18 32569.30 24997.08 22568.12 31683.56 25993.51 256
v114487.61 18786.79 18190.06 21191.01 28079.34 22493.95 18295.42 17883.36 19485.66 18691.31 25074.98 17197.42 19283.37 16582.06 27593.42 259
v2v48287.84 17487.06 17390.17 20490.99 28179.23 23194.00 18095.13 19084.87 16385.53 19092.07 22874.45 17797.45 18884.71 15181.75 28193.85 238
SixPastTwentyTwo83.91 26782.90 26786.92 29590.99 28170.67 33093.48 20091.99 28385.54 14677.62 31392.11 22460.59 31396.87 23976.05 26577.75 32193.20 268
test-LLR85.87 23785.41 22887.25 28790.95 28371.67 32189.55 29389.88 33283.41 19284.54 21987.95 31367.25 26495.11 31081.82 19393.37 14894.97 180
test-mter84.54 26183.64 25987.25 28790.95 28371.67 32189.55 29389.88 33279.17 26584.54 21987.95 31355.56 33195.11 31081.82 19393.37 14894.97 180
v14887.04 21086.32 20089.21 23890.94 28577.26 27193.71 19394.43 22284.84 16484.36 22890.80 26676.04 15597.05 22882.12 18679.60 31393.31 261
mvs_tets88.06 17187.28 16990.38 19890.94 28579.88 21295.22 9395.66 15585.10 15984.21 23593.94 15963.53 29497.40 19988.50 10688.40 21493.87 235
MVP-Stereo85.97 23584.86 24189.32 23690.92 28782.19 15092.11 25094.19 23178.76 27378.77 30691.63 24168.38 26196.56 25575.01 27593.95 13489.20 336
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
Patchmatch-test81.37 29179.30 29787.58 27890.92 28774.16 30080.99 34987.68 34470.52 33976.63 31988.81 29971.21 21892.76 33760.01 34686.93 23595.83 156
jajsoiax88.24 16587.50 16290.48 19390.89 28980.14 20195.31 8395.65 15784.97 16284.24 23494.02 15465.31 28697.42 19288.56 10588.52 21093.89 232
tpmrst85.35 24684.99 23686.43 30190.88 29067.88 34288.71 30891.43 29980.13 25486.08 17988.80 30173.05 20196.02 28182.48 17983.40 26395.40 170
gg-mvs-nofinetune81.77 28379.37 29688.99 24690.85 29177.73 26386.29 32879.63 35874.88 31283.19 25869.05 35360.34 31496.11 27875.46 26994.64 12593.11 272
D2MVS85.90 23685.09 23588.35 26190.79 29277.42 26991.83 25595.70 15180.77 24980.08 29590.02 28266.74 27496.37 26781.88 19287.97 22291.26 314
OurMVSNet-221017-085.35 24684.64 24687.49 28190.77 29372.59 31594.01 17994.40 22384.72 16779.62 30293.17 18761.91 30296.72 24281.99 18981.16 28793.16 270
v119287.25 20186.33 19990.00 21590.76 29479.04 23293.80 18895.48 16882.57 21085.48 19591.18 25473.38 19997.42 19282.30 18382.06 27593.53 253
test_djsdf89.03 14488.64 13590.21 20390.74 29579.28 22895.96 5795.90 13684.66 16885.33 20892.94 19574.02 18697.30 20589.64 9388.53 20994.05 227
v7n86.81 21585.76 22289.95 21690.72 29679.25 23095.07 10395.92 13384.45 17182.29 26590.86 26372.60 20797.53 18279.42 23380.52 30493.08 274
PVSNet_073.20 2077.22 31474.83 31984.37 31990.70 29771.10 32683.09 34589.67 33572.81 32973.93 33483.13 34160.79 31193.70 32768.54 31050.84 35588.30 344
v14419287.19 20686.35 19889.74 22490.64 29878.24 24893.92 18495.43 17681.93 22485.51 19291.05 26074.21 18297.45 18882.86 17381.56 28393.53 253
MVS_030483.46 27081.92 27388.10 26990.63 29977.49 26893.26 21193.75 24780.04 25680.44 28987.24 32447.94 35095.55 29875.79 26688.16 21791.26 314
V4287.68 17986.86 17790.15 20690.58 30080.14 20194.24 16195.28 18483.66 18485.67 18591.33 24774.73 17597.41 19784.43 15481.83 27992.89 280
CR-MVSNet85.35 24683.76 25690.12 20890.58 30079.34 22485.24 33491.96 28678.27 28085.55 18887.87 31671.03 22195.61 29673.96 28289.36 19895.40 170
RPMNet83.95 26681.53 27691.21 16390.58 30079.34 22485.24 33496.76 7271.44 33585.55 18882.97 34270.87 22498.91 8661.01 34289.36 19895.40 170
v192192086.97 21186.06 21089.69 22890.53 30378.11 25193.80 18895.43 17681.90 22685.33 20891.05 26072.66 20597.41 19782.05 18881.80 28093.53 253
v124086.78 21785.85 21789.56 23090.45 30477.79 26093.61 19695.37 18181.65 23285.43 20091.15 25671.50 21697.43 19181.47 20182.05 27793.47 257
tpm84.73 25884.02 25286.87 29890.33 30568.90 33889.06 30389.94 32980.85 24885.75 18289.86 28668.54 25995.97 28377.76 24784.05 25395.75 159
EG-PatchMatch MVS82.37 27980.34 28588.46 25890.27 30679.35 22392.80 22994.33 22677.14 29073.26 33790.18 27847.47 35296.72 24270.25 29987.32 23189.30 334
EPNet_dtu86.49 22985.94 21588.14 26890.24 30772.82 31094.11 16892.20 27686.66 12379.42 30392.36 21373.52 19395.81 29271.26 29293.66 13895.80 158
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
EPMVS83.90 26882.70 27087.51 27990.23 30872.67 31288.62 31081.96 35481.37 23985.01 21288.34 30766.31 27994.45 31575.30 27187.12 23295.43 169
EPNet91.79 7891.02 8894.10 5890.10 30985.25 7396.03 5392.05 28092.83 187.39 15495.78 9679.39 12299.01 7088.13 11197.48 8098.05 65
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PatchT82.68 27681.27 27886.89 29790.09 31070.94 32984.06 34090.15 32374.91 31085.63 18783.57 33969.37 24594.87 31465.19 32888.50 21194.84 189
Patchmtry82.71 27580.93 28188.06 27090.05 31176.37 28384.74 33891.96 28672.28 33281.32 27887.87 31671.03 22195.50 30368.97 30880.15 30792.32 297
pmmvs485.43 24483.86 25590.16 20590.02 31282.97 13090.27 28192.67 26675.93 30080.73 28391.74 23771.05 22095.73 29578.85 23783.46 26191.78 304
TESTMET0.1,183.74 26982.85 26886.42 30289.96 31371.21 32589.55 29387.88 34177.41 28683.37 25487.31 32256.71 32893.65 32880.62 21592.85 15994.40 213
dp81.47 29080.23 28785.17 31489.92 31465.49 34886.74 32590.10 32576.30 29681.10 27987.12 32662.81 29695.92 28568.13 31579.88 31094.09 224
K. test v381.59 28780.15 28985.91 30889.89 31569.42 33792.57 23587.71 34385.56 14573.44 33689.71 28955.58 33095.52 30077.17 25469.76 33892.78 284
MDA-MVSNet-bldmvs78.85 31076.31 31386.46 30089.76 31673.88 30188.79 30790.42 31879.16 26659.18 35288.33 30860.20 31594.04 32262.00 33968.96 34291.48 310
GG-mvs-BLEND87.94 27389.73 31777.91 25487.80 31778.23 36080.58 28683.86 33759.88 31895.33 30771.20 29392.22 16690.60 326
gm-plane-assit89.60 31868.00 34077.28 28988.99 29697.57 17979.44 231
anonymousdsp87.84 17487.09 17290.12 20889.13 31980.54 19494.67 13095.55 16282.05 21883.82 24292.12 22271.47 21797.15 21887.15 12487.80 22592.67 285
N_pmnet68.89 32168.44 32470.23 33789.07 32028.79 36788.06 31519.50 36869.47 34171.86 34284.93 33561.24 30891.75 34454.70 35077.15 32590.15 328
pmmvs584.21 26382.84 26988.34 26288.95 32176.94 27592.41 23891.91 28875.63 30280.28 29091.18 25464.59 29095.57 29777.09 25683.47 26092.53 289
PMMVS85.71 24184.96 23887.95 27288.90 32277.09 27388.68 30990.06 32672.32 33186.47 16890.76 26872.15 21194.40 31681.78 19593.49 14392.36 295
JIA-IIPM81.04 29478.98 30487.25 28788.64 32373.48 30481.75 34889.61 33673.19 32482.05 26973.71 35066.07 28395.87 28871.18 29584.60 24892.41 293
Gipumacopyleft57.99 32654.91 32867.24 33988.51 32465.59 34752.21 35990.33 32243.58 35742.84 35851.18 35920.29 36485.07 35434.77 35870.45 33751.05 357
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
EU-MVSNet81.32 29280.95 28082.42 32888.50 32563.67 35193.32 20491.33 30064.02 34880.57 28792.83 19961.21 30992.27 34076.34 26180.38 30691.32 312
our_test_381.93 28180.46 28486.33 30388.46 32673.48 30488.46 31291.11 30476.46 29276.69 31888.25 30966.89 27094.36 31768.75 30979.08 31791.14 318
ppachtmachnet_test81.84 28280.07 29087.15 29288.46 32674.43 29789.04 30492.16 27775.33 30577.75 31188.99 29666.20 28095.37 30665.12 33077.60 32291.65 306
lessismore_v086.04 30488.46 32668.78 33980.59 35673.01 33890.11 28055.39 33296.43 26575.06 27465.06 34692.90 279
test0.0.03 182.41 27881.69 27484.59 31788.23 32972.89 30990.24 28387.83 34283.41 19279.86 29889.78 28867.25 26488.99 35065.18 32983.42 26291.90 303
bset_n11_16_dypcd86.83 21485.55 22490.65 18488.22 33081.70 15988.88 30690.42 31885.26 15485.49 19490.69 26967.11 26797.02 23089.51 9584.39 24993.23 266
MDA-MVSNet_test_wron79.21 30977.19 31185.29 31288.22 33072.77 31185.87 33090.06 32674.34 31562.62 35187.56 31966.14 28191.99 34266.90 32473.01 33291.10 321
YYNet179.22 30877.20 31085.28 31388.20 33272.66 31385.87 33090.05 32874.33 31662.70 35087.61 31866.09 28292.03 34166.94 32172.97 33391.15 317
pmmvs683.42 27181.60 27588.87 24788.01 33377.87 25794.96 10994.24 23074.67 31378.80 30591.09 25960.17 31696.49 25977.06 25775.40 33092.23 299
testgi80.94 29780.20 28883.18 32487.96 33466.29 34591.28 26690.70 31783.70 18378.12 30892.84 19851.37 34490.82 34763.34 33582.46 27192.43 292
Anonymous2023120681.03 29579.77 29384.82 31687.85 33570.26 33391.42 26592.08 27973.67 32077.75 31189.25 29462.43 29993.08 33461.50 34182.00 27891.12 319
OpenMVS_ROBcopyleft74.94 1979.51 30677.03 31286.93 29487.00 33676.23 28592.33 24290.74 31668.93 34274.52 33188.23 31049.58 34796.62 24757.64 34884.29 25087.94 345
LF4IMVS80.37 30079.07 30384.27 32186.64 33769.87 33689.39 29891.05 30776.38 29474.97 32990.00 28347.85 35194.25 32174.55 27980.82 29888.69 341
MIMVSNet179.38 30777.28 30985.69 30986.35 33873.67 30391.61 26392.75 26478.11 28472.64 33988.12 31148.16 34991.97 34360.32 34377.49 32391.43 311
KD-MVS_2432*160078.50 31176.02 31685.93 30686.22 33974.47 29584.80 33692.33 27179.29 26376.98 31685.92 33153.81 34093.97 32367.39 31857.42 35289.36 332
miper_refine_blended78.50 31176.02 31685.93 30686.22 33974.47 29584.80 33692.33 27179.29 26376.98 31685.92 33153.81 34093.97 32367.39 31857.42 35289.36 332
CL-MVSNet_2432*160081.74 28480.53 28285.36 31185.96 34172.45 31790.25 28293.07 25781.24 24379.85 29987.29 32370.93 22392.52 33866.95 32069.23 34091.11 320
test20.0379.95 30379.08 30282.55 32785.79 34267.74 34391.09 27191.08 30581.23 24474.48 33289.96 28561.63 30390.15 34860.08 34476.38 32889.76 330
Anonymous2024052180.44 29979.21 29984.11 32285.75 34367.89 34192.86 22793.23 25475.61 30375.59 32687.47 32050.03 34594.33 31871.14 29681.21 28690.12 329
DIV-MVS_2432*160080.20 30179.24 29883.07 32585.64 34465.29 34991.01 27293.93 23978.71 27576.32 32086.40 32859.20 32292.93 33672.59 28869.35 33991.00 322
Patchmatch-RL test81.67 28579.96 29186.81 29985.42 34571.23 32482.17 34787.50 34578.47 27777.19 31582.50 34370.81 22593.48 32982.66 17872.89 33495.71 162
UnsupCasMVSNet_eth80.07 30278.27 30685.46 31085.24 34672.63 31488.45 31394.87 20782.99 20271.64 34388.07 31256.34 32991.75 34473.48 28563.36 34992.01 302
pmmvs-eth3d80.97 29678.72 30587.74 27484.99 34779.97 21190.11 28891.65 29275.36 30473.51 33586.03 33059.45 32093.96 32575.17 27272.21 33589.29 335
CMPMVSbinary59.16 2180.52 29879.20 30084.48 31883.98 34867.63 34489.95 29193.84 24564.79 34766.81 34891.14 25757.93 32695.17 30876.25 26288.10 21890.65 323
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
UnsupCasMVSNet_bld76.23 31773.27 32085.09 31583.79 34972.92 30885.65 33393.47 25171.52 33468.84 34679.08 34749.77 34693.21 33266.81 32560.52 35189.13 339
PM-MVS78.11 31376.12 31584.09 32383.54 35070.08 33488.97 30585.27 34979.93 25774.73 33086.43 32734.70 35793.48 32979.43 23272.06 33688.72 340
DSMNet-mixed76.94 31576.29 31478.89 33183.10 35156.11 35887.78 31879.77 35760.65 35075.64 32588.71 30261.56 30488.34 35160.07 34589.29 20092.21 300
new_pmnet72.15 31970.13 32278.20 33282.95 35265.68 34683.91 34182.40 35362.94 34964.47 34979.82 34642.85 35586.26 35357.41 34974.44 33182.65 350
new-patchmatchnet76.41 31675.17 31880.13 33082.65 35359.61 35387.66 32191.08 30578.23 28269.85 34483.22 34054.76 33491.63 34664.14 33464.89 34789.16 337
ambc83.06 32679.99 35463.51 35277.47 35292.86 26074.34 33384.45 33628.74 35895.06 31273.06 28768.89 34390.61 324
TDRefinement79.81 30477.34 30887.22 29079.24 35575.48 29193.12 21692.03 28176.45 29375.01 32891.58 24349.19 34896.44 26470.22 30169.18 34189.75 331
pmmvs371.81 32068.71 32381.11 32975.86 35670.42 33286.74 32583.66 35158.95 35168.64 34780.89 34536.93 35689.52 34963.10 33763.59 34883.39 347
DeepMVS_CXcopyleft56.31 34374.23 35751.81 36056.67 36644.85 35648.54 35675.16 34827.87 36058.74 36340.92 35652.22 35458.39 356
FPMVS64.63 32362.55 32570.88 33670.80 35856.71 35584.42 33984.42 35051.78 35449.57 35481.61 34423.49 36181.48 35640.61 35776.25 32974.46 353
PMMVS259.60 32456.40 32769.21 33868.83 35946.58 36273.02 35677.48 36155.07 35349.21 35572.95 35217.43 36680.04 35749.32 35444.33 35780.99 352
wuyk23d21.27 33420.48 33723.63 34768.59 36036.41 36549.57 3606.85 3699.37 3637.89 3654.46 3674.03 37031.37 36417.47 36316.07 3633.12 361
E-PMN43.23 33042.29 33246.03 34465.58 36137.41 36473.51 35464.62 36233.99 35928.47 36347.87 36019.90 36567.91 36022.23 36124.45 35932.77 358
LCM-MVSNet66.00 32262.16 32677.51 33464.51 36258.29 35483.87 34290.90 31248.17 35554.69 35373.31 35116.83 36786.75 35265.47 32761.67 35087.48 346
EMVS42.07 33141.12 33344.92 34563.45 36335.56 36673.65 35363.48 36333.05 36026.88 36445.45 36121.27 36367.14 36119.80 36223.02 36132.06 359
MVEpermissive39.65 2343.39 32938.59 33557.77 34156.52 36448.77 36155.38 35858.64 36529.33 36128.96 36252.65 3584.68 36964.62 36228.11 36033.07 35859.93 355
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
ANet_high58.88 32554.22 32972.86 33556.50 36556.67 35680.75 35086.00 34673.09 32637.39 35964.63 35622.17 36279.49 35843.51 35523.96 36082.43 351
test_method50.52 32848.47 33056.66 34252.26 36618.98 36941.51 36181.40 35510.10 36244.59 35775.01 34928.51 35968.16 35953.54 35149.31 35682.83 349
PMVScopyleft47.18 2252.22 32748.46 33163.48 34045.72 36746.20 36373.41 35578.31 35941.03 35830.06 36165.68 3556.05 36883.43 35530.04 35965.86 34560.80 354
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
tmp_tt35.64 33239.24 33424.84 34614.87 36823.90 36862.71 35751.51 3676.58 36436.66 36062.08 35744.37 35430.34 36552.40 35222.00 36220.27 360
testmvs8.92 33511.52 3381.12 3491.06 3690.46 37186.02 3290.65 3700.62 3652.74 3669.52 3650.31 3720.45 3672.38 3640.39 3642.46 363
test1238.76 33611.22 3391.39 3480.85 3700.97 37085.76 3320.35 3710.54 3662.45 3678.14 3660.60 3710.48 3662.16 3650.17 3652.71 362
uanet_test0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
cdsmvs_eth3d_5k22.14 33329.52 3360.00 3500.00 3710.00 3720.00 36295.76 1470.00 3670.00 36894.29 14575.66 1640.00 3680.00 3660.00 3660.00 364
pcd_1.5k_mvsjas6.64 3388.86 3410.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 36879.70 1170.00 3680.00 3660.00 3660.00 364
sosnet-low-res0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
sosnet0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
uncertanet0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
Regformer0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
ab-mvs-re7.82 33710.43 3400.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 36893.88 1640.00 3730.00 3680.00 3660.00 3660.00 364
uanet0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
test_241102_TWO97.44 1290.31 2697.62 598.07 491.46 899.58 595.66 299.12 698.98 6
test_0728_THIRD90.75 1997.04 898.05 692.09 499.55 1295.64 499.13 399.13 1
GSMVS96.12 141
sam_mvs171.70 21396.12 141
sam_mvs70.60 227
MTGPAbinary96.97 49
test_post188.00 3169.81 36469.31 24895.53 29976.65 258
test_post10.29 36370.57 23195.91 287
patchmatchnet-post83.76 33871.53 21596.48 260
MTMP96.16 4460.64 364
test9_res91.91 6198.71 3098.07 63
agg_prior290.54 8698.68 3598.27 47
test_prior485.96 5794.11 168
test_prior294.12 16687.67 9992.63 7096.39 7286.62 3991.50 7198.67 37
旧先验293.36 20371.25 33694.37 2697.13 22186.74 129
新几何293.11 218
无先验93.28 21096.26 10773.95 31899.05 6080.56 21696.59 127
原ACMM292.94 225
testdata298.75 10078.30 242
segment_acmp87.16 35
testdata192.15 24887.94 89
plane_prior596.22 11298.12 13788.15 10989.99 18594.63 196
plane_prior494.86 124
plane_prior382.75 13490.26 3086.91 162
plane_prior295.85 6190.81 17
plane_prior82.73 13795.21 9489.66 4389.88 190
n20.00 372
nn0.00 372
door-mid85.49 347
test1196.57 92
door85.33 348
HQP5-MVS81.56 162
BP-MVS87.11 126
HQP4-MVS85.43 20097.96 15594.51 206
HQP3-MVS96.04 12689.77 192
HQP2-MVS73.83 190
MDTV_nov1_ep13_2view55.91 35987.62 32273.32 32384.59 21870.33 23474.65 27795.50 165
ACMMP++_ref87.47 226
ACMMP++88.01 221
Test By Simon80.02 112