This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort by
patch_mono-299.26 6699.62 198.16 28399.81 4294.59 34499.52 12999.64 3399.33 299.73 4999.90 1399.00 2599.99 199.69 199.98 299.89 2
h-mvs3397.70 26297.28 27998.97 18399.70 10297.27 26399.36 20799.45 18898.94 4199.66 7399.64 18294.93 20899.99 199.48 1884.36 36399.65 122
xiu_mvs_v1_base_debu99.29 6199.27 5699.34 13399.63 12998.97 15399.12 26799.51 10798.86 4899.84 1599.47 24798.18 10499.99 199.50 1399.31 15299.08 207
xiu_mvs_v1_base99.29 6199.27 5699.34 13399.63 12998.97 15399.12 26799.51 10798.86 4899.84 1599.47 24798.18 10499.99 199.50 1399.31 15299.08 207
xiu_mvs_v1_base_debi99.29 6199.27 5699.34 13399.63 12998.97 15399.12 26799.51 10798.86 4899.84 1599.47 24798.18 10499.99 199.50 1399.31 15299.08 207
EPNet98.86 12598.71 13099.30 14397.20 36298.18 22799.62 7698.91 32499.28 398.63 28599.81 7195.96 17399.99 199.24 4899.72 11299.73 90
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
xiu_mvs_v2_base99.26 6699.25 6099.29 14699.53 15798.91 16899.02 29199.45 18898.80 5699.71 5599.26 30198.94 3599.98 799.34 3599.23 15798.98 221
PS-MVSNAJ99.32 5799.32 3699.30 14399.57 14998.94 16498.97 30599.46 17698.92 4599.71 5599.24 30399.01 1999.98 799.35 3199.66 12698.97 222
QAPM98.67 15498.30 17299.80 4399.20 24699.67 5799.77 3299.72 1194.74 33398.73 26699.90 1395.78 18399.98 796.96 27599.88 3899.76 77
3Dnovator97.25 999.24 7099.05 7999.81 4199.12 26499.66 5999.84 1499.74 1099.09 1598.92 24199.90 1395.94 17699.98 798.95 7699.92 1399.79 62
OpenMVScopyleft96.50 1698.47 16398.12 18199.52 11099.04 28199.53 8599.82 1899.72 1194.56 33698.08 31699.88 2394.73 22499.98 797.47 24399.76 10499.06 213
CANet_DTU98.97 11698.87 10999.25 15299.33 21398.42 22099.08 27699.30 27199.16 699.43 12799.75 12395.27 19999.97 1298.56 14399.95 899.36 188
zzz-MVS99.49 1799.36 2799.89 499.90 499.86 1399.36 20799.47 16698.79 5799.68 6299.81 7198.43 8899.97 1298.88 8599.90 2599.83 33
MTAPA99.52 1499.39 2299.89 499.90 499.86 1399.66 5799.47 16698.79 5799.68 6299.81 7198.43 8899.97 1298.88 8599.90 2599.83 33
PGM-MVS99.45 2999.31 4399.86 2199.87 1699.78 4099.58 9899.65 3297.84 15599.71 5599.80 8699.12 1399.97 1298.33 16799.87 4299.83 33
mPP-MVS99.44 3399.30 4699.86 2199.88 1299.79 3399.69 4699.48 14898.12 12299.50 11499.75 12398.78 5299.97 1298.57 14099.89 3599.83 33
CP-MVS99.45 2999.32 3699.85 2899.83 3799.75 4399.69 4699.52 9398.07 13299.53 10999.63 18898.93 3999.97 1298.74 11199.91 1899.83 33
SteuartSystems-ACMMP99.54 1099.42 1899.87 1299.82 3999.81 2799.59 9099.51 10798.62 6799.79 3099.83 5199.28 499.97 1298.48 15199.90 2599.84 22
Skip Steuart: Steuart Systems R&D Blog.
3Dnovator+97.12 1399.18 7698.97 9699.82 3899.17 25799.68 5499.81 2099.51 10799.20 598.72 26799.89 1795.68 18899.97 1298.86 9499.86 5399.81 46
DVP-MVS++99.59 399.50 1099.88 699.51 16199.88 899.87 999.51 10798.99 3199.88 699.81 7199.27 599.96 2098.85 9699.80 9099.81 46
MSC_two_6792asdad99.87 1299.51 16199.76 4199.33 25499.96 2098.87 8999.84 6899.89 2
No_MVS99.87 1299.51 16199.76 4199.33 25499.96 2098.87 8999.84 6899.89 2
ZD-MVS99.71 9599.79 3399.61 3696.84 25499.56 10299.54 22198.58 7599.96 2096.93 27899.75 105
SED-MVS99.61 299.52 899.88 699.84 3399.90 299.60 8399.48 14899.08 1699.91 299.81 7199.20 799.96 2098.91 8299.85 6099.79 62
test_241102_TWO99.48 14899.08 1699.88 699.81 7198.94 3599.96 2098.91 8299.84 6899.88 8
ZNCC-MVS99.47 2599.33 3499.87 1299.87 1699.81 2799.64 6899.67 2298.08 13199.55 10699.64 18298.91 4099.96 2098.72 11599.90 2599.82 40
testtj99.12 9098.87 10999.86 2199.72 8999.79 3399.44 16899.51 10797.29 21499.59 9799.74 12998.15 10799.96 2096.74 28699.69 11899.81 46
DVP-MVScopyleft99.57 899.47 1499.88 699.85 2699.89 499.57 10499.37 23799.10 1299.81 2599.80 8698.94 3599.96 2098.93 7999.86 5399.81 46
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD98.99 3199.81 2599.80 8699.09 1499.96 2098.85 9699.90 2599.88 8
test_0728_SECOND99.91 299.84 3399.89 499.57 10499.51 10799.96 2098.93 7999.86 5399.88 8
SR-MVS99.43 3799.29 5099.86 2199.75 6899.83 1799.59 9099.62 3498.21 10899.73 4999.79 9898.68 6799.96 2098.44 15799.77 10199.79 62
DPE-MVScopyleft99.46 2799.32 3699.91 299.78 4899.88 899.36 20799.51 10798.73 6199.88 699.84 4798.72 6499.96 2098.16 18199.87 4299.88 8
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
UA-Net99.42 4299.29 5099.80 4399.62 13599.55 8099.50 14099.70 1598.79 5799.77 3899.96 197.45 12399.96 2098.92 8199.90 2599.89 2
HFP-MVS99.49 1799.37 2599.86 2199.87 1699.80 2999.66 5799.67 2298.15 11699.68 6299.69 15499.06 1699.96 2098.69 12099.87 4299.84 22
region2R99.48 2299.35 3099.87 1299.88 1299.80 2999.65 6599.66 2798.13 12099.66 7399.68 16298.96 2999.96 2098.62 12999.87 4299.84 22
#test#99.43 3799.29 5099.86 2199.87 1699.80 2999.55 11999.67 2297.83 15699.68 6299.69 15499.06 1699.96 2098.39 15999.87 4299.84 22
HPM-MVS++copyleft99.39 5099.23 6399.87 1299.75 6899.84 1699.43 17499.51 10798.68 6599.27 17299.53 22598.64 7399.96 2098.44 15799.80 9099.79 62
APDe-MVS99.66 199.57 399.92 199.77 5499.89 499.75 3799.56 5899.02 2199.88 699.85 3899.18 1099.96 2099.22 4999.92 1399.90 1
ACMMPR99.49 1799.36 2799.86 2199.87 1699.79 3399.66 5799.67 2298.15 11699.67 6899.69 15498.95 3299.96 2098.69 12099.87 4299.84 22
MP-MVScopyleft99.33 5699.15 6999.87 1299.88 1299.82 2399.66 5799.46 17698.09 12799.48 11899.74 12998.29 9999.96 2097.93 19899.87 4299.82 40
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
abl_699.44 3399.31 4399.83 3699.85 2699.75 4399.66 5799.59 4498.13 12099.82 2399.81 7198.60 7499.96 2098.46 15599.88 3899.79 62
CPTT-MVS99.11 9598.90 10599.74 5999.80 4599.46 9699.59 9099.49 13697.03 24199.63 8499.69 15497.27 13199.96 2097.82 20799.84 6899.81 46
PVSNet_Blended_VisFu99.36 5399.28 5499.61 8599.86 2299.07 14299.47 16099.93 297.66 17899.71 5599.86 3397.73 11899.96 2099.47 2099.82 8399.79 62
UGNet98.87 12298.69 13399.40 12899.22 24298.72 18799.44 16899.68 1999.24 499.18 19799.42 25892.74 27799.96 2099.34 3599.94 1199.53 157
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
CSCG99.32 5799.32 3699.32 13899.85 2698.29 22399.71 4399.66 2798.11 12499.41 13499.80 8698.37 9599.96 2098.99 7299.96 799.72 96
ACMMPcopyleft99.45 2999.32 3699.82 3899.89 999.67 5799.62 7699.69 1898.12 12299.63 8499.84 4798.73 6399.96 2098.55 14699.83 7799.81 46
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
test117299.43 3799.29 5099.85 2899.75 6899.82 2399.60 8399.56 5898.28 9999.74 4799.79 9898.53 7999.95 4798.55 14699.78 9799.79 62
SR-MVS-dyc-post99.45 2999.31 4399.85 2899.76 5799.82 2399.63 7099.52 9398.38 8799.76 4399.82 5898.53 7999.95 4798.61 13299.81 8699.77 72
GST-MVS99.40 4999.24 6199.85 2899.86 2299.79 3399.60 8399.67 2297.97 14399.63 8499.68 16298.52 8199.95 4798.38 16199.86 5399.81 46
CANet99.25 6999.14 7099.59 8799.41 19399.16 12899.35 21399.57 5398.82 5299.51 11399.61 19796.46 15999.95 4799.59 699.98 299.65 122
MP-MVS-pluss99.37 5299.20 6599.88 699.90 499.87 1299.30 22399.52 9397.18 22499.60 9499.79 9898.79 5199.95 4798.83 10299.91 1899.83 33
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MSP-MVS99.42 4299.27 5699.88 699.89 999.80 2999.67 5399.50 12898.70 6399.77 3899.49 23898.21 10299.95 4798.46 15599.77 10199.88 8
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
mvs-test198.86 12598.84 11698.89 20299.33 21397.77 24999.44 16899.30 27198.47 7899.10 20999.43 25596.78 14799.95 4798.73 11399.02 17798.96 224
testdata299.95 4796.67 291
APD-MVS_3200maxsize99.48 2299.35 3099.85 2899.76 5799.83 1799.63 7099.54 7698.36 9199.79 3099.82 5898.86 4499.95 4798.62 12999.81 8699.78 70
RPMNet96.72 29995.90 30999.19 15899.18 25198.49 21299.22 25399.52 9388.72 36399.56 10297.38 36094.08 25099.95 4786.87 37098.58 19999.14 199
sss99.17 7899.05 7999.53 10499.62 13598.97 15399.36 20799.62 3497.83 15699.67 6899.65 17597.37 12899.95 4799.19 5199.19 16099.68 112
TSAR-MVS + MP.99.58 599.50 1099.81 4199.91 199.66 5999.63 7099.39 22398.91 4699.78 3599.85 3899.36 299.94 5898.84 9999.88 3899.82 40
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
Regformer-499.59 399.54 699.73 6199.76 5799.41 10299.58 9899.49 13699.02 2199.88 699.80 8699.00 2599.94 5899.45 2299.92 1399.84 22
Regformer-299.54 1099.47 1499.75 5499.71 9599.52 8899.49 15099.49 13698.94 4199.83 2099.76 11899.01 1999.94 5899.15 5799.87 4299.80 56
XVS99.53 1299.42 1899.87 1299.85 2699.83 1799.69 4699.68 1998.98 3499.37 14899.74 12998.81 4999.94 5898.79 10799.86 5399.84 22
X-MVStestdata96.55 30195.45 31699.87 1299.85 2699.83 1799.69 4699.68 1998.98 3499.37 14864.01 38098.81 4999.94 5898.79 10799.86 5399.84 22
旧先验298.96 30696.70 26299.47 11999.94 5898.19 176
新几何199.75 5499.75 6899.59 7399.54 7696.76 25899.29 16899.64 18298.43 8899.94 5896.92 28099.66 12699.72 96
testdata99.54 9699.75 6898.95 16199.51 10797.07 23699.43 12799.70 14598.87 4399.94 5897.76 21299.64 12999.72 96
HPM-MVScopyleft99.42 4299.28 5499.83 3699.90 499.72 4799.81 2099.54 7697.59 18299.68 6299.63 18898.91 4099.94 5898.58 13899.91 1899.84 22
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CHOSEN 1792x268899.19 7499.10 7499.45 12299.89 998.52 20899.39 19599.94 198.73 6199.11 20699.89 1795.50 19299.94 5899.50 1399.97 599.89 2
APD-MVScopyleft99.27 6499.08 7799.84 3599.75 6899.79 3399.50 14099.50 12897.16 22699.77 3899.82 5898.78 5299.94 5897.56 23499.86 5399.80 56
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
DELS-MVS99.48 2299.42 1899.65 7599.72 8999.40 10499.05 28299.66 2799.14 799.57 10199.80 8698.46 8699.94 5899.57 899.84 6899.60 139
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
WTY-MVS99.06 10398.88 10899.61 8599.62 13599.16 12899.37 20399.56 5898.04 13899.53 10999.62 19396.84 14599.94 5898.85 9698.49 20699.72 96
DeepC-MVS98.35 299.30 5999.19 6699.64 8099.82 3999.23 12199.62 7699.55 6798.94 4199.63 8499.95 295.82 18299.94 5899.37 2999.97 599.73 90
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
LS3D99.27 6499.12 7299.74 5999.18 25199.75 4399.56 11099.57 5398.45 8199.49 11799.85 3897.77 11799.94 5898.33 16799.84 6899.52 158
xxxxxxxxxxxxxcwj99.43 3799.32 3699.75 5499.76 5799.59 7399.14 26599.53 8799.00 2899.71 5599.80 8698.95 3299.93 7398.19 17699.84 6899.74 83
SF-MVS99.38 5199.24 6199.79 4699.79 4699.68 5499.57 10499.54 7697.82 16199.71 5599.80 8698.95 3299.93 7398.19 17699.84 6899.74 83
dcpmvs_299.23 7199.58 298.16 28399.83 3794.68 34399.76 3599.52 9399.07 1899.98 199.88 2398.56 7799.93 7399.67 399.98 299.87 13
Anonymous2024052998.09 19797.68 23199.34 13399.66 11998.44 21799.40 19199.43 20593.67 34399.22 18599.89 1790.23 32899.93 7399.26 4798.33 20999.66 118
ACMMP_NAP99.47 2599.34 3299.88 699.87 1699.86 1399.47 16099.48 14898.05 13799.76 4399.86 3398.82 4899.93 7398.82 10699.91 1899.84 22
EI-MVSNet-UG-set99.58 599.57 399.64 8099.78 4899.14 13499.60 8399.45 18899.01 2499.90 499.83 5198.98 2799.93 7399.59 699.95 899.86 15
Regformer-199.53 1299.47 1499.72 6499.71 9599.44 9899.49 15099.46 17698.95 4099.83 2099.76 11899.01 1999.93 7399.17 5499.87 4299.80 56
无先验98.99 29899.51 10796.89 25199.93 7397.53 23799.72 96
112199.09 9998.87 10999.75 5499.74 7699.60 7099.27 23499.48 14896.82 25799.25 17999.65 17598.38 9399.93 7397.53 23799.67 12599.73 90
VDDNet97.55 27497.02 29099.16 16199.49 17398.12 23299.38 20099.30 27195.35 32299.68 6299.90 1382.62 36799.93 7399.31 3898.13 22499.42 182
ab-mvs98.86 12598.63 14199.54 9699.64 12699.19 12399.44 16899.54 7697.77 16599.30 16599.81 7194.20 24499.93 7399.17 5498.82 19099.49 168
F-COLMAP99.19 7499.04 8299.64 8099.78 4899.27 11799.42 18199.54 7697.29 21499.41 13499.59 20398.42 9199.93 7398.19 17699.69 11899.73 90
ETH3D cwj APD-0.1699.06 10398.84 11699.72 6499.51 16199.60 7099.23 24899.44 19797.04 23999.39 14299.67 16898.30 9899.92 8597.27 25399.69 11899.64 129
Anonymous20240521198.30 17897.98 19899.26 15199.57 14998.16 22899.41 18398.55 34996.03 31599.19 19499.74 12991.87 30099.92 8599.16 5698.29 21499.70 105
EI-MVSNet-Vis-set99.58 599.56 599.64 8099.78 4899.15 13399.61 8299.45 18899.01 2499.89 599.82 5899.01 1999.92 8599.56 999.95 899.85 18
VDD-MVS97.73 25697.35 27098.88 20599.47 18297.12 26999.34 21698.85 33098.19 11099.67 6899.85 3882.98 36599.92 8599.49 1798.32 21399.60 139
VNet99.11 9598.90 10599.73 6199.52 15999.56 7899.41 18399.39 22399.01 2499.74 4799.78 10595.56 19099.92 8599.52 1198.18 22099.72 96
XVG-OURS-SEG-HR98.69 15198.62 14698.89 20299.71 9597.74 25099.12 26799.54 7698.44 8499.42 13099.71 14194.20 24499.92 8598.54 14898.90 18699.00 218
HPM-MVS_fast99.51 1599.40 2199.85 2899.91 199.79 3399.76 3599.56 5897.72 17199.76 4399.75 12399.13 1299.92 8599.07 6599.92 1399.85 18
HY-MVS97.30 798.85 13398.64 14099.47 11999.42 19099.08 14099.62 7699.36 23897.39 20799.28 16999.68 16296.44 16199.92 8598.37 16398.22 21599.40 186
DP-MVS99.16 8098.95 10099.78 4899.77 5499.53 8599.41 18399.50 12897.03 24199.04 22199.88 2397.39 12499.92 8598.66 12599.90 2599.87 13
IB-MVS95.67 1896.22 30795.44 31798.57 24199.21 24496.70 29598.65 33997.74 36296.71 26197.27 33698.54 34786.03 35899.92 8598.47 15486.30 36199.10 202
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
DeepC-MVS_fast98.69 199.49 1799.39 2299.77 5099.63 12999.59 7399.36 20799.46 17699.07 1899.79 3099.82 5898.85 4599.92 8598.68 12299.87 4299.82 40
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ETH3 D test640098.70 14898.35 16799.73 6199.69 10599.60 7099.16 25999.45 18895.42 32199.27 17299.60 20097.39 12499.91 9695.36 31999.83 7799.70 105
9.1499.10 7499.72 8999.40 19199.51 10797.53 19199.64 8399.78 10598.84 4699.91 9697.63 22599.82 83
ETH3D-3000-0.199.21 7299.02 8799.77 5099.73 8499.69 5299.38 20099.51 10797.45 19899.61 9099.75 12398.51 8299.91 9697.45 24699.83 7799.71 103
SMA-MVScopyleft99.44 3399.30 4699.85 2899.73 8499.83 1799.56 11099.47 16697.45 19899.78 3599.82 5899.18 1099.91 9698.79 10799.89 3599.81 46
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
TEST999.67 11099.65 6299.05 28299.41 21096.22 29998.95 23599.49 23898.77 5599.91 96
train_agg99.02 10998.77 12499.77 5099.67 11099.65 6299.05 28299.41 21096.28 29298.95 23599.49 23898.76 5799.91 9697.63 22599.72 11299.75 78
test_899.67 11099.61 6899.03 28899.41 21096.28 29298.93 24099.48 24498.76 5799.91 96
agg_prior199.01 11298.76 12699.76 5399.67 11099.62 6698.99 29899.40 21996.26 29598.87 24999.49 23898.77 5599.91 9697.69 22299.72 11299.75 78
agg_prior99.67 11099.62 6699.40 21998.87 24999.91 96
Regformer-399.57 899.53 799.68 6899.76 5799.29 11499.58 9899.44 19799.01 2499.87 1299.80 8698.97 2899.91 9699.44 2499.92 1399.83 33
原ACMM199.65 7599.73 8499.33 10799.47 16697.46 19599.12 20499.66 17498.67 7099.91 9697.70 22199.69 11899.71 103
LFMVS97.90 22797.35 27099.54 9699.52 15999.01 14899.39 19598.24 35397.10 23499.65 7999.79 9884.79 36299.91 9699.28 4398.38 20899.69 108
XVG-OURS98.73 14698.68 13498.88 20599.70 10297.73 25198.92 31399.55 6798.52 7599.45 12299.84 4795.27 19999.91 9698.08 18898.84 18999.00 218
PLCcopyleft97.94 499.02 10998.85 11599.53 10499.66 11999.01 14899.24 24799.52 9396.85 25399.27 17299.48 24498.25 10199.91 9697.76 21299.62 13299.65 122
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
PCF-MVS97.08 1497.66 26997.06 28999.47 11999.61 13999.09 13998.04 36499.25 28391.24 35798.51 29499.70 14594.55 23399.91 9692.76 35099.85 6099.42 182
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
MCST-MVS99.43 3799.30 4699.82 3899.79 4699.74 4699.29 22799.40 21998.79 5799.52 11199.62 19398.91 4099.90 11198.64 12799.75 10599.82 40
CDPH-MVS99.13 8498.91 10499.80 4399.75 6899.71 4999.15 26399.41 21096.60 27299.60 9499.55 21698.83 4799.90 11197.48 24199.83 7799.78 70
NCCC99.34 5599.19 6699.79 4699.61 13999.65 6299.30 22399.48 14898.86 4899.21 18899.63 18898.72 6499.90 11198.25 17299.63 13199.80 56
114514_t98.93 11898.67 13599.72 6499.85 2699.53 8599.62 7699.59 4492.65 35299.71 5599.78 10598.06 11099.90 11198.84 9999.91 1899.74 83
1112_ss98.98 11498.77 12499.59 8799.68 10999.02 14699.25 24599.48 14897.23 22199.13 20299.58 20696.93 14499.90 11198.87 8998.78 19399.84 22
PHI-MVS99.30 5999.17 6899.70 6799.56 15399.52 8899.58 9899.80 897.12 23099.62 8899.73 13698.58 7599.90 11198.61 13299.91 1899.68 112
AdaColmapbinary99.01 11298.80 12199.66 7199.56 15399.54 8299.18 25799.70 1598.18 11499.35 15599.63 18896.32 16499.90 11197.48 24199.77 10199.55 150
COLMAP_ROBcopyleft97.56 698.86 12598.75 12799.17 16099.88 1298.53 20499.34 21699.59 4497.55 18798.70 27499.89 1795.83 18199.90 11198.10 18399.90 2599.08 207
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
thisisatest053098.35 17498.03 19399.31 13999.63 12998.56 20199.54 12396.75 36997.53 19199.73 4999.65 17591.25 31699.89 11998.62 12999.56 13599.48 169
tttt051798.42 16798.14 17999.28 14999.66 11998.38 22199.74 4096.85 36797.68 17599.79 3099.74 12991.39 31399.89 11998.83 10299.56 13599.57 148
test1299.75 5499.64 12699.61 6899.29 27699.21 18898.38 9399.89 11999.74 10899.74 83
Test_1112_low_res98.89 12198.66 13899.57 9299.69 10598.95 16199.03 28899.47 16696.98 24399.15 20099.23 30496.77 14999.89 11998.83 10298.78 19399.86 15
CNLPA99.14 8298.99 9299.59 8799.58 14799.41 10299.16 25999.44 19798.45 8199.19 19499.49 23898.08 10999.89 11997.73 21699.75 10599.48 169
diffmvs99.14 8299.02 8799.51 11299.61 13998.96 15799.28 22999.49 13698.46 8099.72 5499.71 14196.50 15899.88 12499.31 3899.11 16699.67 115
PVSNet_BlendedMVS98.86 12598.80 12199.03 17399.76 5798.79 18299.28 22999.91 397.42 20499.67 6899.37 27397.53 12199.88 12498.98 7397.29 26598.42 327
PVSNet_Blended99.08 10198.97 9699.42 12799.76 5798.79 18298.78 32799.91 396.74 25999.67 6899.49 23897.53 12199.88 12498.98 7399.85 6099.60 139
MVS97.28 28896.55 29799.48 11698.78 31698.95 16199.27 23499.39 22383.53 36798.08 31699.54 22196.97 14299.87 12794.23 33399.16 16199.63 133
MG-MVS99.13 8499.02 8799.45 12299.57 14998.63 19599.07 27799.34 24798.99 3199.61 9099.82 5897.98 11299.87 12797.00 27199.80 9099.85 18
MSDG98.98 11498.80 12199.53 10499.76 5799.19 12398.75 33099.55 6797.25 21899.47 11999.77 11297.82 11599.87 12796.93 27899.90 2599.54 152
ETV-MVS99.26 6699.21 6499.40 12899.46 18399.30 11299.56 11099.52 9398.52 7599.44 12699.27 29998.41 9299.86 13099.10 6199.59 13499.04 214
thisisatest051598.14 19297.79 21699.19 15899.50 17198.50 21198.61 34196.82 36896.95 24799.54 10799.43 25591.66 30999.86 13098.08 18899.51 13999.22 197
thres600view797.86 23297.51 24798.92 19299.72 8997.95 24199.59 9098.74 33897.94 14599.27 17298.62 34491.75 30399.86 13093.73 33898.19 21998.96 224
lupinMVS99.13 8499.01 9199.46 12199.51 16198.94 16499.05 28299.16 29697.86 15199.80 2899.56 21397.39 12499.86 13098.94 7799.85 6099.58 147
PVSNet96.02 1798.85 13398.84 11698.89 20299.73 8497.28 26298.32 35799.60 4197.86 15199.50 11499.57 21096.75 15099.86 13098.56 14399.70 11799.54 152
MAR-MVS98.86 12598.63 14199.54 9699.37 20499.66 5999.45 16499.54 7696.61 27099.01 22499.40 26597.09 13699.86 13097.68 22499.53 13899.10 202
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
test250696.81 29796.65 29597.29 32599.74 7692.21 36599.60 8385.06 38499.13 899.77 3899.93 487.82 35499.85 13699.38 2799.38 14499.80 56
AllTest98.87 12298.72 12899.31 13999.86 2298.48 21499.56 11099.61 3697.85 15399.36 15299.85 3895.95 17499.85 13696.66 29299.83 7799.59 143
TestCases99.31 13999.86 2298.48 21499.61 3697.85 15399.36 15299.85 3895.95 17499.85 13696.66 29299.83 7799.59 143
jason99.13 8499.03 8499.45 12299.46 18398.87 17199.12 26799.26 28198.03 14099.79 3099.65 17597.02 13999.85 13699.02 7099.90 2599.65 122
jason: jason.
CNVR-MVS99.42 4299.30 4699.78 4899.62 13599.71 4999.26 24399.52 9398.82 5299.39 14299.71 14198.96 2999.85 13698.59 13799.80 9099.77 72
PAPM_NR99.04 10698.84 11699.66 7199.74 7699.44 9899.39 19599.38 22997.70 17399.28 16999.28 29698.34 9699.85 13696.96 27599.45 14099.69 108
test111198.04 20698.11 18297.83 30599.74 7693.82 35299.58 9895.40 37499.12 1099.65 7999.93 490.73 32199.84 14299.43 2599.38 14499.82 40
ECVR-MVScopyleft98.04 20698.05 19198.00 29599.74 7694.37 34799.59 9094.98 37599.13 899.66 7399.93 490.67 32299.84 14299.40 2699.38 14499.80 56
test_yl98.86 12598.63 14199.54 9699.49 17399.18 12599.50 14099.07 30798.22 10699.61 9099.51 23295.37 19599.84 14298.60 13598.33 20999.59 143
DCV-MVSNet98.86 12598.63 14199.54 9699.49 17399.18 12599.50 14099.07 30798.22 10699.61 9099.51 23295.37 19599.84 14298.60 13598.33 20999.59 143
Fast-Effi-MVS+98.70 14898.43 16299.51 11299.51 16199.28 11599.52 12999.47 16696.11 31099.01 22499.34 28296.20 16899.84 14297.88 20198.82 19099.39 187
TSAR-MVS + GP.99.36 5399.36 2799.36 13299.67 11098.61 19899.07 27799.33 25499.00 2899.82 2399.81 7199.06 1699.84 14299.09 6299.42 14299.65 122
tpmrst98.33 17598.48 16097.90 30199.16 25994.78 34199.31 22199.11 30197.27 21699.45 12299.59 20395.33 19799.84 14298.48 15198.61 19699.09 206
Vis-MVSNetpermissive99.12 9098.97 9699.56 9499.78 4899.10 13899.68 5199.66 2798.49 7799.86 1399.87 2994.77 22199.84 14299.19 5199.41 14399.74 83
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
PAPR98.63 15898.34 16899.51 11299.40 19899.03 14598.80 32599.36 23896.33 28999.00 22999.12 31898.46 8699.84 14295.23 32199.37 15199.66 118
PatchMatch-RL98.84 13698.62 14699.52 11099.71 9599.28 11599.06 28099.77 997.74 17099.50 11499.53 22595.41 19499.84 14297.17 26499.64 12999.44 180
EPP-MVSNet99.13 8498.99 9299.53 10499.65 12499.06 14399.81 2099.33 25497.43 20299.60 9499.88 2397.14 13399.84 14299.13 5898.94 18199.69 108
thres100view90097.76 24897.45 25498.69 23299.72 8997.86 24699.59 9098.74 33897.93 14699.26 17798.62 34491.75 30399.83 15393.22 34398.18 22098.37 333
tfpn200view997.72 25897.38 26698.72 23099.69 10597.96 23999.50 14098.73 34397.83 15699.17 19898.45 34991.67 30799.83 15393.22 34398.18 22098.37 333
test_prior399.21 7299.05 7999.68 6899.67 11099.48 9398.96 30699.56 5898.34 9399.01 22499.52 22898.68 6799.83 15397.96 19599.74 10899.74 83
test_prior99.68 6899.67 11099.48 9399.56 5899.83 15399.74 83
131498.68 15398.54 15799.11 16598.89 30098.65 19399.27 23499.49 13696.89 25197.99 32199.56 21397.72 11999.83 15397.74 21599.27 15598.84 231
thres40097.77 24797.38 26698.92 19299.69 10597.96 23999.50 14098.73 34397.83 15699.17 19898.45 34991.67 30799.83 15393.22 34398.18 22098.96 224
casdiffmvs99.13 8498.98 9599.56 9499.65 12499.16 12899.56 11099.50 12898.33 9699.41 13499.86 3395.92 17799.83 15399.45 2299.16 16199.70 105
CS-MVS-test99.49 1799.48 1299.54 9699.78 4899.30 11299.89 299.58 5098.56 7199.73 4999.69 15498.55 7899.82 16099.69 199.85 6099.48 169
MVS_Test99.10 9898.97 9699.48 11699.49 17399.14 13499.67 5399.34 24797.31 21299.58 9999.76 11897.65 12099.82 16098.87 8999.07 17299.46 177
dp97.75 25297.80 21597.59 31699.10 26993.71 35599.32 21998.88 32896.48 28199.08 21499.55 21692.67 28399.82 16096.52 29498.58 19999.24 196
RPSCF98.22 18298.62 14696.99 33099.82 3991.58 36799.72 4199.44 19796.61 27099.66 7399.89 1795.92 17799.82 16097.46 24499.10 16999.57 148
PMMVS98.80 14098.62 14699.34 13399.27 23198.70 18998.76 32999.31 26797.34 20999.21 18899.07 32097.20 13299.82 16098.56 14398.87 18799.52 158
EIA-MVS99.18 7699.09 7699.45 12299.49 17399.18 12599.67 5399.53 8797.66 17899.40 13999.44 25398.10 10899.81 16598.94 7799.62 13299.35 189
Effi-MVS+98.81 13798.59 15399.48 11699.46 18399.12 13798.08 36399.50 12897.50 19499.38 14699.41 26296.37 16399.81 16599.11 6098.54 20399.51 164
thres20097.61 27297.28 27998.62 23599.64 12698.03 23399.26 24398.74 33897.68 17599.09 21398.32 35391.66 30999.81 16592.88 34798.22 21598.03 347
tpmvs97.98 21798.02 19597.84 30499.04 28194.73 34299.31 22199.20 29196.10 31498.76 26499.42 25894.94 20799.81 16596.97 27498.45 20798.97 222
DeepPCF-MVS98.18 398.81 13799.37 2597.12 32999.60 14391.75 36698.61 34199.44 19799.35 199.83 2099.85 3898.70 6699.81 16599.02 7099.91 1899.81 46
DPM-MVS98.95 11798.71 13099.66 7199.63 12999.55 8098.64 34099.10 30297.93 14699.42 13099.55 21698.67 7099.80 17095.80 30899.68 12399.61 137
DP-MVS Recon99.12 9098.95 10099.65 7599.74 7699.70 5199.27 23499.57 5396.40 28899.42 13099.68 16298.75 6099.80 17097.98 19499.72 11299.44 180
MVS_111021_LR99.41 4699.33 3499.65 7599.77 5499.51 9098.94 31299.85 698.82 5299.65 7999.74 12998.51 8299.80 17098.83 10299.89 3599.64 129
CS-MVS99.50 1699.48 1299.54 9699.76 5799.42 10099.90 199.55 6798.56 7199.78 3599.70 14598.65 7299.79 17399.65 499.78 9799.41 184
Fast-Effi-MVS+-dtu98.77 14398.83 12098.60 23699.41 19396.99 28399.52 12999.49 13698.11 12499.24 18099.34 28296.96 14399.79 17397.95 19799.45 14099.02 217
baseline198.31 17697.95 20299.38 13199.50 17198.74 18599.59 9098.93 31998.41 8599.14 20199.60 20094.59 23099.79 17398.48 15193.29 34099.61 137
baseline99.15 8199.02 8799.53 10499.66 11999.14 13499.72 4199.48 14898.35 9299.42 13099.84 4796.07 17099.79 17399.51 1299.14 16499.67 115
PVSNet_094.43 1996.09 31295.47 31597.94 29899.31 22194.34 34997.81 36599.70 1597.12 23097.46 33298.75 34189.71 33399.79 17397.69 22281.69 36799.68 112
API-MVS99.04 10699.03 8499.06 16999.40 19899.31 11199.55 11999.56 5898.54 7399.33 16099.39 26998.76 5799.78 17896.98 27399.78 9798.07 344
OMC-MVS99.08 10199.04 8299.20 15799.67 11098.22 22699.28 22999.52 9398.07 13299.66 7399.81 7197.79 11699.78 17897.79 20999.81 8699.60 139
GeoE98.85 13398.62 14699.53 10499.61 13999.08 14099.80 2499.51 10797.10 23499.31 16399.78 10595.23 20399.77 18098.21 17499.03 17599.75 78
alignmvs98.81 13798.56 15699.58 9099.43 18999.42 10099.51 13498.96 31798.61 6899.35 15598.92 33594.78 21899.77 18099.35 3198.11 22599.54 152
tpm cat197.39 28597.36 26897.50 32099.17 25793.73 35499.43 17499.31 26791.27 35698.71 26899.08 31994.31 24299.77 18096.41 29898.50 20599.00 218
CostFormer97.72 25897.73 22797.71 31299.15 26294.02 35199.54 12399.02 31194.67 33499.04 22199.35 27992.35 29599.77 18098.50 15097.94 22899.34 191
test_241102_ONE99.84 3399.90 299.48 14899.07 1899.91 299.74 12999.20 799.76 184
MDTV_nov1_ep1398.32 17099.11 26694.44 34699.27 23498.74 33897.51 19399.40 13999.62 19394.78 21899.76 18497.59 22898.81 192
canonicalmvs99.02 10998.86 11499.51 11299.42 19099.32 10899.80 2499.48 14898.63 6699.31 16398.81 33897.09 13699.75 18699.27 4697.90 22999.47 175
Effi-MVS+-dtu98.78 14198.89 10798.47 25599.33 21396.91 28999.57 10499.30 27198.47 7899.41 13498.99 32996.78 14799.74 18798.73 11399.38 14498.74 247
patchmatchnet-post98.70 34294.79 21799.74 187
SCA98.19 18698.16 17798.27 27899.30 22295.55 32399.07 27798.97 31597.57 18599.43 12799.57 21092.72 27899.74 18797.58 22999.20 15999.52 158
BH-untuned98.42 16798.36 16598.59 23799.49 17396.70 29599.27 23499.13 30097.24 22098.80 25999.38 27095.75 18499.74 18797.07 26999.16 16199.33 192
BH-RMVSNet98.41 16998.08 18799.40 12899.41 19398.83 17899.30 22398.77 33497.70 17398.94 23899.65 17592.91 27399.74 18796.52 29499.55 13799.64 129
MVS_111021_HR99.41 4699.32 3699.66 7199.72 8999.47 9598.95 31099.85 698.82 5299.54 10799.73 13698.51 8299.74 18798.91 8299.88 3899.77 72
test_post65.99 37894.65 22999.73 193
XVG-ACMP-BASELINE97.83 23897.71 22998.20 28099.11 26696.33 30899.41 18399.52 9398.06 13699.05 22099.50 23589.64 33599.73 19397.73 21697.38 26398.53 314
HyFIR lowres test99.11 9598.92 10299.65 7599.90 499.37 10599.02 29199.91 397.67 17799.59 9799.75 12395.90 17999.73 19399.53 1099.02 17799.86 15
DeepMVS_CXcopyleft93.34 34799.29 22682.27 37399.22 28785.15 36596.33 34999.05 32390.97 31999.73 19393.57 34097.77 23298.01 348
Patchmatch-test97.93 22297.65 23498.77 22799.18 25197.07 27499.03 28899.14 29996.16 30598.74 26599.57 21094.56 23299.72 19793.36 34299.11 16699.52 158
LPG-MVS_test98.22 18298.13 18098.49 24999.33 21397.05 27699.58 9899.55 6797.46 19599.24 18099.83 5192.58 28599.72 19798.09 18497.51 24698.68 267
LGP-MVS_train98.49 24999.33 21397.05 27699.55 6797.46 19599.24 18099.83 5192.58 28599.72 19798.09 18497.51 24698.68 267
BH-w/o98.00 21597.89 21198.32 27199.35 20796.20 31299.01 29698.90 32696.42 28698.38 30399.00 32895.26 20199.72 19796.06 30298.61 19699.03 215
ACMP97.20 1198.06 20097.94 20498.45 25799.37 20497.01 28199.44 16899.49 13697.54 19098.45 29899.79 9891.95 29999.72 19797.91 19997.49 25198.62 297
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
LTVRE_ROB97.16 1298.02 21097.90 20798.40 26499.23 23996.80 29399.70 4499.60 4197.12 23098.18 31399.70 14591.73 30599.72 19798.39 15997.45 25498.68 267
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
test_post199.23 24865.14 37994.18 24799.71 20397.58 229
ADS-MVSNet98.20 18598.08 18798.56 24399.33 21396.48 30399.23 24899.15 29796.24 29799.10 20999.67 16894.11 24899.71 20396.81 28399.05 17399.48 169
JIA-IIPM97.50 27997.02 29098.93 19098.73 32297.80 24899.30 22398.97 31591.73 35598.91 24294.86 36895.10 20599.71 20397.58 22997.98 22799.28 195
EPMVS97.82 24197.65 23498.35 26898.88 30195.98 31599.49 15094.71 37797.57 18599.26 17799.48 24492.46 29299.71 20397.87 20299.08 17199.35 189
TDRefinement95.42 31894.57 32497.97 29789.83 37796.11 31499.48 15598.75 33596.74 25996.68 34699.88 2388.65 34399.71 20398.37 16382.74 36698.09 343
ACMM97.58 598.37 17398.34 16898.48 25199.41 19397.10 27099.56 11099.45 18898.53 7499.04 22199.85 3893.00 26999.71 20398.74 11197.45 25498.64 286
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CHOSEN 280x42099.12 9099.13 7199.08 16699.66 11997.89 24398.43 35199.71 1398.88 4799.62 8899.76 11896.63 15399.70 20999.46 2199.99 199.66 118
DROMVSNet99.44 3399.39 2299.58 9099.56 15399.49 9199.88 499.58 5098.38 8799.73 4999.69 15498.20 10399.70 20999.64 599.82 8399.54 152
PatchmatchNetpermissive98.31 17698.36 16598.19 28199.16 25995.32 33199.27 23498.92 32197.37 20899.37 14899.58 20694.90 21199.70 20997.43 24899.21 15899.54 152
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
ACMH97.28 898.10 19697.99 19798.44 26099.41 19396.96 28799.60 8399.56 5898.09 12798.15 31499.91 1090.87 32099.70 20998.88 8597.45 25498.67 274
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
HQP_MVS98.27 18198.22 17698.44 26099.29 22696.97 28599.39 19599.47 16698.97 3799.11 20699.61 19792.71 28099.69 21397.78 21097.63 23498.67 274
plane_prior599.47 16699.69 21397.78 21097.63 23498.67 274
D2MVS98.41 16998.50 15898.15 28699.26 23396.62 29999.40 19199.61 3697.71 17298.98 23199.36 27696.04 17199.67 21598.70 11797.41 25998.15 342
IS-MVSNet99.05 10598.87 10999.57 9299.73 8499.32 10899.75 3799.20 29198.02 14199.56 10299.86 3396.54 15799.67 21598.09 18499.13 16599.73 90
CLD-MVS98.16 19098.10 18398.33 26999.29 22696.82 29298.75 33099.44 19797.83 15699.13 20299.55 21692.92 27199.67 21598.32 16997.69 23398.48 318
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
AUN-MVS96.88 29596.31 30198.59 23799.48 18197.04 27999.27 23499.22 28797.44 20198.51 29499.41 26291.97 29899.66 21897.71 21983.83 36499.07 212
UniMVSNet_ETH3D97.32 28796.81 29398.87 20999.40 19897.46 25899.51 13499.53 8795.86 31798.54 29399.77 11282.44 36899.66 21898.68 12297.52 24499.50 167
OPM-MVS98.19 18698.10 18398.45 25798.88 30197.07 27499.28 22999.38 22998.57 7099.22 18599.81 7192.12 29699.66 21898.08 18897.54 24398.61 306
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
ACMH+97.24 1097.92 22597.78 21998.32 27199.46 18396.68 29799.56 11099.54 7698.41 8597.79 32899.87 2990.18 32999.66 21898.05 19297.18 27098.62 297
hse-mvs297.50 27997.14 28698.59 23799.49 17397.05 27699.28 22999.22 28798.94 4199.66 7399.42 25894.93 20899.65 22299.48 1883.80 36599.08 207
VPA-MVSNet98.29 17997.95 20299.30 14399.16 25999.54 8299.50 14099.58 5098.27 10199.35 15599.37 27392.53 28799.65 22299.35 3194.46 32498.72 251
TR-MVS97.76 24897.41 26498.82 22099.06 27797.87 24498.87 31998.56 34896.63 26998.68 27699.22 30592.49 28899.65 22295.40 31797.79 23198.95 227
gm-plane-assit98.54 34192.96 36194.65 33599.15 31399.64 22597.56 234
HQP4-MVS98.66 27799.64 22598.64 286
HQP-MVS98.02 21097.90 20798.37 26799.19 24896.83 29098.98 30299.39 22398.24 10298.66 27799.40 26592.47 28999.64 22597.19 26197.58 23998.64 286
PAPM97.59 27397.09 28899.07 16899.06 27798.26 22598.30 35899.10 30294.88 33098.08 31699.34 28296.27 16699.64 22589.87 35998.92 18499.31 193
TAPA-MVS97.07 1597.74 25597.34 27398.94 18899.70 10297.53 25699.25 24599.51 10791.90 35499.30 16599.63 18898.78 5299.64 22588.09 36699.87 4299.65 122
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
XXY-MVS98.38 17298.09 18699.24 15499.26 23399.32 10899.56 11099.55 6797.45 19898.71 26899.83 5193.23 26599.63 23098.88 8596.32 28598.76 242
ITE_SJBPF98.08 28899.29 22696.37 30698.92 32198.34 9398.83 25599.75 12391.09 31799.62 23195.82 30697.40 26098.25 338
LF4IMVS97.52 27697.46 25397.70 31398.98 29095.55 32399.29 22798.82 33398.07 13298.66 27799.64 18289.97 33099.61 23297.01 27096.68 27597.94 354
tpm97.67 26897.55 24198.03 29099.02 28395.01 33799.43 17498.54 35096.44 28499.12 20499.34 28291.83 30299.60 23397.75 21496.46 28199.48 169
tpm297.44 28497.34 27397.74 31199.15 26294.36 34899.45 16498.94 31893.45 34898.90 24499.44 25391.35 31499.59 23497.31 25198.07 22699.29 194
baseline297.87 23097.55 24198.82 22099.18 25198.02 23499.41 18396.58 37196.97 24496.51 34799.17 31093.43 26299.57 23597.71 21999.03 17598.86 229
MS-PatchMatch97.24 29097.32 27696.99 33098.45 34493.51 35998.82 32399.32 26497.41 20598.13 31599.30 29288.99 33999.56 23695.68 31199.80 9097.90 357
TinyColmap97.12 29296.89 29297.83 30599.07 27495.52 32698.57 34498.74 33897.58 18497.81 32799.79 9888.16 34999.56 23695.10 32297.21 26898.39 331
USDC97.34 28697.20 28497.75 31099.07 27495.20 33398.51 34899.04 31097.99 14298.31 30799.86 3389.02 33899.55 23895.67 31297.36 26498.49 317
MSLP-MVS++99.46 2799.47 1499.44 12699.60 14399.16 12899.41 18399.71 1398.98 3499.45 12299.78 10599.19 999.54 23999.28 4399.84 6899.63 133
TAMVS99.12 9099.08 7799.24 15499.46 18398.55 20299.51 13499.46 17698.09 12799.45 12299.82 5898.34 9699.51 24098.70 11798.93 18299.67 115
EPNet_dtu98.03 20897.96 20098.23 27998.27 34695.54 32599.23 24898.75 33599.02 2197.82 32699.71 14196.11 16999.48 24193.04 34699.65 12899.69 108
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test_part197.75 25297.24 28399.29 14699.59 14599.63 6599.65 6599.49 13696.17 30398.44 29999.69 15489.80 33299.47 24298.68 12293.66 33698.78 235
EG-PatchMatch MVS95.97 31395.69 31396.81 33697.78 35392.79 36299.16 25998.93 31996.16 30594.08 36099.22 30582.72 36699.47 24295.67 31297.50 24898.17 341
MVP-Stereo97.81 24397.75 22597.99 29697.53 35596.60 30098.96 30698.85 33097.22 22297.23 33799.36 27695.28 19899.46 24495.51 31499.78 9797.92 356
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
CVMVSNet98.57 16098.67 13598.30 27399.35 20795.59 32299.50 14099.55 6798.60 6999.39 14299.83 5194.48 23699.45 24598.75 11098.56 20299.85 18
test-LLR98.06 20097.90 20798.55 24598.79 31397.10 27098.67 33697.75 36097.34 20998.61 28898.85 33694.45 23799.45 24597.25 25599.38 14499.10 202
TESTMET0.1,197.55 27497.27 28298.40 26498.93 29596.53 30198.67 33697.61 36396.96 24598.64 28499.28 29688.63 34499.45 24597.30 25299.38 14499.21 198
test-mter97.49 28297.13 28798.55 24598.79 31397.10 27098.67 33697.75 36096.65 26698.61 28898.85 33688.23 34899.45 24597.25 25599.38 14499.10 202
mvs_anonymous99.03 10898.99 9299.16 16199.38 20298.52 20899.51 13499.38 22997.79 16399.38 14699.81 7197.30 12999.45 24599.35 3198.99 17999.51 164
tfpnnormal97.84 23697.47 25198.98 18199.20 24699.22 12299.64 6899.61 3696.32 29098.27 31099.70 14593.35 26499.44 25095.69 31095.40 30898.27 336
v7n97.87 23097.52 24598.92 19298.76 32098.58 20099.84 1499.46 17696.20 30098.91 24299.70 14594.89 21299.44 25096.03 30393.89 33498.75 244
jajsoiax98.43 16698.28 17398.88 20598.60 33798.43 21899.82 1899.53 8798.19 11098.63 28599.80 8693.22 26799.44 25099.22 4997.50 24898.77 240
mvs_tets98.40 17198.23 17598.91 19798.67 33098.51 21099.66 5799.53 8798.19 11098.65 28399.81 7192.75 27599.44 25099.31 3897.48 25298.77 240
Vis-MVSNet (Re-imp)98.87 12298.72 12899.31 13999.71 9598.88 17099.80 2499.44 19797.91 14899.36 15299.78 10595.49 19399.43 25497.91 19999.11 16699.62 135
OPU-MVS99.64 8099.56 15399.72 4799.60 8399.70 14599.27 599.42 25598.24 17399.80 9099.79 62
Anonymous2023121197.88 22897.54 24498.90 19999.71 9598.53 20499.48 15599.57 5394.16 33998.81 25799.68 16293.23 26599.42 25598.84 9994.42 32698.76 242
MVS_030496.79 29896.52 29897.59 31699.22 24294.92 34099.04 28799.59 4496.49 27798.43 30098.99 32980.48 37199.39 25797.15 26599.27 15598.47 320
VPNet97.84 23697.44 25999.01 17599.21 24498.94 16499.48 15599.57 5398.38 8799.28 16999.73 13688.89 34099.39 25799.19 5193.27 34198.71 253
iter_conf_final98.71 14798.61 15298.99 17999.49 17398.96 15799.63 7099.41 21098.19 11099.39 14299.77 11294.82 21499.38 25999.30 4197.52 24498.64 286
nrg03098.64 15798.42 16399.28 14999.05 28099.69 5299.81 2099.46 17698.04 13899.01 22499.82 5896.69 15299.38 25999.34 3594.59 32398.78 235
iter_conf0598.55 16198.44 16198.87 20999.34 21198.60 19999.55 11999.42 20798.21 10899.37 14899.77 11293.55 26199.38 25999.30 4197.48 25298.63 294
GA-MVS97.85 23397.47 25199.00 17799.38 20297.99 23698.57 34499.15 29797.04 23998.90 24499.30 29289.83 33199.38 25996.70 28998.33 20999.62 135
UniMVSNet (Re)98.29 17998.00 19699.13 16499.00 28699.36 10699.49 15099.51 10797.95 14498.97 23399.13 31596.30 16599.38 25998.36 16593.34 33998.66 282
FIs98.78 14198.63 14199.23 15699.18 25199.54 8299.83 1799.59 4498.28 9998.79 26199.81 7196.75 15099.37 26499.08 6496.38 28398.78 235
PS-MVSNAJss98.92 11998.92 10298.90 19998.78 31698.53 20499.78 3099.54 7698.07 13299.00 22999.76 11899.01 1999.37 26499.13 5897.23 26798.81 232
CDS-MVSNet99.09 9999.03 8499.25 15299.42 19098.73 18699.45 16499.46 17698.11 12499.46 12199.77 11298.01 11199.37 26498.70 11798.92 18499.66 118
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MVS-HIRNet95.75 31595.16 31997.51 31999.30 22293.69 35698.88 31795.78 37285.09 36698.78 26292.65 37091.29 31599.37 26494.85 32699.85 6099.46 177
v119297.81 24397.44 25998.91 19798.88 30198.68 19099.51 13499.34 24796.18 30299.20 19199.34 28294.03 25199.36 26895.32 32095.18 31298.69 262
EI-MVSNet98.67 15498.67 13598.68 23399.35 20797.97 23799.50 14099.38 22996.93 25099.20 19199.83 5197.87 11399.36 26898.38 16197.56 24198.71 253
MVSTER98.49 16298.32 17099.00 17799.35 20799.02 14699.54 12399.38 22997.41 20599.20 19199.73 13693.86 25699.36 26898.87 8997.56 24198.62 297
gg-mvs-nofinetune96.17 31095.32 31898.73 22998.79 31398.14 23099.38 20094.09 37891.07 35998.07 31991.04 37389.62 33699.35 27196.75 28599.09 17098.68 267
pm-mvs197.68 26597.28 27998.88 20599.06 27798.62 19699.50 14099.45 18896.32 29097.87 32499.79 9892.47 28999.35 27197.54 23693.54 33898.67 274
OurMVSNet-221017-097.88 22897.77 22198.19 28198.71 32696.53 30199.88 499.00 31297.79 16398.78 26299.94 391.68 30699.35 27197.21 25796.99 27498.69 262
EGC-MVSNET82.80 33877.86 34497.62 31497.91 35096.12 31399.33 21899.28 2788.40 38125.05 38299.27 29984.11 36399.33 27489.20 36198.22 21597.42 363
pmmvs696.53 30296.09 30597.82 30798.69 32895.47 32799.37 20399.47 16693.46 34797.41 33399.78 10587.06 35699.33 27496.92 28092.70 34898.65 284
mvsmamba98.92 11998.87 10999.08 16699.07 27499.16 12899.88 499.51 10798.15 11699.40 13999.89 1797.12 13499.33 27499.38 2797.40 26098.73 250
bld_raw_conf00598.62 15998.50 15898.95 18699.02 28398.79 18299.66 5799.55 6798.14 11998.95 23599.91 1094.54 23499.33 27499.36 3097.39 26298.74 247
V4298.06 20097.79 21698.86 21398.98 29098.84 17599.69 4699.34 24796.53 27599.30 16599.37 27394.67 22799.32 27897.57 23394.66 32198.42 327
lessismore_v097.79 30998.69 32895.44 32994.75 37695.71 35599.87 2988.69 34299.32 27895.89 30594.93 31998.62 297
OpenMVS_ROBcopyleft92.34 2094.38 32893.70 33296.41 34197.38 35793.17 36099.06 28098.75 33586.58 36494.84 35998.26 35481.53 36999.32 27889.01 36297.87 23096.76 364
bld_raw_dy_0_6498.69 15198.58 15498.99 17998.88 30198.96 15799.80 2499.41 21097.91 14899.32 16199.87 2995.70 18799.31 28199.09 6297.27 26698.71 253
v897.95 22197.63 23798.93 19098.95 29498.81 18199.80 2499.41 21096.03 31599.10 20999.42 25894.92 21099.30 28296.94 27794.08 33298.66 282
v192192097.80 24597.45 25498.84 21798.80 31298.53 20499.52 12999.34 24796.15 30799.24 18099.47 24793.98 25299.29 28395.40 31795.13 31498.69 262
test_low_dy_conf_00198.76 14498.71 13098.92 19298.92 29698.71 18899.87 999.41 21097.81 16299.35 15599.93 496.63 15399.28 28499.03 6797.44 25798.78 235
anonymousdsp98.44 16598.28 17398.94 18898.50 34298.96 15799.77 3299.50 12897.07 23698.87 24999.77 11294.76 22299.28 28498.66 12597.60 23798.57 312
MVSFormer99.17 7899.12 7299.29 14699.51 16198.94 16499.88 499.46 17697.55 18799.80 2899.65 17597.39 12499.28 28499.03 6799.85 6099.65 122
test_djsdf98.67 15498.57 15598.98 18198.70 32798.91 16899.88 499.46 17697.55 18799.22 18599.88 2395.73 18599.28 28499.03 6797.62 23698.75 244
cascas97.69 26397.43 26298.48 25198.60 33797.30 26198.18 36299.39 22392.96 35198.41 30198.78 34093.77 25899.27 28898.16 18198.61 19698.86 229
v14419297.92 22597.60 23998.87 20998.83 31198.65 19399.55 11999.34 24796.20 30099.32 16199.40 26594.36 23999.26 28996.37 29995.03 31698.70 258
RRT_MVS98.70 14898.66 13898.83 21998.90 29898.45 21699.89 299.28 27897.76 16698.94 23899.92 996.98 14199.25 29099.28 4397.00 27398.80 233
v2v48298.06 20097.77 22198.92 19298.90 29898.82 17999.57 10499.36 23896.65 26699.19 19499.35 27994.20 24499.25 29097.72 21894.97 31798.69 262
v124097.69 26397.32 27698.79 22598.85 30998.43 21899.48 15599.36 23896.11 31099.27 17299.36 27693.76 25999.24 29294.46 33095.23 31198.70 258
v114497.98 21797.69 23098.85 21698.87 30598.66 19299.54 12399.35 24396.27 29499.23 18499.35 27994.67 22799.23 29396.73 28795.16 31398.68 267
v1097.85 23397.52 24598.86 21398.99 28798.67 19199.75 3799.41 21095.70 31898.98 23199.41 26294.75 22399.23 29396.01 30494.63 32298.67 274
WR-MVS_H98.13 19397.87 21298.90 19999.02 28398.84 17599.70 4499.59 4497.27 21698.40 30299.19 30995.53 19199.23 29398.34 16693.78 33598.61 306
miper_enhance_ethall98.16 19098.08 18798.41 26298.96 29397.72 25298.45 35099.32 26496.95 24798.97 23399.17 31097.06 13899.22 29697.86 20395.99 29298.29 335
GG-mvs-BLEND98.45 25798.55 34098.16 22899.43 17493.68 37997.23 33798.46 34889.30 33799.22 29695.43 31698.22 21597.98 352
FC-MVSNet-test98.75 14598.62 14699.15 16399.08 27399.45 9799.86 1399.60 4198.23 10598.70 27499.82 5896.80 14699.22 29699.07 6596.38 28398.79 234
UniMVSNet_NR-MVSNet98.22 18297.97 19998.96 18498.92 29698.98 15099.48 15599.53 8797.76 16698.71 26899.46 25196.43 16299.22 29698.57 14092.87 34698.69 262
DU-MVS98.08 19997.79 21698.96 18498.87 30598.98 15099.41 18399.45 18897.87 15098.71 26899.50 23594.82 21499.22 29698.57 14092.87 34698.68 267
cl____98.01 21397.84 21498.55 24599.25 23797.97 23798.71 33499.34 24796.47 28398.59 29199.54 22195.65 18999.21 30197.21 25795.77 29898.46 324
WR-MVS98.06 20097.73 22799.06 16998.86 30899.25 11999.19 25699.35 24397.30 21398.66 27799.43 25593.94 25399.21 30198.58 13894.28 32898.71 253
test_040296.64 30096.24 30297.85 30398.85 30996.43 30599.44 16899.26 28193.52 34596.98 34499.52 22888.52 34599.20 30392.58 35297.50 24897.93 355
SixPastTwentyTwo97.50 27997.33 27598.03 29098.65 33196.23 31199.77 3298.68 34697.14 22797.90 32399.93 490.45 32399.18 30497.00 27196.43 28298.67 274
cl2297.85 23397.64 23698.48 25199.09 27197.87 24498.60 34399.33 25497.11 23398.87 24999.22 30592.38 29499.17 30598.21 17495.99 29298.42 327
IterMVS-SCA-FT97.82 24197.75 22598.06 28999.57 14996.36 30799.02 29199.49 13697.18 22498.71 26899.72 14092.72 27899.14 30697.44 24795.86 29798.67 274
pmmvs597.52 27697.30 27898.16 28398.57 33996.73 29499.27 23498.90 32696.14 30898.37 30499.53 22591.54 31299.14 30697.51 23995.87 29698.63 294
v14897.79 24697.55 24198.50 24898.74 32197.72 25299.54 12399.33 25496.26 29598.90 24499.51 23294.68 22699.14 30697.83 20693.15 34398.63 294
miper_ehance_all_eth98.18 18898.10 18398.41 26299.23 23997.72 25298.72 33399.31 26796.60 27298.88 24799.29 29497.29 13099.13 30997.60 22795.99 29298.38 332
NR-MVSNet97.97 22097.61 23899.02 17498.87 30599.26 11899.47 16099.42 20797.63 18097.08 34299.50 23595.07 20699.13 30997.86 20393.59 33798.68 267
IterMVS97.83 23897.77 22198.02 29299.58 14796.27 31099.02 29199.48 14897.22 22298.71 26899.70 14592.75 27599.13 30997.46 24496.00 29198.67 274
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CMPMVSbinary69.68 2394.13 32994.90 32191.84 35097.24 36180.01 37598.52 34799.48 14889.01 36191.99 36599.67 16885.67 36099.13 30995.44 31597.03 27296.39 366
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
eth_miper_zixun_eth98.05 20597.96 20098.33 26999.26 23397.38 26098.56 34699.31 26796.65 26698.88 24799.52 22896.58 15599.12 31397.39 25095.53 30698.47 320
pmmvs498.13 19397.90 20798.81 22298.61 33698.87 17198.99 29899.21 29096.44 28499.06 21999.58 20695.90 17999.11 31497.18 26396.11 28998.46 324
TransMVSNet (Re)97.15 29196.58 29698.86 21399.12 26498.85 17499.49 15098.91 32495.48 32097.16 34099.80 8693.38 26399.11 31494.16 33591.73 35198.62 297
ambc93.06 34892.68 37382.36 37298.47 34998.73 34395.09 35797.41 35955.55 37799.10 31696.42 29791.32 35297.71 358
Baseline_NR-MVSNet97.76 24897.45 25498.68 23399.09 27198.29 22399.41 18398.85 33095.65 31998.63 28599.67 16894.82 21499.10 31698.07 19192.89 34598.64 286
CP-MVSNet98.09 19797.78 21999.01 17598.97 29299.24 12099.67 5399.46 17697.25 21898.48 29799.64 18293.79 25799.06 31898.63 12894.10 33198.74 247
PS-CasMVS97.93 22297.59 24098.95 18698.99 28799.06 14399.68 5199.52 9397.13 22898.31 30799.68 16292.44 29399.05 31998.51 14994.08 33298.75 244
K. test v397.10 29396.79 29498.01 29398.72 32496.33 30899.87 997.05 36697.59 18296.16 35199.80 8688.71 34199.04 32096.69 29096.55 28098.65 284
new_pmnet96.38 30696.03 30697.41 32198.13 34995.16 33699.05 28299.20 29193.94 34097.39 33498.79 33991.61 31199.04 32090.43 35795.77 29898.05 346
DIV-MVS_self_test98.01 21397.85 21398.48 25199.24 23897.95 24198.71 33499.35 24396.50 27698.60 29099.54 22195.72 18699.03 32297.21 25795.77 29898.46 324
IterMVS-LS98.46 16498.42 16398.58 24099.59 14598.00 23599.37 20399.43 20596.94 24999.07 21599.59 20397.87 11399.03 32298.32 16995.62 30398.71 253
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
our_test_397.65 27097.68 23197.55 31898.62 33494.97 33898.84 32199.30 27196.83 25698.19 31299.34 28297.01 14099.02 32495.00 32596.01 29098.64 286
Patchmtry97.75 25297.40 26598.81 22299.10 26998.87 17199.11 27399.33 25494.83 33198.81 25799.38 27094.33 24099.02 32496.10 30195.57 30498.53 314
N_pmnet94.95 32395.83 31192.31 34998.47 34379.33 37699.12 26792.81 38293.87 34197.68 32999.13 31593.87 25599.01 32691.38 35496.19 28798.59 310
CR-MVSNet98.17 18997.93 20598.87 20999.18 25198.49 21299.22 25399.33 25496.96 24599.56 10299.38 27094.33 24099.00 32794.83 32798.58 19999.14 199
c3_l98.12 19598.04 19298.38 26699.30 22297.69 25598.81 32499.33 25496.67 26498.83 25599.34 28297.11 13598.99 32897.58 22995.34 30998.48 318
test0.0.03 197.71 26197.42 26398.56 24398.41 34597.82 24798.78 32798.63 34797.34 20998.05 32098.98 33294.45 23798.98 32995.04 32497.15 27198.89 228
PatchT97.03 29496.44 29998.79 22598.99 28798.34 22299.16 25999.07 30792.13 35399.52 11197.31 36394.54 23498.98 32988.54 36498.73 19599.03 215
GBi-Net97.68 26597.48 24998.29 27499.51 16197.26 26599.43 17499.48 14896.49 27799.07 21599.32 28990.26 32598.98 32997.10 26696.65 27698.62 297
test197.68 26597.48 24998.29 27499.51 16197.26 26599.43 17499.48 14896.49 27799.07 21599.32 28990.26 32598.98 32997.10 26696.65 27698.62 297
FMVSNet398.03 20897.76 22498.84 21799.39 20198.98 15099.40 19199.38 22996.67 26499.07 21599.28 29692.93 27098.98 32997.10 26696.65 27698.56 313
FMVSNet297.72 25897.36 26898.80 22499.51 16198.84 17599.45 16499.42 20796.49 27798.86 25499.29 29490.26 32598.98 32996.44 29696.56 27998.58 311
FMVSNet196.84 29696.36 30098.29 27499.32 22097.26 26599.43 17499.48 14895.11 32598.55 29299.32 28983.95 36498.98 32995.81 30796.26 28698.62 297
ppachtmachnet_test97.49 28297.45 25497.61 31598.62 33495.24 33298.80 32599.46 17696.11 31098.22 31199.62 19396.45 16098.97 33693.77 33795.97 29598.61 306
TranMVSNet+NR-MVSNet97.93 22297.66 23398.76 22898.78 31698.62 19699.65 6599.49 13697.76 16698.49 29699.60 20094.23 24398.97 33698.00 19392.90 34498.70 258
test_method91.10 33391.36 33690.31 35395.85 36773.72 38194.89 37099.25 28368.39 37395.82 35499.02 32780.50 37098.95 33893.64 33994.89 32098.25 338
ADS-MVSNet298.02 21098.07 19097.87 30299.33 21395.19 33499.23 24899.08 30596.24 29799.10 20999.67 16894.11 24898.93 33996.81 28399.05 17399.48 169
ET-MVSNet_ETH3D96.49 30395.64 31499.05 17199.53 15798.82 17998.84 32197.51 36497.63 18084.77 36899.21 30892.09 29798.91 34098.98 7392.21 35099.41 184
miper_lstm_enhance98.00 21597.91 20698.28 27799.34 21197.43 25998.88 31799.36 23896.48 28198.80 25999.55 21695.98 17298.91 34097.27 25395.50 30798.51 316
PEN-MVS97.76 24897.44 25998.72 23098.77 31998.54 20399.78 3099.51 10797.06 23898.29 30999.64 18292.63 28498.89 34298.09 18493.16 34298.72 251
testgi97.65 27097.50 24898.13 28799.36 20696.45 30499.42 18199.48 14897.76 16697.87 32499.45 25291.09 31798.81 34394.53 32998.52 20499.13 201
MIMVSNet97.73 25697.45 25498.57 24199.45 18897.50 25799.02 29198.98 31496.11 31099.41 13499.14 31490.28 32498.74 34495.74 30998.93 18299.47 175
LCM-MVSNet-Re97.83 23898.15 17896.87 33599.30 22292.25 36499.59 9098.26 35297.43 20296.20 35099.13 31596.27 16698.73 34598.17 18098.99 17999.64 129
DTE-MVSNet97.51 27897.19 28598.46 25698.63 33398.13 23199.84 1499.48 14896.68 26397.97 32299.67 16892.92 27198.56 34696.88 28292.60 34998.70 258
PC_three_145298.18 11499.84 1599.70 14599.31 398.52 34798.30 17199.80 9099.81 46
UnsupCasMVSNet_bld93.53 33192.51 33496.58 34097.38 35793.82 35298.24 35999.48 14891.10 35893.10 36396.66 36474.89 37298.37 34894.03 33687.71 35997.56 361
Anonymous2024052196.20 30995.89 31097.13 32897.72 35494.96 33999.79 2999.29 27693.01 35097.20 33999.03 32589.69 33498.36 34991.16 35596.13 28898.07 344
MDA-MVSNet_test_wron95.45 31794.60 32398.01 29398.16 34897.21 26899.11 27399.24 28593.49 34680.73 37398.98 33293.02 26898.18 35094.22 33494.45 32598.64 286
UnsupCasMVSNet_eth96.44 30496.12 30497.40 32298.65 33195.65 32099.36 20799.51 10797.13 22896.04 35398.99 32988.40 34698.17 35196.71 28890.27 35498.40 330
KD-MVS_2432*160094.62 32493.72 33097.31 32397.19 36395.82 31898.34 35499.20 29195.00 32897.57 33098.35 35187.95 35198.10 35292.87 34877.00 37198.01 348
miper_refine_blended94.62 32493.72 33097.31 32397.19 36395.82 31898.34 35499.20 29195.00 32897.57 33098.35 35187.95 35198.10 35292.87 34877.00 37198.01 348
YYNet195.36 31994.51 32597.92 29997.89 35197.10 27099.10 27599.23 28693.26 34980.77 37299.04 32492.81 27498.02 35494.30 33194.18 33098.64 286
EU-MVSNet97.98 21798.03 19397.81 30898.72 32496.65 29899.66 5799.66 2798.09 12798.35 30599.82 5895.25 20298.01 35597.41 24995.30 31098.78 235
Gipumacopyleft90.99 33490.15 33793.51 34698.73 32290.12 36993.98 37199.45 18879.32 36992.28 36494.91 36769.61 37397.98 35687.42 36795.67 30292.45 370
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
pmmvs-eth3d95.34 32094.73 32297.15 32695.53 37095.94 31699.35 21399.10 30295.13 32393.55 36197.54 35888.15 35097.91 35794.58 32889.69 35797.61 359
PM-MVS92.96 33292.23 33595.14 34595.61 36889.98 37099.37 20398.21 35494.80 33295.04 35897.69 35765.06 37497.90 35894.30 33189.98 35697.54 362
MDA-MVSNet-bldmvs94.96 32293.98 32897.92 29998.24 34797.27 26399.15 26399.33 25493.80 34280.09 37499.03 32588.31 34797.86 35993.49 34194.36 32798.62 297
Patchmatch-RL test95.84 31495.81 31295.95 34395.61 36890.57 36898.24 35998.39 35195.10 32795.20 35698.67 34394.78 21897.77 36096.28 30090.02 35599.51 164
Anonymous2023120696.22 30796.03 30696.79 33797.31 36094.14 35099.63 7099.08 30596.17 30397.04 34399.06 32293.94 25397.76 36186.96 36995.06 31598.47 320
SD-MVS99.41 4699.52 899.05 17199.74 7699.68 5499.46 16399.52 9399.11 1199.88 699.91 1099.43 197.70 36298.72 11599.93 1299.77 72
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DSMNet-mixed97.25 28997.35 27096.95 33397.84 35293.61 35899.57 10496.63 37096.13 30998.87 24998.61 34694.59 23097.70 36295.08 32398.86 18899.55 150
pmmvs394.09 33093.25 33396.60 33994.76 37294.49 34598.92 31398.18 35689.66 36096.48 34898.06 35686.28 35797.33 36489.68 36087.20 36097.97 353
KD-MVS_self_test95.00 32194.34 32696.96 33297.07 36595.39 33099.56 11099.44 19795.11 32597.13 34197.32 36291.86 30197.27 36590.35 35881.23 36898.23 340
FMVSNet596.43 30596.19 30397.15 32699.11 26695.89 31799.32 21999.52 9394.47 33898.34 30699.07 32087.54 35597.07 36692.61 35195.72 30198.47 320
new-patchmatchnet94.48 32794.08 32795.67 34495.08 37192.41 36399.18 25799.28 27894.55 33793.49 36297.37 36187.86 35397.01 36791.57 35388.36 35897.61 359
LCM-MVSNet86.80 33685.22 34091.53 35187.81 37880.96 37498.23 36198.99 31371.05 37190.13 36796.51 36548.45 38096.88 36890.51 35685.30 36296.76 364
CL-MVSNet_self_test94.49 32693.97 32996.08 34296.16 36693.67 35798.33 35699.38 22995.13 32397.33 33598.15 35592.69 28296.57 36988.67 36379.87 36997.99 351
MIMVSNet195.51 31695.04 32096.92 33497.38 35795.60 32199.52 12999.50 12893.65 34496.97 34599.17 31085.28 36196.56 37088.36 36595.55 30598.60 309
test20.0396.12 31195.96 30896.63 33897.44 35695.45 32899.51 13499.38 22996.55 27496.16 35199.25 30293.76 25996.17 37187.35 36894.22 32998.27 336
tmp_tt82.80 33881.52 34186.66 35466.61 38468.44 38292.79 37397.92 35868.96 37280.04 37599.85 3885.77 35996.15 37297.86 20343.89 37795.39 368
PMMVS286.87 33585.37 33991.35 35290.21 37683.80 37198.89 31697.45 36583.13 36891.67 36695.03 36648.49 37994.70 37385.86 37177.62 37095.54 367
PMVScopyleft70.75 2275.98 34474.97 34579.01 36070.98 38355.18 38493.37 37298.21 35465.08 37761.78 37893.83 36921.74 38592.53 37478.59 37391.12 35389.34 373
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
FPMVS84.93 33785.65 33882.75 35886.77 37963.39 38398.35 35398.92 32174.11 37083.39 37098.98 33250.85 37892.40 37584.54 37294.97 31792.46 369
MVEpermissive76.82 2176.91 34374.31 34784.70 35585.38 38176.05 38096.88 36993.17 38067.39 37471.28 37689.01 37521.66 38687.69 37671.74 37572.29 37390.35 372
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN80.61 34079.88 34282.81 35790.75 37576.38 37997.69 36695.76 37366.44 37583.52 36992.25 37162.54 37687.16 37768.53 37661.40 37484.89 375
EMVS80.02 34179.22 34382.43 35991.19 37476.40 37897.55 36892.49 38366.36 37683.01 37191.27 37264.63 37585.79 37865.82 37760.65 37585.08 374
ANet_high77.30 34274.86 34684.62 35675.88 38277.61 37797.63 36793.15 38188.81 36264.27 37789.29 37436.51 38183.93 37975.89 37452.31 37692.33 371
wuyk23d40.18 34541.29 35036.84 36186.18 38049.12 38579.73 37422.81 38627.64 37825.46 38128.45 38121.98 38448.89 38055.80 37823.56 38012.51 378
test12339.01 34742.50 34928.53 36239.17 38520.91 38698.75 33019.17 38719.83 38038.57 37966.67 37733.16 38215.42 38137.50 38029.66 37949.26 376
testmvs39.17 34643.78 34825.37 36336.04 38616.84 38798.36 35226.56 38520.06 37938.51 38067.32 37629.64 38315.30 38237.59 37939.90 37843.98 377
test_blank0.13 3510.17 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3831.57 3820.00 3870.00 3830.00 3810.00 3810.00 379
uanet_test0.02 3520.03 3550.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.27 3830.00 3870.00 3830.00 3810.00 3810.00 379
DCPMVS0.02 3520.03 3550.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.27 3830.00 3870.00 3830.00 3810.00 3810.00 379
cdsmvs_eth3d_5k24.64 34832.85 3510.00 3640.00 3870.00 3880.00 37599.51 1070.00 3820.00 38399.56 21396.58 1550.00 3830.00 3810.00 3810.00 379
pcd_1.5k_mvsjas8.27 35011.03 3530.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.27 38399.01 190.00 3830.00 3810.00 3810.00 379
sosnet-low-res0.02 3520.03 3550.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.27 3830.00 3870.00 3830.00 3810.00 3810.00 379
sosnet0.02 3520.03 3550.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.27 3830.00 3870.00 3830.00 3810.00 3810.00 379
uncertanet0.02 3520.03 3550.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.27 3830.00 3870.00 3830.00 3810.00 3810.00 379
Regformer0.02 3520.03 3550.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.27 3830.00 3870.00 3830.00 3810.00 3810.00 379
ab-mvs-re8.30 34911.06 3520.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 38399.58 2060.00 3870.00 3830.00 3810.00 3810.00 379
uanet0.02 3520.03 3550.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.27 3830.00 3870.00 3830.00 3810.00 3810.00 379
FOURS199.91 199.93 199.87 999.56 5899.10 1299.81 25
test_one_060199.81 4299.88 899.49 13698.97 3799.65 7999.81 7199.09 14
eth-test20.00 387
eth-test0.00 387
RE-MVS-def99.34 3299.76 5799.82 2399.63 7099.52 9398.38 8799.76 4399.82 5898.75 6098.61 13299.81 8699.77 72
IU-MVS99.84 3399.88 899.32 26498.30 9899.84 1598.86 9499.85 6099.89 2
save fliter99.76 5799.59 7399.14 26599.40 21999.00 28
test072699.85 2699.89 499.62 7699.50 12899.10 1299.86 1399.82 5898.94 35
GSMVS99.52 158
test_part299.81 4299.83 1799.77 38
sam_mvs194.86 21399.52 158
sam_mvs94.72 225
MTGPAbinary99.47 166
MTMP99.54 12398.88 328
test9_res97.49 24099.72 11299.75 78
agg_prior297.21 25799.73 11199.75 78
test_prior499.56 7898.99 298
test_prior298.96 30698.34 9399.01 22499.52 22898.68 6797.96 19599.74 108
新几何299.01 296
旧先验199.74 7699.59 7399.54 7699.69 15498.47 8599.68 12399.73 90
原ACMM298.95 310
test22299.75 6899.49 9198.91 31599.49 13696.42 28699.34 15999.65 17598.28 10099.69 11899.72 96
segment_acmp98.96 29
testdata198.85 32098.32 97
plane_prior799.29 22697.03 280
plane_prior699.27 23196.98 28492.71 280
plane_prior499.61 197
plane_prior397.00 28298.69 6499.11 206
plane_prior299.39 19598.97 37
plane_prior199.26 233
plane_prior96.97 28599.21 25598.45 8197.60 237
n20.00 388
nn0.00 388
door-mid98.05 357
test1199.35 243
door97.92 358
HQP5-MVS96.83 290
HQP-NCC99.19 24898.98 30298.24 10298.66 277
ACMP_Plane99.19 24898.98 30298.24 10298.66 277
BP-MVS97.19 261
HQP3-MVS99.39 22397.58 239
HQP2-MVS92.47 289
NP-MVS99.23 23996.92 28899.40 265
MDTV_nov1_ep13_2view95.18 33599.35 21396.84 25499.58 9995.19 20497.82 20799.46 177
ACMMP++_ref97.19 269
ACMMP++97.43 258
Test By Simon98.75 60