This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort by
DeepPCF-MVS98.18 398.81 13799.37 2597.12 32999.60 14391.75 36698.61 34199.44 19799.35 199.83 2099.85 3898.70 6699.81 16599.02 7099.91 1899.81 46
patch_mono-299.26 6699.62 198.16 28399.81 4294.59 34499.52 12999.64 3399.33 299.73 4999.90 1399.00 2599.99 199.69 199.98 299.89 2
EPNet98.86 12598.71 13099.30 14397.20 36298.18 22799.62 7698.91 32499.28 398.63 28599.81 7195.96 17399.99 199.24 4899.72 11299.73 90
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
UGNet98.87 12298.69 13399.40 12899.22 24298.72 18799.44 16899.68 1999.24 499.18 19799.42 25892.74 27799.96 2099.34 3599.94 1199.53 157
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
3Dnovator+97.12 1399.18 7698.97 9699.82 3899.17 25799.68 5499.81 2099.51 10799.20 598.72 26799.89 1795.68 18899.97 1298.86 9499.86 5399.81 46
CANet_DTU98.97 11698.87 10999.25 15299.33 21398.42 22099.08 27699.30 27199.16 699.43 12799.75 12395.27 19999.97 1298.56 14399.95 899.36 188
DELS-MVS99.48 2299.42 1899.65 7599.72 8999.40 10499.05 28299.66 2799.14 799.57 10199.80 8698.46 8699.94 5899.57 899.84 6899.60 139
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
test250696.81 29796.65 29597.29 32599.74 7692.21 36599.60 8385.06 38499.13 899.77 3899.93 487.82 35499.85 13699.38 2799.38 14499.80 56
ECVR-MVScopyleft98.04 20698.05 19198.00 29599.74 7694.37 34799.59 9094.98 37599.13 899.66 7399.93 490.67 32299.84 14299.40 2699.38 14499.80 56
test111198.04 20698.11 18297.83 30599.74 7693.82 35299.58 9895.40 37499.12 1099.65 7999.93 490.73 32199.84 14299.43 2599.38 14499.82 40
SD-MVS99.41 4699.52 899.05 17199.74 7699.68 5499.46 16399.52 9399.11 1199.88 699.91 1099.43 197.70 36298.72 11599.93 1299.77 72
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
FOURS199.91 199.93 199.87 999.56 5899.10 1299.81 25
DVP-MVScopyleft99.57 899.47 1499.88 699.85 2699.89 499.57 10499.37 23799.10 1299.81 2599.80 8698.94 3599.96 2098.93 7999.86 5399.81 46
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.85 2699.89 499.62 7699.50 12899.10 1299.86 1399.82 5898.94 35
3Dnovator97.25 999.24 7099.05 7999.81 4199.12 26499.66 5999.84 1499.74 1099.09 1598.92 24199.90 1395.94 17699.98 798.95 7699.92 1399.79 62
SED-MVS99.61 299.52 899.88 699.84 3399.90 299.60 8399.48 14899.08 1699.91 299.81 7199.20 799.96 2098.91 8299.85 6099.79 62
test_241102_TWO99.48 14899.08 1699.88 699.81 7198.94 3599.96 2098.91 8299.84 6899.88 8
test_241102_ONE99.84 3399.90 299.48 14899.07 1899.91 299.74 12999.20 799.76 184
dcpmvs_299.23 7199.58 298.16 28399.83 3794.68 34399.76 3599.52 9399.07 1899.98 199.88 2398.56 7799.93 7399.67 399.98 299.87 13
DeepC-MVS_fast98.69 199.49 1799.39 2299.77 5099.63 12999.59 7399.36 20799.46 17699.07 1899.79 3099.82 5898.85 4599.92 8598.68 12299.87 4299.82 40
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
Regformer-499.59 399.54 699.73 6199.76 5799.41 10299.58 9899.49 13699.02 2199.88 699.80 8699.00 2599.94 5899.45 2299.92 1399.84 22
APDe-MVS99.66 199.57 399.92 199.77 5499.89 499.75 3799.56 5899.02 2199.88 699.85 3899.18 1099.96 2099.22 4999.92 1399.90 1
EPNet_dtu98.03 20897.96 20098.23 27998.27 34695.54 32599.23 24898.75 33599.02 2197.82 32699.71 14196.11 16999.48 24193.04 34699.65 12899.69 108
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
EI-MVSNet-UG-set99.58 599.57 399.64 8099.78 4899.14 13499.60 8399.45 18899.01 2499.90 499.83 5198.98 2799.93 7399.59 699.95 899.86 15
EI-MVSNet-Vis-set99.58 599.56 599.64 8099.78 4899.15 13399.61 8299.45 18899.01 2499.89 599.82 5899.01 1999.92 8599.56 999.95 899.85 18
Regformer-399.57 899.53 799.68 6899.76 5799.29 11499.58 9899.44 19799.01 2499.87 1299.80 8698.97 2899.91 9699.44 2499.92 1399.83 33
VNet99.11 9598.90 10599.73 6199.52 15999.56 7899.41 18399.39 22399.01 2499.74 4799.78 10595.56 19099.92 8599.52 1198.18 22099.72 96
xxxxxxxxxxxxxcwj99.43 3799.32 3699.75 5499.76 5799.59 7399.14 26599.53 8799.00 2899.71 5599.80 8698.95 3299.93 7398.19 17699.84 6899.74 83
save fliter99.76 5799.59 7399.14 26599.40 21999.00 28
TSAR-MVS + GP.99.36 5399.36 2799.36 13299.67 11098.61 19899.07 27799.33 25499.00 2899.82 2399.81 7199.06 1699.84 14299.09 6299.42 14299.65 122
DVP-MVS++99.59 399.50 1099.88 699.51 16199.88 899.87 999.51 10798.99 3199.88 699.81 7199.27 599.96 2098.85 9699.80 9099.81 46
test_0728_THIRD98.99 3199.81 2599.80 8699.09 1499.96 2098.85 9699.90 2599.88 8
MG-MVS99.13 8499.02 8799.45 12299.57 14998.63 19599.07 27799.34 24798.99 3199.61 9099.82 5897.98 11299.87 12797.00 27199.80 9099.85 18
XVS99.53 1299.42 1899.87 1299.85 2699.83 1799.69 4699.68 1998.98 3499.37 14899.74 12998.81 4999.94 5898.79 10799.86 5399.84 22
X-MVStestdata96.55 30195.45 31699.87 1299.85 2699.83 1799.69 4699.68 1998.98 3499.37 14864.01 38098.81 4999.94 5898.79 10799.86 5399.84 22
MSLP-MVS++99.46 2799.47 1499.44 12699.60 14399.16 12899.41 18399.71 1398.98 3499.45 12299.78 10599.19 999.54 23999.28 4399.84 6899.63 133
test_one_060199.81 4299.88 899.49 13698.97 3799.65 7999.81 7199.09 14
HQP_MVS98.27 18198.22 17698.44 26099.29 22696.97 28599.39 19599.47 16698.97 3799.11 20699.61 19792.71 28099.69 21397.78 21097.63 23498.67 274
plane_prior299.39 19598.97 37
Regformer-199.53 1299.47 1499.72 6499.71 9599.44 9899.49 15099.46 17698.95 4099.83 2099.76 11899.01 1999.93 7399.17 5499.87 4299.80 56
h-mvs3397.70 26297.28 27998.97 18399.70 10297.27 26399.36 20799.45 18898.94 4199.66 7399.64 18294.93 20899.99 199.48 1884.36 36399.65 122
hse-mvs297.50 27997.14 28698.59 23799.49 17397.05 27699.28 22999.22 28798.94 4199.66 7399.42 25894.93 20899.65 22299.48 1883.80 36599.08 207
Regformer-299.54 1099.47 1499.75 5499.71 9599.52 8899.49 15099.49 13698.94 4199.83 2099.76 11899.01 1999.94 5899.15 5799.87 4299.80 56
DeepC-MVS98.35 299.30 5999.19 6699.64 8099.82 3999.23 12199.62 7699.55 6798.94 4199.63 8499.95 295.82 18299.94 5899.37 2999.97 599.73 90
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PS-MVSNAJ99.32 5799.32 3699.30 14399.57 14998.94 16498.97 30599.46 17698.92 4599.71 5599.24 30399.01 1999.98 799.35 3199.66 12698.97 222
TSAR-MVS + MP.99.58 599.50 1099.81 4199.91 199.66 5999.63 7099.39 22398.91 4699.78 3599.85 3899.36 299.94 5898.84 9999.88 3899.82 40
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
CHOSEN 280x42099.12 9099.13 7199.08 16699.66 11997.89 24398.43 35199.71 1398.88 4799.62 8899.76 11896.63 15399.70 20999.46 2199.99 199.66 118
xiu_mvs_v1_base_debu99.29 6199.27 5699.34 13399.63 12998.97 15399.12 26799.51 10798.86 4899.84 1599.47 24798.18 10499.99 199.50 1399.31 15299.08 207
xiu_mvs_v1_base99.29 6199.27 5699.34 13399.63 12998.97 15399.12 26799.51 10798.86 4899.84 1599.47 24798.18 10499.99 199.50 1399.31 15299.08 207
xiu_mvs_v1_base_debi99.29 6199.27 5699.34 13399.63 12998.97 15399.12 26799.51 10798.86 4899.84 1599.47 24798.18 10499.99 199.50 1399.31 15299.08 207
NCCC99.34 5599.19 6699.79 4699.61 13999.65 6299.30 22399.48 14898.86 4899.21 18899.63 18898.72 6499.90 11198.25 17299.63 13199.80 56
CANet99.25 6999.14 7099.59 8799.41 19399.16 12899.35 21399.57 5398.82 5299.51 11399.61 19796.46 15999.95 4799.59 699.98 299.65 122
CNVR-MVS99.42 4299.30 4699.78 4899.62 13599.71 4999.26 24399.52 9398.82 5299.39 14299.71 14198.96 2999.85 13698.59 13799.80 9099.77 72
MVS_111021_LR99.41 4699.33 3499.65 7599.77 5499.51 9098.94 31299.85 698.82 5299.65 7999.74 12998.51 8299.80 17098.83 10299.89 3599.64 129
MVS_111021_HR99.41 4699.32 3699.66 7199.72 8999.47 9598.95 31099.85 698.82 5299.54 10799.73 13698.51 8299.74 18798.91 8299.88 3899.77 72
xiu_mvs_v2_base99.26 6699.25 6099.29 14699.53 15798.91 16899.02 29199.45 18898.80 5699.71 5599.26 30198.94 3599.98 799.34 3599.23 15798.98 221
zzz-MVS99.49 1799.36 2799.89 499.90 499.86 1399.36 20799.47 16698.79 5799.68 6299.81 7198.43 8899.97 1298.88 8599.90 2599.83 33
MTAPA99.52 1499.39 2299.89 499.90 499.86 1399.66 5799.47 16698.79 5799.68 6299.81 7198.43 8899.97 1298.88 8599.90 2599.83 33
UA-Net99.42 4299.29 5099.80 4399.62 13599.55 8099.50 14099.70 1598.79 5799.77 3899.96 197.45 12399.96 2098.92 8199.90 2599.89 2
MCST-MVS99.43 3799.30 4699.82 3899.79 4699.74 4699.29 22799.40 21998.79 5799.52 11199.62 19398.91 4099.90 11198.64 12799.75 10599.82 40
DPE-MVScopyleft99.46 2799.32 3699.91 299.78 4899.88 899.36 20799.51 10798.73 6199.88 699.84 4798.72 6499.96 2098.16 18199.87 4299.88 8
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
CHOSEN 1792x268899.19 7499.10 7499.45 12299.89 998.52 20899.39 19599.94 198.73 6199.11 20699.89 1795.50 19299.94 5899.50 1399.97 599.89 2
MSP-MVS99.42 4299.27 5699.88 699.89 999.80 2999.67 5399.50 12898.70 6399.77 3899.49 23898.21 10299.95 4798.46 15599.77 10199.88 8
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
plane_prior397.00 28298.69 6499.11 206
HPM-MVS++copyleft99.39 5099.23 6399.87 1299.75 6899.84 1699.43 17499.51 10798.68 6599.27 17299.53 22598.64 7399.96 2098.44 15799.80 9099.79 62
canonicalmvs99.02 10998.86 11499.51 11299.42 19099.32 10899.80 2499.48 14898.63 6699.31 16398.81 33897.09 13699.75 18699.27 4697.90 22999.47 175
SteuartSystems-ACMMP99.54 1099.42 1899.87 1299.82 3999.81 2799.59 9099.51 10798.62 6799.79 3099.83 5199.28 499.97 1298.48 15199.90 2599.84 22
Skip Steuart: Steuart Systems R&D Blog.
alignmvs98.81 13798.56 15699.58 9099.43 18999.42 10099.51 13498.96 31798.61 6899.35 15598.92 33594.78 21899.77 18099.35 3198.11 22599.54 152
CVMVSNet98.57 16098.67 13598.30 27399.35 20795.59 32299.50 14099.55 6798.60 6999.39 14299.83 5194.48 23699.45 24598.75 11098.56 20299.85 18
OPM-MVS98.19 18698.10 18398.45 25798.88 30197.07 27499.28 22999.38 22998.57 7099.22 18599.81 7192.12 29699.66 21898.08 18897.54 24398.61 306
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
CS-MVS99.50 1699.48 1299.54 9699.76 5799.42 10099.90 199.55 6798.56 7199.78 3599.70 14598.65 7299.79 17399.65 499.78 9799.41 184
CS-MVS-test99.49 1799.48 1299.54 9699.78 4899.30 11299.89 299.58 5098.56 7199.73 4999.69 15498.55 7899.82 16099.69 199.85 6099.48 169
API-MVS99.04 10699.03 8499.06 16999.40 19899.31 11199.55 11999.56 5898.54 7399.33 16099.39 26998.76 5799.78 17896.98 27399.78 9798.07 344
ACMM97.58 598.37 17398.34 16898.48 25199.41 19397.10 27099.56 11099.45 18898.53 7499.04 22199.85 3893.00 26999.71 20398.74 11197.45 25498.64 286
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ETV-MVS99.26 6699.21 6499.40 12899.46 18399.30 11299.56 11099.52 9398.52 7599.44 12699.27 29998.41 9299.86 13099.10 6199.59 13499.04 214
XVG-OURS98.73 14698.68 13498.88 20599.70 10297.73 25198.92 31399.55 6798.52 7599.45 12299.84 4795.27 19999.91 9698.08 18898.84 18999.00 218
Vis-MVSNetpermissive99.12 9098.97 9699.56 9499.78 4899.10 13899.68 5199.66 2798.49 7799.86 1399.87 2994.77 22199.84 14299.19 5199.41 14399.74 83
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
Effi-MVS+-dtu98.78 14198.89 10798.47 25599.33 21396.91 28999.57 10499.30 27198.47 7899.41 13498.99 32996.78 14799.74 18798.73 11399.38 14498.74 247
mvs-test198.86 12598.84 11698.89 20299.33 21397.77 24999.44 16899.30 27198.47 7899.10 20999.43 25596.78 14799.95 4798.73 11399.02 17798.96 224
diffmvs99.14 8299.02 8799.51 11299.61 13998.96 15799.28 22999.49 13698.46 8099.72 5499.71 14196.50 15899.88 12499.31 3899.11 16699.67 115
plane_prior96.97 28599.21 25598.45 8197.60 237
CNLPA99.14 8298.99 9299.59 8799.58 14799.41 10299.16 25999.44 19798.45 8199.19 19499.49 23898.08 10999.89 11997.73 21699.75 10599.48 169
LS3D99.27 6499.12 7299.74 5999.18 25199.75 4399.56 11099.57 5398.45 8199.49 11799.85 3897.77 11799.94 5898.33 16799.84 6899.52 158
XVG-OURS-SEG-HR98.69 15198.62 14698.89 20299.71 9597.74 25099.12 26799.54 7698.44 8499.42 13099.71 14194.20 24499.92 8598.54 14898.90 18699.00 218
baseline198.31 17697.95 20299.38 13199.50 17198.74 18599.59 9098.93 31998.41 8599.14 20199.60 20094.59 23099.79 17398.48 15193.29 34099.61 137
ACMH+97.24 1097.92 22597.78 21998.32 27199.46 18396.68 29799.56 11099.54 7698.41 8597.79 32899.87 2990.18 32999.66 21898.05 19297.18 27098.62 297
SR-MVS-dyc-post99.45 2999.31 4399.85 2899.76 5799.82 2399.63 7099.52 9398.38 8799.76 4399.82 5898.53 7999.95 4798.61 13299.81 8699.77 72
RE-MVS-def99.34 3299.76 5799.82 2399.63 7099.52 9398.38 8799.76 4399.82 5898.75 6098.61 13299.81 8699.77 72
VPNet97.84 23697.44 25999.01 17599.21 24498.94 16499.48 15599.57 5398.38 8799.28 16999.73 13688.89 34099.39 25799.19 5193.27 34198.71 253
DROMVSNet99.44 3399.39 2299.58 9099.56 15399.49 9199.88 499.58 5098.38 8799.73 4999.69 15498.20 10399.70 20999.64 599.82 8399.54 152
APD-MVS_3200maxsize99.48 2299.35 3099.85 2899.76 5799.83 1799.63 7099.54 7698.36 9199.79 3099.82 5898.86 4499.95 4798.62 12999.81 8699.78 70
baseline99.15 8199.02 8799.53 10499.66 11999.14 13499.72 4199.48 14898.35 9299.42 13099.84 4796.07 17099.79 17399.51 1299.14 16499.67 115
test_prior399.21 7299.05 7999.68 6899.67 11099.48 9398.96 30699.56 5898.34 9399.01 22499.52 22898.68 6799.83 15397.96 19599.74 10899.74 83
test_prior298.96 30698.34 9399.01 22499.52 22898.68 6797.96 19599.74 108
ITE_SJBPF98.08 28899.29 22696.37 30698.92 32198.34 9398.83 25599.75 12391.09 31799.62 23195.82 30697.40 26098.25 338
casdiffmvs99.13 8498.98 9599.56 9499.65 12499.16 12899.56 11099.50 12898.33 9699.41 13499.86 3395.92 17799.83 15399.45 2299.16 16199.70 105
testdata198.85 32098.32 97
IU-MVS99.84 3399.88 899.32 26498.30 9899.84 1598.86 9499.85 6099.89 2
test117299.43 3799.29 5099.85 2899.75 6899.82 2399.60 8399.56 5898.28 9999.74 4799.79 9898.53 7999.95 4798.55 14699.78 9799.79 62
FIs98.78 14198.63 14199.23 15699.18 25199.54 8299.83 1799.59 4498.28 9998.79 26199.81 7196.75 15099.37 26499.08 6496.38 28398.78 235
VPA-MVSNet98.29 17997.95 20299.30 14399.16 25999.54 8299.50 14099.58 5098.27 10199.35 15599.37 27392.53 28799.65 22299.35 3194.46 32498.72 251
HQP-NCC99.19 24898.98 30298.24 10298.66 277
ACMP_Plane99.19 24898.98 30298.24 10298.66 277
HQP-MVS98.02 21097.90 20798.37 26799.19 24896.83 29098.98 30299.39 22398.24 10298.66 27799.40 26592.47 28999.64 22597.19 26197.58 23998.64 286
FC-MVSNet-test98.75 14598.62 14699.15 16399.08 27399.45 9799.86 1399.60 4198.23 10598.70 27499.82 5896.80 14699.22 29699.07 6596.38 28398.79 234
test_yl98.86 12598.63 14199.54 9699.49 17399.18 12599.50 14099.07 30798.22 10699.61 9099.51 23295.37 19599.84 14298.60 13598.33 20999.59 143
DCV-MVSNet98.86 12598.63 14199.54 9699.49 17399.18 12599.50 14099.07 30798.22 10699.61 9099.51 23295.37 19599.84 14298.60 13598.33 20999.59 143
SR-MVS99.43 3799.29 5099.86 2199.75 6899.83 1799.59 9099.62 3498.21 10899.73 4999.79 9898.68 6799.96 2098.44 15799.77 10199.79 62
iter_conf0598.55 16198.44 16198.87 20999.34 21198.60 19999.55 11999.42 20798.21 10899.37 14899.77 11293.55 26199.38 25999.30 4197.48 25298.63 294
iter_conf_final98.71 14798.61 15298.99 17999.49 17398.96 15799.63 7099.41 21098.19 11099.39 14299.77 11294.82 21499.38 25999.30 4197.52 24498.64 286
jajsoiax98.43 16698.28 17398.88 20598.60 33798.43 21899.82 1899.53 8798.19 11098.63 28599.80 8693.22 26799.44 25099.22 4997.50 24898.77 240
mvs_tets98.40 17198.23 17598.91 19798.67 33098.51 21099.66 5799.53 8798.19 11098.65 28399.81 7192.75 27599.44 25099.31 3897.48 25298.77 240
VDD-MVS97.73 25697.35 27098.88 20599.47 18297.12 26999.34 21698.85 33098.19 11099.67 6899.85 3882.98 36599.92 8599.49 1798.32 21399.60 139
PC_three_145298.18 11499.84 1599.70 14599.31 398.52 34798.30 17199.80 9099.81 46
AdaColmapbinary99.01 11298.80 12199.66 7199.56 15399.54 8299.18 25799.70 1598.18 11499.35 15599.63 18896.32 16499.90 11197.48 24199.77 10199.55 150
HFP-MVS99.49 1799.37 2599.86 2199.87 1699.80 2999.66 5799.67 2298.15 11699.68 6299.69 15499.06 1699.96 2098.69 12099.87 4299.84 22
ACMMPR99.49 1799.36 2799.86 2199.87 1699.79 3399.66 5799.67 2298.15 11699.67 6899.69 15498.95 3299.96 2098.69 12099.87 4299.84 22
mvsmamba98.92 11998.87 10999.08 16699.07 27499.16 12899.88 499.51 10798.15 11699.40 13999.89 1797.12 13499.33 27499.38 2797.40 26098.73 250
bld_raw_conf00598.62 15998.50 15898.95 18699.02 28398.79 18299.66 5799.55 6798.14 11998.95 23599.91 1094.54 23499.33 27499.36 3097.39 26298.74 247
region2R99.48 2299.35 3099.87 1299.88 1299.80 2999.65 6599.66 2798.13 12099.66 7399.68 16298.96 2999.96 2098.62 12999.87 4299.84 22
abl_699.44 3399.31 4399.83 3699.85 2699.75 4399.66 5799.59 4498.13 12099.82 2399.81 7198.60 7499.96 2098.46 15599.88 3899.79 62
mPP-MVS99.44 3399.30 4699.86 2199.88 1299.79 3399.69 4699.48 14898.12 12299.50 11499.75 12398.78 5299.97 1298.57 14099.89 3599.83 33
ACMMPcopyleft99.45 2999.32 3699.82 3899.89 999.67 5799.62 7699.69 1898.12 12299.63 8499.84 4798.73 6399.96 2098.55 14699.83 7799.81 46
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
Fast-Effi-MVS+-dtu98.77 14398.83 12098.60 23699.41 19396.99 28399.52 12999.49 13698.11 12499.24 18099.34 28296.96 14399.79 17397.95 19799.45 14099.02 217
CDS-MVSNet99.09 9999.03 8499.25 15299.42 19098.73 18699.45 16499.46 17698.11 12499.46 12199.77 11298.01 11199.37 26498.70 11798.92 18499.66 118
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
CSCG99.32 5799.32 3699.32 13899.85 2698.29 22399.71 4399.66 2798.11 12499.41 13499.80 8698.37 9599.96 2098.99 7299.96 799.72 96
EU-MVSNet97.98 21798.03 19397.81 30898.72 32496.65 29899.66 5799.66 2798.09 12798.35 30599.82 5895.25 20298.01 35597.41 24995.30 31098.78 235
MP-MVScopyleft99.33 5699.15 6999.87 1299.88 1299.82 2399.66 5799.46 17698.09 12799.48 11899.74 12998.29 9999.96 2097.93 19899.87 4299.82 40
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
TAMVS99.12 9099.08 7799.24 15499.46 18398.55 20299.51 13499.46 17698.09 12799.45 12299.82 5898.34 9699.51 24098.70 11798.93 18299.67 115
ACMH97.28 898.10 19697.99 19798.44 26099.41 19396.96 28799.60 8399.56 5898.09 12798.15 31499.91 1090.87 32099.70 20998.88 8597.45 25498.67 274
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ZNCC-MVS99.47 2599.33 3499.87 1299.87 1699.81 2799.64 6899.67 2298.08 13199.55 10699.64 18298.91 4099.96 2098.72 11599.90 2599.82 40
PS-MVSNAJss98.92 11998.92 10298.90 19998.78 31698.53 20499.78 3099.54 7698.07 13299.00 22999.76 11899.01 1999.37 26499.13 5897.23 26798.81 232
CP-MVS99.45 2999.32 3699.85 2899.83 3799.75 4399.69 4699.52 9398.07 13299.53 10999.63 18898.93 3999.97 1298.74 11199.91 1899.83 33
OMC-MVS99.08 10199.04 8299.20 15799.67 11098.22 22699.28 22999.52 9398.07 13299.66 7399.81 7197.79 11699.78 17897.79 20999.81 8699.60 139
LF4IMVS97.52 27697.46 25397.70 31398.98 29095.55 32399.29 22798.82 33398.07 13298.66 27799.64 18289.97 33099.61 23297.01 27096.68 27597.94 354
XVG-ACMP-BASELINE97.83 23897.71 22998.20 28099.11 26696.33 30899.41 18399.52 9398.06 13699.05 22099.50 23589.64 33599.73 19397.73 21697.38 26398.53 314
ACMMP_NAP99.47 2599.34 3299.88 699.87 1699.86 1399.47 16099.48 14898.05 13799.76 4399.86 3398.82 4899.93 7398.82 10699.91 1899.84 22
nrg03098.64 15798.42 16399.28 14999.05 28099.69 5299.81 2099.46 17698.04 13899.01 22499.82 5896.69 15299.38 25999.34 3594.59 32398.78 235
WTY-MVS99.06 10398.88 10899.61 8599.62 13599.16 12899.37 20399.56 5898.04 13899.53 10999.62 19396.84 14599.94 5898.85 9698.49 20699.72 96
jason99.13 8499.03 8499.45 12299.46 18398.87 17199.12 26799.26 28198.03 14099.79 3099.65 17597.02 13999.85 13699.02 7099.90 2599.65 122
jason: jason.
IS-MVSNet99.05 10598.87 10999.57 9299.73 8499.32 10899.75 3799.20 29198.02 14199.56 10299.86 3396.54 15799.67 21598.09 18499.13 16599.73 90
USDC97.34 28697.20 28497.75 31099.07 27495.20 33398.51 34899.04 31097.99 14298.31 30799.86 3389.02 33899.55 23895.67 31297.36 26498.49 317
GST-MVS99.40 4999.24 6199.85 2899.86 2299.79 3399.60 8399.67 2297.97 14399.63 8499.68 16298.52 8199.95 4798.38 16199.86 5399.81 46
UniMVSNet (Re)98.29 17998.00 19699.13 16499.00 28699.36 10699.49 15099.51 10797.95 14498.97 23399.13 31596.30 16599.38 25998.36 16593.34 33998.66 282
thres600view797.86 23297.51 24798.92 19299.72 8997.95 24199.59 9098.74 33897.94 14599.27 17298.62 34491.75 30399.86 13093.73 33898.19 21998.96 224
DPM-MVS98.95 11798.71 13099.66 7199.63 12999.55 8098.64 34099.10 30297.93 14699.42 13099.55 21698.67 7099.80 17095.80 30899.68 12399.61 137
thres100view90097.76 24897.45 25498.69 23299.72 8997.86 24699.59 9098.74 33897.93 14699.26 17798.62 34491.75 30399.83 15393.22 34398.18 22098.37 333
bld_raw_dy_0_6498.69 15198.58 15498.99 17998.88 30198.96 15799.80 2499.41 21097.91 14899.32 16199.87 2995.70 18799.31 28199.09 6297.27 26698.71 253
Vis-MVSNet (Re-imp)98.87 12298.72 12899.31 13999.71 9598.88 17099.80 2499.44 19797.91 14899.36 15299.78 10595.49 19399.43 25497.91 19999.11 16699.62 135
DU-MVS98.08 19997.79 21698.96 18498.87 30598.98 15099.41 18399.45 18897.87 15098.71 26899.50 23594.82 21499.22 29698.57 14092.87 34698.68 267
lupinMVS99.13 8499.01 9199.46 12199.51 16198.94 16499.05 28299.16 29697.86 15199.80 2899.56 21397.39 12499.86 13098.94 7799.85 6099.58 147
PVSNet96.02 1798.85 13398.84 11698.89 20299.73 8497.28 26298.32 35799.60 4197.86 15199.50 11499.57 21096.75 15099.86 13098.56 14399.70 11799.54 152
AllTest98.87 12298.72 12899.31 13999.86 2298.48 21499.56 11099.61 3697.85 15399.36 15299.85 3895.95 17499.85 13696.66 29299.83 7799.59 143
TestCases99.31 13999.86 2298.48 21499.61 3697.85 15399.36 15299.85 3895.95 17499.85 13696.66 29299.83 7799.59 143
PGM-MVS99.45 2999.31 4399.86 2199.87 1699.78 4099.58 9899.65 3297.84 15599.71 5599.80 8699.12 1399.97 1298.33 16799.87 4299.83 33
tfpn200view997.72 25897.38 26698.72 23099.69 10597.96 23999.50 14098.73 34397.83 15699.17 19898.45 34991.67 30799.83 15393.22 34398.18 22098.37 333
#test#99.43 3799.29 5099.86 2199.87 1699.80 2999.55 11999.67 2297.83 15699.68 6299.69 15499.06 1699.96 2098.39 15999.87 4299.84 22
thres40097.77 24797.38 26698.92 19299.69 10597.96 23999.50 14098.73 34397.83 15699.17 19898.45 34991.67 30799.83 15393.22 34398.18 22098.96 224
sss99.17 7899.05 7999.53 10499.62 13598.97 15399.36 20799.62 3497.83 15699.67 6899.65 17597.37 12899.95 4799.19 5199.19 16099.68 112
CLD-MVS98.16 19098.10 18398.33 26999.29 22696.82 29298.75 33099.44 19797.83 15699.13 20299.55 21692.92 27199.67 21598.32 16997.69 23398.48 318
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
SF-MVS99.38 5199.24 6199.79 4699.79 4699.68 5499.57 10499.54 7697.82 16199.71 5599.80 8698.95 3299.93 7398.19 17699.84 6899.74 83
test_low_dy_conf_00198.76 14498.71 13098.92 19298.92 29698.71 18899.87 999.41 21097.81 16299.35 15599.93 496.63 15399.28 28499.03 6797.44 25798.78 235
mvs_anonymous99.03 10898.99 9299.16 16199.38 20298.52 20899.51 13499.38 22997.79 16399.38 14699.81 7197.30 12999.45 24599.35 3198.99 17999.51 164
OurMVSNet-221017-097.88 22897.77 22198.19 28198.71 32696.53 30199.88 499.00 31297.79 16398.78 26299.94 391.68 30699.35 27197.21 25796.99 27498.69 262
ab-mvs98.86 12598.63 14199.54 9699.64 12699.19 12399.44 16899.54 7697.77 16599.30 16599.81 7194.20 24499.93 7399.17 5498.82 19099.49 168
RRT_MVS98.70 14898.66 13898.83 21998.90 29898.45 21699.89 299.28 27897.76 16698.94 23899.92 996.98 14199.25 29099.28 4397.00 27398.80 233
testgi97.65 27097.50 24898.13 28799.36 20696.45 30499.42 18199.48 14897.76 16697.87 32499.45 25291.09 31798.81 34394.53 32998.52 20499.13 201
UniMVSNet_NR-MVSNet98.22 18297.97 19998.96 18498.92 29698.98 15099.48 15599.53 8797.76 16698.71 26899.46 25196.43 16299.22 29698.57 14092.87 34698.69 262
TranMVSNet+NR-MVSNet97.93 22297.66 23398.76 22898.78 31698.62 19699.65 6599.49 13697.76 16698.49 29699.60 20094.23 24398.97 33698.00 19392.90 34498.70 258
PatchMatch-RL98.84 13698.62 14699.52 11099.71 9599.28 11599.06 28099.77 997.74 17099.50 11499.53 22595.41 19499.84 14297.17 26499.64 12999.44 180
HPM-MVS_fast99.51 1599.40 2199.85 2899.91 199.79 3399.76 3599.56 5897.72 17199.76 4399.75 12399.13 1299.92 8599.07 6599.92 1399.85 18
D2MVS98.41 16998.50 15898.15 28699.26 23396.62 29999.40 19199.61 3697.71 17298.98 23199.36 27696.04 17199.67 21598.70 11797.41 25998.15 342
BH-RMVSNet98.41 16998.08 18799.40 12899.41 19398.83 17899.30 22398.77 33497.70 17398.94 23899.65 17592.91 27399.74 18796.52 29499.55 13799.64 129
PAPM_NR99.04 10698.84 11699.66 7199.74 7699.44 9899.39 19599.38 22997.70 17399.28 16999.28 29698.34 9699.85 13696.96 27599.45 14099.69 108
tttt051798.42 16798.14 17999.28 14999.66 11998.38 22199.74 4096.85 36797.68 17599.79 3099.74 12991.39 31399.89 11998.83 10299.56 13599.57 148
thres20097.61 27297.28 27998.62 23599.64 12698.03 23399.26 24398.74 33897.68 17599.09 21398.32 35391.66 30999.81 16592.88 34798.22 21598.03 347
HyFIR lowres test99.11 9598.92 10299.65 7599.90 499.37 10599.02 29199.91 397.67 17799.59 9799.75 12395.90 17999.73 19399.53 1099.02 17799.86 15
EIA-MVS99.18 7699.09 7699.45 12299.49 17399.18 12599.67 5399.53 8797.66 17899.40 13999.44 25398.10 10899.81 16598.94 7799.62 13299.35 189
PVSNet_Blended_VisFu99.36 5399.28 5499.61 8599.86 2299.07 14299.47 16099.93 297.66 17899.71 5599.86 3397.73 11899.96 2099.47 2099.82 8399.79 62
ET-MVSNet_ETH3D96.49 30395.64 31499.05 17199.53 15798.82 17998.84 32197.51 36497.63 18084.77 36899.21 30892.09 29798.91 34098.98 7392.21 35099.41 184
NR-MVSNet97.97 22097.61 23899.02 17498.87 30599.26 11899.47 16099.42 20797.63 18097.08 34299.50 23595.07 20699.13 30997.86 20393.59 33798.68 267
K. test v397.10 29396.79 29498.01 29398.72 32496.33 30899.87 997.05 36697.59 18296.16 35199.80 8688.71 34199.04 32096.69 29096.55 28098.65 284
HPM-MVScopyleft99.42 4299.28 5499.83 3699.90 499.72 4799.81 2099.54 7697.59 18299.68 6299.63 18898.91 4099.94 5898.58 13899.91 1899.84 22
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
TinyColmap97.12 29296.89 29297.83 30599.07 27495.52 32698.57 34498.74 33897.58 18497.81 32799.79 9888.16 34999.56 23695.10 32297.21 26898.39 331
SCA98.19 18698.16 17798.27 27899.30 22295.55 32399.07 27798.97 31597.57 18599.43 12799.57 21092.72 27899.74 18797.58 22999.20 15999.52 158
EPMVS97.82 24197.65 23498.35 26898.88 30195.98 31599.49 15094.71 37797.57 18599.26 17799.48 24492.46 29299.71 20397.87 20299.08 17199.35 189
MVSFormer99.17 7899.12 7299.29 14699.51 16198.94 16499.88 499.46 17697.55 18799.80 2899.65 17597.39 12499.28 28499.03 6799.85 6099.65 122
test_djsdf98.67 15498.57 15598.98 18198.70 32798.91 16899.88 499.46 17697.55 18799.22 18599.88 2395.73 18599.28 28499.03 6797.62 23698.75 244
COLMAP_ROBcopyleft97.56 698.86 12598.75 12799.17 16099.88 1298.53 20499.34 21699.59 4497.55 18798.70 27499.89 1795.83 18199.90 11198.10 18399.90 2599.08 207
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
ACMP97.20 1198.06 20097.94 20498.45 25799.37 20497.01 28199.44 16899.49 13697.54 19098.45 29899.79 9891.95 29999.72 19797.91 19997.49 25198.62 297
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
9.1499.10 7499.72 8999.40 19199.51 10797.53 19199.64 8399.78 10598.84 4699.91 9697.63 22599.82 83
thisisatest053098.35 17498.03 19399.31 13999.63 12998.56 20199.54 12396.75 36997.53 19199.73 4999.65 17591.25 31699.89 11998.62 12999.56 13599.48 169
MDTV_nov1_ep1398.32 17099.11 26694.44 34699.27 23498.74 33897.51 19399.40 13999.62 19394.78 21899.76 18497.59 22898.81 192
Effi-MVS+98.81 13798.59 15399.48 11699.46 18399.12 13798.08 36399.50 12897.50 19499.38 14699.41 26296.37 16399.81 16599.11 6098.54 20399.51 164
原ACMM199.65 7599.73 8499.33 10799.47 16697.46 19599.12 20499.66 17498.67 7099.91 9697.70 22199.69 11899.71 103
LPG-MVS_test98.22 18298.13 18098.49 24999.33 21397.05 27699.58 9899.55 6797.46 19599.24 18099.83 5192.58 28599.72 19798.09 18497.51 24698.68 267
LGP-MVS_train98.49 24999.33 21397.05 27699.55 6797.46 19599.24 18099.83 5192.58 28599.72 19798.09 18497.51 24698.68 267
ETH3D-3000-0.199.21 7299.02 8799.77 5099.73 8499.69 5299.38 20099.51 10797.45 19899.61 9099.75 12398.51 8299.91 9697.45 24699.83 7799.71 103
SMA-MVScopyleft99.44 3399.30 4699.85 2899.73 8499.83 1799.56 11099.47 16697.45 19899.78 3599.82 5899.18 1099.91 9698.79 10799.89 3599.81 46
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
XXY-MVS98.38 17298.09 18699.24 15499.26 23399.32 10899.56 11099.55 6797.45 19898.71 26899.83 5193.23 26599.63 23098.88 8596.32 28598.76 242
AUN-MVS96.88 29596.31 30198.59 23799.48 18197.04 27999.27 23499.22 28797.44 20198.51 29499.41 26291.97 29899.66 21897.71 21983.83 36499.07 212
LCM-MVSNet-Re97.83 23898.15 17896.87 33599.30 22292.25 36499.59 9098.26 35297.43 20296.20 35099.13 31596.27 16698.73 34598.17 18098.99 17999.64 129
EPP-MVSNet99.13 8498.99 9299.53 10499.65 12499.06 14399.81 2099.33 25497.43 20299.60 9499.88 2397.14 13399.84 14299.13 5898.94 18199.69 108
PVSNet_BlendedMVS98.86 12598.80 12199.03 17399.76 5798.79 18299.28 22999.91 397.42 20499.67 6899.37 27397.53 12199.88 12498.98 7397.29 26598.42 327
MS-PatchMatch97.24 29097.32 27696.99 33098.45 34493.51 35998.82 32399.32 26497.41 20598.13 31599.30 29288.99 33999.56 23695.68 31199.80 9097.90 357
MVSTER98.49 16298.32 17099.00 17799.35 20799.02 14699.54 12399.38 22997.41 20599.20 19199.73 13693.86 25699.36 26898.87 8997.56 24198.62 297
HY-MVS97.30 798.85 13398.64 14099.47 11999.42 19099.08 14099.62 7699.36 23897.39 20799.28 16999.68 16296.44 16199.92 8598.37 16398.22 21599.40 186
PatchmatchNetpermissive98.31 17698.36 16598.19 28199.16 25995.32 33199.27 23498.92 32197.37 20899.37 14899.58 20694.90 21199.70 20997.43 24899.21 15899.54 152
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
test-LLR98.06 20097.90 20798.55 24598.79 31397.10 27098.67 33697.75 36097.34 20998.61 28898.85 33694.45 23799.45 24597.25 25599.38 14499.10 202
test0.0.03 197.71 26197.42 26398.56 24398.41 34597.82 24798.78 32798.63 34797.34 20998.05 32098.98 33294.45 23798.98 32995.04 32497.15 27198.89 228
PMMVS98.80 14098.62 14699.34 13399.27 23198.70 18998.76 32999.31 26797.34 20999.21 18899.07 32097.20 13299.82 16098.56 14398.87 18799.52 158
MVS_Test99.10 9898.97 9699.48 11699.49 17399.14 13499.67 5399.34 24797.31 21299.58 9999.76 11897.65 12099.82 16098.87 8999.07 17299.46 177
WR-MVS98.06 20097.73 22799.06 16998.86 30899.25 11999.19 25699.35 24397.30 21398.66 27799.43 25593.94 25399.21 30198.58 13894.28 32898.71 253
testtj99.12 9098.87 10999.86 2199.72 8999.79 3399.44 16899.51 10797.29 21499.59 9799.74 12998.15 10799.96 2096.74 28699.69 11899.81 46
F-COLMAP99.19 7499.04 8299.64 8099.78 4899.27 11799.42 18199.54 7697.29 21499.41 13499.59 20398.42 9199.93 7398.19 17699.69 11899.73 90
WR-MVS_H98.13 19397.87 21298.90 19999.02 28398.84 17599.70 4499.59 4497.27 21698.40 30299.19 30995.53 19199.23 29398.34 16693.78 33598.61 306
tpmrst98.33 17598.48 16097.90 30199.16 25994.78 34199.31 22199.11 30197.27 21699.45 12299.59 20395.33 19799.84 14298.48 15198.61 19699.09 206
CP-MVSNet98.09 19797.78 21999.01 17598.97 29299.24 12099.67 5399.46 17697.25 21898.48 29799.64 18293.79 25799.06 31898.63 12894.10 33198.74 247
MSDG98.98 11498.80 12199.53 10499.76 5799.19 12398.75 33099.55 6797.25 21899.47 11999.77 11297.82 11599.87 12796.93 27899.90 2599.54 152
BH-untuned98.42 16798.36 16598.59 23799.49 17396.70 29599.27 23499.13 30097.24 22098.80 25999.38 27095.75 18499.74 18797.07 26999.16 16199.33 192
1112_ss98.98 11498.77 12499.59 8799.68 10999.02 14699.25 24599.48 14897.23 22199.13 20299.58 20696.93 14499.90 11198.87 8998.78 19399.84 22
MVP-Stereo97.81 24397.75 22597.99 29697.53 35596.60 30098.96 30698.85 33097.22 22297.23 33799.36 27695.28 19899.46 24495.51 31499.78 9797.92 356
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
IterMVS97.83 23897.77 22198.02 29299.58 14796.27 31099.02 29199.48 14897.22 22298.71 26899.70 14592.75 27599.13 30997.46 24496.00 29198.67 274
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MP-MVS-pluss99.37 5299.20 6599.88 699.90 499.87 1299.30 22399.52 9397.18 22499.60 9499.79 9898.79 5199.95 4798.83 10299.91 1899.83 33
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
IterMVS-SCA-FT97.82 24197.75 22598.06 28999.57 14996.36 30799.02 29199.49 13697.18 22498.71 26899.72 14092.72 27899.14 30697.44 24795.86 29798.67 274
APD-MVScopyleft99.27 6499.08 7799.84 3599.75 6899.79 3399.50 14099.50 12897.16 22699.77 3899.82 5898.78 5299.94 5897.56 23499.86 5399.80 56
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
SixPastTwentyTwo97.50 27997.33 27598.03 29098.65 33196.23 31199.77 3298.68 34697.14 22797.90 32399.93 490.45 32399.18 30497.00 27196.43 28298.67 274
PS-CasMVS97.93 22297.59 24098.95 18698.99 28799.06 14399.68 5199.52 9397.13 22898.31 30799.68 16292.44 29399.05 31998.51 14994.08 33298.75 244
UnsupCasMVSNet_eth96.44 30496.12 30497.40 32298.65 33195.65 32099.36 20799.51 10797.13 22896.04 35398.99 32988.40 34698.17 35196.71 28890.27 35498.40 330
PHI-MVS99.30 5999.17 6899.70 6799.56 15399.52 8899.58 9899.80 897.12 23099.62 8899.73 13698.58 7599.90 11198.61 13299.91 1899.68 112
PVSNet_094.43 1996.09 31295.47 31597.94 29899.31 22194.34 34997.81 36599.70 1597.12 23097.46 33298.75 34189.71 33399.79 17397.69 22281.69 36799.68 112
LTVRE_ROB97.16 1298.02 21097.90 20798.40 26499.23 23996.80 29399.70 4499.60 4197.12 23098.18 31399.70 14591.73 30599.72 19798.39 15997.45 25498.68 267
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
cl2297.85 23397.64 23698.48 25199.09 27197.87 24498.60 34399.33 25497.11 23398.87 24999.22 30592.38 29499.17 30598.21 17495.99 29298.42 327
GeoE98.85 13398.62 14699.53 10499.61 13999.08 14099.80 2499.51 10797.10 23499.31 16399.78 10595.23 20399.77 18098.21 17499.03 17599.75 78
LFMVS97.90 22797.35 27099.54 9699.52 15999.01 14899.39 19598.24 35397.10 23499.65 7999.79 9884.79 36299.91 9699.28 4398.38 20899.69 108
anonymousdsp98.44 16598.28 17398.94 18898.50 34298.96 15799.77 3299.50 12897.07 23698.87 24999.77 11294.76 22299.28 28498.66 12597.60 23798.57 312
testdata99.54 9699.75 6898.95 16199.51 10797.07 23699.43 12799.70 14598.87 4399.94 5897.76 21299.64 12999.72 96
PEN-MVS97.76 24897.44 25998.72 23098.77 31998.54 20399.78 3099.51 10797.06 23898.29 30999.64 18292.63 28498.89 34298.09 18493.16 34298.72 251
ETH3D cwj APD-0.1699.06 10398.84 11699.72 6499.51 16199.60 7099.23 24899.44 19797.04 23999.39 14299.67 16898.30 9899.92 8597.27 25399.69 11899.64 129
GA-MVS97.85 23397.47 25199.00 17799.38 20297.99 23698.57 34499.15 29797.04 23998.90 24499.30 29289.83 33199.38 25996.70 28998.33 20999.62 135
CPTT-MVS99.11 9598.90 10599.74 5999.80 4599.46 9699.59 9099.49 13697.03 24199.63 8499.69 15497.27 13199.96 2097.82 20799.84 6899.81 46
DP-MVS99.16 8098.95 10099.78 4899.77 5499.53 8599.41 18399.50 12897.03 24199.04 22199.88 2397.39 12499.92 8598.66 12599.90 2599.87 13
Test_1112_low_res98.89 12198.66 13899.57 9299.69 10598.95 16199.03 28899.47 16696.98 24399.15 20099.23 30496.77 14999.89 11998.83 10298.78 19399.86 15
baseline297.87 23097.55 24198.82 22099.18 25198.02 23499.41 18396.58 37196.97 24496.51 34799.17 31093.43 26299.57 23597.71 21999.03 17598.86 229
TESTMET0.1,197.55 27497.27 28298.40 26498.93 29596.53 30198.67 33697.61 36396.96 24598.64 28499.28 29688.63 34499.45 24597.30 25299.38 14499.21 198
CR-MVSNet98.17 18997.93 20598.87 20999.18 25198.49 21299.22 25399.33 25496.96 24599.56 10299.38 27094.33 24099.00 32794.83 32798.58 19999.14 199
miper_enhance_ethall98.16 19098.08 18798.41 26298.96 29397.72 25298.45 35099.32 26496.95 24798.97 23399.17 31097.06 13899.22 29697.86 20395.99 29298.29 335
thisisatest051598.14 19297.79 21699.19 15899.50 17198.50 21198.61 34196.82 36896.95 24799.54 10799.43 25591.66 30999.86 13098.08 18899.51 13999.22 197
IterMVS-LS98.46 16498.42 16398.58 24099.59 14598.00 23599.37 20399.43 20596.94 24999.07 21599.59 20397.87 11399.03 32298.32 16995.62 30398.71 253
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EI-MVSNet98.67 15498.67 13598.68 23399.35 20797.97 23799.50 14099.38 22996.93 25099.20 19199.83 5197.87 11399.36 26898.38 16197.56 24198.71 253
无先验98.99 29899.51 10796.89 25199.93 7397.53 23799.72 96
131498.68 15398.54 15799.11 16598.89 30098.65 19399.27 23499.49 13696.89 25197.99 32199.56 21397.72 11999.83 15397.74 21599.27 15598.84 231
PLCcopyleft97.94 499.02 10998.85 11599.53 10499.66 11999.01 14899.24 24799.52 9396.85 25399.27 17299.48 24498.25 10199.91 9697.76 21299.62 13299.65 122
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
ZD-MVS99.71 9599.79 3399.61 3696.84 25499.56 10299.54 22198.58 7599.96 2096.93 27899.75 105
MDTV_nov1_ep13_2view95.18 33599.35 21396.84 25499.58 9995.19 20497.82 20799.46 177
our_test_397.65 27097.68 23197.55 31898.62 33494.97 33898.84 32199.30 27196.83 25698.19 31299.34 28297.01 14099.02 32495.00 32596.01 29098.64 286
112199.09 9998.87 10999.75 5499.74 7699.60 7099.27 23499.48 14896.82 25799.25 17999.65 17598.38 9399.93 7397.53 23799.67 12599.73 90
新几何199.75 5499.75 6899.59 7399.54 7696.76 25899.29 16899.64 18298.43 8899.94 5896.92 28099.66 12699.72 96
PVSNet_Blended99.08 10198.97 9699.42 12799.76 5798.79 18298.78 32799.91 396.74 25999.67 6899.49 23897.53 12199.88 12498.98 7399.85 6099.60 139
TDRefinement95.42 31894.57 32497.97 29789.83 37796.11 31499.48 15598.75 33596.74 25996.68 34699.88 2388.65 34399.71 20398.37 16382.74 36698.09 343
IB-MVS95.67 1896.22 30795.44 31798.57 24199.21 24496.70 29598.65 33997.74 36296.71 26197.27 33698.54 34786.03 35899.92 8598.47 15486.30 36199.10 202
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
旧先验298.96 30696.70 26299.47 11999.94 5898.19 176
DTE-MVSNet97.51 27897.19 28598.46 25698.63 33398.13 23199.84 1499.48 14896.68 26397.97 32299.67 16892.92 27198.56 34696.88 28292.60 34998.70 258
c3_l98.12 19598.04 19298.38 26699.30 22297.69 25598.81 32499.33 25496.67 26498.83 25599.34 28297.11 13598.99 32897.58 22995.34 30998.48 318
FMVSNet398.03 20897.76 22498.84 21799.39 20198.98 15099.40 19199.38 22996.67 26499.07 21599.28 29692.93 27098.98 32997.10 26696.65 27698.56 313
eth_miper_zixun_eth98.05 20597.96 20098.33 26999.26 23397.38 26098.56 34699.31 26796.65 26698.88 24799.52 22896.58 15599.12 31397.39 25095.53 30698.47 320
v2v48298.06 20097.77 22198.92 19298.90 29898.82 17999.57 10499.36 23896.65 26699.19 19499.35 27994.20 24499.25 29097.72 21894.97 31798.69 262
test-mter97.49 28297.13 28798.55 24598.79 31397.10 27098.67 33697.75 36096.65 26698.61 28898.85 33688.23 34899.45 24597.25 25599.38 14499.10 202
TR-MVS97.76 24897.41 26498.82 22099.06 27797.87 24498.87 31998.56 34896.63 26998.68 27699.22 30592.49 28899.65 22295.40 31797.79 23198.95 227
RPSCF98.22 18298.62 14696.99 33099.82 3991.58 36799.72 4199.44 19796.61 27099.66 7399.89 1795.92 17799.82 16097.46 24499.10 16999.57 148
MAR-MVS98.86 12598.63 14199.54 9699.37 20499.66 5999.45 16499.54 7696.61 27099.01 22499.40 26597.09 13699.86 13097.68 22499.53 13899.10 202
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
miper_ehance_all_eth98.18 18898.10 18398.41 26299.23 23997.72 25298.72 33399.31 26796.60 27298.88 24799.29 29497.29 13099.13 30997.60 22795.99 29298.38 332
CDPH-MVS99.13 8498.91 10499.80 4399.75 6899.71 4999.15 26399.41 21096.60 27299.60 9499.55 21698.83 4799.90 11197.48 24199.83 7799.78 70
test20.0396.12 31195.96 30896.63 33897.44 35695.45 32899.51 13499.38 22996.55 27496.16 35199.25 30293.76 25996.17 37187.35 36894.22 32998.27 336
V4298.06 20097.79 21698.86 21398.98 29098.84 17599.69 4699.34 24796.53 27599.30 16599.37 27394.67 22799.32 27897.57 23394.66 32198.42 327
DIV-MVS_self_test98.01 21397.85 21398.48 25199.24 23897.95 24198.71 33499.35 24396.50 27698.60 29099.54 22195.72 18699.03 32297.21 25795.77 29898.46 324
MVS_030496.79 29896.52 29897.59 31699.22 24294.92 34099.04 28799.59 4496.49 27798.43 30098.99 32980.48 37199.39 25797.15 26599.27 15598.47 320
GBi-Net97.68 26597.48 24998.29 27499.51 16197.26 26599.43 17499.48 14896.49 27799.07 21599.32 28990.26 32598.98 32997.10 26696.65 27698.62 297
test197.68 26597.48 24998.29 27499.51 16197.26 26599.43 17499.48 14896.49 27799.07 21599.32 28990.26 32598.98 32997.10 26696.65 27698.62 297
FMVSNet297.72 25897.36 26898.80 22499.51 16198.84 17599.45 16499.42 20796.49 27798.86 25499.29 29490.26 32598.98 32996.44 29696.56 27998.58 311
miper_lstm_enhance98.00 21597.91 20698.28 27799.34 21197.43 25998.88 31799.36 23896.48 28198.80 25999.55 21695.98 17298.91 34097.27 25395.50 30798.51 316
dp97.75 25297.80 21597.59 31699.10 26993.71 35599.32 21998.88 32896.48 28199.08 21499.55 21692.67 28399.82 16096.52 29498.58 19999.24 196
cl____98.01 21397.84 21498.55 24599.25 23797.97 23798.71 33499.34 24796.47 28398.59 29199.54 22195.65 18999.21 30197.21 25795.77 29898.46 324
pmmvs498.13 19397.90 20798.81 22298.61 33698.87 17198.99 29899.21 29096.44 28499.06 21999.58 20695.90 17999.11 31497.18 26396.11 28998.46 324
tpm97.67 26897.55 24198.03 29099.02 28395.01 33799.43 17498.54 35096.44 28499.12 20499.34 28291.83 30299.60 23397.75 21496.46 28199.48 169
test22299.75 6899.49 9198.91 31599.49 13696.42 28699.34 15999.65 17598.28 10099.69 11899.72 96
BH-w/o98.00 21597.89 21198.32 27199.35 20796.20 31299.01 29698.90 32696.42 28698.38 30399.00 32895.26 20199.72 19796.06 30298.61 19699.03 215
DP-MVS Recon99.12 9098.95 10099.65 7599.74 7699.70 5199.27 23499.57 5396.40 28899.42 13099.68 16298.75 6099.80 17097.98 19499.72 11299.44 180
PAPR98.63 15898.34 16899.51 11299.40 19899.03 14598.80 32599.36 23896.33 28999.00 22999.12 31898.46 8699.84 14295.23 32199.37 15199.66 118
tfpnnormal97.84 23697.47 25198.98 18199.20 24699.22 12299.64 6899.61 3696.32 29098.27 31099.70 14593.35 26499.44 25095.69 31095.40 30898.27 336
pm-mvs197.68 26597.28 27998.88 20599.06 27798.62 19699.50 14099.45 18896.32 29097.87 32499.79 9892.47 28999.35 27197.54 23693.54 33898.67 274
train_agg99.02 10998.77 12499.77 5099.67 11099.65 6299.05 28299.41 21096.28 29298.95 23599.49 23898.76 5799.91 9697.63 22599.72 11299.75 78
test_899.67 11099.61 6899.03 28899.41 21096.28 29298.93 24099.48 24498.76 5799.91 96
v114497.98 21797.69 23098.85 21698.87 30598.66 19299.54 12399.35 24396.27 29499.23 18499.35 27994.67 22799.23 29396.73 28795.16 31398.68 267
agg_prior199.01 11298.76 12699.76 5399.67 11099.62 6698.99 29899.40 21996.26 29598.87 24999.49 23898.77 5599.91 9697.69 22299.72 11299.75 78
v14897.79 24697.55 24198.50 24898.74 32197.72 25299.54 12399.33 25496.26 29598.90 24499.51 23294.68 22699.14 30697.83 20693.15 34398.63 294
ADS-MVSNet298.02 21098.07 19097.87 30299.33 21395.19 33499.23 24899.08 30596.24 29799.10 20999.67 16894.11 24898.93 33996.81 28399.05 17399.48 169
ADS-MVSNet98.20 18598.08 18798.56 24399.33 21396.48 30399.23 24899.15 29796.24 29799.10 20999.67 16894.11 24899.71 20396.81 28399.05 17399.48 169
TEST999.67 11099.65 6299.05 28299.41 21096.22 29998.95 23599.49 23898.77 5599.91 96
v14419297.92 22597.60 23998.87 20998.83 31198.65 19399.55 11999.34 24796.20 30099.32 16199.40 26594.36 23999.26 28996.37 29995.03 31698.70 258
v7n97.87 23097.52 24598.92 19298.76 32098.58 20099.84 1499.46 17696.20 30098.91 24299.70 14594.89 21299.44 25096.03 30393.89 33498.75 244
v119297.81 24397.44 25998.91 19798.88 30198.68 19099.51 13499.34 24796.18 30299.20 19199.34 28294.03 25199.36 26895.32 32095.18 31298.69 262
test_part197.75 25297.24 28399.29 14699.59 14599.63 6599.65 6599.49 13696.17 30398.44 29999.69 15489.80 33299.47 24298.68 12293.66 33698.78 235
Anonymous2023120696.22 30796.03 30696.79 33797.31 36094.14 35099.63 7099.08 30596.17 30397.04 34399.06 32293.94 25397.76 36186.96 36995.06 31598.47 320
Patchmatch-test97.93 22297.65 23498.77 22799.18 25197.07 27499.03 28899.14 29996.16 30598.74 26599.57 21094.56 23299.72 19793.36 34299.11 16699.52 158
EG-PatchMatch MVS95.97 31395.69 31396.81 33697.78 35392.79 36299.16 25998.93 31996.16 30594.08 36099.22 30582.72 36699.47 24295.67 31297.50 24898.17 341
v192192097.80 24597.45 25498.84 21798.80 31298.53 20499.52 12999.34 24796.15 30799.24 18099.47 24793.98 25299.29 28395.40 31795.13 31498.69 262
pmmvs597.52 27697.30 27898.16 28398.57 33996.73 29499.27 23498.90 32696.14 30898.37 30499.53 22591.54 31299.14 30697.51 23995.87 29698.63 294
DSMNet-mixed97.25 28997.35 27096.95 33397.84 35293.61 35899.57 10496.63 37096.13 30998.87 24998.61 34694.59 23097.70 36295.08 32398.86 18899.55 150
ppachtmachnet_test97.49 28297.45 25497.61 31598.62 33495.24 33298.80 32599.46 17696.11 31098.22 31199.62 19396.45 16098.97 33693.77 33795.97 29598.61 306
Fast-Effi-MVS+98.70 14898.43 16299.51 11299.51 16199.28 11599.52 12999.47 16696.11 31099.01 22499.34 28296.20 16899.84 14297.88 20198.82 19099.39 187
v124097.69 26397.32 27698.79 22598.85 30998.43 21899.48 15599.36 23896.11 31099.27 17299.36 27693.76 25999.24 29294.46 33095.23 31198.70 258
MIMVSNet97.73 25697.45 25498.57 24199.45 18897.50 25799.02 29198.98 31496.11 31099.41 13499.14 31490.28 32498.74 34495.74 30998.93 18299.47 175
tpmvs97.98 21798.02 19597.84 30499.04 28194.73 34299.31 22199.20 29196.10 31498.76 26499.42 25894.94 20799.81 16596.97 27498.45 20798.97 222
Anonymous20240521198.30 17897.98 19899.26 15199.57 14998.16 22899.41 18398.55 34996.03 31599.19 19499.74 12991.87 30099.92 8599.16 5698.29 21499.70 105
v897.95 22197.63 23798.93 19098.95 29498.81 18199.80 2499.41 21096.03 31599.10 20999.42 25894.92 21099.30 28296.94 27794.08 33298.66 282
UniMVSNet_ETH3D97.32 28796.81 29398.87 20999.40 19897.46 25899.51 13499.53 8795.86 31798.54 29399.77 11282.44 36899.66 21898.68 12297.52 24499.50 167
v1097.85 23397.52 24598.86 21398.99 28798.67 19199.75 3799.41 21095.70 31898.98 23199.41 26294.75 22399.23 29396.01 30494.63 32298.67 274
Baseline_NR-MVSNet97.76 24897.45 25498.68 23399.09 27198.29 22399.41 18398.85 33095.65 31998.63 28599.67 16894.82 21499.10 31698.07 19192.89 34598.64 286
TransMVSNet (Re)97.15 29196.58 29698.86 21399.12 26498.85 17499.49 15098.91 32495.48 32097.16 34099.80 8693.38 26399.11 31494.16 33591.73 35198.62 297
ETH3 D test640098.70 14898.35 16799.73 6199.69 10599.60 7099.16 25999.45 18895.42 32199.27 17299.60 20097.39 12499.91 9695.36 31999.83 7799.70 105
VDDNet97.55 27497.02 29099.16 16199.49 17398.12 23299.38 20099.30 27195.35 32299.68 6299.90 1382.62 36799.93 7399.31 3898.13 22499.42 182
CL-MVSNet_self_test94.49 32693.97 32996.08 34296.16 36693.67 35798.33 35699.38 22995.13 32397.33 33598.15 35592.69 28296.57 36988.67 36379.87 36997.99 351
pmmvs-eth3d95.34 32094.73 32297.15 32695.53 37095.94 31699.35 21399.10 30295.13 32393.55 36197.54 35888.15 35097.91 35794.58 32889.69 35797.61 359
KD-MVS_self_test95.00 32194.34 32696.96 33297.07 36595.39 33099.56 11099.44 19795.11 32597.13 34197.32 36291.86 30197.27 36590.35 35881.23 36898.23 340
FMVSNet196.84 29696.36 30098.29 27499.32 22097.26 26599.43 17499.48 14895.11 32598.55 29299.32 28983.95 36498.98 32995.81 30796.26 28698.62 297
Patchmatch-RL test95.84 31495.81 31295.95 34395.61 36890.57 36898.24 35998.39 35195.10 32795.20 35698.67 34394.78 21897.77 36096.28 30090.02 35599.51 164
KD-MVS_2432*160094.62 32493.72 33097.31 32397.19 36395.82 31898.34 35499.20 29195.00 32897.57 33098.35 35187.95 35198.10 35292.87 34877.00 37198.01 348
miper_refine_blended94.62 32493.72 33097.31 32397.19 36395.82 31898.34 35499.20 29195.00 32897.57 33098.35 35187.95 35198.10 35292.87 34877.00 37198.01 348
PAPM97.59 27397.09 28899.07 16899.06 27798.26 22598.30 35899.10 30294.88 33098.08 31699.34 28296.27 16699.64 22589.87 35998.92 18499.31 193
Patchmtry97.75 25297.40 26598.81 22299.10 26998.87 17199.11 27399.33 25494.83 33198.81 25799.38 27094.33 24099.02 32496.10 30195.57 30498.53 314
PM-MVS92.96 33292.23 33595.14 34595.61 36889.98 37099.37 20398.21 35494.80 33295.04 35897.69 35765.06 37497.90 35894.30 33189.98 35697.54 362
QAPM98.67 15498.30 17299.80 4399.20 24699.67 5799.77 3299.72 1194.74 33398.73 26699.90 1395.78 18399.98 796.96 27599.88 3899.76 77
CostFormer97.72 25897.73 22797.71 31299.15 26294.02 35199.54 12399.02 31194.67 33499.04 22199.35 27992.35 29599.77 18098.50 15097.94 22899.34 191
gm-plane-assit98.54 34192.96 36194.65 33599.15 31399.64 22597.56 234
OpenMVScopyleft96.50 1698.47 16398.12 18199.52 11099.04 28199.53 8599.82 1899.72 1194.56 33698.08 31699.88 2394.73 22499.98 797.47 24399.76 10499.06 213
new-patchmatchnet94.48 32794.08 32795.67 34495.08 37192.41 36399.18 25799.28 27894.55 33793.49 36297.37 36187.86 35397.01 36791.57 35388.36 35897.61 359
FMVSNet596.43 30596.19 30397.15 32699.11 26695.89 31799.32 21999.52 9394.47 33898.34 30699.07 32087.54 35597.07 36692.61 35195.72 30198.47 320
Anonymous2023121197.88 22897.54 24498.90 19999.71 9598.53 20499.48 15599.57 5394.16 33998.81 25799.68 16293.23 26599.42 25598.84 9994.42 32698.76 242
new_pmnet96.38 30696.03 30697.41 32198.13 34995.16 33699.05 28299.20 29193.94 34097.39 33498.79 33991.61 31199.04 32090.43 35795.77 29898.05 346
N_pmnet94.95 32395.83 31192.31 34998.47 34379.33 37699.12 26792.81 38293.87 34197.68 32999.13 31593.87 25599.01 32691.38 35496.19 28798.59 310
MDA-MVSNet-bldmvs94.96 32293.98 32897.92 29998.24 34797.27 26399.15 26399.33 25493.80 34280.09 37499.03 32588.31 34797.86 35993.49 34194.36 32798.62 297
Anonymous2024052998.09 19797.68 23199.34 13399.66 11998.44 21799.40 19199.43 20593.67 34399.22 18599.89 1790.23 32899.93 7399.26 4798.33 20999.66 118
MIMVSNet195.51 31695.04 32096.92 33497.38 35795.60 32199.52 12999.50 12893.65 34496.97 34599.17 31085.28 36196.56 37088.36 36595.55 30598.60 309
test_040296.64 30096.24 30297.85 30398.85 30996.43 30599.44 16899.26 28193.52 34596.98 34499.52 22888.52 34599.20 30392.58 35297.50 24897.93 355
MDA-MVSNet_test_wron95.45 31794.60 32398.01 29398.16 34897.21 26899.11 27399.24 28593.49 34680.73 37398.98 33293.02 26898.18 35094.22 33494.45 32598.64 286
pmmvs696.53 30296.09 30597.82 30798.69 32895.47 32799.37 20399.47 16693.46 34797.41 33399.78 10587.06 35699.33 27496.92 28092.70 34898.65 284
tpm297.44 28497.34 27397.74 31199.15 26294.36 34899.45 16498.94 31893.45 34898.90 24499.44 25391.35 31499.59 23497.31 25198.07 22699.29 194
YYNet195.36 31994.51 32597.92 29997.89 35197.10 27099.10 27599.23 28693.26 34980.77 37299.04 32492.81 27498.02 35494.30 33194.18 33098.64 286
Anonymous2024052196.20 30995.89 31097.13 32897.72 35494.96 33999.79 2999.29 27693.01 35097.20 33999.03 32589.69 33498.36 34991.16 35596.13 28898.07 344
cascas97.69 26397.43 26298.48 25198.60 33797.30 26198.18 36299.39 22392.96 35198.41 30198.78 34093.77 25899.27 28898.16 18198.61 19698.86 229
114514_t98.93 11898.67 13599.72 6499.85 2699.53 8599.62 7699.59 4492.65 35299.71 5599.78 10598.06 11099.90 11198.84 9999.91 1899.74 83
PatchT97.03 29496.44 29998.79 22598.99 28798.34 22299.16 25999.07 30792.13 35399.52 11197.31 36394.54 23498.98 32988.54 36498.73 19599.03 215
TAPA-MVS97.07 1597.74 25597.34 27398.94 18899.70 10297.53 25699.25 24599.51 10791.90 35499.30 16599.63 18898.78 5299.64 22588.09 36699.87 4299.65 122
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
JIA-IIPM97.50 27997.02 29098.93 19098.73 32297.80 24899.30 22398.97 31591.73 35598.91 24294.86 36895.10 20599.71 20397.58 22997.98 22799.28 195
tpm cat197.39 28597.36 26897.50 32099.17 25793.73 35499.43 17499.31 26791.27 35698.71 26899.08 31994.31 24299.77 18096.41 29898.50 20599.00 218
PCF-MVS97.08 1497.66 26997.06 28999.47 11999.61 13999.09 13998.04 36499.25 28391.24 35798.51 29499.70 14594.55 23399.91 9692.76 35099.85 6099.42 182
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
UnsupCasMVSNet_bld93.53 33192.51 33496.58 34097.38 35793.82 35298.24 35999.48 14891.10 35893.10 36396.66 36474.89 37298.37 34894.03 33687.71 35997.56 361
gg-mvs-nofinetune96.17 31095.32 31898.73 22998.79 31398.14 23099.38 20094.09 37891.07 35998.07 31991.04 37389.62 33699.35 27196.75 28599.09 17098.68 267
pmmvs394.09 33093.25 33396.60 33994.76 37294.49 34598.92 31398.18 35689.66 36096.48 34898.06 35686.28 35797.33 36489.68 36087.20 36097.97 353
CMPMVSbinary69.68 2394.13 32994.90 32191.84 35097.24 36180.01 37598.52 34799.48 14889.01 36191.99 36599.67 16885.67 36099.13 30995.44 31597.03 27296.39 366
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
ANet_high77.30 34274.86 34684.62 35675.88 38277.61 37797.63 36793.15 38188.81 36264.27 37789.29 37436.51 38183.93 37975.89 37452.31 37692.33 371
RPMNet96.72 29995.90 30999.19 15899.18 25198.49 21299.22 25399.52 9388.72 36399.56 10297.38 36094.08 25099.95 4786.87 37098.58 19999.14 199
OpenMVS_ROBcopyleft92.34 2094.38 32893.70 33296.41 34197.38 35793.17 36099.06 28098.75 33586.58 36494.84 35998.26 35481.53 36999.32 27889.01 36297.87 23096.76 364
DeepMVS_CXcopyleft93.34 34799.29 22682.27 37399.22 28785.15 36596.33 34999.05 32390.97 31999.73 19393.57 34097.77 23298.01 348
MVS-HIRNet95.75 31595.16 31997.51 31999.30 22293.69 35698.88 31795.78 37285.09 36698.78 26292.65 37091.29 31599.37 26494.85 32699.85 6099.46 177
MVS97.28 28896.55 29799.48 11698.78 31698.95 16199.27 23499.39 22383.53 36798.08 31699.54 22196.97 14299.87 12794.23 33399.16 16199.63 133
PMMVS286.87 33585.37 33991.35 35290.21 37683.80 37198.89 31697.45 36583.13 36891.67 36695.03 36648.49 37994.70 37385.86 37177.62 37095.54 367
Gipumacopyleft90.99 33490.15 33793.51 34698.73 32290.12 36993.98 37199.45 18879.32 36992.28 36494.91 36769.61 37397.98 35687.42 36795.67 30292.45 370
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
FPMVS84.93 33785.65 33882.75 35886.77 37963.39 38398.35 35398.92 32174.11 37083.39 37098.98 33250.85 37892.40 37584.54 37294.97 31792.46 369
LCM-MVSNet86.80 33685.22 34091.53 35187.81 37880.96 37498.23 36198.99 31371.05 37190.13 36796.51 36548.45 38096.88 36890.51 35685.30 36296.76 364
tmp_tt82.80 33881.52 34186.66 35466.61 38468.44 38292.79 37397.92 35868.96 37280.04 37599.85 3885.77 35996.15 37297.86 20343.89 37795.39 368
test_method91.10 33391.36 33690.31 35395.85 36773.72 38194.89 37099.25 28368.39 37395.82 35499.02 32780.50 37098.95 33893.64 33994.89 32098.25 338
MVEpermissive76.82 2176.91 34374.31 34784.70 35585.38 38176.05 38096.88 36993.17 38067.39 37471.28 37689.01 37521.66 38687.69 37671.74 37572.29 37390.35 372
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN80.61 34079.88 34282.81 35790.75 37576.38 37997.69 36695.76 37366.44 37583.52 36992.25 37162.54 37687.16 37768.53 37661.40 37484.89 375
EMVS80.02 34179.22 34382.43 35991.19 37476.40 37897.55 36892.49 38366.36 37683.01 37191.27 37264.63 37585.79 37865.82 37760.65 37585.08 374
PMVScopyleft70.75 2275.98 34474.97 34579.01 36070.98 38355.18 38493.37 37298.21 35465.08 37761.78 37893.83 36921.74 38592.53 37478.59 37391.12 35389.34 373
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
wuyk23d40.18 34541.29 35036.84 36186.18 38049.12 38579.73 37422.81 38627.64 37825.46 38128.45 38121.98 38448.89 38055.80 37823.56 38012.51 378
testmvs39.17 34643.78 34825.37 36336.04 38616.84 38798.36 35226.56 38520.06 37938.51 38067.32 37629.64 38315.30 38237.59 37939.90 37843.98 377
test12339.01 34742.50 34928.53 36239.17 38520.91 38698.75 33019.17 38719.83 38038.57 37966.67 37733.16 38215.42 38137.50 38029.66 37949.26 376
EGC-MVSNET82.80 33877.86 34497.62 31497.91 35096.12 31399.33 21899.28 2788.40 38125.05 38299.27 29984.11 36399.33 27489.20 36198.22 21597.42 363
test_blank0.13 3510.17 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3831.57 3820.00 3870.00 3830.00 3810.00 3810.00 379
uanet_test0.02 3520.03 3550.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.27 3830.00 3870.00 3830.00 3810.00 3810.00 379
DCPMVS0.02 3520.03 3550.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.27 3830.00 3870.00 3830.00 3810.00 3810.00 379
cdsmvs_eth3d_5k24.64 34832.85 3510.00 3640.00 3870.00 3880.00 37599.51 1070.00 3820.00 38399.56 21396.58 1550.00 3830.00 3810.00 3810.00 379
pcd_1.5k_mvsjas8.27 35011.03 3530.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.27 38399.01 190.00 3830.00 3810.00 3810.00 379
sosnet-low-res0.02 3520.03 3550.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.27 3830.00 3870.00 3830.00 3810.00 3810.00 379
sosnet0.02 3520.03 3550.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.27 3830.00 3870.00 3830.00 3810.00 3810.00 379
uncertanet0.02 3520.03 3550.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.27 3830.00 3870.00 3830.00 3810.00 3810.00 379
Regformer0.02 3520.03 3550.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.27 3830.00 3870.00 3830.00 3810.00 3810.00 379
ab-mvs-re8.30 34911.06 3520.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 38399.58 2060.00 3870.00 3830.00 3810.00 3810.00 379
uanet0.02 3520.03 3550.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.27 3830.00 3870.00 3830.00 3810.00 3810.00 379
MSC_two_6792asdad99.87 1299.51 16199.76 4199.33 25499.96 2098.87 8999.84 6899.89 2
No_MVS99.87 1299.51 16199.76 4199.33 25499.96 2098.87 8999.84 6899.89 2
eth-test20.00 387
eth-test0.00 387
OPU-MVS99.64 8099.56 15399.72 4799.60 8399.70 14599.27 599.42 25598.24 17399.80 9099.79 62
test_0728_SECOND99.91 299.84 3399.89 499.57 10499.51 10799.96 2098.93 7999.86 5399.88 8
GSMVS99.52 158
test_part299.81 4299.83 1799.77 38
sam_mvs194.86 21399.52 158
sam_mvs94.72 225
ambc93.06 34892.68 37382.36 37298.47 34998.73 34395.09 35797.41 35955.55 37799.10 31696.42 29791.32 35297.71 358
MTGPAbinary99.47 166
test_post199.23 24865.14 37994.18 24799.71 20397.58 229
test_post65.99 37894.65 22999.73 193
patchmatchnet-post98.70 34294.79 21799.74 187
GG-mvs-BLEND98.45 25798.55 34098.16 22899.43 17493.68 37997.23 33798.46 34889.30 33799.22 29695.43 31698.22 21597.98 352
MTMP99.54 12398.88 328
test9_res97.49 24099.72 11299.75 78
agg_prior297.21 25799.73 11199.75 78
agg_prior99.67 11099.62 6699.40 21998.87 24999.91 96
test_prior499.56 7898.99 298
test_prior99.68 6899.67 11099.48 9399.56 5899.83 15399.74 83
新几何299.01 296
旧先验199.74 7699.59 7399.54 7699.69 15498.47 8599.68 12399.73 90
原ACMM298.95 310
testdata299.95 4796.67 291
segment_acmp98.96 29
test1299.75 5499.64 12699.61 6899.29 27699.21 18898.38 9399.89 11999.74 10899.74 83
plane_prior799.29 22697.03 280
plane_prior699.27 23196.98 28492.71 280
plane_prior599.47 16699.69 21397.78 21097.63 23498.67 274
plane_prior499.61 197
plane_prior199.26 233
n20.00 388
nn0.00 388
door-mid98.05 357
lessismore_v097.79 30998.69 32895.44 32994.75 37695.71 35599.87 2988.69 34299.32 27895.89 30594.93 31998.62 297
test1199.35 243
door97.92 358
HQP5-MVS96.83 290
BP-MVS97.19 261
HQP4-MVS98.66 27799.64 22598.64 286
HQP3-MVS99.39 22397.58 239
HQP2-MVS92.47 289
NP-MVS99.23 23996.92 28899.40 265
ACMMP++_ref97.19 269
ACMMP++97.43 258
Test By Simon98.75 60