This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort by
patch_mono-299.26 6699.62 198.16 28399.81 4294.59 34499.52 12999.64 3399.33 299.73 4999.90 1399.00 2599.99 199.69 199.98 299.89 2
CS-MVS-test99.49 1799.48 1299.54 9699.78 4899.30 11299.89 299.58 5098.56 7199.73 4999.69 15498.55 7899.82 16099.69 199.85 6099.48 169
dcpmvs_299.23 7199.58 298.16 28399.83 3794.68 34399.76 3599.52 9399.07 1899.98 199.88 2398.56 7799.93 7399.67 399.98 299.87 13
CS-MVS99.50 1699.48 1299.54 9699.76 5799.42 10099.90 199.55 6798.56 7199.78 3599.70 14598.65 7299.79 17399.65 499.78 9799.41 184
DROMVSNet99.44 3399.39 2299.58 9099.56 15399.49 9199.88 499.58 5098.38 8799.73 4999.69 15498.20 10399.70 20999.64 599.82 8399.54 152
CANet99.25 6999.14 7099.59 8799.41 19399.16 12899.35 21399.57 5398.82 5299.51 11399.61 19796.46 15999.95 4799.59 699.98 299.65 122
EI-MVSNet-UG-set99.58 599.57 399.64 8099.78 4899.14 13499.60 8399.45 18899.01 2499.90 499.83 5198.98 2799.93 7399.59 699.95 899.86 15
DELS-MVS99.48 2299.42 1899.65 7599.72 8999.40 10499.05 28299.66 2799.14 799.57 10199.80 8698.46 8699.94 5899.57 899.84 6899.60 139
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
EI-MVSNet-Vis-set99.58 599.56 599.64 8099.78 4899.15 13399.61 8299.45 18899.01 2499.89 599.82 5899.01 1999.92 8599.56 999.95 899.85 18
HyFIR lowres test99.11 9598.92 10299.65 7599.90 499.37 10599.02 29199.91 397.67 17799.59 9799.75 12395.90 17999.73 19399.53 1099.02 17799.86 15
VNet99.11 9598.90 10599.73 6199.52 15999.56 7899.41 18399.39 22399.01 2499.74 4799.78 10595.56 19099.92 8599.52 1198.18 22099.72 96
baseline99.15 8199.02 8799.53 10499.66 11999.14 13499.72 4199.48 14898.35 9299.42 13099.84 4796.07 17099.79 17399.51 1299.14 16499.67 115
xiu_mvs_v1_base_debu99.29 6199.27 5699.34 13399.63 12998.97 15399.12 26799.51 10798.86 4899.84 1599.47 24798.18 10499.99 199.50 1399.31 15299.08 207
xiu_mvs_v1_base99.29 6199.27 5699.34 13399.63 12998.97 15399.12 26799.51 10798.86 4899.84 1599.47 24798.18 10499.99 199.50 1399.31 15299.08 207
xiu_mvs_v1_base_debi99.29 6199.27 5699.34 13399.63 12998.97 15399.12 26799.51 10798.86 4899.84 1599.47 24798.18 10499.99 199.50 1399.31 15299.08 207
CHOSEN 1792x268899.19 7499.10 7499.45 12299.89 998.52 20899.39 19599.94 198.73 6199.11 20699.89 1795.50 19299.94 5899.50 1399.97 599.89 2
VDD-MVS97.73 25697.35 27098.88 20599.47 18297.12 26999.34 21698.85 33098.19 11099.67 6899.85 3882.98 36599.92 8599.49 1798.32 21399.60 139
h-mvs3397.70 26297.28 27998.97 18399.70 10297.27 26399.36 20799.45 18898.94 4199.66 7399.64 18294.93 20899.99 199.48 1884.36 36399.65 122
hse-mvs297.50 27997.14 28698.59 23799.49 17397.05 27699.28 22999.22 28798.94 4199.66 7399.42 25894.93 20899.65 22299.48 1883.80 36599.08 207
PVSNet_Blended_VisFu99.36 5399.28 5499.61 8599.86 2299.07 14299.47 16099.93 297.66 17899.71 5599.86 3397.73 11899.96 2099.47 2099.82 8399.79 62
CHOSEN 280x42099.12 9099.13 7199.08 16699.66 11997.89 24398.43 35199.71 1398.88 4799.62 8899.76 11896.63 15399.70 20999.46 2199.99 199.66 118
Regformer-499.59 399.54 699.73 6199.76 5799.41 10299.58 9899.49 13699.02 2199.88 699.80 8699.00 2599.94 5899.45 2299.92 1399.84 22
casdiffmvs99.13 8498.98 9599.56 9499.65 12499.16 12899.56 11099.50 12898.33 9699.41 13499.86 3395.92 17799.83 15399.45 2299.16 16199.70 105
Regformer-399.57 899.53 799.68 6899.76 5799.29 11499.58 9899.44 19799.01 2499.87 1299.80 8698.97 2899.91 9699.44 2499.92 1399.83 33
test111198.04 20698.11 18297.83 30599.74 7693.82 35299.58 9895.40 37499.12 1099.65 7999.93 490.73 32199.84 14299.43 2599.38 14499.82 40
ECVR-MVScopyleft98.04 20698.05 19198.00 29599.74 7694.37 34799.59 9094.98 37599.13 899.66 7399.93 490.67 32299.84 14299.40 2699.38 14499.80 56
test250696.81 29796.65 29597.29 32599.74 7692.21 36599.60 8385.06 38499.13 899.77 3899.93 487.82 35499.85 13699.38 2799.38 14499.80 56
mvsmamba98.92 11998.87 10999.08 16699.07 27499.16 12899.88 499.51 10798.15 11699.40 13999.89 1797.12 13499.33 27499.38 2797.40 26098.73 250
DeepC-MVS98.35 299.30 5999.19 6699.64 8099.82 3999.23 12199.62 7699.55 6798.94 4199.63 8499.95 295.82 18299.94 5899.37 2999.97 599.73 90
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
bld_raw_conf00598.62 15998.50 15898.95 18699.02 28398.79 18299.66 5799.55 6798.14 11998.95 23599.91 1094.54 23499.33 27499.36 3097.39 26298.74 247
alignmvs98.81 13798.56 15699.58 9099.43 18999.42 10099.51 13498.96 31798.61 6899.35 15598.92 33594.78 21899.77 18099.35 3198.11 22599.54 152
PS-MVSNAJ99.32 5799.32 3699.30 14399.57 14998.94 16498.97 30599.46 17698.92 4599.71 5599.24 30399.01 1999.98 799.35 3199.66 12698.97 222
VPA-MVSNet98.29 17997.95 20299.30 14399.16 25999.54 8299.50 14099.58 5098.27 10199.35 15599.37 27392.53 28799.65 22299.35 3194.46 32498.72 251
mvs_anonymous99.03 10898.99 9299.16 16199.38 20298.52 20899.51 13499.38 22997.79 16399.38 14699.81 7197.30 12999.45 24599.35 3198.99 17999.51 164
xiu_mvs_v2_base99.26 6699.25 6099.29 14699.53 15798.91 16899.02 29199.45 18898.80 5699.71 5599.26 30198.94 3599.98 799.34 3599.23 15798.98 221
nrg03098.64 15798.42 16399.28 14999.05 28099.69 5299.81 2099.46 17698.04 13899.01 22499.82 5896.69 15299.38 25999.34 3594.59 32398.78 235
UGNet98.87 12298.69 13399.40 12899.22 24298.72 18799.44 16899.68 1999.24 499.18 19799.42 25892.74 27799.96 2099.34 3599.94 1199.53 157
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
mvs_tets98.40 17198.23 17598.91 19798.67 33098.51 21099.66 5799.53 8798.19 11098.65 28399.81 7192.75 27599.44 25099.31 3897.48 25298.77 240
VDDNet97.55 27497.02 29099.16 16199.49 17398.12 23299.38 20099.30 27195.35 32299.68 6299.90 1382.62 36799.93 7399.31 3898.13 22499.42 182
diffmvs99.14 8299.02 8799.51 11299.61 13998.96 15799.28 22999.49 13698.46 8099.72 5499.71 14196.50 15899.88 12499.31 3899.11 16699.67 115
iter_conf_final98.71 14798.61 15298.99 17999.49 17398.96 15799.63 7099.41 21098.19 11099.39 14299.77 11294.82 21499.38 25999.30 4197.52 24498.64 286
iter_conf0598.55 16198.44 16198.87 20999.34 21198.60 19999.55 11999.42 20798.21 10899.37 14899.77 11293.55 26199.38 25999.30 4197.48 25298.63 294
RRT_MVS98.70 14898.66 13898.83 21998.90 29898.45 21699.89 299.28 27897.76 16698.94 23899.92 996.98 14199.25 29099.28 4397.00 27398.80 233
LFMVS97.90 22797.35 27099.54 9699.52 15999.01 14899.39 19598.24 35397.10 23499.65 7999.79 9884.79 36299.91 9699.28 4398.38 20899.69 108
MSLP-MVS++99.46 2799.47 1499.44 12699.60 14399.16 12899.41 18399.71 1398.98 3499.45 12299.78 10599.19 999.54 23999.28 4399.84 6899.63 133
canonicalmvs99.02 10998.86 11499.51 11299.42 19099.32 10899.80 2499.48 14898.63 6699.31 16398.81 33897.09 13699.75 18699.27 4697.90 22999.47 175
Anonymous2024052998.09 19797.68 23199.34 13399.66 11998.44 21799.40 19199.43 20593.67 34399.22 18599.89 1790.23 32899.93 7399.26 4798.33 20999.66 118
EPNet98.86 12598.71 13099.30 14397.20 36298.18 22799.62 7698.91 32499.28 398.63 28599.81 7195.96 17399.99 199.24 4899.72 11299.73 90
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
jajsoiax98.43 16698.28 17398.88 20598.60 33798.43 21899.82 1899.53 8798.19 11098.63 28599.80 8693.22 26799.44 25099.22 4997.50 24898.77 240
APDe-MVS99.66 199.57 399.92 199.77 5499.89 499.75 3799.56 5899.02 2199.88 699.85 3899.18 1099.96 2099.22 4999.92 1399.90 1
VPNet97.84 23697.44 25999.01 17599.21 24498.94 16499.48 15599.57 5398.38 8799.28 16999.73 13688.89 34099.39 25799.19 5193.27 34198.71 253
sss99.17 7899.05 7999.53 10499.62 13598.97 15399.36 20799.62 3497.83 15699.67 6899.65 17597.37 12899.95 4799.19 5199.19 16099.68 112
Vis-MVSNetpermissive99.12 9098.97 9699.56 9499.78 4899.10 13899.68 5199.66 2798.49 7799.86 1399.87 2994.77 22199.84 14299.19 5199.41 14399.74 83
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
Regformer-199.53 1299.47 1499.72 6499.71 9599.44 9899.49 15099.46 17698.95 4099.83 2099.76 11899.01 1999.93 7399.17 5499.87 4299.80 56
ab-mvs98.86 12598.63 14199.54 9699.64 12699.19 12399.44 16899.54 7697.77 16599.30 16599.81 7194.20 24499.93 7399.17 5498.82 19099.49 168
Anonymous20240521198.30 17897.98 19899.26 15199.57 14998.16 22899.41 18398.55 34996.03 31599.19 19499.74 12991.87 30099.92 8599.16 5698.29 21499.70 105
Regformer-299.54 1099.47 1499.75 5499.71 9599.52 8899.49 15099.49 13698.94 4199.83 2099.76 11899.01 1999.94 5899.15 5799.87 4299.80 56
PS-MVSNAJss98.92 11998.92 10298.90 19998.78 31698.53 20499.78 3099.54 7698.07 13299.00 22999.76 11899.01 1999.37 26499.13 5897.23 26798.81 232
EPP-MVSNet99.13 8498.99 9299.53 10499.65 12499.06 14399.81 2099.33 25497.43 20299.60 9499.88 2397.14 13399.84 14299.13 5898.94 18199.69 108
Effi-MVS+98.81 13798.59 15399.48 11699.46 18399.12 13798.08 36399.50 12897.50 19499.38 14699.41 26296.37 16399.81 16599.11 6098.54 20399.51 164
ETV-MVS99.26 6699.21 6499.40 12899.46 18399.30 11299.56 11099.52 9398.52 7599.44 12699.27 29998.41 9299.86 13099.10 6199.59 13499.04 214
bld_raw_dy_0_6498.69 15198.58 15498.99 17998.88 30198.96 15799.80 2499.41 21097.91 14899.32 16199.87 2995.70 18799.31 28199.09 6297.27 26698.71 253
TSAR-MVS + GP.99.36 5399.36 2799.36 13299.67 11098.61 19899.07 27799.33 25499.00 2899.82 2399.81 7199.06 1699.84 14299.09 6299.42 14299.65 122
FIs98.78 14198.63 14199.23 15699.18 25199.54 8299.83 1799.59 4498.28 9998.79 26199.81 7196.75 15099.37 26499.08 6496.38 28398.78 235
FC-MVSNet-test98.75 14598.62 14699.15 16399.08 27399.45 9799.86 1399.60 4198.23 10598.70 27499.82 5896.80 14699.22 29699.07 6596.38 28398.79 234
HPM-MVS_fast99.51 1599.40 2199.85 2899.91 199.79 3399.76 3599.56 5897.72 17199.76 4399.75 12399.13 1299.92 8599.07 6599.92 1399.85 18
test_low_dy_conf_00198.76 14498.71 13098.92 19298.92 29698.71 18899.87 999.41 21097.81 16299.35 15599.93 496.63 15399.28 28499.03 6797.44 25798.78 235
MVSFormer99.17 7899.12 7299.29 14699.51 16198.94 16499.88 499.46 17697.55 18799.80 2899.65 17597.39 12499.28 28499.03 6799.85 6099.65 122
test_djsdf98.67 15498.57 15598.98 18198.70 32798.91 16899.88 499.46 17697.55 18799.22 18599.88 2395.73 18599.28 28499.03 6797.62 23698.75 244
jason99.13 8499.03 8499.45 12299.46 18398.87 17199.12 26799.26 28198.03 14099.79 3099.65 17597.02 13999.85 13699.02 7099.90 2599.65 122
jason: jason.
DeepPCF-MVS98.18 398.81 13799.37 2597.12 32999.60 14391.75 36698.61 34199.44 19799.35 199.83 2099.85 3898.70 6699.81 16599.02 7099.91 1899.81 46
CSCG99.32 5799.32 3699.32 13899.85 2698.29 22399.71 4399.66 2798.11 12499.41 13499.80 8698.37 9599.96 2098.99 7299.96 799.72 96
ET-MVSNet_ETH3D96.49 30395.64 31499.05 17199.53 15798.82 17998.84 32197.51 36497.63 18084.77 36899.21 30892.09 29798.91 34098.98 7392.21 35099.41 184
PVSNet_BlendedMVS98.86 12598.80 12199.03 17399.76 5798.79 18299.28 22999.91 397.42 20499.67 6899.37 27397.53 12199.88 12498.98 7397.29 26598.42 327
PVSNet_Blended99.08 10198.97 9699.42 12799.76 5798.79 18298.78 32799.91 396.74 25999.67 6899.49 23897.53 12199.88 12498.98 7399.85 6099.60 139
3Dnovator97.25 999.24 7099.05 7999.81 4199.12 26499.66 5999.84 1499.74 1099.09 1598.92 24199.90 1395.94 17699.98 798.95 7699.92 1399.79 62
EIA-MVS99.18 7699.09 7699.45 12299.49 17399.18 12599.67 5399.53 8797.66 17899.40 13999.44 25398.10 10899.81 16598.94 7799.62 13299.35 189
lupinMVS99.13 8499.01 9199.46 12199.51 16198.94 16499.05 28299.16 29697.86 15199.80 2899.56 21397.39 12499.86 13098.94 7799.85 6099.58 147
DVP-MVScopyleft99.57 899.47 1499.88 699.85 2699.89 499.57 10499.37 23799.10 1299.81 2599.80 8698.94 3599.96 2098.93 7999.86 5399.81 46
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND99.91 299.84 3399.89 499.57 10499.51 10799.96 2098.93 7999.86 5399.88 8
UA-Net99.42 4299.29 5099.80 4399.62 13599.55 8099.50 14099.70 1598.79 5799.77 3899.96 197.45 12399.96 2098.92 8199.90 2599.89 2
SED-MVS99.61 299.52 899.88 699.84 3399.90 299.60 8399.48 14899.08 1699.91 299.81 7199.20 799.96 2098.91 8299.85 6099.79 62
test_241102_TWO99.48 14899.08 1699.88 699.81 7198.94 3599.96 2098.91 8299.84 6899.88 8
MVS_111021_HR99.41 4699.32 3699.66 7199.72 8999.47 9598.95 31099.85 698.82 5299.54 10799.73 13698.51 8299.74 18798.91 8299.88 3899.77 72
zzz-MVS99.49 1799.36 2799.89 499.90 499.86 1399.36 20799.47 16698.79 5799.68 6299.81 7198.43 8899.97 1298.88 8599.90 2599.83 33
MTAPA99.52 1499.39 2299.89 499.90 499.86 1399.66 5799.47 16698.79 5799.68 6299.81 7198.43 8899.97 1298.88 8599.90 2599.83 33
XXY-MVS98.38 17298.09 18699.24 15499.26 23399.32 10899.56 11099.55 6797.45 19898.71 26899.83 5193.23 26599.63 23098.88 8596.32 28598.76 242
ACMH97.28 898.10 19697.99 19798.44 26099.41 19396.96 28799.60 8399.56 5898.09 12798.15 31499.91 1090.87 32099.70 20998.88 8597.45 25498.67 274
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MSC_two_6792asdad99.87 1299.51 16199.76 4199.33 25499.96 2098.87 8999.84 6899.89 2
No_MVS99.87 1299.51 16199.76 4199.33 25499.96 2098.87 8999.84 6899.89 2
MVS_Test99.10 9898.97 9699.48 11699.49 17399.14 13499.67 5399.34 24797.31 21299.58 9999.76 11897.65 12099.82 16098.87 8999.07 17299.46 177
MVSTER98.49 16298.32 17099.00 17799.35 20799.02 14699.54 12399.38 22997.41 20599.20 19199.73 13693.86 25699.36 26898.87 8997.56 24198.62 297
1112_ss98.98 11498.77 12499.59 8799.68 10999.02 14699.25 24599.48 14897.23 22199.13 20299.58 20696.93 14499.90 11198.87 8998.78 19399.84 22
IU-MVS99.84 3399.88 899.32 26498.30 9899.84 1598.86 9499.85 6099.89 2
3Dnovator+97.12 1399.18 7698.97 9699.82 3899.17 25799.68 5499.81 2099.51 10799.20 598.72 26799.89 1795.68 18899.97 1298.86 9499.86 5399.81 46
DVP-MVS++99.59 399.50 1099.88 699.51 16199.88 899.87 999.51 10798.99 3199.88 699.81 7199.27 599.96 2098.85 9699.80 9099.81 46
test_0728_THIRD98.99 3199.81 2599.80 8699.09 1499.96 2098.85 9699.90 2599.88 8
WTY-MVS99.06 10398.88 10899.61 8599.62 13599.16 12899.37 20399.56 5898.04 13899.53 10999.62 19396.84 14599.94 5898.85 9698.49 20699.72 96
TSAR-MVS + MP.99.58 599.50 1099.81 4199.91 199.66 5999.63 7099.39 22398.91 4699.78 3599.85 3899.36 299.94 5898.84 9999.88 3899.82 40
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
Anonymous2023121197.88 22897.54 24498.90 19999.71 9598.53 20499.48 15599.57 5394.16 33998.81 25799.68 16293.23 26599.42 25598.84 9994.42 32698.76 242
114514_t98.93 11898.67 13599.72 6499.85 2699.53 8599.62 7699.59 4492.65 35299.71 5599.78 10598.06 11099.90 11198.84 9999.91 1899.74 83
tttt051798.42 16798.14 17999.28 14999.66 11998.38 22199.74 4096.85 36797.68 17599.79 3099.74 12991.39 31399.89 11998.83 10299.56 13599.57 148
MP-MVS-pluss99.37 5299.20 6599.88 699.90 499.87 1299.30 22399.52 9397.18 22499.60 9499.79 9898.79 5199.95 4798.83 10299.91 1899.83 33
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
Test_1112_low_res98.89 12198.66 13899.57 9299.69 10598.95 16199.03 28899.47 16696.98 24399.15 20099.23 30496.77 14999.89 11998.83 10298.78 19399.86 15
MVS_111021_LR99.41 4699.33 3499.65 7599.77 5499.51 9098.94 31299.85 698.82 5299.65 7999.74 12998.51 8299.80 17098.83 10299.89 3599.64 129
ACMMP_NAP99.47 2599.34 3299.88 699.87 1699.86 1399.47 16099.48 14898.05 13799.76 4399.86 3398.82 4899.93 7398.82 10699.91 1899.84 22
SMA-MVScopyleft99.44 3399.30 4699.85 2899.73 8499.83 1799.56 11099.47 16697.45 19899.78 3599.82 5899.18 1099.91 9698.79 10799.89 3599.81 46
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
XVS99.53 1299.42 1899.87 1299.85 2699.83 1799.69 4699.68 1998.98 3499.37 14899.74 12998.81 4999.94 5898.79 10799.86 5399.84 22
X-MVStestdata96.55 30195.45 31699.87 1299.85 2699.83 1799.69 4699.68 1998.98 3499.37 14864.01 38098.81 4999.94 5898.79 10799.86 5399.84 22
CVMVSNet98.57 16098.67 13598.30 27399.35 20795.59 32299.50 14099.55 6798.60 6999.39 14299.83 5194.48 23699.45 24598.75 11098.56 20299.85 18
CP-MVS99.45 2999.32 3699.85 2899.83 3799.75 4399.69 4699.52 9398.07 13299.53 10999.63 18898.93 3999.97 1298.74 11199.91 1899.83 33
ACMM97.58 598.37 17398.34 16898.48 25199.41 19397.10 27099.56 11099.45 18898.53 7499.04 22199.85 3893.00 26999.71 20398.74 11197.45 25498.64 286
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Effi-MVS+-dtu98.78 14198.89 10798.47 25599.33 21396.91 28999.57 10499.30 27198.47 7899.41 13498.99 32996.78 14799.74 18798.73 11399.38 14498.74 247
mvs-test198.86 12598.84 11698.89 20299.33 21397.77 24999.44 16899.30 27198.47 7899.10 20999.43 25596.78 14799.95 4798.73 11399.02 17798.96 224
ZNCC-MVS99.47 2599.33 3499.87 1299.87 1699.81 2799.64 6899.67 2298.08 13199.55 10699.64 18298.91 4099.96 2098.72 11599.90 2599.82 40
SD-MVS99.41 4699.52 899.05 17199.74 7699.68 5499.46 16399.52 9399.11 1199.88 699.91 1099.43 197.70 36298.72 11599.93 1299.77 72
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
D2MVS98.41 16998.50 15898.15 28699.26 23396.62 29999.40 19199.61 3697.71 17298.98 23199.36 27696.04 17199.67 21598.70 11797.41 25998.15 342
CDS-MVSNet99.09 9999.03 8499.25 15299.42 19098.73 18699.45 16499.46 17698.11 12499.46 12199.77 11298.01 11199.37 26498.70 11798.92 18499.66 118
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
TAMVS99.12 9099.08 7799.24 15499.46 18398.55 20299.51 13499.46 17698.09 12799.45 12299.82 5898.34 9699.51 24098.70 11798.93 18299.67 115
HFP-MVS99.49 1799.37 2599.86 2199.87 1699.80 2999.66 5799.67 2298.15 11699.68 6299.69 15499.06 1699.96 2098.69 12099.87 4299.84 22
ACMMPR99.49 1799.36 2799.86 2199.87 1699.79 3399.66 5799.67 2298.15 11699.67 6899.69 15498.95 3299.96 2098.69 12099.87 4299.84 22
UniMVSNet_ETH3D97.32 28796.81 29398.87 20999.40 19897.46 25899.51 13499.53 8795.86 31798.54 29399.77 11282.44 36899.66 21898.68 12297.52 24499.50 167
test_part197.75 25297.24 28399.29 14699.59 14599.63 6599.65 6599.49 13696.17 30398.44 29999.69 15489.80 33299.47 24298.68 12293.66 33698.78 235
DeepC-MVS_fast98.69 199.49 1799.39 2299.77 5099.63 12999.59 7399.36 20799.46 17699.07 1899.79 3099.82 5898.85 4599.92 8598.68 12299.87 4299.82 40
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
anonymousdsp98.44 16598.28 17398.94 18898.50 34298.96 15799.77 3299.50 12897.07 23698.87 24999.77 11294.76 22299.28 28498.66 12597.60 23798.57 312
DP-MVS99.16 8098.95 10099.78 4899.77 5499.53 8599.41 18399.50 12897.03 24199.04 22199.88 2397.39 12499.92 8598.66 12599.90 2599.87 13
MCST-MVS99.43 3799.30 4699.82 3899.79 4699.74 4699.29 22799.40 21998.79 5799.52 11199.62 19398.91 4099.90 11198.64 12799.75 10599.82 40
CP-MVSNet98.09 19797.78 21999.01 17598.97 29299.24 12099.67 5399.46 17697.25 21898.48 29799.64 18293.79 25799.06 31898.63 12894.10 33198.74 247
thisisatest053098.35 17498.03 19399.31 13999.63 12998.56 20199.54 12396.75 36997.53 19199.73 4999.65 17591.25 31699.89 11998.62 12999.56 13599.48 169
region2R99.48 2299.35 3099.87 1299.88 1299.80 2999.65 6599.66 2798.13 12099.66 7399.68 16298.96 2999.96 2098.62 12999.87 4299.84 22
APD-MVS_3200maxsize99.48 2299.35 3099.85 2899.76 5799.83 1799.63 7099.54 7698.36 9199.79 3099.82 5898.86 4499.95 4798.62 12999.81 8699.78 70
SR-MVS-dyc-post99.45 2999.31 4399.85 2899.76 5799.82 2399.63 7099.52 9398.38 8799.76 4399.82 5898.53 7999.95 4798.61 13299.81 8699.77 72
RE-MVS-def99.34 3299.76 5799.82 2399.63 7099.52 9398.38 8799.76 4399.82 5898.75 6098.61 13299.81 8699.77 72
PHI-MVS99.30 5999.17 6899.70 6799.56 15399.52 8899.58 9899.80 897.12 23099.62 8899.73 13698.58 7599.90 11198.61 13299.91 1899.68 112
test_yl98.86 12598.63 14199.54 9699.49 17399.18 12599.50 14099.07 30798.22 10699.61 9099.51 23295.37 19599.84 14298.60 13598.33 20999.59 143
DCV-MVSNet98.86 12598.63 14199.54 9699.49 17399.18 12599.50 14099.07 30798.22 10699.61 9099.51 23295.37 19599.84 14298.60 13598.33 20999.59 143
CNVR-MVS99.42 4299.30 4699.78 4899.62 13599.71 4999.26 24399.52 9398.82 5299.39 14299.71 14198.96 2999.85 13698.59 13799.80 9099.77 72
WR-MVS98.06 20097.73 22799.06 16998.86 30899.25 11999.19 25699.35 24397.30 21398.66 27799.43 25593.94 25399.21 30198.58 13894.28 32898.71 253
HPM-MVScopyleft99.42 4299.28 5499.83 3699.90 499.72 4799.81 2099.54 7697.59 18299.68 6299.63 18898.91 4099.94 5898.58 13899.91 1899.84 22
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
UniMVSNet_NR-MVSNet98.22 18297.97 19998.96 18498.92 29698.98 15099.48 15599.53 8797.76 16698.71 26899.46 25196.43 16299.22 29698.57 14092.87 34698.69 262
DU-MVS98.08 19997.79 21698.96 18498.87 30598.98 15099.41 18399.45 18897.87 15098.71 26899.50 23594.82 21499.22 29698.57 14092.87 34698.68 267
mPP-MVS99.44 3399.30 4699.86 2199.88 1299.79 3399.69 4699.48 14898.12 12299.50 11499.75 12398.78 5299.97 1298.57 14099.89 3599.83 33
CANet_DTU98.97 11698.87 10999.25 15299.33 21398.42 22099.08 27699.30 27199.16 699.43 12799.75 12395.27 19999.97 1298.56 14399.95 899.36 188
PMMVS98.80 14098.62 14699.34 13399.27 23198.70 18998.76 32999.31 26797.34 20999.21 18899.07 32097.20 13299.82 16098.56 14398.87 18799.52 158
PVSNet96.02 1798.85 13398.84 11698.89 20299.73 8497.28 26298.32 35799.60 4197.86 15199.50 11499.57 21096.75 15099.86 13098.56 14399.70 11799.54 152
test117299.43 3799.29 5099.85 2899.75 6899.82 2399.60 8399.56 5898.28 9999.74 4799.79 9898.53 7999.95 4798.55 14699.78 9799.79 62
ACMMPcopyleft99.45 2999.32 3699.82 3899.89 999.67 5799.62 7699.69 1898.12 12299.63 8499.84 4798.73 6399.96 2098.55 14699.83 7799.81 46
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
XVG-OURS-SEG-HR98.69 15198.62 14698.89 20299.71 9597.74 25099.12 26799.54 7698.44 8499.42 13099.71 14194.20 24499.92 8598.54 14898.90 18699.00 218
PS-CasMVS97.93 22297.59 24098.95 18698.99 28799.06 14399.68 5199.52 9397.13 22898.31 30799.68 16292.44 29399.05 31998.51 14994.08 33298.75 244
CostFormer97.72 25897.73 22797.71 31299.15 26294.02 35199.54 12399.02 31194.67 33499.04 22199.35 27992.35 29599.77 18098.50 15097.94 22899.34 191
baseline198.31 17697.95 20299.38 13199.50 17198.74 18599.59 9098.93 31998.41 8599.14 20199.60 20094.59 23099.79 17398.48 15193.29 34099.61 137
SteuartSystems-ACMMP99.54 1099.42 1899.87 1299.82 3999.81 2799.59 9099.51 10798.62 6799.79 3099.83 5199.28 499.97 1298.48 15199.90 2599.84 22
Skip Steuart: Steuart Systems R&D Blog.
tpmrst98.33 17598.48 16097.90 30199.16 25994.78 34199.31 22199.11 30197.27 21699.45 12299.59 20395.33 19799.84 14298.48 15198.61 19699.09 206
IB-MVS95.67 1896.22 30795.44 31798.57 24199.21 24496.70 29598.65 33997.74 36296.71 26197.27 33698.54 34786.03 35899.92 8598.47 15486.30 36199.10 202
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
MSP-MVS99.42 4299.27 5699.88 699.89 999.80 2999.67 5399.50 12898.70 6399.77 3899.49 23898.21 10299.95 4798.46 15599.77 10199.88 8
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
abl_699.44 3399.31 4399.83 3699.85 2699.75 4399.66 5799.59 4498.13 12099.82 2399.81 7198.60 7499.96 2098.46 15599.88 3899.79 62
SR-MVS99.43 3799.29 5099.86 2199.75 6899.83 1799.59 9099.62 3498.21 10899.73 4999.79 9898.68 6799.96 2098.44 15799.77 10199.79 62
HPM-MVS++copyleft99.39 5099.23 6399.87 1299.75 6899.84 1699.43 17499.51 10798.68 6599.27 17299.53 22598.64 7399.96 2098.44 15799.80 9099.79 62
#test#99.43 3799.29 5099.86 2199.87 1699.80 2999.55 11999.67 2297.83 15699.68 6299.69 15499.06 1699.96 2098.39 15999.87 4299.84 22
LTVRE_ROB97.16 1298.02 21097.90 20798.40 26499.23 23996.80 29399.70 4499.60 4197.12 23098.18 31399.70 14591.73 30599.72 19798.39 15997.45 25498.68 267
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
GST-MVS99.40 4999.24 6199.85 2899.86 2299.79 3399.60 8399.67 2297.97 14399.63 8499.68 16298.52 8199.95 4798.38 16199.86 5399.81 46
EI-MVSNet98.67 15498.67 13598.68 23399.35 20797.97 23799.50 14099.38 22996.93 25099.20 19199.83 5197.87 11399.36 26898.38 16197.56 24198.71 253
HY-MVS97.30 798.85 13398.64 14099.47 11999.42 19099.08 14099.62 7699.36 23897.39 20799.28 16999.68 16296.44 16199.92 8598.37 16398.22 21599.40 186
TDRefinement95.42 31894.57 32497.97 29789.83 37796.11 31499.48 15598.75 33596.74 25996.68 34699.88 2388.65 34399.71 20398.37 16382.74 36698.09 343
UniMVSNet (Re)98.29 17998.00 19699.13 16499.00 28699.36 10699.49 15099.51 10797.95 14498.97 23399.13 31596.30 16599.38 25998.36 16593.34 33998.66 282
WR-MVS_H98.13 19397.87 21298.90 19999.02 28398.84 17599.70 4499.59 4497.27 21698.40 30299.19 30995.53 19199.23 29398.34 16693.78 33598.61 306
PGM-MVS99.45 2999.31 4399.86 2199.87 1699.78 4099.58 9899.65 3297.84 15599.71 5599.80 8699.12 1399.97 1298.33 16799.87 4299.83 33
LS3D99.27 6499.12 7299.74 5999.18 25199.75 4399.56 11099.57 5398.45 8199.49 11799.85 3897.77 11799.94 5898.33 16799.84 6899.52 158
IterMVS-LS98.46 16498.42 16398.58 24099.59 14598.00 23599.37 20399.43 20596.94 24999.07 21599.59 20397.87 11399.03 32298.32 16995.62 30398.71 253
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CLD-MVS98.16 19098.10 18398.33 26999.29 22696.82 29298.75 33099.44 19797.83 15699.13 20299.55 21692.92 27199.67 21598.32 16997.69 23398.48 318
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
PC_three_145298.18 11499.84 1599.70 14599.31 398.52 34798.30 17199.80 9099.81 46
NCCC99.34 5599.19 6699.79 4699.61 13999.65 6299.30 22399.48 14898.86 4899.21 18899.63 18898.72 6499.90 11198.25 17299.63 13199.80 56
OPU-MVS99.64 8099.56 15399.72 4799.60 8399.70 14599.27 599.42 25598.24 17399.80 9099.79 62
GeoE98.85 13398.62 14699.53 10499.61 13999.08 14099.80 2499.51 10797.10 23499.31 16399.78 10595.23 20399.77 18098.21 17499.03 17599.75 78
cl2297.85 23397.64 23698.48 25199.09 27197.87 24498.60 34399.33 25497.11 23398.87 24999.22 30592.38 29499.17 30598.21 17495.99 29298.42 327
xxxxxxxxxxxxxcwj99.43 3799.32 3699.75 5499.76 5799.59 7399.14 26599.53 8799.00 2899.71 5599.80 8698.95 3299.93 7398.19 17699.84 6899.74 83
SF-MVS99.38 5199.24 6199.79 4699.79 4699.68 5499.57 10499.54 7697.82 16199.71 5599.80 8698.95 3299.93 7398.19 17699.84 6899.74 83
旧先验298.96 30696.70 26299.47 11999.94 5898.19 176
F-COLMAP99.19 7499.04 8299.64 8099.78 4899.27 11799.42 18199.54 7697.29 21499.41 13499.59 20398.42 9199.93 7398.19 17699.69 11899.73 90
LCM-MVSNet-Re97.83 23898.15 17896.87 33599.30 22292.25 36499.59 9098.26 35297.43 20296.20 35099.13 31596.27 16698.73 34598.17 18098.99 17999.64 129
DPE-MVScopyleft99.46 2799.32 3699.91 299.78 4899.88 899.36 20799.51 10798.73 6199.88 699.84 4798.72 6499.96 2098.16 18199.87 4299.88 8
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
cascas97.69 26397.43 26298.48 25198.60 33797.30 26198.18 36299.39 22392.96 35198.41 30198.78 34093.77 25899.27 28898.16 18198.61 19698.86 229
COLMAP_ROBcopyleft97.56 698.86 12598.75 12799.17 16099.88 1298.53 20499.34 21699.59 4497.55 18798.70 27499.89 1795.83 18199.90 11198.10 18399.90 2599.08 207
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
PEN-MVS97.76 24897.44 25998.72 23098.77 31998.54 20399.78 3099.51 10797.06 23898.29 30999.64 18292.63 28498.89 34298.09 18493.16 34298.72 251
LPG-MVS_test98.22 18298.13 18098.49 24999.33 21397.05 27699.58 9899.55 6797.46 19599.24 18099.83 5192.58 28599.72 19798.09 18497.51 24698.68 267
LGP-MVS_train98.49 24999.33 21397.05 27699.55 6797.46 19599.24 18099.83 5192.58 28599.72 19798.09 18497.51 24698.68 267
IS-MVSNet99.05 10598.87 10999.57 9299.73 8499.32 10899.75 3799.20 29198.02 14199.56 10299.86 3396.54 15799.67 21598.09 18499.13 16599.73 90
thisisatest051598.14 19297.79 21699.19 15899.50 17198.50 21198.61 34196.82 36896.95 24799.54 10799.43 25591.66 30999.86 13098.08 18899.51 13999.22 197
OPM-MVS98.19 18698.10 18398.45 25798.88 30197.07 27499.28 22999.38 22998.57 7099.22 18599.81 7192.12 29699.66 21898.08 18897.54 24398.61 306
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
XVG-OURS98.73 14698.68 13498.88 20599.70 10297.73 25198.92 31399.55 6798.52 7599.45 12299.84 4795.27 19999.91 9698.08 18898.84 18999.00 218
Baseline_NR-MVSNet97.76 24897.45 25498.68 23399.09 27198.29 22399.41 18398.85 33095.65 31998.63 28599.67 16894.82 21499.10 31698.07 19192.89 34598.64 286
ACMH+97.24 1097.92 22597.78 21998.32 27199.46 18396.68 29799.56 11099.54 7698.41 8597.79 32899.87 2990.18 32999.66 21898.05 19297.18 27098.62 297
TranMVSNet+NR-MVSNet97.93 22297.66 23398.76 22898.78 31698.62 19699.65 6599.49 13697.76 16698.49 29699.60 20094.23 24398.97 33698.00 19392.90 34498.70 258
DP-MVS Recon99.12 9098.95 10099.65 7599.74 7699.70 5199.27 23499.57 5396.40 28899.42 13099.68 16298.75 6099.80 17097.98 19499.72 11299.44 180
test_prior399.21 7299.05 7999.68 6899.67 11099.48 9398.96 30699.56 5898.34 9399.01 22499.52 22898.68 6799.83 15397.96 19599.74 10899.74 83
test_prior298.96 30698.34 9399.01 22499.52 22898.68 6797.96 19599.74 108
Fast-Effi-MVS+-dtu98.77 14398.83 12098.60 23699.41 19396.99 28399.52 12999.49 13698.11 12499.24 18099.34 28296.96 14399.79 17397.95 19799.45 14099.02 217
MP-MVScopyleft99.33 5699.15 6999.87 1299.88 1299.82 2399.66 5799.46 17698.09 12799.48 11899.74 12998.29 9999.96 2097.93 19899.87 4299.82 40
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
Vis-MVSNet (Re-imp)98.87 12298.72 12899.31 13999.71 9598.88 17099.80 2499.44 19797.91 14899.36 15299.78 10595.49 19399.43 25497.91 19999.11 16699.62 135
ACMP97.20 1198.06 20097.94 20498.45 25799.37 20497.01 28199.44 16899.49 13697.54 19098.45 29899.79 9891.95 29999.72 19797.91 19997.49 25198.62 297
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
Fast-Effi-MVS+98.70 14898.43 16299.51 11299.51 16199.28 11599.52 12999.47 16696.11 31099.01 22499.34 28296.20 16899.84 14297.88 20198.82 19099.39 187
EPMVS97.82 24197.65 23498.35 26898.88 30195.98 31599.49 15094.71 37797.57 18599.26 17799.48 24492.46 29299.71 20397.87 20299.08 17199.35 189
miper_enhance_ethall98.16 19098.08 18798.41 26298.96 29397.72 25298.45 35099.32 26496.95 24798.97 23399.17 31097.06 13899.22 29697.86 20395.99 29298.29 335
tmp_tt82.80 33881.52 34186.66 35466.61 38468.44 38292.79 37397.92 35868.96 37280.04 37599.85 3885.77 35996.15 37297.86 20343.89 37795.39 368
NR-MVSNet97.97 22097.61 23899.02 17498.87 30599.26 11899.47 16099.42 20797.63 18097.08 34299.50 23595.07 20699.13 30997.86 20393.59 33798.68 267
v14897.79 24697.55 24198.50 24898.74 32197.72 25299.54 12399.33 25496.26 29598.90 24499.51 23294.68 22699.14 30697.83 20693.15 34398.63 294
CPTT-MVS99.11 9598.90 10599.74 5999.80 4599.46 9699.59 9099.49 13697.03 24199.63 8499.69 15497.27 13199.96 2097.82 20799.84 6899.81 46
MDTV_nov1_ep13_2view95.18 33599.35 21396.84 25499.58 9995.19 20497.82 20799.46 177
OMC-MVS99.08 10199.04 8299.20 15799.67 11098.22 22699.28 22999.52 9398.07 13299.66 7399.81 7197.79 11699.78 17897.79 20999.81 8699.60 139
HQP_MVS98.27 18198.22 17698.44 26099.29 22696.97 28599.39 19599.47 16698.97 3799.11 20699.61 19792.71 28099.69 21397.78 21097.63 23498.67 274
plane_prior599.47 16699.69 21397.78 21097.63 23498.67 274
testdata99.54 9699.75 6898.95 16199.51 10797.07 23699.43 12799.70 14598.87 4399.94 5897.76 21299.64 12999.72 96
PLCcopyleft97.94 499.02 10998.85 11599.53 10499.66 11999.01 14899.24 24799.52 9396.85 25399.27 17299.48 24498.25 10199.91 9697.76 21299.62 13299.65 122
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
tpm97.67 26897.55 24198.03 29099.02 28395.01 33799.43 17498.54 35096.44 28499.12 20499.34 28291.83 30299.60 23397.75 21496.46 28199.48 169
131498.68 15398.54 15799.11 16598.89 30098.65 19399.27 23499.49 13696.89 25197.99 32199.56 21397.72 11999.83 15397.74 21599.27 15598.84 231
XVG-ACMP-BASELINE97.83 23897.71 22998.20 28099.11 26696.33 30899.41 18399.52 9398.06 13699.05 22099.50 23589.64 33599.73 19397.73 21697.38 26398.53 314
CNLPA99.14 8298.99 9299.59 8799.58 14799.41 10299.16 25999.44 19798.45 8199.19 19499.49 23898.08 10999.89 11997.73 21699.75 10599.48 169
v2v48298.06 20097.77 22198.92 19298.90 29898.82 17999.57 10499.36 23896.65 26699.19 19499.35 27994.20 24499.25 29097.72 21894.97 31798.69 262
AUN-MVS96.88 29596.31 30198.59 23799.48 18197.04 27999.27 23499.22 28797.44 20198.51 29499.41 26291.97 29899.66 21897.71 21983.83 36499.07 212
baseline297.87 23097.55 24198.82 22099.18 25198.02 23499.41 18396.58 37196.97 24496.51 34799.17 31093.43 26299.57 23597.71 21999.03 17598.86 229
原ACMM199.65 7599.73 8499.33 10799.47 16697.46 19599.12 20499.66 17498.67 7099.91 9697.70 22199.69 11899.71 103
agg_prior199.01 11298.76 12699.76 5399.67 11099.62 6698.99 29899.40 21996.26 29598.87 24999.49 23898.77 5599.91 9697.69 22299.72 11299.75 78
PVSNet_094.43 1996.09 31295.47 31597.94 29899.31 22194.34 34997.81 36599.70 1597.12 23097.46 33298.75 34189.71 33399.79 17397.69 22281.69 36799.68 112
MAR-MVS98.86 12598.63 14199.54 9699.37 20499.66 5999.45 16499.54 7696.61 27099.01 22499.40 26597.09 13699.86 13097.68 22499.53 13899.10 202
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
9.1499.10 7499.72 8999.40 19199.51 10797.53 19199.64 8399.78 10598.84 4699.91 9697.63 22599.82 83
train_agg99.02 10998.77 12499.77 5099.67 11099.65 6299.05 28299.41 21096.28 29298.95 23599.49 23898.76 5799.91 9697.63 22599.72 11299.75 78
miper_ehance_all_eth98.18 18898.10 18398.41 26299.23 23997.72 25298.72 33399.31 26796.60 27298.88 24799.29 29497.29 13099.13 30997.60 22795.99 29298.38 332
MDTV_nov1_ep1398.32 17099.11 26694.44 34699.27 23498.74 33897.51 19399.40 13999.62 19394.78 21899.76 18497.59 22898.81 192
c3_l98.12 19598.04 19298.38 26699.30 22297.69 25598.81 32499.33 25496.67 26498.83 25599.34 28297.11 13598.99 32897.58 22995.34 30998.48 318
test_post199.23 24865.14 37994.18 24799.71 20397.58 229
SCA98.19 18698.16 17798.27 27899.30 22295.55 32399.07 27798.97 31597.57 18599.43 12799.57 21092.72 27899.74 18797.58 22999.20 15999.52 158
JIA-IIPM97.50 27997.02 29098.93 19098.73 32297.80 24899.30 22398.97 31591.73 35598.91 24294.86 36895.10 20599.71 20397.58 22997.98 22799.28 195
V4298.06 20097.79 21698.86 21398.98 29098.84 17599.69 4699.34 24796.53 27599.30 16599.37 27394.67 22799.32 27897.57 23394.66 32198.42 327
gm-plane-assit98.54 34192.96 36194.65 33599.15 31399.64 22597.56 234
APD-MVScopyleft99.27 6499.08 7799.84 3599.75 6899.79 3399.50 14099.50 12897.16 22699.77 3899.82 5898.78 5299.94 5897.56 23499.86 5399.80 56
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
pm-mvs197.68 26597.28 27998.88 20599.06 27798.62 19699.50 14099.45 18896.32 29097.87 32499.79 9892.47 28999.35 27197.54 23693.54 33898.67 274
无先验98.99 29899.51 10796.89 25199.93 7397.53 23799.72 96
112199.09 9998.87 10999.75 5499.74 7699.60 7099.27 23499.48 14896.82 25799.25 17999.65 17598.38 9399.93 7397.53 23799.67 12599.73 90
pmmvs597.52 27697.30 27898.16 28398.57 33996.73 29499.27 23498.90 32696.14 30898.37 30499.53 22591.54 31299.14 30697.51 23995.87 29698.63 294
test9_res97.49 24099.72 11299.75 78
CDPH-MVS99.13 8498.91 10499.80 4399.75 6899.71 4999.15 26399.41 21096.60 27299.60 9499.55 21698.83 4799.90 11197.48 24199.83 7799.78 70
AdaColmapbinary99.01 11298.80 12199.66 7199.56 15399.54 8299.18 25799.70 1598.18 11499.35 15599.63 18896.32 16499.90 11197.48 24199.77 10199.55 150
OpenMVScopyleft96.50 1698.47 16398.12 18199.52 11099.04 28199.53 8599.82 1899.72 1194.56 33698.08 31699.88 2394.73 22499.98 797.47 24399.76 10499.06 213
IterMVS97.83 23897.77 22198.02 29299.58 14796.27 31099.02 29199.48 14897.22 22298.71 26899.70 14592.75 27599.13 30997.46 24496.00 29198.67 274
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
RPSCF98.22 18298.62 14696.99 33099.82 3991.58 36799.72 4199.44 19796.61 27099.66 7399.89 1795.92 17799.82 16097.46 24499.10 16999.57 148
ETH3D-3000-0.199.21 7299.02 8799.77 5099.73 8499.69 5299.38 20099.51 10797.45 19899.61 9099.75 12398.51 8299.91 9697.45 24699.83 7799.71 103
IterMVS-SCA-FT97.82 24197.75 22598.06 28999.57 14996.36 30799.02 29199.49 13697.18 22498.71 26899.72 14092.72 27899.14 30697.44 24795.86 29798.67 274
PatchmatchNetpermissive98.31 17698.36 16598.19 28199.16 25995.32 33199.27 23498.92 32197.37 20899.37 14899.58 20694.90 21199.70 20997.43 24899.21 15899.54 152
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
EU-MVSNet97.98 21798.03 19397.81 30898.72 32496.65 29899.66 5799.66 2798.09 12798.35 30599.82 5895.25 20298.01 35597.41 24995.30 31098.78 235
eth_miper_zixun_eth98.05 20597.96 20098.33 26999.26 23397.38 26098.56 34699.31 26796.65 26698.88 24799.52 22896.58 15599.12 31397.39 25095.53 30698.47 320
tpm297.44 28497.34 27397.74 31199.15 26294.36 34899.45 16498.94 31893.45 34898.90 24499.44 25391.35 31499.59 23497.31 25198.07 22699.29 194
TESTMET0.1,197.55 27497.27 28298.40 26498.93 29596.53 30198.67 33697.61 36396.96 24598.64 28499.28 29688.63 34499.45 24597.30 25299.38 14499.21 198
ETH3D cwj APD-0.1699.06 10398.84 11699.72 6499.51 16199.60 7099.23 24899.44 19797.04 23999.39 14299.67 16898.30 9899.92 8597.27 25399.69 11899.64 129
miper_lstm_enhance98.00 21597.91 20698.28 27799.34 21197.43 25998.88 31799.36 23896.48 28198.80 25999.55 21695.98 17298.91 34097.27 25395.50 30798.51 316
test-LLR98.06 20097.90 20798.55 24598.79 31397.10 27098.67 33697.75 36097.34 20998.61 28898.85 33694.45 23799.45 24597.25 25599.38 14499.10 202
test-mter97.49 28297.13 28798.55 24598.79 31397.10 27098.67 33697.75 36096.65 26698.61 28898.85 33688.23 34899.45 24597.25 25599.38 14499.10 202
cl____98.01 21397.84 21498.55 24599.25 23797.97 23798.71 33499.34 24796.47 28398.59 29199.54 22195.65 18999.21 30197.21 25795.77 29898.46 324
DIV-MVS_self_test98.01 21397.85 21398.48 25199.24 23897.95 24198.71 33499.35 24396.50 27698.60 29099.54 22195.72 18699.03 32297.21 25795.77 29898.46 324
agg_prior297.21 25799.73 11199.75 78
OurMVSNet-221017-097.88 22897.77 22198.19 28198.71 32696.53 30199.88 499.00 31297.79 16398.78 26299.94 391.68 30699.35 27197.21 25796.99 27498.69 262
BP-MVS97.19 261
HQP-MVS98.02 21097.90 20798.37 26799.19 24896.83 29098.98 30299.39 22398.24 10298.66 27799.40 26592.47 28999.64 22597.19 26197.58 23998.64 286
pmmvs498.13 19397.90 20798.81 22298.61 33698.87 17198.99 29899.21 29096.44 28499.06 21999.58 20695.90 17999.11 31497.18 26396.11 28998.46 324
PatchMatch-RL98.84 13698.62 14699.52 11099.71 9599.28 11599.06 28099.77 997.74 17099.50 11499.53 22595.41 19499.84 14297.17 26499.64 12999.44 180
MVS_030496.79 29896.52 29897.59 31699.22 24294.92 34099.04 28799.59 4496.49 27798.43 30098.99 32980.48 37199.39 25797.15 26599.27 15598.47 320
GBi-Net97.68 26597.48 24998.29 27499.51 16197.26 26599.43 17499.48 14896.49 27799.07 21599.32 28990.26 32598.98 32997.10 26696.65 27698.62 297
test197.68 26597.48 24998.29 27499.51 16197.26 26599.43 17499.48 14896.49 27799.07 21599.32 28990.26 32598.98 32997.10 26696.65 27698.62 297
FMVSNet398.03 20897.76 22498.84 21799.39 20198.98 15099.40 19199.38 22996.67 26499.07 21599.28 29692.93 27098.98 32997.10 26696.65 27698.56 313
BH-untuned98.42 16798.36 16598.59 23799.49 17396.70 29599.27 23499.13 30097.24 22098.80 25999.38 27095.75 18499.74 18797.07 26999.16 16199.33 192
LF4IMVS97.52 27697.46 25397.70 31398.98 29095.55 32399.29 22798.82 33398.07 13298.66 27799.64 18289.97 33099.61 23297.01 27096.68 27597.94 354
SixPastTwentyTwo97.50 27997.33 27598.03 29098.65 33196.23 31199.77 3298.68 34697.14 22797.90 32399.93 490.45 32399.18 30497.00 27196.43 28298.67 274
MG-MVS99.13 8499.02 8799.45 12299.57 14998.63 19599.07 27799.34 24798.99 3199.61 9099.82 5897.98 11299.87 12797.00 27199.80 9099.85 18
API-MVS99.04 10699.03 8499.06 16999.40 19899.31 11199.55 11999.56 5898.54 7399.33 16099.39 26998.76 5799.78 17896.98 27399.78 9798.07 344
tpmvs97.98 21798.02 19597.84 30499.04 28194.73 34299.31 22199.20 29196.10 31498.76 26499.42 25894.94 20799.81 16596.97 27498.45 20798.97 222
QAPM98.67 15498.30 17299.80 4399.20 24699.67 5799.77 3299.72 1194.74 33398.73 26699.90 1395.78 18399.98 796.96 27599.88 3899.76 77
PAPM_NR99.04 10698.84 11699.66 7199.74 7699.44 9899.39 19599.38 22997.70 17399.28 16999.28 29698.34 9699.85 13696.96 27599.45 14099.69 108
v897.95 22197.63 23798.93 19098.95 29498.81 18199.80 2499.41 21096.03 31599.10 20999.42 25894.92 21099.30 28296.94 27794.08 33298.66 282
ZD-MVS99.71 9599.79 3399.61 3696.84 25499.56 10299.54 22198.58 7599.96 2096.93 27899.75 105
MSDG98.98 11498.80 12199.53 10499.76 5799.19 12398.75 33099.55 6797.25 21899.47 11999.77 11297.82 11599.87 12796.93 27899.90 2599.54 152
pmmvs696.53 30296.09 30597.82 30798.69 32895.47 32799.37 20399.47 16693.46 34797.41 33399.78 10587.06 35699.33 27496.92 28092.70 34898.65 284
新几何199.75 5499.75 6899.59 7399.54 7696.76 25899.29 16899.64 18298.43 8899.94 5896.92 28099.66 12699.72 96
DTE-MVSNet97.51 27897.19 28598.46 25698.63 33398.13 23199.84 1499.48 14896.68 26397.97 32299.67 16892.92 27198.56 34696.88 28292.60 34998.70 258
ADS-MVSNet298.02 21098.07 19097.87 30299.33 21395.19 33499.23 24899.08 30596.24 29799.10 20999.67 16894.11 24898.93 33996.81 28399.05 17399.48 169
ADS-MVSNet98.20 18598.08 18798.56 24399.33 21396.48 30399.23 24899.15 29796.24 29799.10 20999.67 16894.11 24899.71 20396.81 28399.05 17399.48 169
gg-mvs-nofinetune96.17 31095.32 31898.73 22998.79 31398.14 23099.38 20094.09 37891.07 35998.07 31991.04 37389.62 33699.35 27196.75 28599.09 17098.68 267
testtj99.12 9098.87 10999.86 2199.72 8999.79 3399.44 16899.51 10797.29 21499.59 9799.74 12998.15 10799.96 2096.74 28699.69 11899.81 46
v114497.98 21797.69 23098.85 21698.87 30598.66 19299.54 12399.35 24396.27 29499.23 18499.35 27994.67 22799.23 29396.73 28795.16 31398.68 267
UnsupCasMVSNet_eth96.44 30496.12 30497.40 32298.65 33195.65 32099.36 20799.51 10797.13 22896.04 35398.99 32988.40 34698.17 35196.71 28890.27 35498.40 330
GA-MVS97.85 23397.47 25199.00 17799.38 20297.99 23698.57 34499.15 29797.04 23998.90 24499.30 29289.83 33199.38 25996.70 28998.33 20999.62 135
K. test v397.10 29396.79 29498.01 29398.72 32496.33 30899.87 997.05 36697.59 18296.16 35199.80 8688.71 34199.04 32096.69 29096.55 28098.65 284
testdata299.95 4796.67 291
AllTest98.87 12298.72 12899.31 13999.86 2298.48 21499.56 11099.61 3697.85 15399.36 15299.85 3895.95 17499.85 13696.66 29299.83 7799.59 143
TestCases99.31 13999.86 2298.48 21499.61 3697.85 15399.36 15299.85 3895.95 17499.85 13696.66 29299.83 7799.59 143
dp97.75 25297.80 21597.59 31699.10 26993.71 35599.32 21998.88 32896.48 28199.08 21499.55 21692.67 28399.82 16096.52 29498.58 19999.24 196
BH-RMVSNet98.41 16998.08 18799.40 12899.41 19398.83 17899.30 22398.77 33497.70 17398.94 23899.65 17592.91 27399.74 18796.52 29499.55 13799.64 129
FMVSNet297.72 25897.36 26898.80 22499.51 16198.84 17599.45 16499.42 20796.49 27798.86 25499.29 29490.26 32598.98 32996.44 29696.56 27998.58 311
ambc93.06 34892.68 37382.36 37298.47 34998.73 34395.09 35797.41 35955.55 37799.10 31696.42 29791.32 35297.71 358
tpm cat197.39 28597.36 26897.50 32099.17 25793.73 35499.43 17499.31 26791.27 35698.71 26899.08 31994.31 24299.77 18096.41 29898.50 20599.00 218
v14419297.92 22597.60 23998.87 20998.83 31198.65 19399.55 11999.34 24796.20 30099.32 16199.40 26594.36 23999.26 28996.37 29995.03 31698.70 258
Patchmatch-RL test95.84 31495.81 31295.95 34395.61 36890.57 36898.24 35998.39 35195.10 32795.20 35698.67 34394.78 21897.77 36096.28 30090.02 35599.51 164
Patchmtry97.75 25297.40 26598.81 22299.10 26998.87 17199.11 27399.33 25494.83 33198.81 25799.38 27094.33 24099.02 32496.10 30195.57 30498.53 314
BH-w/o98.00 21597.89 21198.32 27199.35 20796.20 31299.01 29698.90 32696.42 28698.38 30399.00 32895.26 20199.72 19796.06 30298.61 19699.03 215
v7n97.87 23097.52 24598.92 19298.76 32098.58 20099.84 1499.46 17696.20 30098.91 24299.70 14594.89 21299.44 25096.03 30393.89 33498.75 244
v1097.85 23397.52 24598.86 21398.99 28798.67 19199.75 3799.41 21095.70 31898.98 23199.41 26294.75 22399.23 29396.01 30494.63 32298.67 274
lessismore_v097.79 30998.69 32895.44 32994.75 37695.71 35599.87 2988.69 34299.32 27895.89 30594.93 31998.62 297
ITE_SJBPF98.08 28899.29 22696.37 30698.92 32198.34 9398.83 25599.75 12391.09 31799.62 23195.82 30697.40 26098.25 338
FMVSNet196.84 29696.36 30098.29 27499.32 22097.26 26599.43 17499.48 14895.11 32598.55 29299.32 28983.95 36498.98 32995.81 30796.26 28698.62 297
DPM-MVS98.95 11798.71 13099.66 7199.63 12999.55 8098.64 34099.10 30297.93 14699.42 13099.55 21698.67 7099.80 17095.80 30899.68 12399.61 137
MIMVSNet97.73 25697.45 25498.57 24199.45 18897.50 25799.02 29198.98 31496.11 31099.41 13499.14 31490.28 32498.74 34495.74 30998.93 18299.47 175
tfpnnormal97.84 23697.47 25198.98 18199.20 24699.22 12299.64 6899.61 3696.32 29098.27 31099.70 14593.35 26499.44 25095.69 31095.40 30898.27 336
MS-PatchMatch97.24 29097.32 27696.99 33098.45 34493.51 35998.82 32399.32 26497.41 20598.13 31599.30 29288.99 33999.56 23695.68 31199.80 9097.90 357
EG-PatchMatch MVS95.97 31395.69 31396.81 33697.78 35392.79 36299.16 25998.93 31996.16 30594.08 36099.22 30582.72 36699.47 24295.67 31297.50 24898.17 341
USDC97.34 28697.20 28497.75 31099.07 27495.20 33398.51 34899.04 31097.99 14298.31 30799.86 3389.02 33899.55 23895.67 31297.36 26498.49 317
MVP-Stereo97.81 24397.75 22597.99 29697.53 35596.60 30098.96 30698.85 33097.22 22297.23 33799.36 27695.28 19899.46 24495.51 31499.78 9797.92 356
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
CMPMVSbinary69.68 2394.13 32994.90 32191.84 35097.24 36180.01 37598.52 34799.48 14889.01 36191.99 36599.67 16885.67 36099.13 30995.44 31597.03 27296.39 366
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
GG-mvs-BLEND98.45 25798.55 34098.16 22899.43 17493.68 37997.23 33798.46 34889.30 33799.22 29695.43 31698.22 21597.98 352
v192192097.80 24597.45 25498.84 21798.80 31298.53 20499.52 12999.34 24796.15 30799.24 18099.47 24793.98 25299.29 28395.40 31795.13 31498.69 262
TR-MVS97.76 24897.41 26498.82 22099.06 27797.87 24498.87 31998.56 34896.63 26998.68 27699.22 30592.49 28899.65 22295.40 31797.79 23198.95 227
ETH3 D test640098.70 14898.35 16799.73 6199.69 10599.60 7099.16 25999.45 18895.42 32199.27 17299.60 20097.39 12499.91 9695.36 31999.83 7799.70 105
v119297.81 24397.44 25998.91 19798.88 30198.68 19099.51 13499.34 24796.18 30299.20 19199.34 28294.03 25199.36 26895.32 32095.18 31298.69 262
PAPR98.63 15898.34 16899.51 11299.40 19899.03 14598.80 32599.36 23896.33 28999.00 22999.12 31898.46 8699.84 14295.23 32199.37 15199.66 118
TinyColmap97.12 29296.89 29297.83 30599.07 27495.52 32698.57 34498.74 33897.58 18497.81 32799.79 9888.16 34999.56 23695.10 32297.21 26898.39 331
DSMNet-mixed97.25 28997.35 27096.95 33397.84 35293.61 35899.57 10496.63 37096.13 30998.87 24998.61 34694.59 23097.70 36295.08 32398.86 18899.55 150
test0.0.03 197.71 26197.42 26398.56 24398.41 34597.82 24798.78 32798.63 34797.34 20998.05 32098.98 33294.45 23798.98 32995.04 32497.15 27198.89 228
our_test_397.65 27097.68 23197.55 31898.62 33494.97 33898.84 32199.30 27196.83 25698.19 31299.34 28297.01 14099.02 32495.00 32596.01 29098.64 286
MVS-HIRNet95.75 31595.16 31997.51 31999.30 22293.69 35698.88 31795.78 37285.09 36698.78 26292.65 37091.29 31599.37 26494.85 32699.85 6099.46 177
CR-MVSNet98.17 18997.93 20598.87 20999.18 25198.49 21299.22 25399.33 25496.96 24599.56 10299.38 27094.33 24099.00 32794.83 32798.58 19999.14 199
pmmvs-eth3d95.34 32094.73 32297.15 32695.53 37095.94 31699.35 21399.10 30295.13 32393.55 36197.54 35888.15 35097.91 35794.58 32889.69 35797.61 359
testgi97.65 27097.50 24898.13 28799.36 20696.45 30499.42 18199.48 14897.76 16697.87 32499.45 25291.09 31798.81 34394.53 32998.52 20499.13 201
v124097.69 26397.32 27698.79 22598.85 30998.43 21899.48 15599.36 23896.11 31099.27 17299.36 27693.76 25999.24 29294.46 33095.23 31198.70 258
YYNet195.36 31994.51 32597.92 29997.89 35197.10 27099.10 27599.23 28693.26 34980.77 37299.04 32492.81 27498.02 35494.30 33194.18 33098.64 286
PM-MVS92.96 33292.23 33595.14 34595.61 36889.98 37099.37 20398.21 35494.80 33295.04 35897.69 35765.06 37497.90 35894.30 33189.98 35697.54 362
MVS97.28 28896.55 29799.48 11698.78 31698.95 16199.27 23499.39 22383.53 36798.08 31699.54 22196.97 14299.87 12794.23 33399.16 16199.63 133
MDA-MVSNet_test_wron95.45 31794.60 32398.01 29398.16 34897.21 26899.11 27399.24 28593.49 34680.73 37398.98 33293.02 26898.18 35094.22 33494.45 32598.64 286
TransMVSNet (Re)97.15 29196.58 29698.86 21399.12 26498.85 17499.49 15098.91 32495.48 32097.16 34099.80 8693.38 26399.11 31494.16 33591.73 35198.62 297
UnsupCasMVSNet_bld93.53 33192.51 33496.58 34097.38 35793.82 35298.24 35999.48 14891.10 35893.10 36396.66 36474.89 37298.37 34894.03 33687.71 35997.56 361
ppachtmachnet_test97.49 28297.45 25497.61 31598.62 33495.24 33298.80 32599.46 17696.11 31098.22 31199.62 19396.45 16098.97 33693.77 33795.97 29598.61 306
thres600view797.86 23297.51 24798.92 19299.72 8997.95 24199.59 9098.74 33897.94 14599.27 17298.62 34491.75 30399.86 13093.73 33898.19 21998.96 224
test_method91.10 33391.36 33690.31 35395.85 36773.72 38194.89 37099.25 28368.39 37395.82 35499.02 32780.50 37098.95 33893.64 33994.89 32098.25 338
DeepMVS_CXcopyleft93.34 34799.29 22682.27 37399.22 28785.15 36596.33 34999.05 32390.97 31999.73 19393.57 34097.77 23298.01 348
MDA-MVSNet-bldmvs94.96 32293.98 32897.92 29998.24 34797.27 26399.15 26399.33 25493.80 34280.09 37499.03 32588.31 34797.86 35993.49 34194.36 32798.62 297
Patchmatch-test97.93 22297.65 23498.77 22799.18 25197.07 27499.03 28899.14 29996.16 30598.74 26599.57 21094.56 23299.72 19793.36 34299.11 16699.52 158
thres100view90097.76 24897.45 25498.69 23299.72 8997.86 24699.59 9098.74 33897.93 14699.26 17798.62 34491.75 30399.83 15393.22 34398.18 22098.37 333
tfpn200view997.72 25897.38 26698.72 23099.69 10597.96 23999.50 14098.73 34397.83 15699.17 19898.45 34991.67 30799.83 15393.22 34398.18 22098.37 333
thres40097.77 24797.38 26698.92 19299.69 10597.96 23999.50 14098.73 34397.83 15699.17 19898.45 34991.67 30799.83 15393.22 34398.18 22098.96 224
EPNet_dtu98.03 20897.96 20098.23 27998.27 34695.54 32599.23 24898.75 33599.02 2197.82 32699.71 14196.11 16999.48 24193.04 34699.65 12899.69 108
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
thres20097.61 27297.28 27998.62 23599.64 12698.03 23399.26 24398.74 33897.68 17599.09 21398.32 35391.66 30999.81 16592.88 34798.22 21598.03 347
KD-MVS_2432*160094.62 32493.72 33097.31 32397.19 36395.82 31898.34 35499.20 29195.00 32897.57 33098.35 35187.95 35198.10 35292.87 34877.00 37198.01 348
miper_refine_blended94.62 32493.72 33097.31 32397.19 36395.82 31898.34 35499.20 29195.00 32897.57 33098.35 35187.95 35198.10 35292.87 34877.00 37198.01 348
PCF-MVS97.08 1497.66 26997.06 28999.47 11999.61 13999.09 13998.04 36499.25 28391.24 35798.51 29499.70 14594.55 23399.91 9692.76 35099.85 6099.42 182
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
FMVSNet596.43 30596.19 30397.15 32699.11 26695.89 31799.32 21999.52 9394.47 33898.34 30699.07 32087.54 35597.07 36692.61 35195.72 30198.47 320
test_040296.64 30096.24 30297.85 30398.85 30996.43 30599.44 16899.26 28193.52 34596.98 34499.52 22888.52 34599.20 30392.58 35297.50 24897.93 355
new-patchmatchnet94.48 32794.08 32795.67 34495.08 37192.41 36399.18 25799.28 27894.55 33793.49 36297.37 36187.86 35397.01 36791.57 35388.36 35897.61 359
N_pmnet94.95 32395.83 31192.31 34998.47 34379.33 37699.12 26792.81 38293.87 34197.68 32999.13 31593.87 25599.01 32691.38 35496.19 28798.59 310
Anonymous2024052196.20 30995.89 31097.13 32897.72 35494.96 33999.79 2999.29 27693.01 35097.20 33999.03 32589.69 33498.36 34991.16 35596.13 28898.07 344
LCM-MVSNet86.80 33685.22 34091.53 35187.81 37880.96 37498.23 36198.99 31371.05 37190.13 36796.51 36548.45 38096.88 36890.51 35685.30 36296.76 364
new_pmnet96.38 30696.03 30697.41 32198.13 34995.16 33699.05 28299.20 29193.94 34097.39 33498.79 33991.61 31199.04 32090.43 35795.77 29898.05 346
KD-MVS_self_test95.00 32194.34 32696.96 33297.07 36595.39 33099.56 11099.44 19795.11 32597.13 34197.32 36291.86 30197.27 36590.35 35881.23 36898.23 340
PAPM97.59 27397.09 28899.07 16899.06 27798.26 22598.30 35899.10 30294.88 33098.08 31699.34 28296.27 16699.64 22589.87 35998.92 18499.31 193
pmmvs394.09 33093.25 33396.60 33994.76 37294.49 34598.92 31398.18 35689.66 36096.48 34898.06 35686.28 35797.33 36489.68 36087.20 36097.97 353
EGC-MVSNET82.80 33877.86 34497.62 31497.91 35096.12 31399.33 21899.28 2788.40 38125.05 38299.27 29984.11 36399.33 27489.20 36198.22 21597.42 363
OpenMVS_ROBcopyleft92.34 2094.38 32893.70 33296.41 34197.38 35793.17 36099.06 28098.75 33586.58 36494.84 35998.26 35481.53 36999.32 27889.01 36297.87 23096.76 364
CL-MVSNet_self_test94.49 32693.97 32996.08 34296.16 36693.67 35798.33 35699.38 22995.13 32397.33 33598.15 35592.69 28296.57 36988.67 36379.87 36997.99 351
PatchT97.03 29496.44 29998.79 22598.99 28798.34 22299.16 25999.07 30792.13 35399.52 11197.31 36394.54 23498.98 32988.54 36498.73 19599.03 215
MIMVSNet195.51 31695.04 32096.92 33497.38 35795.60 32199.52 12999.50 12893.65 34496.97 34599.17 31085.28 36196.56 37088.36 36595.55 30598.60 309
TAPA-MVS97.07 1597.74 25597.34 27398.94 18899.70 10297.53 25699.25 24599.51 10791.90 35499.30 16599.63 18898.78 5299.64 22588.09 36699.87 4299.65 122
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
Gipumacopyleft90.99 33490.15 33793.51 34698.73 32290.12 36993.98 37199.45 18879.32 36992.28 36494.91 36769.61 37397.98 35687.42 36795.67 30292.45 370
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test20.0396.12 31195.96 30896.63 33897.44 35695.45 32899.51 13499.38 22996.55 27496.16 35199.25 30293.76 25996.17 37187.35 36894.22 32998.27 336
Anonymous2023120696.22 30796.03 30696.79 33797.31 36094.14 35099.63 7099.08 30596.17 30397.04 34399.06 32293.94 25397.76 36186.96 36995.06 31598.47 320
RPMNet96.72 29995.90 30999.19 15899.18 25198.49 21299.22 25399.52 9388.72 36399.56 10297.38 36094.08 25099.95 4786.87 37098.58 19999.14 199
PMMVS286.87 33585.37 33991.35 35290.21 37683.80 37198.89 31697.45 36583.13 36891.67 36695.03 36648.49 37994.70 37385.86 37177.62 37095.54 367
FPMVS84.93 33785.65 33882.75 35886.77 37963.39 38398.35 35398.92 32174.11 37083.39 37098.98 33250.85 37892.40 37584.54 37294.97 31792.46 369
PMVScopyleft70.75 2275.98 34474.97 34579.01 36070.98 38355.18 38493.37 37298.21 35465.08 37761.78 37893.83 36921.74 38592.53 37478.59 37391.12 35389.34 373
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
ANet_high77.30 34274.86 34684.62 35675.88 38277.61 37797.63 36793.15 38188.81 36264.27 37789.29 37436.51 38183.93 37975.89 37452.31 37692.33 371
MVEpermissive76.82 2176.91 34374.31 34784.70 35585.38 38176.05 38096.88 36993.17 38067.39 37471.28 37689.01 37521.66 38687.69 37671.74 37572.29 37390.35 372
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN80.61 34079.88 34282.81 35790.75 37576.38 37997.69 36695.76 37366.44 37583.52 36992.25 37162.54 37687.16 37768.53 37661.40 37484.89 375
EMVS80.02 34179.22 34382.43 35991.19 37476.40 37897.55 36892.49 38366.36 37683.01 37191.27 37264.63 37585.79 37865.82 37760.65 37585.08 374
wuyk23d40.18 34541.29 35036.84 36186.18 38049.12 38579.73 37422.81 38627.64 37825.46 38128.45 38121.98 38448.89 38055.80 37823.56 38012.51 378
testmvs39.17 34643.78 34825.37 36336.04 38616.84 38798.36 35226.56 38520.06 37938.51 38067.32 37629.64 38315.30 38237.59 37939.90 37843.98 377
test12339.01 34742.50 34928.53 36239.17 38520.91 38698.75 33019.17 38719.83 38038.57 37966.67 37733.16 38215.42 38137.50 38029.66 37949.26 376
test_blank0.13 3510.17 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3831.57 3820.00 3870.00 3830.00 3810.00 3810.00 379
uanet_test0.02 3520.03 3550.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.27 3830.00 3870.00 3830.00 3810.00 3810.00 379
DCPMVS0.02 3520.03 3550.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.27 3830.00 3870.00 3830.00 3810.00 3810.00 379
cdsmvs_eth3d_5k24.64 34832.85 3510.00 3640.00 3870.00 3880.00 37599.51 1070.00 3820.00 38399.56 21396.58 1550.00 3830.00 3810.00 3810.00 379
pcd_1.5k_mvsjas8.27 35011.03 3530.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.27 38399.01 190.00 3830.00 3810.00 3810.00 379
sosnet-low-res0.02 3520.03 3550.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.27 3830.00 3870.00 3830.00 3810.00 3810.00 379
sosnet0.02 3520.03 3550.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.27 3830.00 3870.00 3830.00 3810.00 3810.00 379
uncertanet0.02 3520.03 3550.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.27 3830.00 3870.00 3830.00 3810.00 3810.00 379
Regformer0.02 3520.03 3550.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.27 3830.00 3870.00 3830.00 3810.00 3810.00 379
ab-mvs-re8.30 34911.06 3520.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 38399.58 2060.00 3870.00 3830.00 3810.00 3810.00 379
uanet0.02 3520.03 3550.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.27 3830.00 3870.00 3830.00 3810.00 3810.00 379
FOURS199.91 199.93 199.87 999.56 5899.10 1299.81 25
test_one_060199.81 4299.88 899.49 13698.97 3799.65 7999.81 7199.09 14
eth-test20.00 387
eth-test0.00 387
test_241102_ONE99.84 3399.90 299.48 14899.07 1899.91 299.74 12999.20 799.76 184
save fliter99.76 5799.59 7399.14 26599.40 21999.00 28
test072699.85 2699.89 499.62 7699.50 12899.10 1299.86 1399.82 5898.94 35
GSMVS99.52 158
test_part299.81 4299.83 1799.77 38
sam_mvs194.86 21399.52 158
sam_mvs94.72 225
MTGPAbinary99.47 166
test_post65.99 37894.65 22999.73 193
patchmatchnet-post98.70 34294.79 21799.74 187
MTMP99.54 12398.88 328
TEST999.67 11099.65 6299.05 28299.41 21096.22 29998.95 23599.49 23898.77 5599.91 96
test_899.67 11099.61 6899.03 28899.41 21096.28 29298.93 24099.48 24498.76 5799.91 96
agg_prior99.67 11099.62 6699.40 21998.87 24999.91 96
test_prior499.56 7898.99 298
test_prior99.68 6899.67 11099.48 9399.56 5899.83 15399.74 83
新几何299.01 296
旧先验199.74 7699.59 7399.54 7699.69 15498.47 8599.68 12399.73 90
原ACMM298.95 310
test22299.75 6899.49 9198.91 31599.49 13696.42 28699.34 15999.65 17598.28 10099.69 11899.72 96
segment_acmp98.96 29
testdata198.85 32098.32 97
test1299.75 5499.64 12699.61 6899.29 27699.21 18898.38 9399.89 11999.74 10899.74 83
plane_prior799.29 22697.03 280
plane_prior699.27 23196.98 28492.71 280
plane_prior499.61 197
plane_prior397.00 28298.69 6499.11 206
plane_prior299.39 19598.97 37
plane_prior199.26 233
plane_prior96.97 28599.21 25598.45 8197.60 237
n20.00 388
nn0.00 388
door-mid98.05 357
test1199.35 243
door97.92 358
HQP5-MVS96.83 290
HQP-NCC99.19 24898.98 30298.24 10298.66 277
ACMP_Plane99.19 24898.98 30298.24 10298.66 277
HQP4-MVS98.66 27799.64 22598.64 286
HQP3-MVS99.39 22397.58 239
HQP2-MVS92.47 289
NP-MVS99.23 23996.92 28899.40 265
ACMMP++_ref97.19 269
ACMMP++97.43 258
Test By Simon98.75 60